《圆锥的体积一》教学反思(13篇)
1.《圆锥的体积一》教学反思 篇一
圆锥的体积教学反思
圆锥的体积教学反思1
1、通过课堂评价促进小组探究学习的有效性
我将班上同学分成了9个小组,在课堂开始前告诉同学们在今天的小组学习中会选出一个优秀小组,并且从合作,纪律,发现三个方面进行评价,组长安排组员活动 体现小组合作性,巩固了小组合作探究的实效性,活动时间结束时从纪律方面进行评价,有效的组织了教学,使学生的兴奋点得到有效控制,尽快投入到公式的推到 过程中,在推到过程中鼓励同学们表达自己的观点,从发现方面对学生进行评价提高学生的积极性。
2、层次清楚,步步深入,重点突出
在教学圆锥的体积时,我首先复习了圆柱的体积的计算过程,再用生活中的问题引入学习圆锥体积的必要性,调动了学生的积极性。然后要学生用自己的学具动 手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公 式解决生活中的实际问题,加深学生印象。
3、激发学生的求知欲
新课一开始,我就让学生比较两堆沙的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。
4、全体学生的积极参与,突出学生的主体作用
由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。
5、课堂教学后的改进
关于两堆沙的多少的比较课让学生有更多的发展空间,例如从价钱,重量等方面考虑,在这些都不知道的情况下才通过求体积的方法,事实上从价钱上来看更简单一些,要让学生有选择合适的方法解决问题的能力。
在操作活动过程中,指向性过于直接,在第二次教学中我做了一些新的尝试。简单的导入,我出示了一组圆柱和圆锥,先让学生猜一猜学生它们体积的关系,因为学 生都有预习,圆锥体积是圆柱体积的三分之一很快从学生口中脱出。那我们就来做个试验验证一下!我给六个小组分别准备了等底等高、等底不等高、等高 不等底、既不等底也不等高的圆柱和圆锥,当然,实验还没结束,学生中的问题就出来了,我们做的正好是三分之一、怎么回事?我们的是二分之一?, 我们的是四分之一是不是书上写错了?学生思维出现激烈的碰撞,这时我没有评判结果,适时让学生观察、对比、通过合作、讨论,等底等高这一 前提,这样让学生在看似混乱无序的实践中,增加对实验条件的辨别,既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展,而不必苦口婆 心地强调等底等高,对三分之一的认识也深入学生之心,圆锥体积计算漏乘三分之一的错误将得到很好的纠正。而这些目标的达成完全是灵活机智地利 用错误这一资源,所产生的效果,这节教学虽没以前那么顺利,但我觉得今天的学生才真正掌握了知识。因为学生更需要经历知识形成的全过程。真正关注学生 学习的过程,就要有效利用错误这一资源,教师要勇于乐于向学生提供充分研究的机会,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验, 这样,我们的课堂才是学生成长和体验成功的乐园!
圆锥的体积教学反思2
【教材解读】
《圆锥的体积》这部分知识是小学阶段学习几何知识的最后一部分内容,也是人们在生产生活中经常遇到的几何形体,教学这部分内容,有利于进一步发展学生的空间观念,为进一步学习和解决实际问题打下基础,我认为《圆锥的体积》这部分内容在本单元中占有十分重要的地位。
【学情分析】
高年级学生分析问题,解决问题能力逐步增强,这为学生的自主探究及合作学习创造了有利条件,他们已掌握了一些几何知识,了解部分几何图形之间的转化方法。但学生的立体空间观念还不是完全成熟,形体之间的转化还有一定的困难。针对学生的实际,教学中我主要采用观察法,猜想、操作等方法,组织学生探索规律,归纳总结,体验知识的生成和形成。
【教学目标】
1. 通过学生动手操作实验发现等底等高的圆锥体积之间的关系,从而得出圆锥体积的计算公式,并能运用所学知识解决实际问题。
2. 培养学生的动手操作能力和探究意识,发展学生的空间观念。
3. 通过生活中的故事,培养学生良好的思想品德。
【重点难点】
1.圆锥的体积公式的推导过程
2.进一步理解圆锥的体积公式,能运用公式进行计算,能解决简单的实际问题。
【教学策略】
1.加强实践操作:
《数学课程标准》中要求“在教学中,应注重使学生探索现实世界中有关空间与图形的问题;应注重使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面图形的形状、大小、位置关系及变换”。所以,在教学中,设计了多次实验环节,让学生自己动手,亲身经历圆锥体积公式的推导过程,让学生的多种感官参与学习活动,在理解知识的基础上,发展学生思维。
2. 整合课程资源,创造性地使用教材;
数学课程要关注学生的生活经验,在引入新知时,我创设了一个贴近生活的情境,使枯燥的数学问题变为活生生的生活现实,让学生的课堂气氛充满了乐趣和活力,在探究圆锥体积公式时,设计了两次试验,使学生更加明白了:只有“等底等高”的圆锥和圆柱体积才能有3倍的关系。引导学生由表及里,层层逼近的过程,进行深的信息加工。
3.鼓励学生独立思考,引导学生自主探索,合作交流。
在教学中,我积极鼓励学生独立思考,自主探索,小组合作交流,通过小组合作完成实验过程,实验过程中培养学生敢于质疑,乐于交流与合作的能力。
【教学过程】
一、创设情境,引发猜想
1.播放录像。
夏天,小朋友们玩得大汗淋漓。小雅去“便利超市”购物,在冷饮专柜那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的小林看见了,小林的眼珠咕噜一转,计上心来。他去冷饮专柜里买了一个圆锥形的雪糕。小雅刚张开嘴,满头大汗的小林拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)
2.引导学生围绕问题展开讨论。
二、自主探索,操作实验
同学们利用老师提供的实验材料分组操作,自己发现圆柱与圆锥体积间的关系。注意每个学生要先根据老师提供的材料思考实验方法,然后小组讨论拿出最优方案,组员分好工,然后开始实验。
1.小组实验。
(1)学生分5组操作实验,教师巡回指导。(每组的圆柱和圆锥是等底等高的,各组间的大小不同。教师提示:用沙子做实验的小组往容器里装沙子时注意不要用手使劲压,装满后用尺刮平即可。用水做实验的小组往容器里装水时注意把容器装满。这样能保证实验的科学性。)
(2)同组的学生做完实验后,进行交流
2. 集体交流。
(各小组汇报,结论是:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。)
3、深入探究“等底等高”
4. 推导公式。
同学们尝试一下,用V、S、h、表示圆锥的体积公式?(生独立写公式)
5. 问题解决。
同学们再回到故事中,你们应该知道小雅和小林怎样交换才公平合理了吧?它需要什么前提条件?
三、运用公式,解决问题
1、教学例3。
工地上有一些沙子,堆起来近似于一个圆锥。它底面直径是4米,高是1.2米。这堆沙子大约多少立方米?(得数保留两位小数)
2. 学生尝试计算,指名板演,集体订正。
汇报:(1)沙堆底面积3.14×(4÷2)2
=3.14×4
=12.56(平方米)
(2)沙堆的体积1/3×12.56×1.2
=4.19×1.2
≈5.02(立方米)
答:这堆沙子大约5.02立方米?
四、实践应用,拓展深化
1、填空。
1)一个圆柱体积是10立方米,和它等底等高的圆锥体积是( )立方米。
2)一个圆柱钢材能溶铸成( )个与它等底等高的圆锥体。
2、判断。
1)圆锥体积是圆柱体积的1/3。( )
2)圆柱体积一定比圆锥体积大。( )
3)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1( )
4)圆锥体积等于和它等底等高的圆柱体积的1/3。 ( )
3、圆锥的底面积是7.8平方厘米,高是2厘米,体积是多少立方米?
4、神舟五号宇宙飞船的上端是一个圆锥形,它的底面直径是2米,高2.1米,你能求出它的体积吗?
5、哈南双语幼儿园的屋顶是圆锥形,测量出它的底面周长是12.56米,高是6米,它的体积是多少?
五、质疑问难,总结升华
通过这节课的学习,你们有哪些收获?
【板书设计】
圆锥的体积
1/3
V=1/3Sh
例3
工地上有一些沙子,堆起来近似于一个圆锥。它底面直径是4米,高是1.2米。这堆 沙子大约多少立方米?(得数保留两位小数)
(1)沙堆底面积 3.14×(4÷2)2
=3.14×4
=12.56(平方米)
(2)沙堆的体积 1/3×12.56×1.2
=4.19×1.2
≈5.02(立方米)
答:这堆沙子大约5.02立方米?
