地铁车站施工难点分析

2025-03-04

地铁车站施工难点分析(精选8篇)

1.地铁车站施工难点分析 篇一

长沙市轨道交通3号线一期工程XXX标

XXXXX站

施工现场排水方案

编制人: 日期:

复核人: 日期:

审核人: 日期:

中铁XXX局集团有限公司 长沙市轨道交通3号线一期工程XXX标项目经理部 二O一五年 七 月 湖南·长沙

目录

一、工程概况...........................................1

1、X号线车站.........................错误!未定义书签。

2、X号线车站.........................错误!未定义书签。

二、编制目的...........................................1

三、编制依据及规范.....................................1

四、施工现场场地排水条件...............................2

五、周边市政排水设施...................................2

六、施工现场排水方案...................................3

1、作业条件准备........................................3

2、各类排水设施的设置..................................4

3、排水系统的分类......................................5

七、排水管理...........................................6

八、现场临时排水附图...................................6

长沙市轨道交通3号线1期工程土建施工XXXXX标

施工现场排水方案

长沙市轨道交通3号线1期工程XXXXX标

XXXX站施工现场排水方案

一、工程概况

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.二、编制目的

本工程施工现场排水严格遵循雨、污水分流原则、污水集中处理原则和保证施工现场防涝原则,按照:水体收集→集中处理→达标排放的整体思路,水体排放采用自然排水和强制排水系统相结合的方法进行设置。加强施工现场排水管理是防止发生汛期内涝积水,杜绝超标排放、乱排废水、污水现象发生,确保安全渡汛和做好现场文明施工的重要举措。向政府职能部门申报好施工现场雨、污水收集、处理及排放形成系统,确保达标后分别排放,为施工现场创造良好的施工环境同时满足当地环境保护部门的要求,经对施工现场和周边环境进行实地踏勘,特编写本工程施工现场排水方案。

三、编制依据及规范

本处XXXX北站施工现场排水方案编制时依据施工现场场地条件及周边市政排水设施雨、污水分流接驳条件参照以下规范及标准进行:

长沙市轨道交通3号线1期工程土建施工XXXXX标

施工现场排水方案

⑴、《室外排水设计规范》(GB50014-2006); ⑵、《建筑给水排水设计规范》(GB50015-2003);

⑶、长沙市城市管理条例及长沙市城市市容和环境卫生管理办法; ⑷、长沙市轨道交通工程安全文明施工管理标准及安全文明施工标准化图集。

四、施工现场场地排水条件

经现场实地调查发现,施工现场内原有道路排水系统的泄水口主要分布在场地中央部位,此类排水系统只适用于前期施工准备阶段的临时排水,后期由于围护结构及基坑开挖作业的开展,将阻碍场地内原有排水设施导致排水系统无法正常使用。通过对现场内原地面与周边雨、污水管道高程测量对比,得知施工现场场地标高高于周边XXX路及XXX北路上市政雨、污水管网的水位标高。故施工现场内收集汇总的雨水、施工及生活所产生的废水及可经处理后自然流淌排入市政雨。

五、周边市政排水设施

本工程施工场地周边的市政雨、污水管网为沿XXX路及XXX方向敷设,现场实地调查中发现:在X号线车站北侧施工围挡附近存在一道管径1500mm,排水方向为自东向西的雨水管道;一道管径600mm,排水方向为自东向西的污水管道。在X号线车站西侧存在一道管径1000mm,排水方向为自北向南的雨水管道;一道管径800mm,排水方向为自北向南的污水管道。施工期间现场排水可以根据水体类别及具体区域位置采用如下排水方案来解决:

⑴、施工期间收集汇总的雨水直接经一级沉淀池处理后,根据区域位置就近排入市政雨水管网。

长沙市轨道交通3号线1期工程土建施工XXXXX标

施工现场排水方案

⑵、施工污水经基坑底、基坑顶、施工边界等主要收集系统集中收集,三级沉淀池集中沉淀处理,达标后排至市政雨水管网。

⑶、生活雨、污水采用雨、污分流的方式布管,集中汇总收集、处理达标后利用高差自由排放至XXX路的雨、污水管道。生活污水采用现场砌筑化粪池,通过池化后排入城市管网内,化粪池内的沉淀物定期请环卫部门抽排。

⑷、在现场修筑各类排水设施时,根据场地施工安排、施工区域划分、排水类别、周边市政雨、污水管道接驳井位置,统一规划、合理的进行施工现场排水布置。接驳井及雨、污水管道具体位置见XXXXX站施工现场排水设施布置图。

