eda技术及应用考试

2024-10-20

eda技术及应用考试(共9篇)

1.eda技术及应用考试 篇一

应用EDA技术培养学生创新能力

通过长期的电子技术基础理论教学实践,尤其是近几年EDA技术的应用,提出了把EDA技术应用在课堂教学中,培养学生的综合创新能力,产生了良好的`教学效果.学生在参加全国大学生电子设计竞赛中采用EDA技术制作的课题获国家一等奖.

作 者:董兴文 王明生 宋暖 作者单位:空军航空大学基础基地,吉林,长春,130022刊 名:黑龙江科技信息英文刊名:HEILONGJIANG SCIENCE AND TECHNOLOGY INFORMATION年,卷(期):“”(3)分类号:G71关键词:EDA技术 电子设计竞赛 创新能力

2.eda技术及应用考试 篇二

关键词:EDA,电子,技术,系统,设计

1 EDA技术的基本特征

EDA代表了现代电子设计技术最先进的发展方向, 它的基本特征是:设计人员按照“自顶向下”的设计方法, 对整个电子系统进行方案设计和功能划分, 系统的关键电路用一片或几片专用集成电路 (ASIC) 实现, 然后采用硬件描述语言 (HDL) 完成系统行为级设计, 最后通过综合器和适配器生成最终的目标器件, 这样的设计方法被称为高层次的电子设计方法。下面介绍与EDA基本特征有关的几个概念。

1.1“自顶向下”的设计方法

高层次的电子设计给我们提供了一种“自顶向下” (TopDown) 的设计方法, 这种设汁方法首先从系统设计人手, 在顶层进行功能方框图的划分和结构设计。在方框图一级进行仿真、纠错。并用硬件描述语言对高层次的系统行为进行描述, 在系统一级进行验证。然后, 用综合优化工具生成具体门电路的网表, 其对应的物理实现级可以是印刷电路板或专用集成电路 (ASIC) 。设计者仅需利用软件的方式, 即利用硬件描述语言和EDA软件来完成对系统硬件功能的实现。

1.2 ASIC芯片技术

随着现代电子产品的复杂度日益提高, 一个电子系统可能由数万个中小规模集成电路构成, 同时也带来了体积大、功耗大、可靠性差的问题, 解决这一问题的有效方法之一就是采用ASIC芯片进行设计。ASIC芯片按照设计方法的不同可以分为:全定制ASIC, 半定制ASIC, 可编程ASIC (也称为可编程逻辑器件) 。

设计全定制ASIC芯片时, 设计师要定义芯片上所有晶体管的几何图形和工艺规则, 最后再将设计结果交由IC厂家掩膜制造完成。优点是:芯片可以获得面积利用率高、速度快、功耗低等最优性能。缺点是:开发周期长, 费用高, 只适合大批量产品开发。

半定制ASIC芯片的版图设计方法分为门阵列设计法和标准单元设计法, 这两种方法都是约束性的, 其主要目的就是简化设计, 以牺牲芯片性能为代价来缩短开发时间。

可编程逻辑芯片与上述掩膜ASIC的不同之处在于:设计人员完成版图设计后, 在实验室内就可以烧制出自己的芯片, 无须IC厂家的参与, 缩短了开发周期。

可编程逻辑器件自上世纪70年代以来, 经历了PAL、GAL、CPLD、FPGA几个发展阶段, 其中CPLD/FPGA属高密度可编程逻辑器件, 目前集成度已高达200万门/片, 它将掩膜ASIC集成度高的优点和可编程逻辑器件设计生产方便的特点结合在一起, 很适合样品研制或小批量产品开发, 使产品能尽快上市。而当市场扩大时, 它又可以很容易地转由掩膜ASIC实现, 因此也降低了开发风险。

上述ASIC芯片, 尤其是CPLD/FPGA器件, 已成为现代高层次电子设计方法的实现载体。

1.3 硬件描述语言

硬件描述语言 (HDL-Hardware Description Language) 是一种用于电子系统硬件设计的计算机语言, 它用软件编程的方式来描述电子系统的逻辑功能、电路结构和连接形式, 与传统的门级描述方式相比, 它更适合大规模电子系统的设计。硬件描述语言可以在3个层次上进行电路描述, 其层次由高到低分为行为级、R级和门电路级。常用硬件描述语言有WDL、Verilog和VHDL语言等。

2 EDA技术的设计方法

2.1 电路级设计

电路级设计工作流程如图1所示。电子工程师接受系统设计任务后首先确定设计方案, 同时要选择能实现该方案的合适元器件, 然后根据所选元器件设计原理图。接着进行第一次仿真, 包括数字电路的逻辑模拟、故障分析、模拟电路的交直流分析和瞬态分析。系统在进行仿真时, 必须要有元件模型库的支持, 计算机上模拟的输入输出波形代替了实际电路调试中的信号源和示波器。这一次仿真主要是检验设计方案在功能方面的正确性。仿真通过后, 根据原理图产生的网络表进行PCB板的自动布局布线。在制作PCB板之前还可以进行后分析, 包括热分析、噪声及串扰分析、电磁兼容分析和可靠性分析等, 并且可以将分析后的结果参数反馈回原理图, 进行第二次仿真, 也称为后仿真, 后仿真主要是检验PCB板在实际工作环境中的可行性。

可见, EDA技术在电路级设计方面的应用使电子工程师在实际的电子系统产生之前, 就可以全面了解系统的功能特性和物理特性, 从而将开发过程中出现的缺陷消灭在设计阶段, 既缩短了开发时间, 也降低了开发成本。

2.2 系统级设计

系统级设计工作流程如图2所示。系统级设计是一种“概念驱动式”设计, 设计人员无须通过门级原理图描述电路, 而是针对设计目标进行功能描述。由于摆脱了电路细节的束缚, 设计人员可以把精力集中于创造性概念构思与方案上, 一旦这些概念构思以高层次描述的形式输入计算机后, EDA系统就能以规则驱动的方式自动完成整个设计。

系统级设计的步骤如下:

第一步:按照“自顶向下”的设计方法进行系统划分。

第二步:输入VHDL代码, 这是系统级设计中最为普遍的输入方式。此外, 还可以采用图形输入方式 (框图、状态图等) , 这种输入方式具有直观、容易理解的优点。

第三步:将以上的设计输入编译成标准的VHDL文件。对于大型设计, 还要进行代码级的功能仿真, 主要是检验系统功能设计的正确性, 因为对于大型设计, 综合、适配要花费数小时, 在综合前对源代码仿真, 就可以大大减少设计重复的次数和时间, 一般情况下, 可略去这一仿真步骤。

第四步:利用综合器对VHDL源代码进行综合优化处理, 生成门级描述的网表, 这是将高层次描述转化为硬件电路的关键步骤。综合优化是针对ASIC芯片供应商的某一产品系列进行的, 需要在相应的厂家综合库支持下才能完成。综合后, 可利用产生的网表文件进行适配前的时序仿真, 仿真过程不涉及具体器件的硬件特性, 较为粗略。

第五步:利用适配器将综合后的网表文件针对某一具体的目标器件进行逻辑映射操作, 包括底层器件配置、逻辑分割、逻辑优化和布局布线。

第六步:将适配器产生的器件编程文件通过编程器或下载电缆载入到目标芯片FPGA或CPLD中。如果是大批量产品开发, 通过更换相应的厂家综合库, 可以很容易转由ASIC形式实现。

3 结束语

21世纪是EDA技术的高速发展时期, EDA技术是现代电子系统设计技术的重要发展方向之一。随着集成电路技术的高速发展, 数字系统正朝着更高集成度、超微型化、高性能、高可靠性和低功耗的系统级芯片 (SoC, System on Chip) 方向发展, 借助于硬件描述语言的国际标准VHDL和强大的EDA工具, 可减少设计风险并缩短周期, 随着VHDL语言使用范围的日益扩大, 必将给硬件设计领域带来巨大的变革。

参考文献

[1]谭会生, 张昌凡.EDA技术及应用[M].西安:西安电子科技大学出版社, 2001.

[2]ALTERA公司.DATA BOOK[M].北京:清华大学出版社, 1998.

[3]ALTERA公司.ADHL语言[M].北京:清华大学出版社, 1998.

[4]刘宝琴.ALTERA可编程逻辑器件及其应用[M].北京:清华大学出版社, 1995.

3.浅析电子设计中EDA技术的应用 篇三

【关键词】电子设计;EDA技术;技术应用

引言

电子技术在信息化时代得到了高速发展,各类电子产品成为了人们生活中不可或缺的一部分,随着电子产品附带的功能逐渐增多以及性能方面的拓展,人们对电子技术提出了更高的要求。集成电路制造技术和电子设计是推动电子产品发展的主要动力,其中电子设计更是以前沿尖端的EDA技术为核心,在电子技术不断取得突破的今天,CPLD、FPGA可编程逻辑器件也越来越多的应用于电子设计,为电子设计带来了广阔发展空间和适应各项需求的灵活性。

1.EDA技术的特点与应用

(1)FPGA/CPLD的编程方式较易实现无线编程、红外编程、超声编程,或通过电话线远程在线编程,并且具有良好的加密功能。

(2)不存在MCU所特有的复位不可靠和PC跑飞等固有缺陷,还可将整个系统下载于同一芯片中,缩小了体积,易于管理与屏蔽,从而具有高可靠性。

(3)对于复杂多变的通信协议来说,利用VHDL进行FPGA编程高效、灵活,并且能够快速适应标准的升级,实际上FPGA的大容量、高速、高性能的发展趋势正是为了迎合通信领域应用的需要。

(4)器件的功能块可以同时工作,能够实现指令级、比特级、流水线级甚至是任务级的并行执行,加快了运算速度,由FPGA实现的运算系统可以达到现有通用处理器的数百甚至上千倍。将EDA技术应用于电子系统设计,能减小设备体积,降低功耗,提高电路的可靠性,减少上市时间,将设计风险降至最小,是数字系统设计的发展方向。在数字信号处理领域,传统的设计方法有2种:

a.采用DSP处理器,如TMS320系列微处理器;b.采用固定功能的DSP器件或ASIC器件。随着DSP系统复杂程度和功能要求的提高,这些DSP解决方案暴露出缺陷:DSP处理器方案成本低,但软件处理数据不可能有很强的实时性能,限制了在高速和实时系统中的应用;固定功能的DSP器件或ASIC器件可以提供很好的实时性能,但灵活性太差。相对DSP处理器,FPGA可以由设计者根据算法的内在并行结构设计合适的处理阵列,避免前者串行执行指令的低效;相对ASIC,FPGA可避免初期巨大的开发投资,并且拥有如微处理器的通用性和灵活性。加之FPGA内部大都提供了RAM、双口RAM和FIFO-RAM等存储体结构,所以FPGA可以完全取代通用DSP芯片或作为通用DSP芯片的协处理器进行工作。如果将通用DSP和FPGA融合在一起,把需要多个时钟周期的运算交给FPGA完成,DSP芯片主要完成单时钟的运算并控制FPGA的“可再配置计算”功能,可更好地把二者的优势发挥出来。