【教学资源】
义务教育课程标准实验教科书教师教学用书
【教学反思】
今天上了《圆锥的体积》这节课,反思整堂课的教学,自我感觉较为满意的是以下几点:
1.大胆猜测,培养猜测意识
假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造我想都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,我在教学中把生活中的故事引入数学课堂,让学生大胆猜想它们的体积可能会有什么样的关系?使课堂充满生机、乐趣,激发了学生的求知欲,然后让学生借助学具进行实验、探究。事实证明这样教学设计不仅仅是能够培养学生的猜测意识,更重要的是充分调动了所有学生的积极性,大家探究的欲望强烈,为本节课的成功教学奠定了基础。
2.操作验证,培养科学的实验观。
数学不仅是思维科学,也是实验科学。教学中,学生能通过观察、猜测、实验、验证、推理与交流等数学活动,积极主动地发现了等底等高的圆柱与圆锥体积间的关系,进而推导出圆锥体积的计算公式:V=1/3Sh。在整个教学过程中,我非常重视让学生参与教学的全过程,学生始终是活动的主体。同时引导学生用科学的态度去对待这个实验,实事求是,认真分析自己的实验结论,培养了学生科学的实验观。
3.重视课堂资源的生成
教学中“圆柱和圆锥不等底等高,他们的体积还是三倍的关系吗?”这一教学环节不是预先设计的。它是课堂中随机生成的,却饱含着教师和学生真实的、情感的、智慧的、思维和能力的投入,有互动的过程,气氛相当活跃。在这个过程中既有资源的生成,又有过程状态生成,让学生在实践中进一步明确了:只有等底等高,圆锥的体积才能是圆柱体积的三分之一。 总之,这节课,每个学生都经历了“猜想---实验---发现”的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们不仅收获了知识更体验到了探究成功的喜悦。
【教学评析】
1.教师能深入了解学生,对学生的原有认知水平、知识技能、情感态度,即学习起点能力分析得比较清楚。力求构建一种非直线型的教学路径,这样的教学设计思路值得提倡。
2.教师能利用《数学课程标准(实验稿)》的理念处理教材,加工教材。如本节课结合了现实中的具体情景,创设了一个学生喜闻乐见的生活情境,并把这一故事情节贯穿整节课的始终。教学中做到了一波未平,一波又起,整节课的结构浑然一体。教师遵循了“现实题材——数学问题——数学模型——数学方法——解决问题”的过程来设计教学,引导学生亲身经历将实际问题抽象成数学模型,并进行探索与应用的过程,使学生逐步学会用数学知识和方法解决生活中的实际问题。
3.本节课在实验探索中,学生通过小组合作,发现出等底等高的圆柱体积是圆锥体积的3倍,有的同学会持反对意见,这样刚刚建立起来的平衡旋即被打破,当大家发现他们的实验器材不等底等高时圆柱体积不是圆锥体积的3倍,又能建立起新的平衡,学生在“平衡——不平衡——新的平衡”中,认知结构得到了丰富和发展。
4.多样化的数学活动,如实验、交流、推理、问题解决使学生的意义建构有了坚实的基础。学生的情感在认知的过程中也得到了和谐的发展,他们在相互交往中加深了理解、沟通和包容,品尝到了探索成功的喜悦。
5.在数学课堂上教师不失时机的进行德育教育,体现了在学科中“情感态度价值观”的培养,在学科中渗了透德育教育,为数学课堂增添了亮丽的一笔。
6、本节课教师引领学生积极探究新知,学生成为课堂上真正的主人,学生积极参与、自主合作探究知识,实现了学习方式的多样化。课堂上师生互动,注重学生的态度和情感的体验。回归常态教学,教学真实、扎实、朴实,构建了充满生命活力的课堂。
《圆锥的体积》课堂实录
一、创设情境,引发猜想
1.播放录像。
师:夏天,小朋友们玩得大汗淋漓。小雅去“便利超市”购物,在冷饮专柜那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的小林看见了,小林的眼珠咕噜一转,计上心来。他去冷饮专柜里买了一个圆锥形的雪糕。小雅刚张开嘴,满头大汗的小林拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)
2.引导学生围绕问题展开讨论。
师:小林对小雅说:“我的雪糕可好吃了,我们来换一换吧!”小雅看了看她的雪糕,又看了看自己的雪糕,小雅陷入了沉思……”同学们,故事先讲到这。如果此时小雅和小林换了雪糕,你觉得小雅有没有上当?
生:我觉得小雅上当了,小林的雪糕小。
师:好,你的眼力真不错。如果这时小林手上又多了一个同样大小的圆锥形雪糕。小雅这时和小林换雪糕,你们觉得公平吗?
生:公平。
生:我觉得还是不公平,小雅还是吃亏。
师:同学们有不同的看法了,假如你现在就是小雅,小林手中的圆锥形雪糕有几个时,你才认为公平合理,才肯与他交换?
生:四个。
生:五个。
生:三个。
师:小雅究竟用几个跟小林怎样交换才公平合理呢?(学生沉默,几秒后有学生举手) 生:老师如果知道他们的体积就好办了,可是我们只会求圆柱的体积,不会求圆锥的体积。(学生均点头)
师:你的想法非常好。那圆锥的体积怎样计算呢?大家想知道吗?
生合:想。
师:好,这节课我们就一起来探究一下圆锥的体积这部分知识。(板书)
二、自主探索,操作实验
师:下面,请同学们利用老师提供的实验材料分组操作,自己发现圆柱与圆锥体积间的关系。注意每个学生要先根据老师提供的材料思考实验方法,然后小组讨论拿出最优方案,组员分好工,然后开始实验。
1.小组实验。
(1)学生分5组操作实验,教师巡回指导。(每组的圆柱和圆锥是等底等高的,各组间的大小不同。教师提示:用沙子做实验的小组往容器里装沙子时注意不要用手使劲压,装满后用尺刮平即可。用水做实验的小组往容器里装水时注意把容器装满。这样能保证实验的科学性。)
(2)同组的学生做完实验后,进行交流
2. 集体交流。
师:下面请各个小组同学汇报你们是怎样实验得出结论的。
(各小组汇报,结论是:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。)
3、深入探究“等底等高”
师:各小组的结论都是一样的:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。那老师就奇怪了,你们各小组间的圆柱和圆锥的大小不一样啊,结论怎么会一样呢?难道你们手中的圆柱和圆锥之间有什么奥妙吗?想知道吗?快探究一下吧!(生合作探究)
师:你们发现了什么?
生:我们发现圆柱和圆锥的底面积相等高也相等。
师:这用四个字概括就是“等底等高”。
生:我们也发现圆柱和圆锥等底等高。
师:也就是说只有圆柱和圆锥是等底等高的时候,圆锥体积才是圆柱的体积的1/3。 生:(举手提问)老师,圆柱和圆锥不等底等高,他们的体积还是三倍的关系吗?
师:这名同学提得问题非常有价值,他问:“圆柱和圆锥不等底等高,他们的体积还是三倍的关系吗?”大家说是吗?
生:我认为圆柱和圆锥不等底等高,他们的体积不会是3倍的关系了。(大多数同学点头,同意他的观点。)
生:我和他的意见不同,我认为圆柱和圆锥不等底等高,他们的体积还是三倍的关系。(有几名学生表示同意)
师:有的同学认为是,有的同学认为不是。那么这样,小组间调换一下圆锥,使你手中的圆
圆锥的体积教学反思3
教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学目标是让学生通过观察实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。由于六年级的学生对圆锥的认识和圆柱的体积的知识掌握较牢固,学生感到简单易懂,因此学起来并不感到困难。
新课一开始,我用课件出示一个圆柱体和一个圆锥体让学生观察并猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后课件演示实验过程,让孩子从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,这样学生对知识的掌握就水到渠成了。对圆锥的体积建立了鲜明的印象之后,再应用公式解决实际的生活问题,起到巩固深化知识点的作用。
当然,教学是一门缺陷艺术,在教学之后我感到遗憾
的是,没让学生动手实际操作,我想如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会更多的知识,更重要的是能培养学生的能力。 1、探究圆锥体积计算方法的学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。
2、每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。
通过本节课的教学,让我真正体会到了让学生通过动手实践去发现新知识的好处,学生自己去发现的新知识,是一种真正的理解,不是老师硬灌输给他的,他们能灵活用知识解决问题,这使我熟悉到新课改提倡的:“动手实践、自主探索、合作交流是学生学习数学的重要方式。“在今后的教学中我将用新课程的理念指导我的教学,提高课堂教学效率。
圆锥的体积教学反思4
“实践出真知”,我觉得这句话讲得非常的好。对于学生的学习,我觉得也是这样。让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。特别是在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。在教学圆锥的体积时,我感悟特深刻。
以前教学圆锥的体积后,学生在实际运用公式时容易出错误的地方还是和往届一样,圆锥的体积=等底等高圆柱体积的三分之一,这个三分之一,在计算的时候经常出现遗漏。
怎样让学生自己探究出圆锥的体积公式,并且时时记住那个容易被人遗忘的三分之一呢?我这次把学习的主动权交给了学生,让每个学生都经历“提出猜测--设计实验--动手操作--得出公式”的自主探究学习的过程,我让学生拿出自己的学具等底等高的圆柱和圆锥,走出课堂,深入实践,到操场上去装沙子,到水池边去装水,看几个圆锥的体积才能把圆柱装满。在我适当的引导下,让学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。教学中我感到学生真正地成为了学习的主人,我没有牵着学生走,只是为他们创设了一个猜想圆锥体积方法的情境,让学生在猜测中找到验证的方法,并且通过动手操作验证自己的猜测。最后得出圆锥体积的计算方法,激发了他们主动探究的欲望。
推导公式时,我没有代替学生的操作,始终只以组织者、引导者与合作者的身份参与其中,使学生与学生之间,教师与学生之间互动起来,在这种形式下,学生运用独立思考、合作讨论、动手操作等多种方式进行了探索。另外,为了突出“等底、等高”这个条件的重要性,我巧置陷阱,我还特意安排了一组等底不等高,一组不等底也不等高的圆柱和圆锥,结果学生的实验结论和其他组的不一致,这时候就出现了争论,这时,我时机引导学生与上次演示比较,1比3的关系是在什么基础上建立的?学生恍然大悟,明白圆锥体和圆柱体等底、等高,圆锥体体积才是圆柱体体积的三分之一。相信今天通过同学们自己的动手体验,对圆锥的体积计算方法印象深刻,只有自己经历了才会牢牢记住!
