光学知识

2024-10-17

光学知识(精选8篇)

1.光学知识 篇一

光学镜头基础知识

这是很久以前系统集成时总结的一点心得体会与大家分享。光学镜头是机器视觉系统中必不可少的部件,直接影响成像质量的优劣,影响算法的实现和效果。另外争取选折合适的镜头,降低机器视觉系统成本,才是产业兴旺发达的唯一出路。光学镜头规格繁多,有时不免头晕。光学镜头从焦距上可分为短焦镜头、中焦镜头,长焦镜头;从视场大小分有广角、标准,远摄镜头;结构上分有固定光圈定焦镜头,手动光圈定焦镜头,自动光圈定焦镜头,手动变焦镜头、自动变焦镜头,自动光圈电动变焦镜头,电动三可变(光圈、焦距、聚焦均可变)镜头等。根据我们使用的经验,俄罗斯的光学镜头很便宜。分类

结构上分

固定光圈定焦镜头

简单。镜头只有一个可以手动调整的对焦调整环,左右旋转该环可使成像在CCD靶面上的图像最清晰。没有光圈调整环,光圈不能调整,进入镜头的光通量不能通过改变镜头因素而改变,只能通过改变视场的光照度来调整。结构简单,价格便宜。手动光圈定焦镜头

手动光圈定焦镜头比固定光圈定焦镜头增加了光圈调整环,光圈范围一般从F1.2或F1.4到全关闭,能方便地适应被被摄现场地光照度,光圈调整是通过手动人为进行的。光照度比较均匀,价格较便宜。自动光圈定焦镜头

在手动光圈定焦镜头的光圈调整环上增加一个齿轮合传动的微型电机,并从驱动电路引出3或4芯屏蔽线,接到摄像机自动光圈接口座上。当进入镜头的光通量变化时,摄像机CCD靶面产生的电荷发生相应的变化,从而使视频信号电平发生变化,产生一个控制信号,传给自动光圈镜头,从而使镜头内的电机做相应的正向或反向转动,完成调整大小的任务。

4手动光圈定焦镜头

焦距可变的,有一个焦距调整环,可以在一定范围内调整镜头的焦距,其可变比一般为2~3倍,焦距一般为3.6~8mm。实际应用中,可通过手动调节镜头的变焦环,可以方便地选择被监视地市场的市场角。但是当摄像机安装位置固定下以后,在频繁地手动调整变焦是很不方便的。因此,工程完工后,手动变焦镜头的焦距一般很少调整。仅起定焦镜头的作用。

5自动光圈电动变焦镜头

与自动光圈定焦镜头相比增加了两个微型电机,其中一个电机与镜头的变焦环合,当其转动时可以控制镜头的焦距;另一电机与镜头的对焦环合,当其受控转动时可完成镜头的对焦。但是,由于增加了两个电机且镜片组数增多,镜头的体积也相应增大。6电动三可变镜头 与自动光圈电动变焦镜头相比,只是将对光圈调整电机的控制由自动控制改为由控制器来手动控制。

场合上分:

按视场大小分为:小视场镜头,普通镜头(约50度左右),广角镜头和特广角镜头(100-120度)标准镜头:视角约50度,也是人单眼在头和眼不转动的情况下所能看到的视角,所以又称为标准镜头。5mm相机的标准镜头的焦距多为40mm,50mm或55mm。120相机的标准镜头焦距多为80mm或75mm。CCD芯片越大则标准镜头的焦距越长。

2、广角镜头:视角90度以上,适用於拍摄距离近且范围大的景物,又能刻意夸大前景表现强烈远近感即透视。35mm相机的典型广角镜头是焦距28mm,视角为72度。120相机的50,40mm的镜头便相当于35mm相机的35,28mm的镜头.

3、长焦距镜头:适于拍摄距离远的景物,景深小容易使背景模糊主体突出,但体积笨重且对动态主体对焦不易。35mm相机长焦距镜头通常分为三级,135mm以下称中焦距,135-500mm称长焦距,500mm 以上称超长焦距。120相机的150mm的镜头相当于35mm相机的105mm镜头。由於长焦距的镜头过于笨重,所以有望远镜头的设计,即在镜头后面加一负透镜,把镜头的主平面前移,便可用较短的镜体获得镜体获得长焦距的效果。

4、反射式望远镜头:是另一种超望远镜头的设计,利用反射镜面来构成影像,但因设计的关系无法装设光圈,仅能以快门来调整曝光。

5、微距镜头(marco lens):除作极近距离的微距摄影外,也可远摄。接口类型来分C型镜头

法兰焦距是安装法兰到入射镜头的平行光的汇聚点之间的距离。法兰焦距为17.526mm 或0.690in。安装罗纹为:直径1in,32牙.in。镜头可以用在长度为0.512in(13mm)以内的线阵传感器。但是,由于几何变形和市场角特性,必须鉴别短焦镜头是否合用。如焦距为12.6mm的镜头不应该用长度大于6.5mm的线阵。如果利用法兰焦距尺寸确定了镜头到列阵的距离,则对于物方放大倍数小于20倍时需增加镜头接圈。接圈加在镜头后面,以增加镜头到像的距离,以为多数镜头的聚焦范围位5-10%。镜头接长距离为焦距/物方放大倍数。CS型镜头