六、施工现场排水方案

本工程施工期间在施工现场西端(施工三期内)搭设2幢两层共32间的彩钢板活动房作为现场办公及施工人员宿舍,在施工前对场地内加工场、施工便道、办公及驻地场地范围采用混凝土硬化处理,并根据场地地形条件在场地四周合理的安排各类截、排水管沟及污水处理设施,各类排水设施尽量布置在离施工操作面不远且不影响交通的区域。施工现场及生活区临时排水设施布置,本着经济、实用的原则,在充分考虑到基坑、便道、生活区及加工厂的实际情况,将本工程施工场地范围内排水系统分为:场区周边排水、基坑顶部排水、基坑底部排水、车辆冲洗排水及办公及生活区排水五部分来进行,临时排水设施布置方案如下:

1、作业条件准备

⑴、已采取适宜的防护措施,确保施工过程中居民和车辆的正常出行

长沙市轨道交通3号线1期工程土建施工XXXXX标

施工现场排水方案

和生活;

⑵、管线位置、埋深、管径及接驳口位置已探明,并做好施工前的各项技术准备工作。

2、各类排水设施的设置

⑴、场区周边截、排水沟

由于场区周边地势比场地内地势高,所以在施工围挡范围周边布置(300*300mm)的截、排水沟用于收集、排放场地外侧的雨水。收集汇总后的雨水经过(500*500*500mm)沉淀池沉淀后,根据区域位置就近排入市政雨水管道接驳井内。

⑵、基坑顶部截、排水沟

在基坑边缘处修筑(300*300mm)的截、排水沟,用于收集场地内地表雨水和基坑开挖期间基底集水井内施工污水。收集汇总后的水体经过基坑边缘截、排水沟流入现场修筑的三级沉淀池内(三级沉淀池按照标准尺寸4500X3000X2000mm进行施做),经沉淀处理、达标后排入市政雨水管道接驳井内。

⑶、基坑底部集水沟、集水井

考虑到本处XX站基坑开挖施工期间基坑面积较大,故在基坑底靠近连续墙边0.5m处开挖(300*300mm)的集水沟、沿集水沟方向每间隔约50米开挖一处直径0.6m、深度约1-2m的集水井,集水通过潜水泵提升后排至基坑顶部截、排水沟内。排入基坑顶部截、排水沟内的基坑施工水体经过上述第⑵条,经三级沉淀池沉淀处理、达标后排入市政雨水管道接驳井内。

⑷、车辆冲洗排放

长沙市轨道交通3号线1期工程土建施工XXXXX标

施工现场排水方案

现场大门内设车辆冲洗系统,通过若干喷嘴形成压力水流,对出入车辆轮胎、底盘进行冲刷,冲刷水通过承重篦子汇入集水井,经三级沉淀池处理达标后排入市政雨水管道接驳井内,防止污染周边环境。

⑸、生活区内污水处理设施

生活区污水排放主要考虑厨房、洗漱间、卫生间的污水排放。对于食堂及洗漱间产生的含有油污的污水,须先经过修筑的隔油池净化处理、达标后排至市政污水管网;对于厕所污水先排入场内修筑的化粪池内,通过池化处理、达标后排入市政污水管网;对于生活区内的雨水经过修筑的排水沟收集后排入沉淀池,经沉淀根据区域位置就近排入市政雨水管道接驳井内。

⑹、施工现场排水设备

施工现场配备排水泵、排污泵等设备,对不可预测的自然现象及施工时的意外情况须进行全力以赴的应急抢救,确保如遇大雨等自然灾害时,施工现场的泥浆、污物等严禁直接排入城市管网。

3、排水系统的分类

⑴、自然排水系统

本工程施工现场位于长沙市开福区,施工占地面积较大、高低落差较小。为满足排水需要,施工前对现有场地内标高进行全面测量后,根据测量结果修筑排水设施,使雨水能够沿地面纵坡自然排水。

⑵、强制排水系统

施工现场强制排水主要为基坑内排水:因基坑高度低于现场地坪标高,故在基坑上口设置砖砌挡水坎防止雨水冲刷基坑侧壁或浸泡基坑;另在基

长沙市轨道交通3号线1期工程土建施工XXXXX标

施工现场排水方案

坑底周边设置300*300排水沟,并在最低处设置集水坑,由潜水泵从集水坑抽排至基坑顶部排水系统后,由地面排水系统经处理后排出。

七、排水管理

现场排水系统由专人负责管理,管理人员施工期间每天检查排水系统,一旦发现排水系统有损坏情况,应立即派人专门修补。另外应经常检查排水沟、集水井、沉淀池等泥沙沉淀情况,当泥沙沉淀较多时,应派专人负责清理。强制排水用水泵在未使用期时应统一保管,并检查运转情况,以使强制排水时正常运转。