圆锥的体积教学反思5
最近教学了《圆柱与圆锥》,内容包括圆柱的表面积、圆柱的体积、圆锥的体积等,并参与实践活动。从教材编写的层面上讲力图体现以下特点:
1.结合具体情境和操作活动,引导学生经历“点动成线”“线动成面”“面动成体”的过程,体会“点、线、面、体”之间的联系教材的第一个活动体现的内容是“由平面图形经过旋转形成几何体”,这不仅是对几何体形成过程的学习,同时体会面和体的关系也是发展空间观念的重要途径,这也是教材将此课题目定为“面的旋转”的原因。教材呈现了几个生活中的具体情境,鼓励学生进行观察,激活学生的生活经验,使学生经历“点动成线”“线动成面”“面动成体”的过程。在结合具体情境感受的基础上,教材又设计了一个操作活动,通过快速旋转小旗,引导学生结合空间想象体会立体图形的形成过程,发展空间观念。教材还提供了若干由面旋转成体的练习。
2.重视操作与思考、想象相结合,发展学生的空间观念操作与思考、想象相结合是学生认识图形、探索图形特征、发展空间观念的重要途径。在本单元中,教材重视学生操作活动的安排,在每个主题活动中都安排了操作活动,促进学生理解数学知识、发展空间观念。如“圆柱的表面积”的教学中,教材引导学生通过操作来说明圆柱的侧面展开后是一个怎样的图形,并呈现了两种操作的方法:一种是把圆柱形纸盒剪开,侧面展开后是一个长方形;另一种是用一张长方形纸卷成圆柱形。再如本单元的最后专门安排了一个“用长方形纸卷圆柱形”的实践活动,先让学生用两张完全一样的长方形纸,一张横着卷成一个圆柱形,另一张竖着卷成一个圆柱形,研究两个圆柱体积的大小;然后组织学生将两张完全一样的长方形纸裁开,把变化形状后的纸再卷成圆柱形,研究圆柱体积的变化,引导学生发现规律,深化对圆柱表面积、体积的认识,并体会变量之间的关系。
3.引导学生经历圆柱和圆锥体积计算方法的探索过程,体会类比等数学思想方法类比是一种重要的数学思想方法,是合情推理时常用的方法。教材重视类比、转化等数学思想方法的渗透。在“圆柱的体积”教学时,教材引导学生经历“类比猜想—验证说明”的探索过程。由于圆柱和长方体、正方体都是直柱体,而且长方体与正方体的体积都等于“底面积×高”,由此可以产生猜想:圆柱的体积计算
方法也可能是“底面积×高”。在形成猜想后,教材再引导学生“验证说明”自己的猜想。在“圆锥的体积”教学时,教材继续渗透类比的思想,再次引导学生经历“类比猜想—验证说明”的探索过程。另外,教材还注意转化、化曲为直等思想方法的渗透,如在验证说明“圆柱的体积=底面积×高”时,引导学生把圆柱切割拼成近似的长方体进行研究,体现了化曲为直的思想方法。
4.在解决实际问题中巩固所学知识,感受数学与生活的联系圆柱和圆锥的知识在生活中有着较为广泛的应用,教材在编排练习时,选择了来自于现实生活的问题,引导学生灵活运用所学知识解决问题。如学习“圆柱的表面积”时,鼓励学生计算薯片盒的包装纸的大小、通风管需要的铁皮的面积、压路机压路的面积等,由于实际情形变化比较多,需要学生根据实际情况灵活地选择有关数据进行计算。在学习“圆柱和圆锥的体积”后,教材鼓励学生计算水桶的容积、圆木的体积、圆锥形小麦堆的体积、铅锤的质量等。这些实际问题的解决,将使学生巩固对所学知识的理解,体会数学知识在生活中的广泛应用,丰富对现实空间的认识,逐步形成学好数学的情感和态度。
从教学层面上讲,我觉得要注意这么几点:
1、让学生经历知识的生成,理解公式的由来。
2、熟记相关公式和一些常见数据,提高计算的正确率和速度。
3、注意知识的拓展应用,体现数学的应用价值,发展学生的思维能力。
圆锥的体积教学反思6
圆锥的体积是在学生掌握了圆柱的特征及圆柱的体积等有关知识的基础上进行教学的。
成功之处:
1.让学生经历圆锥体积计算公式的推导过程,弄清来龙去脉。在教学中,我首先通过给学生提供两组不同的学具:一组是等底等高的圆柱和圆锥,另一组是等底不等高的圆柱和圆锥。让学生通过倒水,发现在等底等高的圆柱和圆锥中,用圆锥容器装水倒入等底等高的圆柱容器中,刚好倒三次,即圆锥的体积是与它等底等高圆柱体积的三分之一,而在等底不等高的圆柱和圆锥中,则不存在这样的关系,圆锥的体积就不是与它等底不等高圆柱体积的三分之一,由此通过公式可以得出:V圆锥=1/3圆柱
=1/3Sh(知道底面积和高)
=1/3πr2h(知道半径和高)
=1/3π(d*2)2h(知道直径和高)
=1/3π(c*2*π)2h(知道周长和高)
2.加强学生的实践,培养学生的动手操作能力与自主解决问题的能力。在教学中,我提供的是两组不同的学具,目的是让学生通过自己的亲身实践,亲自动手,亲身体会圆柱与圆锥体积之间的关系,这样利于培养学生自主探索,与同学之间合作学习,共同解决问题的能力。学生在此项活动中,不仅收获了知识的来龙去脉,还体会到了与同学合作,共享成果的幸福喜悦。
不足之处:
由于课前把制作的U盘带回家,未带回来,所以导致课上无法通过多媒体课件的形式,把动手操作的完整过程给学生进行展示。
再教设计:
上课前的一点一丝疏漏都要力求避免,课前准备真的是对于教师来说至关重要,缺少哪一环都会在课堂上留下遗憾。
圆锥的体积教学反思7
六年级的学生对立体图形已经有了初步的认识,因此,在教学中,我借助圆锥体和圆柱体的联系和区别,引出圆锥体的特征,进而分散了难点。在讲授体积公式时,我设计的实验环节,把学习的主动权交给了学生,学生就可以既动手又动脑,通过自己的努力总结出圆锥体的体积公式,在学习中体会到成功的喜悦。
建构主义认为,学生的学习不是由教师向学生的单向知识传递,而是学生建构自己知识的过程。学生不是被动的信息接受者,而是一个主动探究、发现知识的研究者。基于以上的认识,我很注重让学生自主学习,通过动手制作圆锥体,培养学生的空间概念,自主探究圆锥体的计算方法,提高解决问题的能力。
这节课为学生提供了具体的实践活动,创设了引导学生探索、操作和思考的情境,把教师变成“一位顾问”,“一位交换意见的参与者”,“一位帮助发现矛盾论点、而不是拿出现成真理的人”。这节课把学生推到探究新知的“第一线”,让他们自己动手、动口、动脑,主动思考问题,并在探究新知的过程中,暴露感知的矛盾和差异,把他们弄不懂的地方、错误的地方都摆在桌面上,再引导他们通过独立思考,摒弃错误,发现真理,实现由感性认识到理性认识的转化。这样,通过活动,让学生自己发现要学习的东西,能够积极地被同化,因而容易得到更深刻的理解。整节课大部分时间都是学生在操作,有独立的思考,有小组的合作学习,有猜想,有验证,有观察,有分析,有想像,使学生在尽可能大的活动空间中切实体验到数学对解决实际问题是有用的,让学生在探究的氛围中自主地学习知识,发现规律,实际应用,从而获得成功的体验。
圆锥的体积教学反思8
圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。以往几次,都是按老方法进行,一开始教师就准备了一个圆柱和一个圆锥,先比较它们的底面积相等,再分别量出它们的高也相等。进而由老师做实验,把圆锥装满水(或沙)往圆柱里倒,学生观察倒了几次正好把圆柱装满。接着推导圆锥的体积等于圆柱体积的三分之一,并重点强调求圆锥的体积一定要乘三分之一。一节课上下来非常轻松,非常顺利,时间也充足,作业效果也还不错。可是到了综合运用问题就出来了:忘记乘三分之一的,计算出错的,已知圆锥的体积和底面积,求高时,直接用体积除以底面积的,出的错误五花八门。
再上这节课时,我加强了以下几个点的教学,收到了较好的效果。
1、教学新课时,我出示一个圆柱体和一个圆锥体让学生观察并猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;
2、实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。学生获得的不仅是新活的数学知识,同时也获得了探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。
3、学生做图形应用题时,引导学生审题,先确定是什么图形,再想相应的计算公式,最后根据公式列出算式。这样对于后面的综合运用题,学生有了这种固定思维模式,就不会乱列式,
4、列出算式后,不要按部就班的从左算到右,先观察算式的特点,寻求简单的计算方法,把口算和计算有机结合。如:3.14×(4÷2)2×8时,先口算(4÷2)2=4,再口算4×8=32,最后再计算3.14×32。又如:×3.14×(4÷2)2×9时,先口算×9=3,(4÷2)2=4,3×4=12,再计算3.14×12。这样就大大地减少了学生计算难度,提高了计算的正确率。
圆锥的体积教学反思9
《圆锥的体积》一课的教学,是在学生掌握了圆锥的认识和圆柱的体积的基础上进行的。多年的教学,让我学习和累计了很多的教学经验。教学时我先生活故事导入激发学生的学习兴趣,再让学生大胆的猜想圆锥的体积公式,然后通过实验操作来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。
一、让学生经历发现、提问、解决问题的全过程
新课一开始,我就利用教师出示一堆煤,师:将这堆煤倒在地上,会变成什么形状情境导入,教师再演示削铅笔:把一支圆柱形铅笔的笔头刨成圆锥形,让学生观察,猜测圆锥的体积和什么有关,由于课件很形象直观,学生很快联系到了圆柱的体积,而且很容易想到应该是几分之几的关系。在猜想中学生的学习兴趣高涨,更明确了学习的目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验,让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。
二、让学生在现实情境中体验和理解数学
在实验前让学生先猜想,再通过小组合作实验、演示、交流得出结论,亲自去验证自己的猜想是否正确,既调动了学生的实际操作能力,也通过他们的实际操作自己得到结论促进了小组的合作意识。符合数学来源于实践的认知。充分发挥学生小组合作的精神,大胆放手让学生动手操作,实验,并完成实验结论。推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。在感知事物,获取感性知识中,操作与思维紧密结合,加深对圆锥及体积的认识
1、情感的发展
小学数学教学中的情感发展主要包括学生对数学、数学学习活动的兴趣;自信心和意志力,学习数学的态度与学习习惯。本节课的教学,摆脱了传统“灌”的教学,从引导学生发现问题、探索问题,学生在发现中激起兴趣,从探索中寻找快乐,然后又应用知识解决问题。学生经历了一个探索性的学习过程,不知不觉地掌握了知识,发展了能力,增进了对数学的情感。学习变成了一个赏心悦目的活动。
2、思想的发展
小学数学教材中,含有大量思想教育因素,是对学生进行教育的良好素材。教师在教学数学知识的同时,要注意发挥教材本身思想教育功能,不失时机地、潜移默化地渗透思想教育活动是儿童认识数学的重要方式。新课改提倡学生的自主活动,把数学学习的主动权交给学生,鼓励每个学生积极参与教学活动,在教学中创设丰富多彩的活动情境,让学生亲自实践,大胆探索。
三、多层次设计练习题
练习设计从基本题入手,过渡到情境题,发展到综合解决实际问题,这个过程中训练了学生的解题能力,培养了运用所学知识解决实际问题的能力。
在教学后感觉到遗憾的是,由于教具准备不足的.关系,学生参与以小组合作学习的面小,小组合作分工不太合理,使每个学生不是全身心投入到探究实验中去。这样少部份学生的学习参与积极性不高,有点被动、遗憾进行学习,没有最大限度的发挥每个学生的自主学习的能力。这样的学习虽然是培养了学生的能力,但合作意识还需加强,学生小组合作完成试验的默契还需加强。
圆锥的体积教学反思10
《圆锥的体积练习课》教学反思正如探究圆柱体积计算方法的教学过程一样,学生不再是实验演示的被动观看者,而是参与操作的主动探者,是学习的主人。
在整个教学过程中,学生获得的不仅是鲜活的数学知识,同时也获得了更多探究学习的科学方法,探究成功的喜悦以及探究失败后的深刻反思。在这样的学习中,学生会逐步变得会思考,逐渐发现自身的价值。同时,在操作与实践的过程中,我让一些学习有困难的学生参与其中,使他们感受到学习数学的快乐,并使他们懂得可以通过玩学习到数学知识。
这是本节课在教学组织上的优点所在。对于教学内容的设计,我通过提问引入圆锥的体积,生动而形象地揭示了本节课的课题。对于学生易混淆的知识点,我通过实物展示、语言强调、练习等方式,让学生掌握只有当圆柱和圆锥等底、等高时,圆柱的体积才是圆锥的3倍这一知识点。
对于圆锥的形成过程,我也设计了一个习题让学生自行思考和感受,并通过比较计算结果发现沿一个直角三角形不同直角边快速转动后所得到的圆锥的区别与联系,使学生在对比中进一步理解并掌握知识。
圆锥的体积教学反思11
这一节失败的课让我反思了很多,除了总结和练习,还找到了很多不足之处均待提高。
1.课堂提问没有给学生留下足够的思考空间。
如:“你打算用什么方法测量这个圆锥的体积?”问题提出后,我仅停顿了2秒,没有学生举手我就接着说“我们解决一个未知问题通常会把它转化为已知问题,那么圆锥的体积可以转化为我们原来学过的哪个立体图形的体积呢?”说完这句话,我就意识到,这个地方应该让学生充分的思考,充分的说一说方法,如果学生说不出,我再说这些话,学生可能会给我很多惊喜。
2.实验结束后,你想说什么?