With a 5 mm adapter ring, a C lens can be used on a CS-mount camera.U型镜头

一种可变焦距的镜头,其法兰焦距为47.526mm或1.7913in,安装罗纹为M42×1。主要设计作35mm照片应用(如国产和进口的各种135相机镜头),可用于任何长度小于1.25in(38.1mm)的列阵。建议不要用短焦距镜头。4 42mm 镜头 3 L型镜头 固定焦距宽视场镜头,最初设计作照相放大作用(如国产各种放大机镜头),且在2.25in(63.5mm)视场内具有良好的特性。法兰焦距是具体镜头的函数。安装螺纹为M39×1.0。可用于长度为1.25in(35.1)以内的列阵,且不受限制。

2.光学知识 篇二

关键词:光学电流互感器,锁定放大器,运行稳定性,测量精度,输出信噪比

0 引言

随着数字化变电站的发展,以法拉第磁光效应[1,2]为原理的自适应光学电流互感器(AOCT)[3]逐步实现了实用化[4]。以往的AOCT传感部分通常采用顺磁性磁光材料以便于实现自适应光学传感过程[5],然而顺磁性磁光材料Verdet常数比较大,当AOCT测量暂态大电流时法拉第旋转角非常大,导致非线性误差及各谐波所引起的畸变比较大。为了进一步完善和发展AOCT,解决其存在的问题,本文在螺线管聚磁光学传感头中采用抗磁性磁光材料,并缩短磁光材料的长度,以减小AOCT的非线性误差及各谐波所引起的畸变,并进一步提高其长期运行稳定性。但此时AOCT测量小电流得到的光电信号主要被AOCT内部固有噪声影响,严重时会被湮没,其测量值存在较大误差。因此,如何有效地去除噪声的影响,同时得到高精度的数据以确保实现自适应光学传感过程是必须解决的问题。在原有AOCT的基础上,本文通过在信号处理部分采用锁定放大器(LIA),使得改进后的AOCT实现大范围电流的高精度测量,综合提高AOCT的暂态和稳态准确度。通过基于虚拟仪器LabVIEW的检测系统对本文提出的电流测量过程进行仿真实验。

1 AOCT的电流测量过程

根据对光学电流互感器(OCT)数学模型[4]的分析可知,被测电流包括50 Hz的基波电流及各次谐波电流,各种电流成分作用下的光学传感系统所表现的特性始终是一致的[1],而且外界对OCT的影响也不会由于电流成分的不同而有所变化。因此,基波电流与其他电流成分所对应的OCT的比例系数相同。AOCT的系统原理如图1所示。

图1中的稳态电流参考模型是以传统电流互感器为传感元件的电子式互感器,提供高精度的基波电流量测量。在电力系统稳态时,稳态电流参考模型的测量值经过横向滤波器组直接输出,同时光学传感元件OCT部分通过整周期累加平均法计算基本光强P0,利用稳态电流参考模型所测得的电流信号作为光学传感元件的锁定放大器部分的同频率基波参考信号,在稳态电流参考模型和光学传感元件所测得的电流信号经锁定放大器后应用自适应算法计算自适应校正系数。

由于采用基于电磁感应原理的电流互感器作为参考模型来提高其稳态测量精度,当电力系统发生故障时,稳态电流参考模型会因电流中出现的非周期分量产生磁饱和现象而导致严重的波形失真。因此,在电力系统出现故障后必须停止计算自适应校正系数,以避免稳态电流参考模型的失真波形影响OCT的输出,同时需要停止计算P0。由于电力系统中故障时间非常短,外界因素如温度等对光学传感元件的影响在暂态过程中是不变的,故障前后的自适应校正系数也就不变,此时系统采用故障前一时刻稳态所计算出的自适应校正系数,使故障后AOCT的准确度也达到参考模型稳态准确度的水平;同时可认为短时间内OCT中的P0不变,将稳态情况下计算出的P0代入,在后续电路中直接减去该值,通过滤波器组直接输出故障电流信息。故障后的校正参数并不是以故障后参考模型的输出为基础计算得到的,因此故障后由饱和等因素引起的参考模型输出误差不会影响AOCT的暂态准确度。另外,由于通过直接减去P0而得到故障电流,保留了非周期分量,解决了原OCT的单光源单探测器交流/直流法不能测量非周期分量的问题。

为了能将稳态测量期间所获得的自适应校正系数以及P0值应用到暂态测量中,以更好地消除温度、双折射等因素的影响,必须在电流突变瞬间就捕获突变时刻和突变量的大小。本文采用突变量检测方法,检测出电力系统由稳态向暂态转变瞬间会在被测电流中出现的奇异点,以闭锁基本光强的计算过程及校正参数的自适应算法。当电力系统发生故障时,通过突变量检测立即停止计算P0,利用暂态测量通道输出故障电流值,此时不经过稳态测量通道,因此停止计算新的校正参数,并采用故障前一时刻的P0和稳态所计算出的自适应校正系数,通过横向滤波器组直接输出,如图1中虚线所示。

需要指出的是,由于在稳态电流参考模型和光学传感元件的输出信号之后都采用了锁定放大器,因此改进后的AOCT有效地抑制了AOCT内部噪声,提高了信噪比。在保证AOCT的非线性误差及各谐波畸变很小的前提下,提高了改进AOCT对大范围电流测量的精确度和其暂态及稳态准确度。

2 锁定放大器

将锁定放大器应用到AOCT微弱信号系统中,对光电探测器中的噪声[6]有很好的抑制作用。本文采用了正交矢量型锁定放大器[7]进行AOCT微弱信号的检测,其系统结构如图2所示。