2.电子设计中EDA技术应用需注意的问题

在电子设计中应用EDA技术需要注意以下几点:

①在电子电路设计的时候,延时时间具有不确定性的特征,以及自动编译的部分电路可能会成为赘余,所以电子设计中采用EDA时,反向器的个数不易为偶数并联连接;②输入引脚要保持接地,不能处于悬空的状态,驱动的时候要保证是有源信号;③各个器件的电源要保持接地状态,需要的时候要对各个连接进行滤波和解耦处理;④设计的过程中,逻辑单元和引脚都要留出多余的部分,便于后期的扩展设计或者是设计修改;⑤需要采取一定的冷却处理,避免各个器件使用的时候过热。

3.EDA技术设计流程解析

3.1 源程序的编辑、编译及行为仿真

一项工程的设计首先需利用EDA工具的文本编辑器或图形编辑器将它用文本方式(VHDL程序方式)或图形方式(流程图方式和状态图方式)表示出来。这两种表达方式必须首先通过EDA工具进行排错编译,变成VHDL文件格式,为进一步的逻辑综合作准备。在逻辑综合以前可以先对VHDL所描述的内容进行行为仿真,即将VHDL设计源程序直接送到VHDL仿真器中仿真。

3.2 目标器件

逻辑透配就是将由综合器产生的网表文件针对某一具体的目标器件进行逻辑映射操作,其中包括底层器件配置、逻辑分割、逻辑优化、布线与操作等,配置于指定的目标器件中,产生最终的下载文件。随后,可进行时序仿真。时序仿真是将布线器/适配器所产生的VHDL网表文件送到VHDL仿真器中所进行的仿真。该仿真已将器件特性考虑进去了,因此可以得到精确的时序仿真结果。如果编译、综合、布线/适配和行为仿真、功能仿真、时序仿真等过程都没有发现问题,即满足原设计的要求,就可以将由CPLD/FPGA布线/适配器产生的配置/下载文件通过编程器或下载电缆载入目标芯片CPLD或FPGA中。

3.3 硬件仿真与测试

在电子设计当中,经常会通过FPGA来完成对电子系统设计的功能检测,检测完成之后通過VHDL进行设计,最后呈现结果。这是硬件的仿真过程。而硬件的测试过程是指针对于CPLD以及FPGA直接应用到设计的过程当中,将文件下载之后,对电子设计过程进行功能检测。在对EDA技术进行的功能及时序仿真阶段,如果在仿真过程中没有发现任何问题,就可以将生成的文件下载到目标芯片当中。在这个过程中,应当注意以下几个重要事项:

①不可以采取反相器串联法来构成“延时电路”。

②在输入引脚时不可以悬空,必须通过有源信号进行驱动,将不使用的引脚进行接地。

③器件电源和接地的地线引脚应当要可靠连接。

④为了方便EDA技术应用的扩展和设计,在对要使用的器件进行选择时,要使得逻辑单元以及引脚要有一定的数量余量。

⑤要注意把握好环境的变化,防止对器件造成过热引起故障。

4.8255A芯片设计中EDA技术的应用分析

4.1 8255A端口及构造体说明

该设计模块中PPI端口一共定义了40个引脚,定义与8255A是相同的。端口的构造体许多都是输入输出的双向引脚,其端口是相互对应的。在芯片端口的构造体内部,都是通过bus-in和bus-out总线来实现。

4.2 构造体进程说明

PPI的构造体包括5个进程,主要是读进程、写进程以及形成pa、pb、pc三态输出进程。其中pa、pb和pc进程比较简单,不需要做详细说明,在这里主要分析读、写两个进程。

(1)读进程工作就是指在片选信号和读信号都有效时,从各个端口对外部设备提供的信息数据进行读入。此外读进程对数据线总线的信息数据进行描述并且通过三态缓冲器进行实现。

(2)写进程工作就是在片选信号和写信号有效时,将总线上的数据信息写入到bus-out总线上,与此同时,将总线上的最高数据位进行寄存器保存,便于以后对使用方式的判别。因为在写进程中,VHDL语言编程方法与读进程中的十分相似,再加上源程序比较长,所以本文没有给出详细的源程序。

5.结语

可以说EDA技术的应用为电子设计行业带来了一次技术上的革新,这就要求电子设计工程师要熟练掌握好EDA技术,在提高效率的同时,开发出更多具有高性能的电子产品。使得EDA技术更好地适应社会发展,增强自身竞争实力,并推动电子系统不断向集成化、大规模化的方向快速发展。

参考文献

[1]卢紫毅,肖梓祥.对可编程ASIC发展新趋势的探讨[J].现代电子技术,2001(3):11-13.

4.eda技术及应用考试 篇四

扬柳林

陈军灵

(广西大学电气工程学院,广西,南宁,530004)

摘要:文章对MultiSim仿真软件进行了介绍,探讨了其在电工电子技术实验教学中的应用,利用该虚拟电子实验台辅助实验教学,可以克服传统实验中的一些不足,使实验教学更加方便、灵活、直观,能取得更好的教学效果。关键词:电子设计自动化(EDA);虚拟电子实验台;MultiSim;仿真 中图分类号:G642.423 0 引言

在科学技术日新月异的背景下,随着教育改革的深入,如何实现教育技术现代化、教学 手段现代化已经成为我国教育改革所面临的一个重要课题。目前,在电工电子技术实验教学方面,国内多数高校仍主要采用实物元器件进行硬件连线测试,大多数采用面包板或者各种现成的实验箱。这种传统的实验方式由于受实验室条件的限制,在给学生开设一些扩展型、设计型以及综合型实验时将会遇到困难,特别是新器件,新设备价格昂贵,一般院校的电子学实验室更是无法承受。

随着电子设计自动化(EDA)技术的发展,开创了利用“虚拟仪器”、“虚拟器件”在计算机上进行电子电路设计和实验的新方法。目前,在这类仿真软件中,“虚拟电子实验台”——MultiSim较为优秀,其应用逐步得到推广。这种新型的虚拟电子实验技术,在创建实验电路时,元器件和测试仪器均可以直接从屏幕图形中选取,而且软件中的测试仪器的图形与实物外形基本相似。利用MultiSim仿真软件进行电工电子技术实验教学,不仅可以弥补实验仪器、元器件短缺以及规格不符合要求等因素,还能利用软件中提供的各种分析方法,帮助学生更快、更好地掌握教学内容,加深对概念、原理的理解,并能熟悉常用的电工电子仪器的测量方法,进一步培养学生的综合能力和创新能力。虚拟电子实验台MultiSim简介

Multisim是加拿大Interactive Image Technologies公司出品的电路模拟软件,V5以前的 版本称为Electronics Workbench,从V6开始改为Multisim。在教育界比较流行的Multisim 2001版属于V6版本,目前Multisim的最新版本是V8。Multisim从V5到V6的功能有很大的扩充,特别是增加了VHDL和Verilog HDL模块,使它成为真正的“数模VHDL Verilog”的混合电路模拟软件。

Multisim的主要功能和特点:

 Multisim具有直观、方便的操作界面,创建电路、选用元器件和虚拟测试仪器等均 可直接从屏幕图形中选取,而且提供的虚拟测试仪器非常齐全,其外观与实物外形基本相似,操作这些虚拟设备如同操作真实的设备一样。

 Multisim极大地扩充了元件数据库,特别是大量新增的与现实元件对应的元件模 型,增强了仿真电路的实用性,同时还可以新建或扩充已经有的元件库,建库所需的原器件参数可以从生产厂商的产品使用手册中查到。

 Multisim具有较为完善的电路分析功能,可以完成电路的瞬态分析和稳定分析、时 域和频域分析、器件的线性和非线性分析、电路的噪声分析和失真分析、离散傅里叶分析、电路零极点分析、交直流灵敏度分析等电路分析方法。此外,还可以对被仿真电路中的元件设置各种故障,以便观察到故障情况下的电路工作状态。用MultiSim进行虚拟实验的方法 2.1 构造和测试电路分为以下几个步骤:

⑴ 根据实验内容从元件库选择元件放到工作区;

⑵ 将工作区中的元件按照电路布局进行放置,用导线将元件连接起来,并设置好元件参数和模型;

⑶ 在电路中需要观测的节点放置、连接电压、电流表计和示波器、信号发生器等观测仪器;

⑷ 根据测试要求设定仪器参数,进行电路仿真、观测。2.2 电路仿真运行

电路创建完毕,点击“运行”开关后,就可以从示波器等测试仪器上读得电路中被测数据。整个仿真运行过程可分成以下几个步骤:

⑴ 数据输入:将已创建的电路图结构、元器件数据读入,选择分析方法;

⑵ 参数设置:检查输入数据的结构和性质,以及电路中的阐述内容,对参数进行设置;

⑶ 电路分析:对输入信号进行分析,形成电路的数据值解,并将所得数据送至输出级;

⑷ 数据输出:从测试仪器如示波器或万用表等上获得仿真运行的结果。也可以从“分析”栏中的“分析显示图”看到测量、分析的波形图。MultiSim在电工电子实验教学中的应用举例

3.1 RLC串联电路的响应与状态轨迹观测(电工电路仿真实验)

二阶RLC串联电路在电工电路中较为常见,但用传统的方法讲授、观测该电路的响应 过程是比较抽象、复杂的,而使用Multisim对其过渡过程进行仿真分析,就可以很方便地研究其过阻尼、临界阻尼和欠阻尼三种状态下的响应曲线和状态轨迹。

如图1所示,在Multisim工作区搭建实验电路,并设置好相关参数。图中函数发生器 输出方波信号,f600Hz。用示波器观测电容两端电压,通过键盘上的“a”键,可以实时改变可调电阻R1值,从而得到三种不同状态的响应曲线,如图2所示。

图1

(a)临界阻尼

图2

(b)欠阻尼

二阶RLC串联电路三种状态的响应曲线

(c)过阻尼

为了观测该电路的状态轨迹,需按图3搭建实验电路。图中,函数发生器输出方波信号,f600Hz;示波器置于双踪工作方式,将电容两端电压送入示波器的A端子,电感电流送入示波器的B端子,则从屏幕上就可以显示出其状态轨迹,原理与显示李萨育图形一样。为获得电感电流,加接了取样电阻R3,将电流量转变为成正比的电压量。由于电阻R3的引进,电容电压值比实际值偏大,但由于电容的阻抗ZCR3,所以电阻R3带来的影响可以忽略不计。改变可调电阻R2值,便可观察振荡与非振荡情况下的状态轨迹,如图4所示。