学生经历了猜想、体验、探究、验证的过程,在实验的过程中肯定会发现很多问题、矛盾。实验结束后,学生应该有很多话要说。此时问一问,你想说什么?既给了学生一个思维提升的过程,又能顺利的总结出这节课的结论。
3.如何有效的调动起学生的积极性,让高年级的学生也能积极回答问题?
这个问题,我曾经百思不得其解,总以为就是高年级学生的公开课比低年级的公开课难上,这节课后也豁然找到了原因:一是出在我平时的课堂上。由于平时上课总要照顾后进生,所以在回答问题时,往往不去叫举手的好学生,总去点不举手的后进生,公开课时也不由自主地这样做。但是这样做的后果就是导致,举手的同学本来就有些害怕,我还总不去叫他。不但打击了举手同学的积极性,还打消了其他同学举手的念头。另一个很重要的原因是缘于教师上课的心态。对着低年级学生上课,我们很容易放下姿态,去“哄”他们,有一点做的好、说的好了,教师就会给很高的评价。而且态度还“和蔼可亲”
圆锥的体积教学反思12
本节课在学习圆柱的体积的基础上,再学习圆锥的体积,学生感到非常简单易懂,因此学起来并不感到困难。但教学过后,仍感到有许多不尽人意之处,当然也有许多收获。
一、收获
1、是在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;
2、是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。
3、探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。
4、每个学生都经历“猜想---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。
二、不足:
1、许多学生在计算过程中常忘记除以3,需要加强练习。
2、许多学生在计算中出现错误,计算能力不过关,口算也不过关,导致计算失败。
3、在学生进行倒沙实验时,应该事先让学生准备好充分的学具,比如,准备一个圆柱,然后做一个和圆柱等底等高的圆锥,在做一个等底不等高的圆锥或者等高不等底的,这样学生就比较明显的看出与圆柱等底等高的圆锥的体积是圆柱体积的三分之一。
4、一节好课在教学时要层次清楚,步步深入,重点突出。应注意激发学生的求知欲。要有全体学生的积极参与,突出学生的主体作用。我在这几个方面都还要加强。
圆锥的体积教学反思13
以前教学《圆锥的体积》时多是先由教师演示等底等高情况下的三分之一,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但效果不太好,学生对等底等高这一重要前提条件,掌握得并不牢固,理解很模糊。为了让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件,我就设计了以上的教学片断:让学生自选空圆柱和圆锥研究圆柱和圆锥体积之间的关系,学生通过动手操作得出的结论与书上的结论有很大的差异,有三分之一、四分之一、二分之一,思维出现激烈的碰撞,这时我没有评判结果,而是让学生经历一番观察、发现、合作、创新过程,得出圆锥体积等于等底等高的圆柱体积的三分之一,这样让学生装在看似混乱无序的实践中,增加对实验条件的辨别及信息的批判。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的达成完全是灵活机智地利用“错误”这一资源,所产生的效果。
在平时的课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题几经碰壁终于找到解决问题的方法,把思考问题的实际过程展现给学生看,让学生经过思维的碰撞,这样做实际上是非常富于启发性的.学习数学不仅要学会这道题的解法,而且更要学会这个解法是如何找到的。
教学不仅仅是告诉,更需要经历。真正关注学生学习的过程,就要有效利用错误这一资源,教师要勇于乐于向学生提供充分研究的机会,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验,这样,我们的课堂才是学生成长和成功的场所。
圆锥的体积教学反思14
1、学生通过自己的实验,非常顺利地得到等底等高的圆柱和圆锥体积之间的关系,推导出来圆锥的体积计算公式。原因之处有:(1)猜想:发挥学生的空间想象,使学生初步建立圆锥与圆柱体积之间的关系,教师预设学生可能粗略地知道有“三分之一”这一关系,“那么三分之一这一关系怎样推导呢”引起以下怎样推导圆锥的体积这一过程。
(2)在推导过程中,带着思考题(思考题实际就是学生实验的过程),让学生带有目标进行实验,让学生更有目的性,也非常方便,有操作性。
(3)学具准备充分,各小组选择水、沙子,增强趣味性,主动性,积极性高。
(4)公式推导完之后的一个反例子(出示一个非常大的圆柱和一个非常小的圆锥),让学生明确并不是所有的圆锥的体积都是圆柱体积的三分之一,从而强调了等底等高。
2、练习题由浅入深,判断题主要是要加深学生对概念、公式的运用和理解,第2题是书上的一组题,为提高效率只列式不计算,这三道题分别是告诉底面积和高、底面半径和高、底面直径和高,把几种类型都呈现出来。最后一题是动手实践题,一要考察学生的公式运用情况,二要考察学生的解决实际问题的能力及策略,虽然没做几道题,但我觉得:解决问题比什么都重要。
3、本来想用不等底、不等高的圆柱和圆锥参与实验,考虑到可能会得出错误结论而影响体积公式的推导,所以把这一环节省去。设计了一组大的等底等高的圆锥和圆柱,让学生明确不管大小,只要等底等高就有3倍这样的关系。
4、时间分配上不到位,例题的处理中,考虑到本节的重点是理解公式并运用公式,所以没花多的时间,由于数字教大,部分学生没做完。
圆锥的体积教学反思15
在本节课中,通过用排水法测量外形类似于圆锥的体积(比如铅锤)不但麻烦,而且有时还不能用(比如测量麦堆的体积),体会此方法具有一定的局限性而引入新课。从面上的相似性知道圆锥的体积可能与圆柱的有关,然后经历大胆猜测、实验验证、分析实验结果,从而得出体积公式的过程。再利用适当的练习巩固公式而达到本节课的教学目的。本节课总体感觉很顺畅,学生思维活跃。在课堂上利用实物演示,较好地引导学生思考,总结出等底等高的圆柱与圆锥之间的关系,突出了重点,突破了难点。
《数学课程标准》明确指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”本课的设计充分体现了这一理念。课中让学生动手分别用圆锥和圆柱盛沙,让学生感受到数学与生活的密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,,培养了学生的应用意识。同时,课堂教学注重让学生自主学习,合作探究,充分发挥了学生的学习主动性,也培养了学生的创新能力。
虽然本节课达到了教学目的,取得了不错的教学效果,但也存在一些不足,由于受条件限制,学具准备不够充分;课堂语言还不够简练;在学生汇报时,没有抓住生成;没有认真研究不等底不等高的体积关系等。在以后的教学过程中一定会注意这些问题,使自己不断地进步。
2.《圆锥的体积一》教学反思 篇二
下面是这节课的教学片段。
【案例】
电脑再现自学提纲:
(1) 你自学圆锥的体积后, 得知哪些信息?
(2) 除书上介绍的实验外, 你想到其他的实验方法没有?
(3) 圆锥体积的计算公式是什么?是怎样得来的?
师:你自学了圆锥的体积后, 得到了哪些信息?
生1:圆锥的体积是等底等高圆柱体积的。
生2:圆锥的体积是等底等高长方体或正方体体积的。
生3:圆柱的体积是等底等高圆锥体积的3倍。长方体的体积是等底等高圆锥体积的3倍。正方体的体积是等底等高圆锥体积的3倍。
师:这些信息你是怎样获得的?除了书上介绍的方法外, 你还想到其他的实验方法没有?
一个具有挑战性的问题激起了学生的求知欲望, 由于学生课前经过了充分思考、探索, 于是他们争相交流着多种实验方案:
实验方案 (1) :我们准备了装满水的等底等高的圆柱和圆锥各一个, 把圆柱和圆锥里面的水分别倒入塑料袋里, 用弹簧秤测出圆柱里的水约重1斤7两, 圆锥里的水约重6两。由此, 我们得出圆柱体积是等底等高圆锥体积的3倍。
实验方案 (2) :我准备了一个等底等高的圆锥和圆柱, 把圆锥里装满的沙子倒入圆柱一次, 发现沙子的高度正好是圆柱高度的。说明圆柱的体积正好是等底等高圆锥的3倍。
实验方案 (3) :我和他们的方法不一样, 我准备了一个长方体的空盒, 盒子的底面和圆锥体的底面差不多大, 他们的高度也相等, 我在圆锥里装满了沙子, 然后倒入盒子里, 发现圆锥的体积也是等底等高长方体体积的。我把长方体的盒子换成了正方体的盒子来做实验, 得到同样的结果。
……
师:同学们, 你们做实验时, 都说到了等底等高, 这是为什么?