电力系统稳态运行时,在不考虑谐波输出的情况下,对于被测稳态电流i=Imsin(ωt+φ),光电探测器输出的电压信号为[4]:

u(t)=P0(1+2θ)=P0+2P0VImsin(ωt+φ) (1)

式中:θ为法拉第旋转角;V为磁光材料的Verdet常数。

经过整周期累加平均方法可得P0,在后续电路中减去该值,即可得到携带有用电流信息的交流量,通过带通滤波器(BPF)及前置放大器后的输出信号为:

Vs(t)=Vssin(ωt+φ)+n(t)(2)

式中:Vs=2k1P0VNIm。

忽略光电探测器中白噪声,通过BPF后变成的以ω为中心频率的窄带噪声为n(t),选择参考信号为Vr1(t)=sin ωt,Vr2(t)=cos ωt,则相敏检测器PSD1的输出为:

up1(t)=-0.5Vscos(2ωt+φ)+0.5Vscos φ (3)

相敏检测器PSD2的输出为:

up2(t)=0.5Vssin(2ωt+φ)+0.5Vssin φ (4)

通过LPF和GDC后,便可以得到同相输出I和正交输出Q:

Ι=0.5k2Vscosφ=V0cosφ(5)Q=0.5k2Vssinφ=V0sinφ(6)

根据V0=Ι2+Q2,θ=arctan(Q/Ι)可计算有用电压信号的幅值和被测信号与参考信号的相位差,然后通过电流和电压的转换系数得到被测电流的信息。

考虑窄带噪声n(t)的影响[8],n(t)可分解为:

n(t)=nc(t)cosωt-ns(t)sinωt(7)

式中:nc(t)和ns(t)是2个相互独立的低频平稳随机过程,它们的均值都为0,幅度分布为高斯分布,功率谱密度在-B/2~B/2带宽范围内恒定为N0/2,且nc(t)和ns(t)的功率相同,都等于n(t)的功率。

n(t)Vr1(t)=(nc(t)cos ωt-ns(t)sin ωt)sin ωt=

0.5nc(t)sin 2ωt+0.5ns(t)cos 2ωt-

0.5ns(t) (8)

n(t)Vr2(t)=(nc(t)cos ωt-ns(t)sin ωt)cos ωt=

0.5nc(t)cos 2ωt+0.5nc(t)-

0.5ns(t)sin 2ωt (9)

噪声的和频项被滤除后,其噪声分别主要表现为-0.5ns(t)和0.5nc(t),且由于nc(t)和ns(t)的均值都为0,通过长时间的积分作用后,可大大滤除噪声。

由此可见,虽然磁光材料的缩短会使得改进AOCT输入信噪比降低,但其非线性误差及各谐波的畸变很小,所受外界温度干扰的影响也大为降低,使得其长期运行稳定性大为提高;同时,通过微弱信号检测过程可看出在信号处理部分采用锁定放大器能有效抑制光电探测器的主要噪声,将信号从噪声中分离出来,输出最初正确的微弱电流信号,从而提高了改进AOCT的输出信噪比和测量精度。

3 AOCT交流电流检测实验

为了检验改进AOCT的测量性能,需要进行交流电流的检测实验。实验电路如图3所示。

实验采用的设备包括调压器、400匝螺线管、滑线变阻器(取值100 Ω)、47 μF电容器、用于测量线路电流的PROVA-11型微电流交直流钳形表、HKA0.5-NP霍尔小电流传感器、LXYA 100 V/3.5 V微型精密高精度变换器、NI USB-6251数据采集卡。由于在实验室中没有直接产生600 A~1 000 A的大电流发生器,为此采用提高安匝数的办法将通过螺线管的小电流等效放大,以达到发生大电流的效果。需要强调的是,在实验中所采用的螺线管不是前文所述的光学传感系统中通过一次大电流的聚磁螺线管。在实际应用中,AOCT光学传感系统中的聚磁螺线管的匝数通常是几匝。

NI USB-6251是一款高速多功能数据采集模块,在高采样率下也能保持高精度。通过DAQ Assistant软件可以实现数据采集并将模拟信号与所编写好的LabVIEW程序[9,10]相连。本文采取用传统电流互感器作为参考信号,经移相得到正交的参考信号,计算AOCT测量值与电流互感器测量值,并得到两信号在噪声情况下的测量误差。AOCT信号检测结构如图4所示。

由于实验在非恒温条件下进行,所采集的AOCT和传统电流互感器信号会受到温度变化的影响,因此需要在运行一段时间后重新计算其整定值。调节接触调压器输出所要测量的AOCT信号和电流互感器信号,采样率选择10 kHz,被测信号频率为50 Hz,采样点数为105时,连续运行400次,记录每次AOCT测量值与电流互感器测量值之间的电流幅值最大误差,如图5所示。

实验结果证明AOCT与电流互感器通过锁定放大器后的测量值误差在0.2%以内,检测系统能有效滤除噪声,提高了输出信噪比和测量准确度。

4 结语

本文在采用AOCT中的螺线管聚磁光学传感头的基础上,改用抗磁性材料并缩短磁光材料的长度,提高了OCT的长期运行稳定性。在信号处理部分采用锁定放大器和与传统电流互感器互补结合的方法综合提高OCT的暂态和稳态准确度。同时,利用LabVIEW对检测系统进行了仿真实验,证明检测系统能有效滤除噪声,提高了输出信噪比和测量准确度。

感谢华北电力大学校内博士学位教师基金的资助。

参考文献

[1]张甦英,王玉宏,黄健.基于电子剪切散斑干涉技术的光学电流互感器.电力系统自动化,2007,31(17):83-86.ZHANG Suying,WANG Yuhong,HUANG Jian.An optical current transducer based on the electronic speckle-shearing patterninterferometer.Automation of Electric Power Systems,2007,31(17):83-86.