图3

(c)过阻尼

(b)欠阻尼(a)临界阻尼

图4

二阶RLC串联电路三种状态的状态轨迹

3.2 晶体管输出特性曲线测试(电子电路仿真实验)晶体管输出特性曲线是描述晶体管各极电流与各极电压关系的曲线,对于了解晶体管性能和晶体管电路分析是非常有用的。传统的晶体管输出特性曲线测试实验,比较繁琐,现利用MultiSim强大的仿真分析、数据后期处理功能,则可以方便、快捷地测绘出晶体管输出特性曲线。

如图5所示,在MultiSim工作区中创建测试电路。点击Simulate菜单中的Analyses下的DC Sweep Analyses功能,出现图6所示对话框,按图中参数进行设置,并将vv1# branch作为output variables。设置完毕,点击对话框上的Simulate,得到图

8所示晶体管输出特性曲线。但该曲线与习

图晶体管测试电路图

惯表示方法不同,纵坐标数据为负数,因此,再利用Multisim的后处理功能(Postprocess),将测试曲线进行简单的数学运算,即输出数据取反,便可得到习惯表示法。具体参数设置如图7对话框所示。重画后的晶体管输出特性曲线如图9所示。

图6

DC Sweep Analyses对话框设置

图7

Postprocess对话框设置

图9

晶体管输出特性曲线 图8

晶体管测试曲线 结论

从以上列举的仿真试验中,可以看出,用MultiSim进行电工电子虚拟实验非常方便,现象直观,结果精确。这对电工电子技术实验教学是一种很好的辅助手段。并且,还为学生进行综合性、创造性实验提供了一个广阔空间。随着MultiSim应用的推广和深入,其必将在电子工程、信息工程、电气工程、自动控制等领域的辅助教学中发挥重要作用。

参考文献:

[1] Interactive Image Technology Ltd,Multisim V7 User Guide [M],Canada,2003.

[2] 郑步生,吴渭,Multisim2001电路设计及仿真入门与应用[M],北京:电子工业出版社,2002.

[3] 康光华,电子技术基础(模拟部分),北京:高等教育出版社.

Multisim是加拿大图像交互技术公司(Interactive Image Technoligics简称IIT公司)推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。

工程师们可以使用Multisim交互式地搭建电路原理图,并对电路行为进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。multisim 9概述

Multisim 被美国NI公司收购以后,其性能得到了极大的提升。最大的改变就是:Multisim 9与LABVIEB 8的完美结合:

新特点:(1)可以根据自己的需求制造出真正属于自己的仪器;

(2)所有的虚拟信号都可以通过计算机输出到实际的硬件电路上;

(3)所有硬件电路产生的结果都可以输回到计算机中进行处理和分析。

Multisim 9组成:

1. ―――构建仿真电路

2. ―――仿真电路环境

3. multi mcu------单片机仿真

4. ――FPGA、PLD,CPLD等仿真

5. ――FPGA、PLD,CPLD等仿真

6. ―― 通信系统分析与设计的模块

7. ―― PCB设计模块:直观、层板32层、快速自动布线、强制向量和密度直方图

8. -(自动布线模块)

仿真的内容:

1. 器件建模及仿真;

2. 电路的构建及仿真;

3. 系统的组成及仿真;

4. 仪表仪器原理及制造仿真。

器件建模及仿真:可以建模及仿真的器件:

模拟器件(二极管,三极管,功率管等);

数字器件(74系列,COMS系列,PLD,CPLD等);

FPGA器件。

电路的构建及仿真:单元电路、功能电路、单片机硬件电路的构建及相应软件调试的仿真。

系统的组成及仿真:Commsim 是一个理想的通信系统的教学软件。它很适用于如„信号与系统‟、„通信‟、„网络‟等课程,难度适合从一般介绍到高级。使学生学的更快并且掌握的更多。

Commsim含有200多个通用通信和数学模块,包含工业中的大部分编码器,调制器,滤波器,信号源,信道等,Commsim 中的模块和通常通信技术中的很一致,这可以确保你的学生学会当今所有最重要的通信技术。

要观察仿真的结果,你可以有多种选择:时域,频域,XY图,对数坐标,比特误码率,眼图和功率谱。

仪表仪器的原理及制造仿真:可以任意制造出属于自己的虚拟仪器、仪表,并在计算机仿真环境和实际环境中进行使用。

PCB的设计及制作:产品级版图的设计及制作。

美国NI公司提出的理念:

“把实验室装进PC机中”

“软件就是仪器

[编辑本段]multisim 10概述

●通过直观的电路图捕捉环境, 轻松设计电路

●通过交互式SPICE仿真, 迅速了解电路行为

●借助高级电路分析, 理解基本设计特征

●通过一个工具链, 无缝地集成电路设计和虚拟测试

●通过改进、整合设计流程, 减少建模错误并缩短上市时间

NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。凭借NI Multisim,您可以立即创建具有完整组件库的电路图,并利用工业标准SPICE模拟器模仿电路行为。借助专业的高级SPICE分析和虚拟仪器,您能在设计流程中提早对电路设计进行的迅速验证,从而缩短建模循环。与NI LabVIEW和SignalExpress软件的集成,完善了具有强大技术的设计流程,从而能够比较具有模拟数据的实现建模测量。

电子通信类其它常用的仿真软件:

System view---数字通信系统的仿真

Proteus――单片机及ARM仿真

LabVIEW――虚拟仪器原理及仿真

Multisim 2001 使用简介

Multisim是Interactive Image Technologies(Electronics Workbench)公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。为适应不同的应用场合,Multisim推出了许多版本,用户可以根据自己的需要加以选择。在本书中将以教育版为演示软件,结合教学的实际需要,简要地介绍该软件的概况和使用方法,并给出几个应用实例。

第一节 Multisim概貌

软件以图形界面为主,采用菜单、工具栏和热键相结合的方式,具有一般Windows应用软件的界面风格,用户可以根据自己的习惯和熟悉程度自如使用。

一、Multisim的主窗口界面。

启动Multisim 2001后,将出现如图1所示的界面。

界面由多个区域构成:菜单栏,各种工具栏,电路输入窗口,状态条,列表框等。通过对各部分的操作可以实现电路图的输入、编辑,并根据需要对电路进行相应的观测和分析。用户可以通过菜单或工具栏改变主窗口的视图内容。

二、菜单栏

菜单栏位于界面的上方,通过菜单可以对Multisim的所有功能进行操作。

不难看出菜单中有一些与大多数Windows平台上的应用软件一致的功能选项,如File,Edit,View,Options,Help。此外,还有一些EDA软件专用的选项,如Place,Simulation,Transfer以及Tool等。

1.File File菜单中包含了对文件和项目的基本操作以及打印等命令。命令 功能

New

建立新文件

Open

打开文件

Close

关闭当前文件

Save

保存

Save As

另存为

New Project

建立新项目

Open Project

打开项目

Save Project

保存当前项目

Close Project

关闭项目

Version Control

版本管理

Print Circuit

打印电路

Print Report

打印报表

Print Instrument

打印仪表

Recent Files

最近编辑过的文件

Recent Project

最近编辑过的项目

Exit

退出Multisim

2.Edit Edit命令提供了类似于图形编辑软件的基本编辑功能,用于对电路图进行编辑。命令 功能

Undo

撤消编辑

Cut

剪切

Copy

复制

Paste

粘贴

Delete

删除

Select All

全选

Flip Horizontal

将所选的元件左右翻转

Flip Vertical

将所选的元件上下翻转

ClockWise

将所选的元件顺时针90度旋转

ClockWiseCW

将所选的元件逆时针90度旋转

Component Properties 元器件属性 3.View 通过View菜单可以决定使用软件时的视图,对一些工具栏和窗口进行控制。命令 功能

Toolbars

显示工具栏

Component Bars

显示元器件栏

Status Bars

显示状态栏

Show Simulation Error Log/Audit Trail

显示仿真错误记录信息窗口

Show XSpice Command Line Interface

显示Xspice命令窗口

Show Grapher

显示波形窗口

Show Simulate Switch

显示仿真开关

Show Grid

显示栅格

Show Page Bounds

显示页边界

Show Title Block and Border

显示标题栏和图框

Zoom In

放大显示

Zoom Out

缩小显示

Find 查找

4.Place 通过Place命令输入电路图。命令 功能

Place Component

放置元器件

Place Junction

放置连接点

Place Bus

放置总线

Place Input/Output

放置输入/出接口

Place Hierarchical Block

放置层次模块

Place Text

放置文字

Place Text Description Box

打开电路图描述窗口,编辑电路图描述文字

Replace Component

重新选择元器件替代当前选中的元器件

Place as Subcircuit

放置子电路

Replace by Subcircuit 重新选择子电路替代当前选中的子电路 5.Simulate 通过Simulate菜单执行仿真分析命令。命令 功能

Run

执行仿真

Pause

暂停仿真

Default Instrument Settings

设置仪表的预置值

Digital Simulation Settings

设定数字仿真参数

Instruments

选用仪表(也可通过工具栏选择)

Analyses

选用各项分析功能

Postprocess

启用后处理

VHDL Simulation

进行VHDL仿真

Auto Fault Option

自动设置故障选项

Global Component Tolerances 设置所有器件的误差 6.Transfer菜单

Transfer菜单提供的命令可以完成Multisim对其它EDA软件需要的文件格式的输出。命令 功能

Transfer to Ultiboard

将所设计的电路图转换为Ultiboard(Multisim中的电路板设计软件)的文件格式

Transfer to other PCB Layout

将所设计的电路图以其他电路板设计软件所支持的文件格式

Backannotate From Ultiboard

将在Ultiboard中所作的修改标记到正在编辑的电路中

Export Simulation Results to MathCAD

将仿真结果输出到MathCAD

Export Simulation Results to Excel

将仿真结果输出到Excel

Export Netlist 输出电路网表文件 7.Tools Tools菜单主要针对元器件的编辑与管理的命令。命令 功能

Create Components

新建元器件

Edit Components

编辑元器件

Copy Components

复制元器件

Delete Component

删除元器件

Database Management

启动元器件数据库管理器,进行数据库的编辑管理工作

Update Component 更新元器件 8.Options 通过Option菜单可以对软件的运行环境进行定制和设置。命令 功能

Preference

设置操作环境

Modify Title Block

编辑标题栏

Simplified Version

设置简化版本

Global Restrictions

设定软件整体环境参数

Circuit Restrictions 设定编辑电路的环境参数 9.Help Help菜单提供了对Multisim的在线帮助和辅助说明。命令 功能

Multisim Help

Multisim的在线帮助

Multisim Reference

Multisim的参考文献

Release Note

Multisim的发行申明

About Multisim

Multisim的版本说明

三、工具栏

Multisim 2001提供了多种工具栏,并以层次化的模式加以管理,用户可以通过View菜单中的选项方便地将顶层的工具栏打开或关闭,再通过顶层工具栏中的按钮来管理和控制下层的工具栏。通过工具栏,用户可以方便直接地使用软件的各项功能。