生1:我用不是等底等高的圆柱和圆锥按书上的方法进行实验得到的。
生2:我是回忆三角形和平行四边形面积公式的推导过程, 而联想到的。
生3:因为任何物体的体积都等于底面积乘以高, 那么圆锥的体积也应该是等底等高长方体、正方体体积的。
……
【反思】
(1) 学习的过程是学生创造的过程。荷兰数学教育家费赖登塔尔认为:学习数学的唯一正确方法是实行“再创造”, 也就是由学生本人把学习的东西自己去发现或创造出来;因此教师应提供一个让学生进行这种再创造的舞台, 让他们有充分施展再创造的机会。这节课的知识正是学生自己动手、动脑而获得的。这种学生通过自己动手实验的方法去探索、交流、经历数学“再创造”的过程, 不仅将抽象的圆锥体积公式具体地根植于学生的操作之中, 而且使学生在创造性学习的过程中感受到学习的乐趣, 增强了学好数学的信心, 真正成为学习的主人。
(2) 鼓励学生自学, 培养创新能力。自学, 是学生打开知识宝库的金钥匙, 自学成才者不乏其人, 我国著名数学家华罗庚就是自学成才的典范。因此, 在教学中我们应该鼓励学生自学, 让学生直接面对课本, 把教师的“教”建立在学生“学”的基础上。通过师生共同设计的自学提纲, 来引导学生质疑、操作、实验、探索, 从而培养他们的自学能力。本节课学生在认真自学圆锥的体积基础上, 既获取了书本以外的教学信息, 又在汇报交流不同实验方案的过程中, 充分体现了他们的创新精神。
(3) 学生拥有不可估量的潜能。小学生完全可以在探究、自主发现的教学模式中学习。这一节课当我提出“除了书上介绍的实验外, 你想到其他的实验方法没有?”这个问题时, 学生的回答是我在备课中始料未及的, 这说明学生确实拥有不可估量的潜力, 只要我们为学生营造一个能展现他们才能的氛围, 隐藏在学生头脑中的潜力就会如埋藏在地下的能量喷涌而出。
3.《圆锥的体积》教学设计 篇三
1.使学生理解并掌握圆锥的体积计算公式;
2.能利用公式计算圆锥的体积,解决简单的实际问题;
3.培养学生合作探究的意识,提高学生的动手能力,使学生观察问题、分析问题及推导能力进一步提高,培养生独立思考、迎难而上的解题习惯;
4.结合具体题目培养学生助人为乐的优秀品质。
教学重点:圆锥体积公式的探究与理解。
教学难点:圆锥体积公式探究与理解;利用公式解决简单的实际问题。
教具:圆柱、圆锥容器、沙子、水、量筒、铅锤等。
学具:圆柱、圆锥容器、沙子、水、直尺等。
教学过程:
一、复习圆柱的相关知识
师:前面我们已经学习了圆柱的相关知识,现在老师考考大家的掌握情况,敢不敢接受老师的检测?请看检测题。(大屏出示检测题)
二、导入新课
师:看来同学们对圆柱的相关知识掌握得不错,已能牢记圆柱的体积公式并能熟练的计算,老师很高兴。其实在立体图形的大家族里,圆柱还有一个孪生兄弟,同学们想不想知道它是谁?它就装在老师的讲台里,想不想看?(师从讲台下拿出教具——铅锤)老师手里拿的就是瓦匠师用的圆锥形工具——铅锤,瓦匠师傅干活的时候可离不了它。这节课,我们就由这个小小的铅锤开始圆锥体积的探索之旅。
师:我们怎样才能知道这个铅锤的体积呢?(引入浸没水中的办法,学生如果不知道,可以讲《乌鸦喝水》的故事)
师:我们将铅锤放入装有一定水的量筒中,水面升高的那部分体积,就是铅锤的体积。是不是所有圆锥的体积都可以这样求呢?不是的,在实际生活中,有很多时候这种浸没水中的方法不可行,比如小丽遇到的问题。(大屏幕演示)
师:小丽家今年粮食获得了大丰收。看,收割、晾晒完的粮食堆在了场院里,被堆成了什么形状?(圆锥)小丽的爸爸想尽快知道这些小麦的体积,看仓库能不能装得下,就让小丽来计算,这可把小丽给难住了,她百思不得其解。大家愿意帮助她吗?用浸没水中的方法行不行?那有没有一个好的方法呢?这节课咱们就一起来研究求圆锥体积的计算方法。(板书:圆锥的体积)
三、小组合作探究
1.出示学习目标
师:请同学们看学习目标,谁来读?首先我们来完成第一个目标,探究圆锥的体积公式。
2.合作探究引导
师:我们知道圆锥的孪生哥哥是谁?(圆柱)既然是孪生兄弟,那就有相似之处,谁能说说?请同学们大胆猜想,圆锥的体积最有可能与谁有关?
3.合作探究提示
师:课前老师让同学们准备了一些学具,现在,每一组同学的桌面上都放着一个圆柱和圆锥,我们就利用它们来探究圆锥的体积。这些圆柱和圆锥有什么特点呢?请同学们看合作探究提示。
(课件演示什么是等底等高,什么是不等底不等高。)
师:我们在探究的时候,可以分为两种情况来进行。第一种情况:等底等高。第二种情况:不等底不等高。大家理解了吗?操作时要小心谨慎,仔细观察,认真推导,填好实验报告单好。现在开始小组合作探究。
4.小组合作探究
学生进行合作探究时,教师巡视指导。
5.学生汇报
找几个小组代表汇报,读实验报告单。找小组到前面演示边演示边讲解。
师总结:等底等高的圆柱与圆锥体积之间的关系是:圆柱的体积是和它等底等高的圆锥体积的3倍,圆锥的体积是和它等底等高的圆柱体积的三分之一。由此我们得到圆锥的体积公式。
师:同学们通过小组的合作探究、团结协作弄清了圆柱与圆锥体积之间的关系,真是太棒了,老师送给你热烈的掌声。我觉你们也应该把掌声送给自己和伙伴。
四、利用公式求体积
师:既然我们理解了圆锥的体积公式,下一步就可以求圆锥的体积了,请同学们看公式。要求圆锥的体积,需要知道哪些条件呢?看例题,你们帮助小丽计算一下粮仓到底能不能装下她家的粮食。
师:在日常生活与生产中,圆锥的底面积并不是直接给出的,我们最容易测量的是圆锥的底面半径或直径,从而求出底面积,进而求出体积。希望同学们遇到具体问题,要灵活运用。
五、课堂检测
师:学会了例题,我们就要尝试应用一下。你愿意接受更大的挑战吗?接下来我们要完成课堂检测,希望大家认真书写,独立思考,遇到较难题目时更要有迎难而上、不怕困难的精神,老师相信你,你们有这个自信吗?
1.学生完成练习,教师巡视指导。
2.汇报答案,点拨提示。学生说思路,教师讲解。
六、课堂小结
师:这么难的题同学们都解答出来了,看来真是开动脑筋了。这节课就要结束了,能谈谈你的收获吗?(学生谈收获)
师:老师也来说说这节课上我的收获。我最大的收获就是看到了你们的好学与进步。同学们,数学是绚丽多彩的,也是乐趣无穷的,更是与生活紧密联系的。看看老师手里拿的又是什么?对,是刚刚研究完的圆锥。但老师会变魔术,将这个圆锥上端切去一个小圆锥,就得到一个新的立体图形,这也是我们下节课要学习的内容,请同学们课后提前预习。
4.《圆锥的体积》教学反思 篇四
一、收获
1、是在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;
2、是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。
3、探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。
4、每个学生都经历“猜想---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。
二、不足:
1、许多学生在计算过程中常忘记除以3,需要加强练习。
2、许多学生在计算中出现错误,计算能力不过关,口算也不过关,导致计算失败。
3、在学生进行倒沙实验时,应该事先让学生准备好充分的学具,比如,准备一个圆柱,然后做一个和圆柱等底等高的圆锥,在做一个等底不等高的圆锥或者等高不等底的,这样学生就比较明显的看出与圆柱等底等高的圆锥的体积是圆柱体积的三分之一。
5.《圆锥体积》教学反思 篇五
学生对“等底等高”这一重要条件掌握并不牢固,理解很模糊。为了让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件,我在六年级(6)班设计了这样的教学片断:让学生自选空圆柱和圆锥,研究圆柱和圆锥体积之间的关系,学生通过动手操作,得出的结论与书上的结论有很大的差异,有三分之一、四分之一、二分之一的。
思维也出现了激烈的碰撞。这时,我没有评判结果,而是让学生经历一番观察、发现、合作、创新的过程,得出圆锥体积等于和它等底等高圆柱体积的三分之一。这样让学生置身于看似混乱无序的实践中,增加对实验条件的辨别及信息的批判。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的实现,完全是灵活机智地利用“错误”这一资源所产生的效果。
在平时的课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题,让他们去几经碰壁,终于找到解决问题的方法。把思考问题的实际过程展现给学生,让学生经历思维的碰撞。这样做实际上是非常富于启发性的。学生做数学题不仅要学会这道题的解法,而且更要懂得这个解法的来历。
6.《圆锥的体积》教学案例与反思 篇六
苏立西教育改革期待教育的创新。需要变革传统的学习方式,因为它太强调接受与掌握,冷落和忽视发现与探究,学生学习成了被动地接受、记忆的过程。这种学习窒息人的思维和智力,催残人的学习兴趣。教师要为学生创设一个宽松的学习环境,放手让学生去探究、去发现、去体验。使他们能够积极自主、充满自信地学习数学,平等地交流各自的数学理解,在相互合作去解决面临的问题。
[案例]
一、师生交流
师:你觉得圆锥体积的大小与它的什么有关?