我公司将全面负责处理好施工现场排水,并接受各方的监督和指导,确保施工中产生的泥浆、养护用水等未经沉淀池沉淀不得排放,确保雨季现场排水顺畅,采取一切措施减轻水体污染,使生产作业及环境得到有效的保障,确保市政排水管网畅通。

八、现场临时排水附图

附件一:XXX站施工现场临时排水平面图; 附件二:XXX站施工现场总平面图。

2.地铁车站施工难点分析 篇二

地铁车站的建造受地层、施工因素等多方面的影响。为了保证施工安全, 有必要对车站施工过程进行研究, 以找出施工过程中的关键步骤。地铁车站施工步骤的模拟, 主要包括加固措施、开挖顺序、开挖细节、衬砌的施作与拆除等几个方面, 本文着重从施工步序中, 找出施工过程中控制沉降的关键步骤。

车站为双层岛式车站, 共设3个出入口, 2座风亭。主体结构断面型式为双层岛式单柱单拱, 车站覆土约为8.8m。车站所属地层, 自上而下依次为:素填土, 厚度2.0~4.0m;全风化板岩, 厚度0.7~15.0m;强风化板岩, 厚度1.0~2.7m;中风化板岩。

2 施工方法及主要施工步序

步骤一:将大管棚一次打入围岩, 并对上部需开挖的部分采取小导管预注浆加固地层;分步开挖中洞, 并施做初期支护。见图1 (a) 。

步骤二:施作顶、底纵梁, 预留接茬钢筋及防水板接头;吊装钢管柱, 浇注钢管混凝土。见图1 (b) 。

步骤三:左右导洞采用小导管超前支护、注浆加固地层;左右导洞台阶法施工并施做初期支护。见图1 (c) 。

步骤四:拆除下部中隔壁;分段施作底板、两侧边墙下部, 预留接茬钢筋及防水板接头。见图1 (d) 。

步骤五:待边墙达到强度后分段加设钢支撑, 并拆除中部中隔板及中隔壁;铺设边墙防水板, 浇注中纵梁、中层板及边墙。见图1 (e) 。

步骤六:拆除临时支护, 浇注拱部剩余二衬混凝土。见图1 (f) 。

3 施工过程模拟计算分析

3.1 模型的选取

本计算按连续介质模型模拟结构与周围土体共同作用的内力、变形计算。围岩、二次衬砌等均采用平面应变有限元模拟, 初期支护采用梁单元模拟。

按照车站的分块开挖、支护、浇注内衬等施工步骤, 计算共分为24个阶段, 除第一个阶段为初始应力场模拟外, 每个阶段的应力与变形均由软件在前一个阶段上自动累加。

(1) 计算假定

本计算采用了平面应变假定和弹塑性假定模型来做计算分析。假定计算边界处不受车站开挖的影响, 即该处为静止的原始应力状态, 变形为零, 用约束来模拟。计算宽度取120.0m, 计算深度为隧道底下45.0m的土层厚度, 考虑到时间效应。计算采取有限元正分析法进行求解。计算模型中, 并未对超前小导管等辅助工法措施进行考虑。

(2) 有限元正分析计算流程

组织模型→定义材料→作图及修改→设置开挖过程→在图形对象上施加边界条件→全自动生成网格→有限元计算及后处理。

(3) 计算方法

只考虑土体的自重应力及地面超载, 在分析的第一步, 首先计算土体的自重应力场, 土体在自重作用下会产生初始位移, 对这一步位移采用软件自带的“位移清零”功能, 以方便查看后续各施工步骤中所产生的位移沉降值。

考虑时间效应, 开挖和支护的应力释放率, 对于强风化围岩中采用开挖70%, 支护30%;对于中风化围岩, 考虑围岩的自稳能力较好, 开挖和支护的应力释放率采用开挖50%, 支护50%。

(4) 施工阶段计算过程

计算模拟实际施工过程分步进行计算:1) 初始状态, 位移清零;2-3) 开挖中洞上部导洞并封闭初支;4-5) 开挖中洞中部导洞, 并封闭初支;6-7) 开挖中洞下部导洞并封闭初支;8) 施工顶底纵梁, 并施做完成中柱;9-12) 开挖左、右洞上部导洞并封闭初支;13-16) 开挖左、右洞室中部导洞并封闭初支;17-20) 开挖左、右洞室下部导洞并封闭初支;21-22) 拆除下部初支, 并施做底板;23-26) 拆除其余初支, 并施做完成二衬结构。