顶层的工具栏有:Standard工具栏、Design工具栏、Zoom工具栏,Simulation工具栏。

1.Standard工具栏包含了常见的文件操作和编辑操作,如下图所示:

2.Design工具栏作为设计工具栏是Multisim的核心工具栏,通过对该工作栏按钮的操作可以完成对电路从设计到分析的全部工作,其中的按钮可以直接开关下层的工具栏:Component中的Multisim Master工具栏,Instrument工具栏。

(1)作为元器件(Component)工具栏中的一项,可以在Design工具栏中通过按钮来开关Multisim Master工具栏。该工具栏有14个按钮,每个每一个按钮都对应一类元器件,其分类方式和Multisim元器件数据库中的分类相对应,通过按钮上图标就可大致清楚该类元器件的类型。具体的内容可以从Multisim的在线文档中获取。

这个工具栏作为元器件的顶层工具栏,每一个按钮又可以开关下层的工具栏,下层工具栏是对该类元器件更细致的分类工具栏。以第一个按钮 为例。通过这个按钮可以开关电源和信号源类的Sources工具栏如下图所示:

(2)Instruments工具栏集中了Multisim为用户提供的所有虚拟仪器仪表,用户可以通过按钮选择自己需要的仪器对电路进行观测。

3.用户可以通过Zoom工具栏方便地调整所编辑电路的视图大小。

4.Simulation工具栏可以控制电路仿真的开始、结束和暂停。

第二节 Multisim对元器件的管理

EDA软件所能提供的元器件的多少以及元器件模型的准确性都直接决定了该EDA软件的质量和易用性。Multisim为用户提供了丰富的元器件,并以开放的形式管理元器件,使得用户能够自己添加所需要的元器件。

Multisim以库的形式管理元器件,通过菜单Tools/ Database Management打开Database Management(数据库管理)窗口(如下图所示),对元器件库进行管理。

在Database Management窗口中的Daltabase列表中有两个数据库:Multisim Master和User。其中Multisim Master库中存放的是软件为用户提供的元器件,User是为用户自建元器件准备的数据库。用户对Multisim Master数据库中的元器件和表示方式没有编辑权。当选中Multisim Master时,窗口中对库的编辑按钮全部失效而变成灰色,如下图所示。但用户可以通过这个对话窗口中的Button in Toolbar显示框,查找库中不同类别器件在工具栏中的表示方法。

据此用户可以通过选择User数据库,进而对自建元器件进行编辑管理。

在Multisim Master中有实际元器件和虚拟元器件,它们之间根本差别在于:一种是与实际元器件的型号、参数值以及封装都相对应的元器件,在设计中选用此类器件,不仅可以使设计仿真与实际情况有良好的对应性,还可以直接将设计导出到Ultiboard中进行PCB的设计。另一种器件的参数值是该类器件的典型值,不与实际器件对应,用户可以根据需要改变器件模型的参数值,只能用于仿真,这类器件称为虚拟器件。它们在工具栏和对话窗口中的表示方法也不同。在元器件工具栏中,虽然代表虚拟器件的按钮的图标与该类实际器件的图标形状相同,但虚拟器件的按钮有底色,而实际器件没有,如下图所示。

从图中可以看到,相同类型的实际元器件和虚拟元器件的按钮并排排列,并非所有的是元器件都设有虚拟类的器件。

在元器件类型列标中,虚拟元器件类的后缀标有Virtual,如下图所示:

第三节 输入并编辑电路

输入电路图是分析和设计工作的第一步,用户从元器件库中选择需要的元器件放置在电路图中并连接起来,为分析和仿真做准备。

一、设置Multisim的通用环境变量

为了适应不同的需求和用户习惯,用户可以用菜单Option/Preferences打开Preferences对话窗口,如下图所示。

通过该窗口的6个标签选项,用户可以就编辑界面颜色、电路尺寸、缩放比例、自动存储时间等内容作相应的设置。

以标签Workspace为例,当选中该标签时,Preferences对话框如下图所示:

在这个对话窗口中有3个分项:

1.Show:可以设置是否显示网格,页边界以及标题框。

2.Sheet size:设置电路图页面大小。

3.Zoom level:设置缩放比例。

其余的标签选项在此不再详述。

二、取用元器件

取用元器件的方法有两种:从工具栏取用或从菜单取用。下面将以74LS00为例说明两种方法。

1.从工具栏取用:Design工具栏®Multisim Master工具栏®TTL工具栏®74LS按钮

从TTL工具栏中选择74LS按钮打开这类器件的Component Browser窗口,如下图所示。其中包含的字段有Database name(元器件数据库),Component Family(元器件类型列表),Component Name List(元器件名细表),Manufacture Names(生产厂家),Model Level-ID(模型层次)等内容。

2.从菜单取用:通过Place/ Place Component命令打开Component Browser窗口。该窗口与上图一样。

3.选中相应的元器件

在Component Family Name中选择74LS系列,在Component Name List中选择74LS00。单击OK按钮就可以选中74LS00,出现如下备选窗口。7400是四/二输入与非门,在窗口种的Section A/B/C/D分别代表其中的一个与非门,用鼠标选中其中的一个放置在电路图编辑窗口中,如左图所示。器件在电路图中显示的图形符号,用户可以在上面的Component Browser中的Symbol选项框中预览到。当器件放置到电路编辑窗口中后,用户就可以进行移动、复制、粘贴等编辑工作了,在此不再详述。

三、将元器件连接成电路

在将电路需要的元器件放置在电路编辑窗口后,用鼠标就可以方便地将器件连接起来。方法是:用鼠标单击连线的起点并拖动鼠标至连线的终点。在Multisim中连线的起点和终点不能悬空。

第四节 虚拟仪器及其使用

对电路进行仿真运行,通过对运行结果的分析,判断设计是否正确合理,是EDA软件的一项主要功能。为此,Multisim为用户提供了类型丰富的虚拟仪器,可以从Design工具栏®Instruments工具栏,或用菜单命令(Simulation/ instrument)选用这11种仪表,如下图所示。在选用后,各种虚拟仪表都以面板的方式显示在电路中。

下面将11种虚拟仪器的名称及表示方法总结如下表:

菜单上的表示方法

对应按钮

仪器名称

电路中的仪器符号

Multimeter

万用表

Function Generator

波形发生器

Wattermeter

瓦特表

Oscilloscape

示波器

Bode Plotter

波特图图示仪

Word Generator

字元发生器

Logic Analyzer

逻辑分析仪

Logic Converter

逻辑转换仪

Distortion Analyzer

失真度分析仪

Spectrum Analyzer

频谱仪

Network Analyzer

网络分析仪

注1:该软件中用 ‟ 代替 — 表示反变量,例如。

注2:该软件没有异或符号,处理方式是将异或运算写成。

在电路中选用了相应的虚拟仪器后,将需要观测的电路点与虚拟仪器面板上的观测口相连(如下图),可以用虚拟示波器同时观测电路中两点的波形。

双击虚拟仪器就会出现仪器面板,面板为用户提供观测窗口和参数设定按钮。以上图为例,双击图中的示波器,就会出现示波器的面板。通过Simulation工具栏启动电路仿真,示波器面板的窗口中就会出现被观测点的波形,如下图所示。

第五节 电路实例

这节将以3个电路实例说明Multisim在电路设计和分析中的使用方法。Multisim的基础是正向仿真,为用户提供了一个软件平台,允许用户在进行硬件实现以前,对电路进行观测和分析。

例1.构造同步16进制计数器,并用7段数码管进行观测(文件名:counter.msm)。通过运行仿真验证电路功能。在这个电路的基础上将计数器改为10进制,并通过仿真验证修改结果是否正确(注:显示0~9)。

首先选用T触发器和带译码的7段数码管和与门一起构成4位16进制计数器如下图。在电路中选用1Hz矩形波发生器,通过仿真观测运行的情况。

使用异步置零法,在图中加入反馈电路,当触发器的状态变为1010时通过Reset端对触发器进行清零。电路设计结果如下图。通过仿真可以观测到电路已经成为10进制计数器(文件名:counterb.msm)。

例2.分析已经给出的阶梯波发生器。电路如下图(文件名:Stepwave.msm)。通过运行仿真观测电路的功能,通过改变信号源的参数来改变阶梯波的频率,同时用示波器进行观测。

从图中可以看到,电路大致分为两个部分,上部分为4个T触发器和相应门电路构成的16进制计数器,下部分为D/A转换器。电路的信号源为矩形波发生器,通过示波器观测到的波形如下图。

[编辑本段]Multisim10安装

1.下载软件可以到官方下载完全试用版

2.ftp://ftp.ni.com/evaluation/EWB/NI_Circuit_Design_Suite_10_0.exe 3.输入安装序列号,完成安装。4.导入许可文件,完成软件安装 a。安装Multisim。

5.《EDA技术》课程设计教学大纲 篇五

课程设计名称: 《EDA技术课程设计》 课程代码: 学 分: 1 总学时/周数: 1周

适用专业: 电子工程、通信工程、自动化等专业

一、课程设计目的与任务

本课程设计是在学完EDA技术课程后的必修课程,它的教学目的和任务是综合利用所学EDA技术知识完成一个具有完整功能的电子系统设计,从系统顶层模块的划分、各功能模块的硬件语言描述(编程)、各模块及整体电路仿真、到最后下载到可编程器件实现真实的电路,让学生亲自体验一次采用现代电子设计自动化技术完成一个电子系统设计的全过程。让学生得到一次自主使用VHDL语言描述电路功能的训练机会,从而提高对VHDL语言的使用能力,加深对仿真在设计中的重要作用的认识,提高对使用Max+plus2EDA软件工具的熟练程度,最终获得初步的电子系统设计经验,为毕业设计和将来从事电子设计的相关工作打下基础