[2]王夏霄,张春熹,张朝阳,等.一种新型全数字闭环光纤电流互感器方案.电力系统自动化,2006,30(16):77-80.WANG Xiaxiao,ZHANG Chunxi,ZHANG Chaoyang,et al.A new all digital closed-loop fiber optic current transformer.Automation of Electric Power Systems,2006,30(16):77-80.

[3]李岩松,张国庆,于文斌,等.提高光学电流互感器准确度的组合方法.电力系统自动化,2003,27(19):43-47.LI Yansong,ZHANG Guoqing,YU Wenbin,et al.Combined method to improve the accuracy of optical current transducer.Automation of Electric Power Systems,2003,27(19):43-47.

[4]李岩松,郭志忠,杨以涵,等.自适应光学电流互感器的基础理论研究.中国电机工程学报,2005,25(22):21-26.LI Yansong,GUO Zhizhong,YANG Yihan,et al.Research on the basic theory of adaptive optical current transducer.Proceedings of the CSEE,2005,25(22):21-26.

[5]李岩松,刘君.自适应光学电流互感器的信号处理方法.电力系统自动化,2008,32(10):53-56.LI Yansong,LI U Jun.Signal processing method for adaptive optical current transducer.Automation of Electric Power Systems,2008,32(10):53-56.

[6]叶嘉雄,常大定,陈汝均.光电系统与信号处理.北京:科学出版社,1997.

[7]高晋占.微弱信号检测.北京:清华大学出版社,2004.

[8]陈佳圭.微弱信号检测.北京:中央广播电视大学出版社,1987.

[9]尚秋峰,杨以涵,于文斌,等.光电电流互感器测试与校验方法.电力系统自动化,2005,29(9):77-81.SHANG Qiufeng,YANG Yihan,YU Wenbin,et al.Test and calibration of optical electrical current transformer.Automation of Electric Power Systems,2005,29(9):77-81.

3.如何学好初中光学知识 篇三

关键词:直线传播;反射;折射;光的颜色;成像

中图分类号:G633.7 文献标识码:A 文章编号:1992-7711(2014)09-0035

我们的眼睛是如何看到物体的呢?首先,让我们来了解眼睛是如何成像的。实际上眼睛成像是透镜成像规律的重要应用。照相机与眼睛有相似的结构,自制照相机能使学生对利用凸透镜成缩小的实像有较直观、深刻的印象。因此,对眼睛成像的认识,可以从自制照相机开始。通过生理学中的眼模型或课件,将生理眼抽象成简化眼模型。将自制照相机与简化眼对比,使学生认识到眼睛可以看成是精巧的照相机,眼球中的角膜和晶状体的共同作用,相当于一个“凸透镜”,视网膜相当于照相机的底片。从物体发出的光线经过人眼的凸透镜在视网膜上形成倒立、缩小的实像,分布在视网膜上的视神经细胞受到光的刺激,把这个信号传输给大脑,人就可以看到这个物体了,这就是眼睛成像的基本原理。因此,必须有光线进入到我们的眼睛才能引起视觉。

我们看到影子和光的直线传播是有很大的关系的。光从光源传播出来,当光遇到不透明的物体时,部分光线会被物体吸收,部分光线会被反射,而其他未被物体挡住的光线,会继续前进,有光的地方有反射光线进入人的眼睛,在不透光的物体后面受不到光照射的地方就就没有反射光线进入人的眼睛,而呈现阴影的现象,所以形成了影子。例如,日食月食的形成是影子形成的例子。所以说,要是没有光,哪会有影子呢?

我们又是如何看清物体呢?那也是物体把各部分光线反射进入人的眼睛才能看见。例如,我们在教室内可以看到黑板上的字,是因为反射光线进入到我们的眼睛;黑板不光滑,光照到黑板上会向各个方向反射,发生了漫反射,所以坐在教室里的我们都能从各个方向看到黑板上的字。在一般情况下,光线是直线传播的,但是光导纤维却能让光线通过在内部的数次反射,走过一条“弯曲”的路线。类似地,如果能够发明出一种隐身器的表面材料以及合理的外形,使得光能够沿表面发生弯曲,绕过物体并继续沿直线传播,所以有反射光线进入人的眼睛,那么我们就可以看到物体背后的东西。同时,虽然隐身器就在我们面前,但是没有光线从其上反射到我们眼里,我们是看不到隐身器的。显然这个隐身器应该是球形,这样在各个方位都能达到“隐身”的目的。实际上物体是实实在在存在的,只是人的眼睛感受不到而已。

我们从水面上看水中物体,看到的是比物体的实际位置偏高(浅)的虚像,这是因为当光从水中射入空气时,在水与空气的交界面上发生折射,进入空气中的折射光线向水面偏折,位置降低,折射光线进入我们的眼睛,而我们认为光是沿直线传播的,所以看到的像比物体的实际位置偏浅。同理根据光路的可逆性,我们可以解释为什么潜水员从水中看水面以上的物体,看到的位置比物体的实际位置偏高的原因。