生:圆锥的底面积和高。
师:你认为圆锥的体积和什么图形和体积联系最密切?
生:圆柱的体积。
师:你们所说的圆锥和圆柱又有什么关系呢?
生:等底等高。
(课件显示长方形、直角三角形旋转一周的过程。)
师:看了刚才旋转的过程,请同学们大胆猜测圆锥体积和等底等高的圆柱体积之间有什么关系。(可能会说是1/2、1/3等)
二、实验
师:请各组拿出实验材枓。(圆柱、圆锥容器及水、沙土)装沙或装水由各小组自由选择。
介绍实验方法:先在圆锥内装满沙(水),装沙时圆锥口抺平,然后将沙(水)倒入圆柱内,看看几次将圆柱倒满。
提出实验要求:(课件出示)
(1)实验材料中,圆锥的底面和圆柱的底面有什么关系?它们的高有什么关系?你是怎么知道的?
(2)圆锥的体积和同它等底等高的圆柱体积有什么关系?
(3)圆锥的体积怎样算?计算公式是什么?
师:现在,我们来分组实验,同学们边实验边讨论实际的要求。(学生做实验,教师巡视指导,倾听)
[反思]
一、在“交流”中激发参与欲望
教学中培养学生积极的情感、态度、信念、动机、需要等。是教育改革的客观要求。本课一开始,教师并没有像传统的教学那样,直接拿出等底等高圆柱和圆锥容器的教具,让学生观察倒沙实验 ,而是通过师生间的交流、问答、猜想来激发学生的学习热情,探究欲望,使学生急于以实验来证实自己的猜想。
二、在“体验”中感悟
学习不仅要用自己的脑子思考,而且用自己的眼睛看,用自己的耳朵听,用自己的嘴说话,用自己的手操作,即用自己的`亲身经历,用自己的心灵去亲自感悟。学生在实践中感受圆锥的体积与圆柱体积的关系,他们对整个操作过程建立清晰的表象。感受“转化”这一解决数学问题的重要思想方法,体验到数学就存在自己的身边。
三、在“合作”中探究
英国教育家斯宾塞认为:“在教育中应该尽量鼓励个人发展的过程;应该引导儿童自己进行探究,自己去推理。给他们讲的应该尽量少些,而引导他去发现的应该尽量多些,这样教师在教学中才能真正由重结果向重过程转变。”试想,如果一个在学校度过9年学习生活的孩子,整天处于被动地应付、机械训练、死记硬背、简单重复之中,对于所学的内容总是生吞活剥、一知半解、似懂非懂,那么,我们怎么能够想像和指望他会成为一个高素质的人?教师要引导学生积极主动的探求新知,在互教、互学、互动的新型学习氛围中展示自我,体尝合作思考的乐趣,共同推导出圆锥体积的计算公式。
7.“圆锥的体积”说课稿 篇七
我说课的内容是义务教育小学数学(人教版)六年制第十二册第二单元中“圆锥体积”的第一课时。教材首先创设了一个问题情境,引导学生实验、探索,然后引导学生通过实验,探究圆锥与圆柱体积之间的关系。有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。
1.教学目标
(1)知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积。
(2)能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力。
(3)德育方面:通过实验,引导学生探索知识的内在联系,感受发现知识的快乐,渗透转化思想,培养交流与合作的团队精神。
2.教学重点
能正确运用圆锥体积计算公式求圆锥的体积。
3.教学难点
理解圆锥体积公式的推导过程。
4.学具准备
分组准备等底等高的圆柱、圆锥一对,等底不等高的圆锥、圆柱一对,等高不等底的圆锥、圆柱一对,一定量的细沙。
5.教具准备
相关的课件。
二、说教法
学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,采用以下几种教法:
1.情境创设法
举例贴近学生生活的秋收中圆锥形麦堆的实际问题激发学生的求知欲望,从而提高学生的学习兴趣。
2.实验操作法
利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。
3.比较法、讨论法、发现法三法优化组合
在做实验时,我要求学生运用比较法、发现法得出结论,然后再让学生讨论同样的实验方法为什么有不同的结果出现?得出结论,从而加深了“等底等高”这个重要的前提条件。
三、说学法
新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此,这节课学习方法以自主探究、发现比较、归纳概括为主,从而培养学生观察比较、交流合作、归纳概括等能力。另外还应用了尝试练习法,让学生自己独立解答,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。
四、教学程序
本节课我设计了以下五个教学环节:
1.創设情景,铺垫质疑
首先让学生回忆圆柱体积的计算,(出示课件)这样,学生可以利用迁移规律,从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法,为新知迁移做好铺垫。然后让学生走进生活,想办法解决生活中存在的问题,引起质疑,设置悬念,使他们迫于解决问题,激发学生的求知欲望从而激起学生的学习兴趣。这里我选择了小故事叙说看到秋收时圆锥形麦堆的场景,为引出圆锥形创设了情境,(出示课件)在学生质疑的同时出示课题,告诉学生今天我们就一起来研究怎样计算圆锥的体积。(板书课题)
2.实验操作,探究新知
本环节教学是本节几何课成败的关键。为了使学生成为学习的主人,在这个环节中,我尽量给学生有对象可说,有东西可做,有问题可想,有步骤可循,让学生都能主动地操作、观察、比较、分析和归纳。
实验大致步骤为:先告诉学生实验的方法是用空圆锥装满沙倒入空圆柱,然后出示问题让学生带着问题进行实验。(出示课件)接着各小组拿出准备好的学具,有的组准备的是等底等高的圆柱和圆锥,有的组是等底不等高的圆柱和圆锥,也有的组是等高不等底的圆柱和圆锥,这里要强调的是每一组学具里的圆柱都是完全相同的,各组还有一定量的沙子,用这些不同的学具来做相同的实验。实验结束后进行全班交流和汇报,汇报结果可能有多种,主要概括为三种是:
(1)等底等高的圆柱体积是圆锥体积的3倍,或等底等高圆锥的体积是圆柱体积的三分之一;
(2)是空圆锥装满沙倒入空圆柱的次数超过三次;
(3)是空圆锥装满沙倒入空圆柱的次数少于三次;
实验结果后两种无固定结论,那么小组讨论为什么会出现这三种情况?第一种结论正确与否呢?学生在这时可以畅所欲言,(出示课件)讨论结果交流汇报后老师和学生共同观察课件来进一步验证结论(1)的正确性,并总结出圆锥的体积公式。(出示板书)一并强调公式成立的条件是圆柱和圆锥必须是等底等高,同时强调计算圆锥体积时别忘了三分之一。
最后进行小结,对学生刚才用了“实验—发现—比较—归纳”的方法推导出了圆锥的体积公式给予肯定。
这个环节,让学生自己动手操作,充分交流,学生不再是实验演示的被动观看者,而是参与操作的主动探究者,是学习的主人。通过合作让学生发现规律,分析比较,归纳总结,培养学生的合作意识和良好的探究习惯,合作操作的同时一些学习困难的学生也参与到其中,使他们感受到学习数学的快乐,并懂得他们可以通过玩来掌握数学知识,使课堂真正“活”起来;同时学生用自己的语言把探究规律表达出来,既培养了学生的表达能力,又使他们体验、发现知识的快乐,使他们获得学习知识的成就感,从而激发学习的兴趣。
3.应用反馈
(1)巩固应用、解决问题(出示课件)
这时学生用所学的公式独立解决实际问题,体验了数学知识的应用价值,进一步体会圆锥体积公式的特点,培养了学生解决问题的能力,发展了学生的思维。
(2)提高练习,加深印象(出示课件)
这里的填空和判断的设计使学生对等底等高圆柱和圆锥体积的关系有更深一步的掌握。
(3)思维拓展,形成技能(出示课件)
这个环节充分放手让学生自己尝试练习,可以挖掘学生的潜能,让学生体验成功的乐趣。
(4)解决质疑,回归生活(出示课件)
此处解决在第一环节中质疑的圆锥形麦堆的体积,使学生体验数学来源于生活,用数学去解决生活中的问题。
4.全课总结,体验成功(出示课件)
总结和质疑问难,是一堂课的重要环节。每一节成功的课,都应该留有足够的时间让学生去质疑问难,从而实现课内向课外的延伸。
5.布置课堂作业(练习十二的第3、4、5题)
总之,整个学习的过程中,学生不仅能获得新的数学知识,也能获得更多探究学习的科学方法。数学课程要求要推动学生潜能的开发,本节课现实的、有意义的教学内容,就有利于学生主动进行观察、实验、猜测、验证、推理与交流。课的开始我以贴近学生生活的麦收创设情境,让学生走进生活再引入到实验中学习数学,最后用学到的知识解决麦收问题,又使他们回归于生活。使学生认识到数学与人和现实生活的紧密联系,这样也有益于学生理解数学、热爱数学,让数学真正成为学生发展的重要动力源泉。
(作者单位 甘肃省兰州市永登县新城区小学)
8.《圆锥的体积一》教学反思 篇八
怎样让学生自己探究出圆锥的体积公式,并且时时记住那个容易被人遗忘的三分之一呢?我这次把学习的主动权交给了学生,让每个学生都经历“提出猜测--设计实验--动手操作--得出公式”的自主探究学习的过程,我让学生拿出自己的学具——等底等高的圆柱和圆锥,走出课堂,深入实践,到操场上去装沙子,到水池边去装水,看几个圆锥的体积才能把圆柱装满。在我适当的引导下,让学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。教学中我感到学生真正地成为了学习的主人,我没有牵着学生走,只是为他们创设了一个猜想圆锥体积方法的情境,让学生在猜测中找到验证的方法,并且通过动手操作验证自己的猜测。最后得出圆锥体积的计算方法,激发了他们主动探究的欲望。
9.圆锥的体积教学设计 篇九
圆锥的体积
教材依据
小学数学 人教版第十二册 第二章 圆锥的体积第二课时
设计思想
理论联系实际,体现现代化教育特点。通过让学生动手,动口、动脑进行观察、实验的手段,让学生理解圆锥的体积公式的推导过程,并能把所学数学知识运用到现实生活中去解决实际问题。以体现“从现实生活中来,到生活中去”的教育理念。
教学内容:小学数学人教版第12册42页—43页。
教学目标
1.通过多媒体课件演示、师生动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积,解决实际问题。
2.通过学生动脑、动手、观察,培养学生的思维能力和空间想象能力。
3.培养学生个人的自主学习能力和小组合作学习的能力。
教学重点
1.理解圆锥体体积公式的推导过程。
2.能熟练运用公式计算圆锥的体积。
教学难点
理解圆锥体体积公式的推导过程。
教学方法
通过生动的课件演示、具体实验的教学方法,突破难点,突出重点。
学法指导
通过讨论、交流、观察、思考、操作、练习等多种学习方法,让学生学会协作,归纳,概括、思维、推理,从而培养学生自主学习的精神。
教学准备
1.圆锥体体积教学演示教具1套,水,不等底等高的圆锥体和圆柱体.2.多媒体课件设计
3.学生四人组成一个学习小组。
教学过程设计:
(一)复习准备:
1. 怎样计算圆柱的体积?(板书:圆柱体的体积=底面积×高)
2. 口算圆柱的体积。(出示多媒体课件练习题,指名口答。)
3,圆锥有什么特点?(出示圆锥形体的课件,指名口答。)
(二)导入新课
今天我们就利用这些知识探讨新的问题-----怎样计算圆锥的体积(板书课题)陕西省山阳县城关镇金旺希望小学:杨菡
(三)讲授新课
1.探讨圆锥的体积公式
教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:
学生回答,教师板书:
圆柱------(转化)------长方体
长方体体积公式--------(推导)圆柱体积公式
教师:借鉴这种方法,我们这节课来探究圆锥的体积公式。为了我们研究圆锥体体积的方便,我准备了一个圆柱体和一个圆锥体。你们比比看,这两个形体有什么相同的地方?