二、课程设计基本要求

本课程设计,采用以学生自主设计为主教师指导为辅的原则,让学生有一个充分发挥自我想像的空间,设计分阶段进行,在独立力完成了方案设计后,组织一次交流讨论会,互相启发开阔设计思路,尽可能使学生在这个具有创新思维、难度最高的设计环节获得更多的收益,通过该课程设计更深入更全面地提高使用Max+plus2软件工具完成设计全过程的熟练程度,尤其是要提高仿真和试验开发系统的使用能力,设计最终要做出真实电路并上电检测其功能和性能指标是否达到了预定的目标,最后写出课程设计报告。

三、课程设计选题原则

所选题目应是社会生活、生产中常见的、学生易于理解和把握且感兴趣的、对所学知识尽可能综合全面派上用场的、难易程度适中的、一周时间能够完成的的题目。

四、课程设计内容及时间安排

1.设计内容:根据具体设计题目和提出的功能性能指标要求,查阅相应参考资料,将所设计的电路系统划分成若干功能模块完成顶层结构设计(方案设计),对各功能模块用硬件描述语言描述以完成程序设计,对个功能模块及电路系统整体做仿真设计以验证其正误,将设计文件下载至可编程逻辑器件在实验开发装置上检测功能性能指标以完成真实电路的设计。写出课程设计报告,其中要有顶层结构图,各功能模块的程序,各功能模块和整个电路系统的仿真波形图,并对这些设计图纸和设计程序所表达的逻辑思想、工作原理给以说明,写出设计步骤和设计心得。2.课程设计时间:开始设计的前一周公布设计题目下达设计任务,用半周时间完成方案设计、程序设计,另外半周完成仿真、下载、测试。

五、课程设计主要参考资料

潘松 黄继业 编著《EDA技术使用教程》(第二版)科学出版社 2005。

王振红主编《VHDL数字电路设计与应用实践教程》机械工业出版社,2006年。

六、课程设计考核方式及成绩评定

考核成绩由两部分组成:现场检测设计出的真实电路占50%,课程设计报告占50%。

大纲撰写人: 杨显富 系(教研室):(签字)学院学术委员会意见:(签字)

学院审核:(签字、盖章)年 月 日

6.eda技术及应用考试 篇六

课程代码:030351001 课程英文名称:Course Design of EDA Techniques

课程总学时:2周 讲课:□□ 实验:□□ 上机:□□ 适用专业:电子信息工程专业

大纲编写(修订)时间:2010年6月

一、大纲使用说明

本大纲根据电子信息工程专业2010版教学计划制定。

(一)适用专业

电子信息工程专业。

(二)课程设计性质

必修。

(三)主要先修课和后续课程

先修课:《数字电路》、《EDA技术》

后续课:《微机原理与接口》、《毕业设计》

二、课程设计目的及基本要求

本课程设计是为配合《EDA技术》课程的学习而设立的,通过本课程设计,可使学生更加深刻地理解《EDA技术》课程讲述的内容;培养学生独立思考、解决实际工程问题的能力;提高学生用硬件描述语言设计电路的能力,为后续专业课程学习打下坚实基础。

①使学生掌握利用熟悉一种到两种EDA软件进行电子系统设计的基本方法和技巧,即能熟练进行设计输入、编译、管脚分配、下载等过程,具备初步的独立设计能力;

② 学会查阅技术资料和手册,合理选用设计方案、线路和器件; ③ 培养学生独立分析和解决问题的能力; ④ 使学生掌握一定的设计与实践技能;

⑤ 撰写规范的设计总结报告,培养严谨的作风和科学的态度。

三、课程设计内容及安排

课程设计内容主要依托于EDA技术课程,课程设计题目涉及了众多类的设计问题,具体内容应该由课程设计指导书进行详细阐述。

选题要符合本课程的教学要求,通常应包含EDA技术课程主要内容,并强调各部分知识的综合应用。注意选题内容的先进性、综合性、实践性,应适合实践教学和启发创新,选题内容不应太简单,难度要适中;最好结合工程实际情况进行选题,反映EDA技术的新水平,并且有一定的实用价值;成果宜具有相对完整功能。

课程设计的具体实施安排可以采用两种形式,一种是每人独立完成分配给自己的课程设计题目,这适用于题目工作量要求不高的情况;另一种是采用分组的方式,将学生2~3人为一组,完成一组综合题或一道工作量要求较高的题目。具体采用那种方式可以在进行课程设计安排时可以灵活掌握,要注意的是尽量争取学生课程设计的题目不一样,从而避免课程设计成果雷同,降低课程学习效果。

通过两周的课程设计,学生完成面向对象课程设计题目,教师最终对学生提交的软件和课程设计报告进行验收。

四、指导方式

① 选定设计课题,下达设计任务

选题可由指导教师选定,或由指导教师提供几个选题供学生选择;也可由学生自己选题,但学生选题需通过指导教师批准。课题应在设计周之前提前公布,以便学生有充分的设计准备时间。

指导教师在公布课程设计课题时一般应包括以下内容:课题名称、设计任务、技术指标和要求、主要参考文献等内容。

② 教师讲解

a.介绍课程设计的内容、要求、安排、考核方法、注意事项

b.讲授必要的课题背景和相关知识、原理。着重帮助学生明确任务,理解电子系统的一般设计方法、安装、调测方法。

③ 学生查询资料,并进行设计

设计内容:系统总体设计方案;系统分析与设计(各模块及其顶层文件的设计、编程);完整的系统框图;调测方案、步骤等。

④ 教师审查

审查设计方案是否合理、正确、可行,否则要求调整或整改。教师记录学生的相应成绩。⑤ 学生上机调试和下载

通过教师审查后,即开始调试。学生根据编写的程序,上机调试和下载测试,调试工作原则上由学生独立,完成对理论设计进行时序仿真和优化。教师以兼顾培养学生的独立工作能力和在规定时间内完成设计任务为宗旨,视具体情况给予适当指导。应对实践纪律和态度提出严格要求,督促、激发、引导学生圆满完成实践任务。

五、课程设计考核方法及成绩评定

课程设计考核成绩由三个方面组成:

(一)学生出勤成绩

学生出勤成绩根据学生在课程设计上课期间的出勤记录进行评定,占最终成绩的20%。

(二)课程设计答辩成绩

课程设计答辩成绩根据指导教师对于学生编写的程序质量及学生对于老师问题的回答情况进行评定,占最终成绩的40%。

学生在系统达到功能和指标要求后,保持系统的测量现场,申请指导教师验收。对达到设计指标要求的,教师将对其综合应用能力和实验能力进行简单的答辩考查,然后给出实际操作分。未达到设计指标要求的,则要求其调整和改进,直到达标。要求仿真结果符合课程设计选题的要求,并能在调试基础上进行优化设计,电路图布局合理,线路清楚。

(三)课程设计论文成绩

课程设计论文成绩根据学生的论文质量由指导教师进行评定,占最终成绩的40% 课程设计最终的成绩=学生出勤成绩×20%+课程设计答辩成绩×40%+课程设计论文成绩×40%。课程设计的成绩可以采用百分制整数形式,也可采用优良制形式。在采用优良制成绩时,由计算出的百分制成绩转换成相应的优良制成绩。

学生对设计的全过程做出系统的报告,按统一格式写出设计报告。撰写设计报告能训练学生编制科技报告或技术资料的能力,同时也能使设计从理论上进一步得到总结提高,所以设计报告必须独立完成。

课程设计报告应包括的主要内容有: ① 设计题目; ② 设计目的;

③ 设计任务及主要技术指标和要求; ④ 设计思想说明;

⑤ 程序清单、时序仿真、结果分析等。

⑥ 对设计成果做出评价,说明本设计的特点和存在问题,提出改进设计意见; ⑦ 通过课程设计所得到的收获和体会; ⑧主要参考文献。

课程设计报告应认真、规范、正确。

六、课程设计教材及主要参考书目

《EDA技术实用教程》(第二版),潘松编,科学出版社,2004 《电子电路EDA技术》,赵世强编,西安电子科技大学出版社,2002 《EDA技术及应用》,潭会生编,西安电子科技大学出版社,2003 《EDA技术与应用》,汪国强等编著,电子工业出版社,2005 《EDA技术习题与实验》,汪国强等编著,电子工业出版社,2005

编写人: 王红 魏英姿 周帆

7.eda技术及应用考试 篇七

关键词:EDA,电工技术,电路设计

一、引言

电工技术是一门非电专业, 例如机械类、汽车类等学科中某些专业的基础或选修课程。但是, 该门课程所包含的内容较多, 跨度较大。上册主要有电路分析和电动机的基本原理, 还包括电力电子技术;下册主要内容为模拟电子技术和数字电子技术。本课程开设的初衷是为这些非电专业的学生提供一个窗口, 使其能够在短时间内对电子技术的基本原理有一个整体的把握, 以具备对其专业的相关电子设备有一定的了解能力。因此, 这种非专业性课程的定位, 加之课程内容本身理论性较强, 使学生不了解学习该课程的意义与实际的应用, 导致学生学习兴趣不高, 大多数以获得学分为目的。但是, 随着现代科技的发展, 电子技术及其相关的学科, 几乎已经对各门学科产生了极大的影响, 最明显的例子体现在现代汽车工业中。目前, 汽车已经不再单纯是一个机械装置, 它是综合了最新机械与电子技术发展水平的高科技产品。同时, 随着电子和信息技术的飞速发展, 市场上出现了各种各样的电子设计自动化 (EDA:Electronics design automation) 软件, 改变了以往全部需要手工工作来设计电路的局面。目前, 几乎所有的电子电路设计任务都是在EDA软件的协助下完成的, 而且, 是否具备熟练的EDA软件使用能力已经成为大多数公司招聘员工的先决条件。因此, 在电工技术课程中引入EDA技术[1,2,3,4,5], 不仅能够为学生提供更为丰富的教学内容, 也是帮助学生更好就业的一个重要手段。

二、EDA技术在模拟电路教学中的应用举例

模拟电路通常是电工技术教学中的难点, 一是电路结构复杂, 学生难以理解;其次, 学生不了解该部分内容在实际工作中的应用, 导致学习兴趣不高。为此, 可以适当将EDA技术穿插在这部分的教学中, 从实际电路设计的过程中引出与课程关键知识点相关的内容, 以达到提高学生学习兴趣的目的。以下用一个实际的例子来表明如何将EDA设计过程与电工课程中相关知识点进行结合。

例:使用ADS (Advanced design system) 软件实现共射极放大电路的静态分析与直流偏置设计。

共射极基本放大电路是电工技术中模拟电路部分接触的第一个重要的知识点, 课程要求学生熟练使用计算法与图解法来确定放大电路的静态工作点。学生对这一部分的掌握情况直接影响到其对后续知识点的掌握, 因此, 本例从电路设计的实际过程出发, 引出相应的知识点。