很多人认为我们能看到实像是因为光线进入人的眼睛,而我们看到虚像并没有光线进入人的眼睛,这种说法是错误的。因为无论我们看到的是实象还是虚象,都有光线进入我们的眼睛,只是他们的区别是:1. 成像原理不同:物体射出的光线经光学元件反射或折射后,重新会聚所成的像叫做实像,它是实际光线的交点。在凸透镜成像中,所成实像都是倒立的。如果物体发出的光经光学元件反射或折射后发散,则它们反向延长后相交所成的像叫做虚像。2. 承接方式不同:虚像能用眼睛直接观看,但不能用光屏承接;实像既可以用光屏承接,也可以用眼睛直接观看。人看虚像时,仍有光线进入人眼,但光线并不是来自虚像,而是被光学元件反射或折射的光线,只是人们有“光沿直线传播”的经验,以为它们是从虚像发出的。虚像可能因反射形成,也可能因折射形成,如平面镜成等大的虚像,凸透镜成放大的虚像。例子:我们看到的镜子里的像就是虚象,我们用相机照出来的就是实象。我们是如何看到物体的颜色的呢?为什么物体有各种各样的颜色呢?是物体吸收了特定的光,而反射了部分的光,那为什么物体会吸收特定的光呢?我们知道光是一种电磁波,不同的光对应着不同的波长,物体不管是有机物还是无机物,其原子、电子都有一定的能量当某一波长的光照射在这些物体表面而能引起物体表面原子、电子发生共振时,光就被吸收了,原子、电子就得到了光的能量,当一个连续波长的光。比如说是太阳光照射到物体表面能发生共振的波长的光被物体吸收了,其他的光则被原子挡在外面并反射出去,然后这些光经过组合原理就形成我们看到的物体的颜色。如果物体不吸收光也不反射光,而是让光通过,那物体就是透明的。在日常生活中,人们能看到各种色彩,如蓝蓝的天空、绿色的草原、朵朵白云、鲜红的玫瑰花瓣、绿色的庄稼、黄色的油菜花等。所有这些颜色都是在白天才能看见、分辨,也就是说只有在光线照射的条件下才能呈现出来。总之,透明物体的颜色就是它透过色光的颜色。不透明物体的颜色就是它反射色光的颜色。同时人们还注意到,在太阳光下看见某一物体呈现某种颜色,如果再把它放在白炽灯下(特别是某种彩色灯下),该物体的颜色就发生了改变。于是,人们推断人眼之所以能看到色彩,是由于有光的存在.颜色都是光作用在物体表面后,发生了不同的反映,再刺激人的眼睛后产生的。不同的光会产生不同的刺激,所以眼睛看到不同的物体就会有不同的颜色感觉。在黑暗条件下,人眼看不见不发光物体颜色的,只有当外来的光线照射在其表面后,它的颜色才能被人眼感知。所以,颜色是光照射到物体表面后的结果。但最终必须有光线进入人的眼睛,才能感受多彩的世界。

总之,无论是日、月食,还是岸上的人看到的是比物体的实际位置偏浅,还是看到物体的颜色,还是我们看到的是实象还是虚象,都是是否有光线进入人的眼睛的结果,都是是否能引起眼睛的视觉,都是眼睛惹的祸。正因如此,我们学会了光的反射、折射以及它们的应用,从而丰富了我们的认识。

4.高中物理光学知识点总结 篇四

(2)产生干涉的条件

两个振动情况总是相同的波源叫相干波源,只有相干波源发出的光互相叠加,才能产生干涉现象,在屏上出现稳定的亮暗相间的条纹.

(3)双缝干涉实验规律

①双缝干涉实验中,光屏上某点到相干光源、的路程之差为光程差,记为 .

若光程差是波长λ的整倍数,即(n=0,1,2,3…)P点将出现亮条纹;若光程差是半波长的奇数倍

(n=0,1,2,3…),P点将出现暗条纹.

②屏上和双缝、距离相等的点,若用单色光实验该点是亮条纹(中央条纹),若用白光实验该点是白色的亮条纹.

③若用单色光实验,在屏上得到明暗相间的条纹;若用白光实验,中央是白色条纹,两侧是彩色条纹.

④屏上明暗条纹之间的距离总是相等的,其距离大小与双缝之间距离d.双缝到屏的距离及光的波长λ有关,即 .在和d不变的情况下,和波长λ成正比,应用该式可测光波的波长λ.

5.光学知识 篇五

影子小孔日月食,还有激光能准直;向右看齐听口令,三点一线能命中;

月亮本不是光源,长度单位有光年;传光最快数真空,8分能飞到月宫。

光线原以直线过,遇到界面成反射;一面两角和三线,法线老是在中间;

三线本来就共面,两角又以相等见;入射角变反射角,光路可逆互相看;

反射类型有两种,成像反射靠镜面;学生坐在各角落,看字全凭漫反射;

若是个别有“反光”,那是镜面帮倒忙。

镜面反射成虚像,像物同大都一样,物远像远没影响,连线垂直镜中央.