(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)
(学生得出:底面积相等,高也相等。)
底面积相等,高也相等,用数学语言说就叫“等底等高”。
再次用课件阐释“等底等高”的含义。
(板书:等底 等高)
(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行,因为圆锥体的体积小)
教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)
(3)课件演示:等底等高的圆柱和圆锥,圆柱的体积是圆锥的三倍。
(4)看到课件演示,大家可能还心存疑虑:在现实中是否一样?那么,我们再一起来实验一次。
用准备好的水和圆柱体、圆锥体做实验。
指名叫两个学生帮忙实验.(5)总结观察、实验的结果:
通过实验,再次证明:同底等高的圆柱体是圆锥体在体积的3倍。
(6)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
学生回答后,教师整理归纳:不是任何一个圆柱体的体积都是任何一个圆椎体体积的3倍。(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了水,往这个小圆柱体里倒,倒三次能倒满吗?(不能)
为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)
强调:(在等底等高的情况下。)
(7)课件演示圆锥体体积的推导过程。
圆柱的体积=底面积×高→圆锥的体积=1/3底面积×高
(8)用字母表示公式。
今后我们求圆锥体体积就用这种方法来计算。
(9)出示课件:“想一想,讨论一下”
a.通过刚才的实验,你发现了什么?
b.要求圆锥的体积必须知道什么?
2.运用公式正确地进行计算。
(1)教学例1.a.课件出示例题:一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
b.指名学生板演,其他学生独立解答。
c..全班订正。
d.你是怎样想的和怎样解决问题。(提问学生多人)
(2)运用所学知识解决实际问题,教学例2.a.课件出示例题:在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)
b.提问:从题目中你知道什么?
c.学生独立完成后教师提问。并回答同学的质疑:为什么要先求圆锥的体积?得数保留整千克数是什么意思?
3.比较:例1和例2有什么地方不同?
例1直接告诉了我们底面积,而例2没有直接告诉,要求体积需要先求出底面积。(2)例1是直接求体积,例2是求出体积后再求重量。
(四)巩固反馈。(课件出示)
1.填空:
(1)、圆锥的体积=(),用公式表示为()。
(2)、圆柱的体积与和它()的圆锥的体积相等。
(3)、一个圆锥的底面积是12平方厘米,高是6厘米,体积是()立方厘米。
2.判断:
(1)、圆柱体的体积一定比圆锥体的体积大()
(2)、圆锥的体积等于和它等底等高的圆柱体的()
(3)、正方体、长方体、圆柱体、圆锥体的体积都是地面积乘高。()
(4)、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。()
3.填表。(求圆锥的体积)
多媒体课件出示表格,学生比赛竞答。
(1)圆锥底面半径2厘米,高9厘米
(2)圆锥底面直径6厘米,高3厘米
(3)圆锥底面周长6.28分米,高6分米
(五)拓展延伸(课件出示题目)
有一根底面直径是6厘米,长是15厘米的圆柱形钢材,要把它削成与它等底等高的圆锥形零件。要削去钢材多少立方厘米?
(1)、小组讨论。
(2)、协作解答。
(3)、全班交流,教师订正。
(六)本课小结
这节课你有什么收获?
(七)课后思考(课件出示题目)
要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?
附:板书设计
圆锥的体积
圆柱体积=底面积×高
↓
圆锥体积=1/3底面积×高
v=1/3sh
v=1/3 π r
2教学反思
圆锥的体积这节课的教学具有下面的特点:
一.在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想、课件演示等形式,充分调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;
二.在实验时,让学生合作,亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。
10.圆锥的体积教学设计 篇十
白银市平川区靖煤小学 吴菊民
一、教材内容分析
本节课选自北师大版数学六年级下册第一单元第八课时。主要学习圆锥体积的计算方法。这节课是在学生掌握了长方体、正方体和圆柱体积的计算方法和圆锥特点的基础上进行的,它是小学阶段学生接触到的最后一种立体图形,在生活实际中的应用十分广泛。探索圆锥的体积的计算方法,是以圆柱体积的计算方法为基础的。本节课是在探索圆柱体积计算方法的基础上,渗透类比的思想,再次引导学生经历“类比猜想——实验验证”的探索过程,从而使学生理解并掌握圆锥体积的计算方法。
二、学情分析
六年级孩子能够自我发现问题,并渴望能在研究活动中探索解决自己发现的问题,从中获得成功的喜悦。结合学生的实际特点和教学的主要内容,本节课我着重采用“创设情境——提出问题——类比猜想——实验验证”的方式引导学生探究合作学习。
三、学习目标 知识与技能:
1、能正确地计算圆锥的体积。
2、能灵活运用所学的知识解决生活中一些简单的实际问题。过程与方法:
1、通过情境观察、实物感知等活动感受物体体积的大小
2、了解圆锥体积的含义,经历“类比猜想——实验验证”的过程,探索圆锥体积计算方法。
3、情感、态度与价值观
学会合理猜想,提高学生的数学应用意识,在活动中培养学生的合作精神。
二、教学重、难点
重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。
难点:理解圆锥体积公式的推导过程。
三、教具学具
不同型号的圆柱、圆锥实物、容器;水、杯子;多媒体课件一套。
四、教学过程
(一)带入情境,提出问题,揭示课题(课件出示教学情境,复习旧知并提出问题)
1、提问:
(1)圆柱与圆锥分别有什么特征?(2)圆柱的体积公式是什么?
(3)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.
2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)【设计意图:提出问题比解决问题更加重要,培养学生提出数学问题的意识和能力也是实施数学新课标的重要组成部分。因此该环节安排了学生观察情境图,提出“圆锥的体积如何计算”这一问题,揭示本课课题。】
3、圆锥的体积应该如何计算,谁能大胆猜想一下? 学生独立思考。
【设计意图:鼓励学生大胆猜想,它能缩短学生解决问题的时间,能使学生获得数学发现的机会,能锻炼学生的数学思维。】
(二)凭借情境,类比猜想,实验验证(约6分钟)
1、教师谈话:圆锥体积与圆柱体积有没有关系?有什么关系?请同学们大胆猜一猜。
生1猜想:圆锥的体积大概与它等底等高的圆柱体积有关。
生2猜想:圆锥的体积可能是与它等底等高的圆柱体积的二分之一。生3猜想:圆锥的体积可能是与它等底等高的圆柱体积的三分之一。
2、学生分组实验
下面我们利用实验的方法来探究圆锥体积的计算方法。老师给每组同学都准备了一套圆锥体、圆柱体容器(等底不等高或等高不等底)和水。实验时,先往圆柱体(或圆锥体)容器里装满水,倒人圆锥体(或圆柱体)容器里。倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
学生汇报实验结果
【设计意图:教师的建议实则是在教给学生数学学习的经验和方法,同时渗透“类比”等数学思想。】
3、教师把一套等底等高的圆锥、圆柱教具供学生观察,学生观察后又猜想:圆锥的体积可能是圆柱体积的三分之一。
【设计意图:通过猜想,激发学生探索、验证的兴趣。教师在课堂上对学生的猜想应进行必要的引导:提供实物供学生观察,并提醒学生猜想要有依据。】
师:圆锥的体积到底是与它等底等高的圆柱体积的几分之几呢?谁有好的方法证明呢?
学生活动:小组讨论解决问题的方法。
(三)聚焦情境,实验验证,总结归纳。师:谁愿意来说一说自己的方法? 学生活动:依次说出验证的方法。然后小组合作、操作验证。
师:通过我们的合理猜想和一系列的验证,你发现了什么?
各小组汇报:圆锥的体积约是与它等底等高的圆柱体积的三分之一。
根据课堂情况,教师演示:用圆锥容器向圆柱容器内倒水: 圆锥容器盛满水,倒入 与它等底等高的圆柱形 容器中,一共倒了三次。
师:看过刚才的演示后,你发现了什么?
生:我发现了刚才小组实验的过程中存在有误差,通过老师实物演示后,我知道了圆锥的圆锥的体积确实是与它等底等高的圆柱体积的三分之一。
【设计意图】:
在学生动手实验已经得出结论的基础上,教师利用实物重演,能使学生更加直观、形象地观察,同时体会到刚才动手验证的过程中存在着一些误差,从而深刻地感受到数学的严谨性。】
师:谁愿意试着总结归纳出圆锥体积的计算公式?