在讲解例子之前, 需要给学生明确的是在实际的有源电路设计中, 通常情况下, 晶体管静态工作点的选择与设计是第一步, 也是至关重要的一步。实现不同功能的电路, 可能在电路图上区别不大, 重要的是其静态工作点的选择。例如, 低噪声功率放大器需要无失真地放大微弱信号, 因此它的静态工作点需要选择在输出曲线的中点, 而高功率放大电路为了尽可能提高输出效率, 通常静态工作点选择到靠近截止区, 而混频器、倍频器等电路, 主要为了使用其非线性性能, 因此, 它们的静态工作点通常要靠近饱和区。其次, 需要强调的是电路设计是电路分析的逆过程, 遵循的步骤是根据输入输出关系, 确定静态工作点, 再得到直流偏置电路, 与课程中计算直流工作点的顺序正好相反, 但是, 它们所反映出的基本原理都是相同的。

确定静态工作点, 就是根据电路所要实现的功能, 确定基极电流IBB和集电极电流IC, 集射电压UCE。因此, 首先需要得到晶体管的输入输出曲线。在ADS中, 输入输出关系是通过对晶体管做直流扫描得到的。实验步骤是先建立一个新的工程项目 (Project) 和一个新的设计 (Design) , 然后选择晶体管直流工作点扫描模板 (ADS中常用的功能都做成了模板, 可以直接调用) , 并在其提供的元器件库中选择合适的元件, 加入到模板中, 如图1所示。

其次, 需要设定晶体管的工作范围, 就是IBB和VCE的范围, 可以通过扫描参数设置得到, 如图2所示。本例中, IBB的扫描范围是从20u A到100u A, 扫描步长为10u A。VCE的扫描范围从0V到5V, 扫描步长为0.1V。当扫描参数确定后, 点击仿真按钮, 就会产生图3的输入输出曲线。

图3所示的输入输出关系曲线与课本上的曲线几乎是一致的, 它表明在不同的基极电流IBB作用下, 集电极电流IC与集射电压VCE的关系。通过输入输出曲线, 可以选择合适的静态工作点, 以实现电路的功能。在本例中, 为与教材保持一致, 将静态工作点选择在输出曲线的中点, 大致对应于图3中光标m1的位置, 软件会自动显示出此处的参数, 即IBB=60u A, VCE=3V, IC=6m A。当静态工作点确定后, 可以据此设计直流偏置电路。由于本例是设计共射极基本放大电路, 因此需要计算基极和集电极电阻的大小。在ADS中, 偏置电阻的大小可以自动计算, 但是需要手动输入相关的公式, 如图4所示:

根据图4的计算公式, 可以得到图5的计算结果。从图中可以看到, 当选择Ibb=60u A时, 对应的基射电压和基极电阻在一个范围内变动, 因此只能选择一个近似的值VBE=0.8V, Rb=60K。用同样的方法, 可以得到的集电极电阻Rc=340。当所有的参数都计算得到后, 需要对该电路进行验证, 并根据验证结果进行调整。验证电路及其参数如图6所示。

根据共射极放大电路的基本计算结果, 可以设计出图6所示电路。验证该电路的方法是对其做直流仿真, 并将仿真计算的结果直接显示在电路图中对应的元件和支路上。从图中可以看出, 基极的电位为809m V, 电流为69.9u A, 而集电极电位VCE=2.74V, Ic=6.64m A。对比前面得到的静态工作点参数 (IBB=60u A, VCE=3V, IC=6m A) , 可以发现它们之间存在一个小的偏差, 这是因为在电路设计中, 无论是在静态工作点还是元件参数的选择上, 都存在近似的过程, 因此, 任何电路的设计, 都是一个近似的设计, 由此得到的实际电路都需要经过调试合格后才能够实际使用。

以上的例子为学生展示了一个电路设计的基本过程以及设计方法。当课程进一步深入后, 可以对本例进行扩展, 例如在分析放大电路动态特性时, 可以加入不同幅度的输入信号, 观察在不同静态工作点, 放大电路的输入输出波形和非线性失真, 有助于学生理解设计静态工作点的意义。

三、结语

通过在电工技术课堂上增加EDA设计的过程, 可以使课程从纯理论教学转向理论与实际设计相结合的教学方式, 不仅能够提高学生的学习兴趣, 还能够培养他们的实际动手能力, 并极大增加了教师和学生间的互动。同时, 课本上的理论与公式不再需要死记硬背, 它们已经融合到设计过程中, 学生通过一两个简单的设计就可以熟练掌握, 使学生能够轻松完成课程的学习和考试。

参考文献

[1]刘廷文, 唐庆玉.EDA课程设计——研究型教学的重要环节[J].试验技术与管理, 2006, 23 (10) :112-116.

[2]刘廷文, 唐庆玉, 段玉生.EDA技术是实现电工学研究型教学的良好手段[J].实验技术与管理, 2006, 23 (8) :65-68.

[3]高金定, 邬书跃, 孙彦彬, 等.EDA技术创新型实验教学体系的构建与实践[J].试验技术与管理, 2011, 28 (2) :158-160.

[4]田建艳, 夏路易.EDA支持下的电子技术教学实践[J].教育理论与实践, 2005, 25 (6) :54-55.

8.eda技术及应用考试 篇八

关键词:EDA技术;数字电子技术实验;具体应用;ASIC集成电路

引言

EDA技术是先进的计算机应用技术之一,由于其广泛的应用而得到快速发展。根据其广泛的发展前景,从EDA的设计流程入手,分析了EDA技术在数字电子技术实验中的优势作用,如大大提高精确度、简化实验过程、降低理解难度、促进教学改革、提高学生的自主学习能力等[1]。因此,其应用也涉及到生活的方方面面,在教育教学、科学研究、产品设计与制造等领域都有重大突破。

一、EDA技术简介

1.1 EDA技术概述

EDA全称为电子设计自动化,是Electronic Design Automation的缩写。EDA是逐渐从计算机辅助设计、计算机辅助制造、计算机辅助测试以及计算机辅助工程发展而来的以计算机为工作平台,融入了其它计算机技术、应用电子技术、智能化技术以及信息处理等理念,从而进行电子产品的自动化设计的一种最新技术。

1.2 EDA技术流程

在EDA软件平台的基础上,通过采用硬件描述语言,如VHDL、Verilog HDL语言编写程序,经过计算机完成编译、化简、分割、综合、优化、布局布线以及仿真等过程,最后选择合适的芯片进行相应的适配编译、逻辑映射、程序下载等工作。

1.3 EDA技术的发展前景

在EDA技术的基础上,可以发展电子技术、机械工程、航空航天技术、化学化工、生物科技、军事技术、医学技术等各种具有较好发展前景的应用技术,几乎运用于所有的学科当中,所以EDA技术在现实生活中得到了广泛的运用,尤其是在数字电子技术实验中的广泛运用。除此之外,EDA技术在科学研究、教育教学、产品设计以及制造方面中也有广泛涉猎[2]。

二、采用EDA技术发展数字电子技术实验的优越性

2.1 实验过程的精确性

由于EDA技术是通过在EDA软件上编写严谨的程序代码来进行整个设计的实现,高度精确的编译程序、综合优化、布局布线、模拟仿真以及特定的目标芯片,经过逻辑上的地址映射,最终下载到实验板进行清晰的输出显示,所以整个流程基本属于自动化设计。高精度的数字信息反应了高精度的实验结果,在很大程度上不仅提高了电路设计的准确性和精确性,还提高了实验效率,同时使得实验结果更加形象、深刻、具体,大大减轻了设计者的反复核查工作和劳动强度。

2.2 对传统教学实验的促进作用

数字电子技术是要在各高规格芯片仪器的基础上才能完成,所以对实验成本的投入相对较大。目前我国还有很多农村、贫困山区等经济条件相对落后的地区,没有能力买到数字电子技术实验中所需要的各机械仪器,因此严重阻碍了教育事业中科技的发展。然而,随后引进的EDA技术却减轻了这一负担,通过EDA技术,可以达到很多以前传统实验能够达到的实验要求和目的,同时EDA技术的引入简化了整个实验过程的理解难度。同时,EDA技术的引用使得整个实验过程不再受时间和空间的限制,更具有开放性和灵活性,这大大提高了学生的动手能力、学习能力和实践能力,因此,对传统教学实验起着非常重要的促进作用[3]。

2.3 有利于数字电子技术的不断发展与创新

数字电子技术是对各种逻辑门电路、信号处理、集成器件的功能以及其应用进行研究的一种功能强大的技术。在信号处理中,将模拟信号转换为数字信号进行输出的技术得到了广泛使用,其操作都是在EDA软件的基础上开展起来的,现目前在越来越多的领域进行探索与创新,所以,EDA技术的应用使得数字电子技术得到不断的发展与创新。

三、EDA技术在数字电子技术实验中的具体应用

3.1 教学方面的广泛应用

现阶段,各高校基本开设了有关EDA技术和数字电子技术此类相关的课程,目的是让此专业的学生了解相关专业基础知识,并进行深入学习,直至将EDA技术熟练地运用于数字电子技术实验中。如各种门电路的设计、编码器、译码器、信号控制器、加法器、比较器、寄存器等各器件的设计等等内容,针对这些相关课题进行深入研究,甚至开拓创新出新的专业技术。既促进了专业技能的学习,又促进学习能力的培养。

3.2 科学研究方面的应用

在科研方面的应用也较为广泛,如模拟与仿真、虚拟实验、信号与系统、PPL理论、自动控制等。利用电路仿真工具对电路进行设计与仿真;利用虚拟实验有效开展数字电子技术实验;利用信号与系统、自动控制、PPL理论结合多种数学工具完成建模设计与研究等。近几年具有较大发展领域的ASIC集成电路是以EDA技术为基础的科研项目,在研究领域也得到了进一步探索。除此之外,还有众多科研方面的研究,对整个科研项目做出了较大的贡献与促进作用。

3.3 产品设计与制造方面的应用

市场上经销的EDA产品设计主要有单片机、芯片群、微处理机、数字信号处理器、信号控制灯、时钟控制信号等,以及彩电、音响、电子玩具等等产品。其制造领域不仅只涉及计算机领域,在产品调试、PCB制作、医学设备、军事领域、航空航天、机械设备等方面都有应用。随着科技的不断发展,各学科之间的交叉领域不断增加,因与EDA技术有关的设计产品及制造行业几乎涉及各个学科领域,其应用广泛。

综上所述,EDA技术是基于计算机平台的应用技术,根据此属性优势,可加强对周边技术领域的综合性应用,从而让EDA技术有更加广阔和更深入的发展前景。

四、结语

EDA逐渐发展成为一种以计算机为工作平台,融入其它技术进行自动化设计的最新技术,自然有着其不可替代的优越性。研究发现,将EDA技术融入数字电子技术实验中能大幅度提高实验过程的精准性与高效性,简化实验繁琐步骤,有利于学生创新学习。同时,改进传统教学实验方法、促进数字电子技术的发展与创新。这就决定了其广泛的应用前景,如创新式地基础教学、高科技的科研成果、高质的服务产品等。因此,EDA技术在数字电子技术实验中的运用至关重要。

参考文献:

[1]许佩博.研究EDA技术在数字电子技术实验中的应用效果[J].电子技术与软件工程,2015,5(9):120-121.