还有凸面凹面镜,反光作用不一样;凹面镜能会聚光,来把灯碗灶台当;

观后镜使光发散,扩大视野任车转。

不管凸透凹透镜,都有一定折射性;经过光心不变向,会聚发散要分清。

平行光束穿透镜,通过焦点是一定;折射光线可逆行,焦点出发必平行;

显微镜来是组合,两个镜片无分别;只是大小不一样,焦距位置要适当;

物镜实像且放大,目镜虚像再放大;望远镜来看得清,全靠两片凸透镜;

物镜实像来缩小,目镜虚像又放大。为啥感觉像变大,全靠视角来变化。

画反射光路图:

作图首先画法线,反入夹角平分线,垂直法线立界面。光线方向要标全。

画折射光路:

空射水玻折向法,水玻射空偏离法。海市蜃楼是折射,观察虚像位偏高。

凸透镜成像:

一倍焦距不成像,内虚外实分界明;二倍焦距物像等,外小内大实像成;

物近像远像变大,物远像近像变小;实像倒立虚像正,照、投、放大对应明

眼睛和眼镜

晶薄焦长看远物,晶厚焦短看近物。晶厚近视薄远视,凹透矫近凸矫远。

6.光学教案 篇六

(一)光源:能发光的物体。

1、光源可分为自然光源。如 :太阳、萤火虫。

2、人造光源。如: 篝火、蜡烛、油灯、电灯、电视机屏幕。

3、月亮、平面镜、放电影时所看到的银幕本身不会发光,它们不是光源。

(二)光的传播:光在同一种均匀介质中是沿直线传播的。

1、表示光的传播方向的直线叫光线,光线是带箭头的直线,箭头表示光传播的方向。

2、用光的直线传播解释简单的光现象

1)影的形成:光在传播过程中,遇到不透明的物体,由于光是沿直线传播的,所以在不透光的物体后面,光照射不到,形成了黑暗的部分就是影。2)日食、月食的成因。

3)小孔成像:小孔成像实验早在《墨经》中就有记载小孔成像成倒立的实像,其像的形状与孔的形状无关。

(三)光速

81、光在真空中的传播速度是3×10 m/s.2、光在其他各种介质中的速度都比在真空中的小.3、光在空气中的速度可认为是3×108 m/s.(四)色散:复色光分解单色光的现象,叫做光的色散。

1、白光是复色光。白光通过棱镜不能再分解的光叫做单色光

2、红、绿、蓝是色光的三原色

3、红、黄、蓝是颜料的三原色。

(五)光的反射:光从一种介质射向另一种介质表面时,一部分光被反射回原来介质的现象叫光的反射。

1、反射定律:反射光线与入射光线、法线在同一平面上,反射光线和入射光线分居于法线的两侧,反射角等于入射角。光的反射过程中光路是可逆的。

2、分类:

⑴ 镜面反射:射到物面上的平行光反射后仍然平行。

迎着太阳看平静的水面,特别亮。黑板“反光”等,都是因为发生了镜面反射 ⑵ 漫反射:射到物面上的平行光反射后向着不同的方向 每条光线遵守光的反射定律。

(六)平面镜:

1、成像特点:①物体在平面镜里所成的像是虚像。②像、物到镜面的距离相等。③像、物大小相等。④像、物的连线与镜面垂直。

2、“正立”“等大”“虚象”像、物关于镜面对称。

3、成像原理:光的反射定理。

4、作用:成像、改变光路。

5、实像和虚像:实像:实际光线会聚点所成的像。

虚像:反射光线反向延长线的会聚点所成的像。

(七)光的折射:光从一种介质斜射入另一种介质时,传播方向一般会发生变化;这种现象叫光的折射现象。

1、光的折射定律:

⑴折射光线,入射光线和法线在同一平面内。⑵折射光线和入射光线分居与法线两侧。⑶

光从空气斜射入水或其他介质中时,折射角小于入射角。光从水中或其他介质斜射入空气中时,折射角大于入射角。光从空气垂直射入(或其他介质射出),折射角=入射角= 0度。

2、在折射时光路是可逆的。

3、应用:从空气看水中的物体,或从水中看空气中的物体看到的是物体的虚像,看到的位置比实际位置高。

(八)透镜成像:

1、透镜及分类: 凸透镜: 边缘薄,中央厚。

凹透镜: 边缘厚,中央薄。

2、主光轴,光心、焦点、焦距。

主光轴:通过两个球心的直线。

光心:主光轴上有个特殊的点,通过它的光线传播方向不变。焦点:凸透镜能使跟主轴平行的光线会聚在主光轴上的一点,这点叫透镜的焦点,用“F”表示

焦距:焦点到光心的距离叫焦距,用“f”表示。

虚焦点:跟主光轴平行的光线经凹透镜后变得发散,发散光线的反向延长线相交在主光轴上一点,这一点不是实际光线的会聚点,所以叫虚焦点。每个透镜都有两个焦点、焦距和一个光心以及一条主光轴。

3、透镜对光的作用

凸透镜:对光起会聚作用。

凹透镜:对光起发散作用。

4、凸透镜成像规律

注意:

u>f: 物距增大、像距减小、像变小、成倒立实像;物距减小、像距增大、像变大、成倒立实像。

7.生活中的光学 篇七

一、雨后的彩虹

夏天的雨后,天空会出现美丽的彩虹,这在人们心中已经成为美丽的向往,把它比喻成是人们登上天上的桥。当我们学了物理就会知道,其实它并不是桥,而是雨后天空中的水滴和太阳光共同作用的结果。 关于光的色散,还得从牛顿说起,牛顿在1672年最先利用三棱镜观察到光的色散,把白光分解为彩色光带(光谱)色散现象说明了白光是由红、橙、黄、绿、蓝、靛、紫等各种色光组成的复色光。彩虹是因为悬浮在空中的小水滴对太阳光的色散而形成的。一束太阳光入射到水滴上,折射后进入水滴内,又在入射处发生一次反射,然后又从入射处折射出水滴外。所以,水滴的入射光与出射光之间有一个偏向角α,就如三棱镜的偏折一样。同一种介质(水)对红色光的偏向角α最小,对紫色光的偏向角α最大,所以太阳光经过水滴两次折射,一次反射后分解了,形成了紫色光在上,红色光在下的光谱,这就是雨后空中的彩虹。