生总结:
【设计意图:用刚学过的知识解决课前提出的问题,学生体会到成功的喜悦。】
(四)拓展情境,巩固练习,解决问题 课件出示练习题:基础关
(一)、填空:
1、圆锥的体积=(),用字母表示是()。
2、圆柱体积的1/3与和它()的圆锥的体积相等。
3、一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。
4、一个圆柱和一个圆锥等底等高,圆锥的体积是3立方分米,圆柱的体积是()立方分米。
(二):求下面各圆锥的体积:(单位:厘米)
闯关题目:
(一)“有陷阱,你敢来吗?”
1、圆柱体的体积一定比圆锥体的体积大()
2、圆锥的体积等于圆柱体的()
3、正方体、长方体、圆锥体的体积都等于底面积×高。()
4、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。()
(二)“圆锥体积变变变”
一个圆柱形橡皮泥,底面积是12平方厘米,高是5厘米。(1)如果把它捏成底面大小一样的圆锥,圆锥的高是多少?(2)如果把它捏成高是10厘米的圆锥,求圆锥的底面积。
(三)“水究竟有多深?” 如下图,将甲容器注满水,再将水倒入乙容器,此时乙容器中的水有多高?
(单位:分米)
(四)“能容纳多少千克粮食?”
一个粮仓,如右图,如果每立方米粮食的质量为500千克,这个粮仓最多能容纳多少千克粮食?
(五)分享成功过关的喜悦
11.圆锥的体积 教学设计 篇十一
1、使学生理解圆锥体积计算的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算。
2、培养学生初步的空间观念、逻辑思维能力、动手操作能力、创新能力。
3、渗透知识“相互转化”的辨证唯物主义思想和猜想、验证等数学思想方法。
教学重点:
掌握圆锥体积计算的方法并运用圆锥的体积计算方法解决实际问题。
教学难点:
理解圆锥体积公式的推导过程,渗透猜想、验证等数学思想方法,培养学生的实践能力。
教具准备:
一对等底等高的空心圆柱、圆锥和一桶水为一份教具,准备6份。一桶沙子。
教学过程:
( 一)复习旧知,课前铺垫
1。怎样计算圆柱的体积?
指名回答,教师板书:圆柱体的体积=底面积×高。
2。一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?
指两名板演,全班齐练,集体订正。
(二)提出质疑,引入新课
圆锥有什么特征? 它的体积如何计算呢?
今天我们就利用这些知识探讨新的――怎样计算圆锥的体积(板书课题)
(三)动手操作 ,获得新知
1。 探讨圆锥的体积公式
教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:
学生回答,教师板书:
圆柱――(转化)――长方体
圆柱体积公式――(推导)――长方体体积公式
教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。
(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)
(学生得出:底面积相等,高也相等。)
底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底 等高)
(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?为什么?
教师:圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的关系?(指名发言)
用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。
(3) 学生分组做实验。
谁来汇报一下,你们组是怎样做实验的?
你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(学生发言:圆柱体的体积是圆锥体体积的3倍)
同学们得出这个结论非常重要,其他组也是这样的吗?
我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)
(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的三分之一。 (老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了沙子,往这个小圆柱体里倒,倒三次能倒满吗?(不能)
为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)
在等底等高的情况下。
(老师在体积公式与“等底等高”四个字上连线。)
现在我们得到的这个结论就更完整了。(指名反复叙述公式。)
教师:同学们圆锥体里装满了水往圆柱体里倒,只倒一次,看看能不能想办法推出计算公式?让学生动脑动手?
得出用尺子量圆锥里的水倒进圆柱里,水高是原来水高的1/3。
小结:今后我们求圆锥体体积就用这种方法来计算。
(5)应用巩固
1。出示例题学生读题,理解题意,自己解决问题。
例 一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?
学生完成后,进行小组交流。
你是怎样想的和怎样解决问题。(提问学生多人)
教师板书:
1/3 ×19×12=76(立方厘米)
答:它的体积是76立方米
2、 练习题。
一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)
3。出示例2:要求学生自己读题,理解题意思。
有一个近似于圆锥的小麦堆,测得底面半径是2米,高是1。5米。你能计算出这堆小麦的体积吗?
(1)提问:从题目中你知道什么?
(2)学生独立完成后教师提问。并回答同学的质疑:3。14××1。5表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思? 4。比较:例1和例2有什么地方不同?
1)直接告诉了我们底面积,而(2)没有直接告诉,要求我们先求出底面积,再求出圆锥体积。
(四)综合练习,发展思维
1、一个圆锥形沙堆,高是1。5米,底面半径是2米,每立方米沙重1。8吨。这堆沙约重多少吨?
2。选择题。
每道题下面有3个答案,你认为哪个答案正确就用手指数表示。
(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是( )
⑴ a立方米 ②3a立方米 ③ 9立方米
(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是( )立方米
(1)6立方米 (2)3立方米 (3)2立方米
四、小结:
这节课同学们有什么收获?你是怎样学习的?
五、开放性作业:
要使等底等高的圆柱与圆锥体积相等,你有什么办法?(生讲师课件演示)
教学反思 :
1、这节课,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒水实验,而是通过师生交流、问答、猜想等形式,调动学生学习的积极性,激发学生强烈的探究欲望。学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然。特别是用不同的方法推到出计算公式,开阔学生思维,提高学生学习积极性。
2、通过验证猜想这一实践活动,让学生运用学具操作探究、体验活动中,去参与知识的生成过程、发展过程,主动地发现知识,体会数学知识的来龙去脉,培养学生主动获取知识的能力。组织学生主动探索,在此教师成功地转换了自己在课堂教学中的角色和作用,能根据学生已有的认知基础组织和展开教学活动,充分发挥了课堂教学中学生的主体作用。
3、小学阶段学习的几何知识是直观几何。小学生学习几何知识不是靠严格的论证,而主要是通过观察、操作。根据课题的特点,本课主要采取让学生做实验的方法主动获取知识。主要引导学生做了三次实验。第一次是比较圆柱和圆锥的底和高,强调等底等高的圆柱和圆锥才有一定的倍数关系;第二次,让学生将圆锥中的水倒入与其等底等高的圆柱之中,直至三次倒完,让学生感受到“圆锥的体积是与它等底等高的圆柱体积的1/3,圆柱的体积是与它等底等高的圆锥体积的三倍”;第三次,用沙子实验验证“不是任何一个圆锥体的体积都是任何一个圆柱体体积的三分之一”。搞清了圆锥体积公式的由来,从而理解和掌握了圆锥体积公式,培养了学生的观察、操作能力和初步的空间观念,克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。突出了教学重点。
4、本课在基础知识教学的基础上进行呈现方式和解题策略的适当开放,较恰当地处理好了继承和创新的关系。
12.《圆锥的体积一》教学反思 篇十二
一、判断题
1.圆锥的体积等于圆柱体积的1/3。()
2.从圆锥的顶点到底面圆上的线段是圆锥的高。()
3.圆锥底面积不变,它的高度越高,圆锥体积就越。()
4.一个圆柱的体积比与它等底等高的圆锥体积大2/3。()
5.如果圆锥的体积是圆柱体积的1/3,那么这个圆锥和圆柱一定等底等高。()
6.等底等高的圆柱体比圆锥体的体积大16立方分米, 这个圆锥的体积是8立方分米。()
二、填空题
1.圆柱体积是与它等底等高圆锥体积的()倍。
2.圆锥体, 底面直径和高都是3厘米, 它的体积是()。
3.一个圆锥体体积是2立方米, 高是4分米, 底面积是()。
4.一个圆锥的体积是76立方米, 底面积是19平方米, 这个圆锥的高是()。
5.等底等高的圆柱体和圆锥体, 其中圆锥体的体积是126立方厘米, 这两个形体的体积之和是()。
6.一个圆柱体和一个圆锥体的体积与高都相等, 圆柱的底面积是18平方厘米, 圆锥的底面积是()平方厘米。
7.一个圆锥体和一个圆柱体的底面积和体积都分别相等, 圆柱体的高1.2分米, 圆锥体的高是()。
8.等底等高的圆柱体和圆锥体体积之和是28立方米, 圆柱体的体积是()。
三、应用题
1.一个圆锥形谷堆,高1米,底面周长18.84米,每立方米稻谷重1.2吨,(1)它的占地面积是多少平方米?
(2)这堆稻谷重多少吨?
2.一个圆锥形的稻谷堆, 底面积12.56米, 高1.5米, 把这堆稻谷装进一个圆柱形粮仓, 正好装满。这个粮仓里面的底直径为2米, 高是多少米?
13.《圆锥的体积一》教学反思 篇十三
圆锥的体积
这节课是六年级圆柱和圆锥这一节的内容,主要是求圆锥体的体积。就小学现有的知识,把圆锥体积转化为体积相等的其它物体有些困难。因此,教学圆锥体积公式采用的方法与圆柱不同,没有采用“转化”的思想。因而这节课首先出示例5,让学生从图画直观上感受——圆锥体的体积比等底等高的圆柱体体积小。在此直观的基础上,让学生猜想该圆锥的体积是圆柱的几分之几。当然这里教师并不追究学生猜想的是否准确,可以说1/2,1/3,或其它的分数都可以。,关键在猜想的基础上让他们明白,估计的结果一定要经过验证才能确认或修正。让他们明白“估计——验证”是解决问题的一种策略。因而,在估计的基础上,我再让学生亲自动手实验,这里除了培养学生的自主探究、发现的能力,还让学生在操作实验的过程中,各种能力得到锻炼,同时还让学生在实验中感受数学的严密性,感受数学的内在魅力,激发学生对数学的热爱。学生学识的关键还在于会不会运用,因而,在学生探索好后,让学生用自己探索到的结论,解决生活中的一些实际问题,让他们真正感受到数学的用处——生活中处处离不开数学。最后让学生谈谈收获,巩固这节课的重点,加深印象。
【《圆锥的体积一》教学反思】推荐阅读:
“圆锥的体积”教学设计与评析10-25
圆锥的体积怎么求07-28
圆锥体的体积公式06-15
六年级数学圆锥的体积08-10
圆锥体积11-10
《圆锥的认识和体积计算》优秀说课稿11-10
圆锥的教学反思09-20
《圆柱圆锥复习》教学反思06-22
小学课文《圆锥》教学反思07-28
《长方体和正方体的体积》优秀教学反思09-23