[2]韦凡捷.EDA技术在数字电子技术实验中的实践[J].数字技术与应用,2015,8(9):219-220.

9.eda技术及应用考试 篇九

考试题型:选择题、填空题、算法设计、简答题

一、选择题部分:5题*3分/题=15分

1、颜色模型的应用范围

显示彩色图像的电视机和计算机显示器色彩显示原理主要基于图像的颜色模型。颜色模型主要有HSV(面向用户,对应于画家的配色方法)、RGB(通常使用于彩色阴极射线管等彩色光栅图形显示设备中)、HSI、CHL、LAB、CMY(应用于印刷工业)等。

2、信息媒体的分类

根据国际电报电话咨询委员会(CCITT)的定义,媒体分为:感觉媒体、表示媒体、展现媒体、存储媒体、传输媒体

其中,存储媒体和和传输媒体称为信息交换媒体。

根据时间在表示空间中的作用,媒体分为:离散媒体、连续媒体

3、压缩编码标准(有损、无损的分类)

数据压缩的评价标准: 压缩比:越大越好

数据质量:数据失真越小越好

压缩与解压缩的速度:速度越快越好

有损压缩无损压缩统计编码PCM编码预测编码变换编码混合编码JPEGMPEGH.261行程编码哈夫曼编码香农编码算数编码LZW编码DPCM编码ADPCM编码帧间预测编码离散余弦变换K-L变换小波变换

4、图像的基本属性描述

分辨率

显示分辨率:指显示屏上能够显示出的像素数目。

图像分辨率:指组成一幅图像的像素密度的度量方法。

像素深度,即像素的所有颜色分量的二进制位数之和,它决定了不同颜色(亮度)的最大数目。或者确定灰度图像的每个像素可能有的灰度级数。` 颜色空间,指彩色图像所使用的颜色描述方法,也叫颜色模型。真彩色、伪彩色与直接色

真彩色是指在组成一幅彩色图像的每个像素值中,有R、G、B3个基色分量,每个基色分量直接决定显示设备的基色强度,这样产生的彩色称为真彩色。

伪彩色是指每个像素的颜色不是由每个基色分量的数值直接决定的,而是把像素值当做彩色查找表(CLUT)的表项入口地址,去查找一个显示图像时使用的R、G、B强度值,用查找出的R、G、B强度值产生的彩色称为伪彩色。

直接色是指每个像素值分成R、G、B分量,每个分量作为单独的索引值对它做变换。也就是通过相应的彩色变换表找出基色强度,用变换后的得到的R、G、B强度值产生的彩色称为直接色,它的特点是对每个基色进行变换。

5、信息熵和信息编码的关系

若信息熵H,平均编码长度为L。

如果L远远大于H,则该编码为非最佳编码,说明编码中仍有数据冗余,可以进一步压缩;如果L小于H,证明是不可实现的。所以,通常情况下,最佳编码应该满足L稍大于H。

6、MPEG-1、2、4、7的用途

MPEG-1:数字电话网络上的视频传输,如非对称数字用户线路(ADSL)、视频点播(VOD)及教育网络,同时也用于多媒体的信息存储和Internet音频传输。

MPEG-2:对音频、视频、码流合成、音视频控件方面进行大量的扩充 MPEG-4:视频

MPEG-7:数字化图书馆、多媒体目录服务、广播式媒体选择、多媒体编辑、教育、娱乐、新闻、旅游、医疗、购物、地理信息系统

7、多媒体数据库管理系统(MDBMS)体系结构 P179 多媒体数据库系统的体系结构可分为层次结构和组织结构。多媒体数据库的层次结构可分为媒体支持层、存取与存储数据模型层、概念数据模型层和多媒体用户接口层等4层。

用户

多媒体用户接口层

概念数据模式层 据

型存取与存储数据模式

媒体支持层

图为层次结构示意图

多媒体数据库的组织结构可分为协作性、集中统一型、客户/服务器型和超媒体型等4种。

8、哪些是损编码、无损编码?(参考题三)`

9、关于MIDI的描述

MIDI即电子乐器数字接口。用于在音乐合成器、乐器和计算机之间交换音乐信息的一种标准协议。MIDI是音乐和计算机使用的标准语言,是一套指令(即命令的约定),不是声音信号,在MIDI电缆上传送的不是声音,而是发给MIDI设备或其他装置,让它产生声音或执行某个动作的指令。产生MIDI音乐的方法有:FM合成法、乐音样本(波形表)合成法。

MIDI是一种数字音乐的国际标准,MIDI文件存储的不是波形而是指令序列。

10、多媒体硬件原理

多媒体硬件系统是多媒体计算机实现多媒体功能的物质基础,任何多媒体信息的采集、处理和播放功能都离不开多媒体硬件技术的支持。

计算机系统中,为了对多媒体信息进行存储处理,需要先把音频信号、视频信号数字化,以数字形式存入计算机存储器中。然后计算机软件才能对它们加以有效的处理。但是,数字化的音频、视频数据量非常大,需要把它们进行压缩并存入大容量存储器;音频信号、视频信号的输入输出都是实时的,需要很快的速度,实现以上要求,必须有专用的多媒体硬件支持。

二、填空题部分:5题*3分/题=15分

1、掩蔽效应:时域掩蔽、频域掩蔽。

一种频率的声音阻碍听觉系统感受另一种频率的声音的现象称为掩蔽效应。

2、多媒体通信系统 P325 计算机网络是多媒体通信的基础,电路交换网络和分组交换网络的融合是构造多媒体通信系统结构的出发点。多媒体系统主要有网关、会务器和通信终端组成。网关和会务器是多媒体通信系统的两个极其重要的组成部件。

3、动画的分类

按生成动画方式分为:帧到帧动画、实时动画;

按运动控制方式分为:关键帧动画、算法动画、基于物理的动画; 按变化的性质可分为:运动动画(如景物位置发生改变)、更新动画(如光线、形状、角度、聚焦发生改变)。

4、仿射变换

110cosasina0Sx00

平移:010

缩放:0Sy0 sinacosa0旋转:1010100TxTy

5、采样定理

为了保证采样后的信号能真实的保留原始模拟信号的信息,采样信号的频率必须至少为原信号中最高频率成分的2倍。

6、MIDI声音的合成方法

一种是FM(Frequency Modulation)合成法,另一种是乐音样本合成法,也称为波形表(Wavetable)合成法。此外,还有波表合成和物理模型合成法。

7、信息熵的概念、公式

信息熵是信息论中用于度量信息量的一个概念。一个系统越是有序,信息熵就越低; ` 反之,一个系统越是混乱,信息熵就越高。所以,信息熵也可以说是系统有序化程度的一个度量。信息熵Hp(i)log2p(i)(i=1,„„,n),即信息集N的平均信息量。

i1n8、多媒体硬件原理

多媒体硬件系统是多媒体计算机实现多媒体功能的物质基础,任何多媒体信息的采集、处理和播放功能都离不开多媒体硬件技术的支持。

计算机系统中,为了对多媒体信息进行存储处理,需要先把音频信号、视频信号数字化,以数字形式存入计算机存储器中。然后计算机软件才能对它们加以有效的处理。但是,数字化的音频、视频数据量非常大,需要把它们进行压缩并存入大容量存储器;音频信号、视频信号的输入输出都是实时的,需要很快的速度,实现以上要求,必须有专用的多媒体硬件支持。

9、多媒体软件设计方法、步骤

软件从设计到完成可以用一种生命周期模型开描述,生命周期指的是软件开发的整个开发、使用、维护和报废的过程。最主要且用的最多的软件开发模型是瀑布模型和螺旋模型,此外还有快速原型模型等方法。软件开发阶段主要过程有:

(1)需求分析;

(2)应用系统结构分析(初步设计);(3)建立设计标准和细则(详细设计);(4)准备多媒体数据;(5)制作生成多媒体应用系统(编码与集成);

(6)系统的测试与应用。其中软件测试应包括可靠性、可维护性、可修改性、效率及可用性等。

软件人机界面设计过程:(1)界面风格的设计(2)系统界面布局分析(3)打开界面的结构体系(4)文字的应用(5)色彩的选择(6)图形和图标的使用 人机界面设计过程遵循的原则:(1)用户原则(2)信息量最小原则(3)帮助和提示原则(4)媒体最佳组合原则(5)纠错原则(6)艺术性原则

设计步骤:1.客户咨询2.上门拜访3.探讨分析4.提供制作方案5.签定合同6.成立专门项目小组7设.计制作8.修改9.技术合成10.测试版11.交付使用12.生产、包装

10、离散变换原理

离散余弦变换(DCT变换)可表示为:

m1F(u,v)C(u)C(v)[4x0y0nf(x,y)cos((2x1)u(2y1)v)cos()] 16161C(z)2其中 1z0z0

11、傅里叶变换概念

傅里叶变换时一种将信号从时域变换到频域的变换形式。

傅里叶变换公式

F(w)F[f(t)]f(t)eiwtdt

逆向傅里叶变换公式

f(t)F1[F(w)]1iwtF(w)edw 2 `

12、人耳能够判别出声音到左右耳相对时差、声强(频差),能判别声音方向及由于空间使声音来回反射造成的特殊效果。

三、算法设计部分:2题*10分/题=20分

1、Huffman编码 编码过程:

(1)对图像中出现的不同像素值进行概率统计,得到N个不同概率的信息符号。(2)按符号出现的概率由大到小,由上到下排列。(3)对两个最低概率符号分别以二进制0、1赋值。

(4)两最低相加后作为一个新符号的概率重新置入符号序列中。(5)对概率按从大到小重新排列。

(6)重复2~5,直到只剩下两个概率符号的序列。

(7)分别以二进制0、1赋值后,以此为根节点,沿赋值的顺序的逆序依次写出该路径上的二进制代码,得到Huffman编码。解码过程:

(1):判断解码数据的类型选择与之对应的表。(2):进行码长的判断。(3):计算DHT地址。(4):从DHT表中读取数据。(5):若为DC数据需要进行DPCM解码。

2、LZW编码

(1)编码过程:

步骤1: 开始时的词典包含所有可能的根(Root),而当前前缀P是空的; 步骤2: 当前字符(C):=字符流中的下一个字符; 步骤3: 判断缀-符串P+C是否在词典中

(1)如果“是”:P := P+C //(用C扩展P);

(2)如果“否”

① 把代表当前前缀P的码字输出到码字流;`

② 把缀-符串P+C添加到词典;

③ 令P := C //(现在的P仅包含一个字符C);步骤4: 判断码字流中是否还有码字要译

(1)如果“是”,就返回到步骤2;

(2)如果“否”

① 把代表当前前缀P的码字输出到码字流;

② 结束。(2)译码过程

步骤1: 在开始译码时词典包含所有可能的前缀根(Root)。步骤2: cW :=码字流中的第一个码字。

步骤3: 输出当前缀-符串string.cW到码字流。步骤4: 先前码字pW := 当前码字cW。

步骤5: 当前码字cW := 码字流中的下一个码字。步骤6: 判断先前缀-符串string.pW是否在词典中

(1)如果“是”,则:

① 把先前缀-符串string.pW输出到字符流。

② 当前前缀P :=先前缀-符串string.pW。

③ 当前字符C :=当前前缀-符串string.cW的第一个字符。

④ 把缀-符串P+C添加到词典。

(2)如果“否”,则:

① 当前前缀P :=先前缀-符串string.pW。

② 当前字符C :=当前缀-符串string.cW的第一个字符。

③ 输出缀-符串P+C到字符流,然后把它添加到词典中。

步骤7: 判断码字流中是否还有码字要译

(1)如果“是”,就返回到步骤4。

(2)如果“否”, 结束。

3、算术编码

给定事件序列的算术编码步骤如下:

(1)编码器在开始时将“当前间隔” [ L,H)设置为[0,1);(2)对每一事件,编码器按步骤(a)和(b)进行处理;(a)编码器将“当前间隔”分为子间隔,每一个事件一个;(b)一个子间隔的大小与下一个将出现的事件的概率成比例,编码器选择子间隔对应于下一个确切发生的事件相对应,并使它成为新的“当前间隔”;

(3)最后输出的“当前间隔”的下边界就是该给定事件序列的算术编码。编码过程伪代码描述如下:

Set Low to 0 Set High to 1 While there are inputs symbols do Take a symbol Code Range = High – Low High = Low + Code Range * High Range(symbol)Low = Low + Code Range * Low Range(symbol)End of while ` Output Low 算术码解码过程用伪代码描述如下:

get encoded number do find symbol whose range straddles the encoded number output the symbol range = symbo.LowValue – symbol.HighValue substracti symbol.LowValue from encoded number divide encoded number by range until no more symbols

四、简答题部分:5题*10分/题=50分

1、声音的数字化(滤波、采样、量化、编码、混叠)。

采样:曲线代表声波曲线,是连续变化的模拟量,时间轴以一种离散分段的方式来表示,并且波形以固定的时间间隔来测量其值。

量化:本质是A/D转换,也可以看作是采样时间内测量模拟信息值的过程。编码:本质就是压缩,分为有有损压缩和无损压缩。

2、均匀量化及非均匀量化的原理和优点。

均匀量化是一种把输入信号的取值域等间隔分割的量化。均匀量化的好处就是编解码的很容易,但要达到相同的信噪比占用的带宽要大。

非均匀量化是一种在输入信号的动态范围内量化间隔不相等的量化。它与均匀量化相比,有两个主要的优点:(1)当输入量化器的信号具有非均匀分布的概率密度时,非均匀量化器的输出端可以较高的平均信号量化噪声功率比;(2)非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例。因此,量化噪声对大、小信号的影响大致相同,即改善了小信号时的量化信噪比。

3、信息数字化的参数(量化位数、声道数、采样数等)解释。

声音信息:

采样频率:是指1秒钟内的采样次数。计算机音频处理中,常用的采样频率有11.025kHz、22.05kHz和44.1kHz。

量化位数:是指描述每个采样点值的二进制数位。常用的量化位数为8位和16位。声道数:又称为声音通道的个数,是指一次采样同时记录的声音波形个数。随着声道数的增加,存储容量也相应增大。

图像信息:

采样频率:采样点之间的间隔大小,采样频率越高,获取的样本就细腻逼真,图像的质量越高。

量化等级:是指图像样本量化后每个采样点用多少位二进制数表示,它反映了采样的质量。

4、MPEG的概念及MPEG-1中的主要技术。

MPEG系列标准是由ISO/IEC共同制定的。MPEG系列标准作为运动图像压缩编码国际标准具有良好的兼容性较高的压缩比(最高可达200:1),而且数据损失小。` MPEG-1用于帧内压缩编码的主要技术有:(1)基于8×8像素块的余弦变换DCT;(2)量化器;(3)Z型扫描与行程长度编码;(4)熵编码;(5)信道缓存。

MPEG-1用于帧间压缩编码的主要技术有:(1)运动估计;(2)运动补偿。

5、图像滤波技术的作用及傅里叶变换。

滤波技术的作用:(1)去噪;(2)对信号做平滑;(3)可以把声音细节提取出来。图像滤波频域操作:傅里叶变换然后过滤频谱; 滤波空间操作:通过滤波函数空间卷积;平滑或锐化;

6、简述滤波的基本原理。

对每个点的像素值计算,由该点本身灰度值以及领域内的其他像素值加权平均值所得,而加权平均的权系值由二维离散采样归并所得。

7、立体声原理及变调是如何实现的。

立体声原理:人耳能够判别出声音到左右耳相对时差、声强(频差),能判别声音方向及由于空间使声音来回反射造成的特殊效果。

变调是如何实现的:启动Cool Edit,载入需要处理的声音文件。在菜单栏上单击Transform选择Time/Pitch中的Stretch命令,在Stretch对话框,选择Pitch Shift,这是固定音频时间长度的要点。然后,通过Transpose下拉列表框进行调整,软件已经按音乐调子设好变调幅度了,可以半度半度地升调或降调,按下OK确认,开始喧染。完成后,即可按播放键试听变调后的效果。

8、文—语转换系统结构及主要技术。

综合谱,形状反射,声谱特征音素库文本文本分析音标韵律语音控制韵律控制(节奏、音调)语法规则发音词典韵律库语音合成器语音输出词库音长,加重,声调,停

文—语转化系统结构

文语转换的目的是将计算机内存储的文本自动转换为声音输出,其主要技术是文字转换成语音的技术,文字以数字或代码形式表示的语言信息,由计算机合成后发出的语音,该过程包含很多高级的信息处理和发音器官复杂的生理控制。文-语转换系统由发音器、发声的驱动器两部分组成。`

9、JPEG基于DCT顺序编码模式的一般过程。

第一步:颜色模式转换及采样;第二步:DCT变换;第三步:量化;第四步:编码。

10、小波变换的算法基本思想。

小波变换编码技术的基本原理是对整幅图像进行变换,采用小波变换的本质是对一幅图像进行高通和低通滤波,对不同的频带上的图像部分可采用不同的量化技术进行量化。其主要依据是变换后的各级分辨率的图像之间自相似的特点,采用逐级逼近技术来实现减少编码的数据量。

设f(t),(t)是平方可积函数,且(t)的傅立叶变换()满足条件:则称Wf(a,b)f(t),a,b(t)1af(t)(|()|2d,Rtb)dt,(a0)为f(t)的连续小波变换,Ra1tb称(t)为小波函数或小波母函数,称a为尺度因子,b为平移因子,a,b(t)()。aa

11、MPEG-4的体系结构与技术。

MPEG-4标准的体系结构有5个部分组成,分别是: 第一部分:DMIF(多媒体传送整体框架),包括3个方面的技术,交互式网络技术,广播技术和磁盘技术。

第二部分:缓冲区管理和实时识别。第三部分:音频编码。第四部分:视频编码。第五部分:场景描述。

12、图形填充算法、图形光照模型和光线跟踪法。光照模型:模拟物体表面的光照物理现象的数学模型。有序边表算法

1.求出每一扫描线与多边形各边交点,把各交点坐标(xk,yk)存贮在表中; 2.按扫描线以及扫描线上交点x值递增顺序对该表进行排序。如交点(x1,y1)和(x2,y2),当y1<y2或y1﹦y2而x1≤x2时,(x1,y1)将位于(x2,y2)的前面;

3.按(x1,y1)和(x2,y2)形式成对提取巳排序表的交点; 4.将每一对交点之间的象素置成填充的光强或颜色。边填充法

1.取多边形的一条边;

2.求出每一扫描线与该边交点坐标(xk,yk); 3.将(xk,yk)右边的全部象素取补;

4.还有没处理的多边形边时转1,否则结束。堆栈种子填充算法

种子象素压入堆栈; 2 当堆栈非空时做

(1)栈顶象素出栈;

(2)将出栈象素置填充色; `(3)检查每个与当前象素邻接的4连接象素,若其中有象素不为边界且没有设置成填充颜色,将该象素压入堆栈;

(4)转2

扫描线种子填充算法

扫描线种子填充算法适用于边界定义的区域。算法如下:

F(k)f(n)en0N1j(2)nkN1f(n)NF(k)ek0N1j(2)nkN 1 种子象素入栈; 2 当堆栈非空时做

(1)栈顶象素出栈;

(2)沿扫描线对出栈象素的左右象素填充,直到遇到边界象素为止,即每出栈一象素,便对包含该象素整个区间填充;

(3)上述区间内最左最右的象素分别记为xLeft,xRight;

(4)在区间[xLeft,xRight]中检查与当前扫描线相邻的上下两条扫描线的有关象素是否全为边界象素或为已填充象素,若存在非边界未填充象素,则把每一区间最右象素取作种子入栈;

(5)转2 光线跟踪算法

光线跟踪过程可用二叉树(称光线跟踪树)表示。逐个将相交点加入到二叉树中,树的左分支表示反射光线,右分支表示透射光线。光线跟踪树最大深度可由用户选定,或由存储容量决定。当树中一束光到达光源、背景或预定的最大深度时,停止跟踪。在计算象素光强时,需从叶结点开始由底向上遍历相应二叉树,在树每个结点处,递归调用整体光照模型公式,累计光强贡献直到二叉树根结点。

光线跟踪法考虑来自环境的漫射、镜面反射和透射对物体表面产生的光强,其光照模型由Whitted提出: I﹦I1﹢RsIs﹢RtIt 其中,I1是不考虑环境影响,由简单光照模型计算的光强;Is是在镜面反射方向上来自其它物体的光强;It是在折射方向上来自其它物体的光强;Rs和Rt分别表示物体表面反射系数和透射系数。此式也称整体光照模型。

上一篇:空心砖施工工艺下一篇:财务室工作计划