二、时装的颜色

“冬不穿白,夏不穿黑。”这是人们从生活实践中总结出来的经验,包含着一定的科学道理。我们生活的自然环境,五光十色,美丽动人,有红色的花朵,绿色的草,蓝色的天空,白色的云……各种物体都具有各自的色彩。可是,这些艳丽的颜色,在漆黑的夜里就统统消失了。这说明只有在阳光的照射下,物体才呈现出颜色。那么,为什么在同样光源的照射下,各种物体会有不同的颜色呢?

我们知道,太阳光是由红、橙、黄、绿、蓝、靛、紫多种色光混合而成的。不同的物体,对不同颜色的光线,吸收的能力和反射的能力又各不相同。被物体吸收的光线,人们就看不见,只有被反射的光线,人们才能看见。白色的东西能够反射所有颜色的光线,因此看起来就是白色的;而黑色的东西却能够吸收所有颜色的光线,没有光线反射回来,所以看起来就是黑色的了。

在我们日常生活中,太阳不仅给我们带来光明,而且还送来了大量的辐射热。不同颜色的物体对不同颜色的光线的吸收能力不同,它们的吸收实质是:在光作用下,分子作受迫振动。由于分子间的相互作用,一部分振动能量转化为热运动能,实现了辐射能向内能的转化,红色物体能吸收红色光线以外的光,黑色物体能吸收所有颜色的光。

对于热辐射来说,黑色是只吸收,不反射,而白色正好相反。深色的东西对太阳光和热辐射,吸收多,反射少;而浅色的东西则反射多,吸收少。因此,夏天人们都喜欢穿浅色的衣服,这样就把大量的光线和热辐射反射掉,使人感到凉爽;寒冷的冬天人们又喜欢穿黑色或者深色的衣服,它们能够大量地吸收光和热,人自然就感到暖和了。

三、室内的色彩

在我们日常生活中,房间里的墙壁或家具,漆成什么样的颜色或花纹,不单为了美观,还为了对人的健康有利。室内的光线明暗跟墙壁的颜色有密切的关系。白色物体的反射性能好,因此,房间的顶面和墙壁的上半部分应该刷成白色。这样,白天它会把太阳光反射下来,夜晚又能把灯光反射下来,等于是一个反光的大“灯罩”。

在一般情况下,人的眼睛很少往房顶上看,所以房间的上半部分可以用反光性能好的白色。下半部分最好用柔和美观的色泽,如淡蓝色、米黄或浅绿色等。因为这些颜色反射出来的光比白色光弱得多,既柔和明亮,又不刺眼,还很美观。颜色还能产生巧妙的错觉。各种物体由于它们表面颜色不同,看上去会使人感到轻重有别。例如,表面为白色的物体,看上去显得轻一些;表面为黑色的物体,看上去就显得重一些。由于不同的表面颜色,会引起人们不同的轻重感,因此建筑师设计房屋时,就要考虑到人们的这种错觉现象。给房间的顶面和四壁的上半截刷成白色,而墙脚和地面一般都采用较深的颜色,除了考虑到光的反射外,还为了给人们一种上轻下重的感觉。如果反过来安排色调,就会使人有头重脚轻的感觉,多么不舒服啊!

不同色调的颜色,还会引起人们对距离感觉上的差异。一般说来,红、橙、黄等暖色会使人感到距离近些,而青、蓝、绿等冷色则让人觉得远一些。颜色产生的远近感,可以帮助人们在布置房间时取得良好的效果。如果你的房间比较小,那么室内的床单、窗帘、家具等用品的颜色,就应该多选用“冷”色。浅蓝色的窗帘会使人想到天空,草绿色的床单让人感到春天的小草,整个房间就显得宽敞些。反之,如果房间较大,那么室内用品宜多选用“暖”色,既避免了空旷的感觉,也显得温暖些。

四、激光测距

激光方向性好的特性可以用来测量距离,激光测距装置又称为激光雷达,它的作用原理与雷达相同,是利用激光脉冲往返时间来确定目标的距离。由于目前激光可以产生10~12s的极短脉冲,因此,测量的精确度很高。在月球上放置角锥棱镜,用从它反射回来的激光测定地球到月球的距离,精度可达到30cm。当然,这种装置用来测量行车的速度就相当的准确,也就是雷达测速。

五、天空为什么是蓝色的

物理学就是研究我们身边大自然现象的学科。与人们密切相关的就是光现象,人们睁开眼睛就能看见大自然中的一些景观。但是,有些现象并不陌生而又难知其奥秘。比如我们看到的天空,经常是蔚蓝色的,特别是一场大雨之后,天空更是幽蓝得像一泓秋水,令人心旷神怡。天空为什么是蔚蓝色的呢?大气本身是无色的。天空的蓝色是大气分子、冰晶、水滴等和阳光共同创作的图景。阳光进入大气时,波长较长的色光,如红光,透射力大,能透过大气射向地面;而波长短的紫、蓝、青色光,碰到大气分子、冰晶、水滴等时,就很容易发生散射现象。被散射了的紫、蓝、青色光布满天空,就使天空呈现出一片蔚蓝了。

六、汽车上的光学

生活在繁华城市里的人都会看见,在街道的拐角处或十字路口的墙上常常挂一面凸面镜,它的作用是用来观察拐角前方人眼不能直接看见的地方。不用平面镜是因为凸面镜可以增大人们的可视范围。汽车的观后镜也采用的是凸面镜,就是因为它能增大司机的可视范围。我们生活中用的电筒、汽车的前灯的反光面用的是凹面镜,是因为凹面镜对光有会聚作用,能将平行光会聚在焦点上,而相反把小灯泡放在焦点上,反射后就能得到一束平行光,从而增加照明亮度。

8.光学知识复习中的实验研究方法 篇八

一、通过实验探索,串起每个小的知识点,有利于形成准确的概念

既然是复习,就要充分利用学生头脑中已经存在的知识印象,再结合日常教学中学生没有掌握好的薄弱环节,设计有针对性的小实验。当然,在这里设计的实验不同于新课教学时的实验,它重在引导学生梳理知识,明确概念之间的不同点,构建知识的框架,形成准确的物理概念。

例如:在进行光学的三个基本规律——光沿直线传播、光的反射定律、光的折射规律的复习时,我设计了如下探究实验:

探究目的:复习三个基本规律成立的条件、内容、实际应用。

实验器材:激光笔,小镜子,装满水(兑入少许咖啡)的烧杯。

探究问题:

1.利用这些实验器材,你能做哪些光学实验?

2.你能用最简洁、最准确的语言描述你的实验现象吗?

3.你能分析每个实验现象出现的条件吗?

4.最后你得出了什么结论?

5.你能在生活中发现这三个规律的实际应用吗?

通过以上的环节,不仅达到了复习三个基本规律的目的;同时对学生进行科学的思维方法的训练,渗透了一边传授知识一边传授学习方法的新课改理念。

二、通过实验探究,进行综合性复习,有利于突破重点、难点,加深对规律的理解

光学知识在日常生活中有着广泛的应用。学生身边随处可见的生活现象中蕴涵着许多光学知识。于是在学习过程中就出现了一些生活感受与物理规律相“矛盾”的现象。最典型的例子莫过于生活中照镜子时对镜中的像“近大远小”的感受和平面镜成像中“像物等大”的规律之间的“矛盾”。尽管在学习过程中有学生实验作基础,但自身的感觉总是干扰着解题思路,总是出现错解。如何解决问题,给学生一个正确的解题思路?在光学总复习时,利用探究实验就能很好地解决这一点。

探究目的:

1.生活中照镜子时对镜中的像“近大远小”的感受和平面镜成像中“像物等大“’的规律之间的并不矛盾。二者只是在不同条件下遵循不同规律而形成的结果。

2.巩固凸透镜成像规律。

提出问题:

1.平面镜所成的像的大小与物体到镜面的远近有关系吗?

2.你能用你的结论回答下面这个问题吗?

井水深4米,月球到地球的距离为3.84×l08米,则水中月到水面的距离是多少?

探究过程:由于是复习课,学生很容易设计出自己的试验方案。需要教师提醒学生的只是在条件允许的情况下尽量多地改变物距,在近大远小的感受中去理性的思考第一个问题,并得出第二个问题的答案!显然实验结论是无误的,可自己看到的现象又如何解释?这就自然过渡到下一个相关的探究课题上:

为什么明明是等大的像,我们的感觉却不是等大的?引导学生思考并讨论:

1.你知道人为什么能看到物体吗?你能大致描述眼球的大体构造吗?

2.眼睛对光线的作用相当于那一种光学仪器?

3.你能用实验来解释“近大远小”的感觉吗?需要哪些实验器材?

(注意:引导学生进行以下类比:眼球一凸透镜,镜中像一物,视网膜一光屏)

4.利用你的实验还能得出哪些凸透镜成像的规律?

5.生活中哪些地方应用了这些规律?

通过这种方式,不仅加强了对平面镜成像规律、凸透镜成像规律以及凸透镜成像中物距的变化对像和像距的影响这三个知识点的复习,而且对凸透镜成像规律这一学生实验进行了巩固。同时引导学生养成在明确条件的前提下,研究物理现象并得出结论的思维习惯,让他们体会从生活现象到物理规律再到生产、生活实际的科学研究过程,认识知识的价值和魅力。

三、在实验探究的过程中,可以充分借助多媒体辅助教学,扩大知识面

复习过程中,我一方面用课件展示了我国古代劳动人民对于光的知识的应用,在引导知识的同时对学生渗透爱国主义教育,另一方面,将光学知识融入学生熟悉或不熟悉的生产、生活的实际背景中,既可以引发学生学生对相关主题的回忆,又可以通过巧妙的问题悬念,激发学生的探究欲望。教师以此为出发点,引导学生系统的复习相关概念及其应用。显然,利用观察和实验为手段,巧妙的设置“引子”,无疑是提高总复习效率的“强心针”。

中考复习是一个枯燥的过程,面对已经学习过的知识,学生难免会感到厌倦,听课效率下降。所以在复习过程中常常出现多次讲过或做过的题目依旧会出现错误,这就是所谓的复习过程中的高原“反应”。因此将学生最喜欢的探究实验融人到复习中去,无疑对打破紧张沉闷的复习气氛,激发学生的学习兴趣,巩固课堂复习效果起到很大的促进作用。

上一篇:bs排课管理系统设计下一篇:案例分析京东商城