3.2 地层和材料参数

数值计算需采用的地层参数主要参考经验数据, 表1给出了计算所采用的围岩物性参数。

4 计算结果与分析

由计算可知, 地面沉降最大值约为22mm, 满足要求。如图3所示不同施工步序的沉降趋势, 中洞上导洞开挖 (2、3步) 、边洞上导洞开挖 (9~12步) 、二衬施做时拆除临时支撑 (21) , 3个阶段引起的地表变形较大, 是需要加强监测的重点施工步骤。且中洞内中柱施工完毕后, 中洞拱顶沉降区域稳定, 说明了中柱对于整个结构在开挖过程中的稳定性具有很重要的作用, 施工过程中需要注意中柱的监控量测以及保护。

通过数值计算模拟施工步序, 暗挖车站不同施工阶段的沉降槽图形描述如下:

(1) 车站中洞开挖期间, 沉降槽曲线呈正态曲线, 最低点在结构中线上。

(2) 车站中洞二衬期间, 沉降槽曲线平滑, 即地表沉降较小, 整体沉降趋于稳定。

(3) 车站边洞开挖期间, 沉降槽曲线呈波型, 波峰在结构中线上, 波谷在左右线的线路中线上。

(4) 车站开挖最终累计沉降的沉降槽曲线呈盆形, 盆地范围为两线路中线中间。

(5) 整个沉降曲线与经典的peck沉降公式 (图5) 趋势上吻合很好。

5 结语

通过数值模拟计算分析, 得出理论计算地面沉降曲线, 证明了中洞上导洞开挖和侧洞上导洞开挖所引起地面沉降在整体沉降中的比例非常大, 可见中洞法施工对地面沉降控制的关键工序为中洞上导洞开挖和侧洞上导洞开挖, 在设计施工中应引起足够重视, 加强监控量测等措施, 有效的指导了施工。

同时, 本次数值模拟采用MC本构, 板岩也是按照各向同性的弹性体来模拟的, 与实际开挖过程中, 板岩的层理特性有一定的出入, 因此实际的施工过程中需要针对板岩的这一类特性采取更有针对性的措施。

参考文献

[1]GB50157-2003, 地铁设计规范[S].

[2]田巧焕.北京地铁5号线天坛东门站施工阶段计算与分析[J].铁道标准设计, 2004, (4) .

[3]杨明.磁器口地铁车站施工过程的三维数值模拟分析[J].市政技术, 2008, (2) .

3.地铁车站围护结构施工 篇三

关键词:地铁车站;围护结构;施工

引 言

地下铁道是城市公共交通的骨干。它具有节能、省地、运量大、全天候、无污染又安全等特点,特别适应于大中城市。中国主要城市对地下铁道有较大需求,建设积极性较高,地下铁道交通发展迅猛,已有30多座城市建成了或正在新建、或拟就了建设规划。因此对地铁车站围护结构施工进行探究有非常重要的现实意义。

1 对地铁车站的围护结构比较

1.1 地下连续墙

地下连续墙,一般定义为利用各种挖槽机械,借助于泥浆的护壁作用,在地下挖出窄而深的沟槽,并在其内浇注适当的材料而形成一道具有防渗水、挡土和承重功能的连续的地下墙体。作为地铁车站围护结构的最常用的支护形式,在承载力和防水等方面有着巨大的优势,因此一直以来在地铁建设中有着广泛的应用,尤其是在沿海地区,有效的处理了软弱土的地基问题。但是这种围护结构也有自身缺陷,主要是建设成本太高和对城市的市政管线建设有比较大的影响。

1.2 排 桩

排桩是以某种桩型按队列式布置组成的基坑支护结构。排桩的应用也非常广泛,同时技术也很成熟,在许多内陆城市,包括西安等黄土地区中有着广泛的应用,最常使用的就是钻孔灌注桩。排桩的承载力比较高,施工较地下连续墙容易,但不能解决防水的问题,一般施工中需在排桩的间隙处喷射桩间网喷混凝土,以解决防水问题。排桩的缺点也同样是成本比较高,不是很经济。

1.3 SMW桩

SMW工法是以多轴型钻掘搅拌机在现场向一定深度进行钻掘,同时在钻头处喷出水泥系强化剂而与地基土反复混合搅拌,在各施工单元之间则采取重叠搭接施工,然后在水泥土混合体未结硬前插入H型钢或钢板作为其应力补强材,至水泥结硬,便形成一道具有一定强度和刚度的、连续完整的、无接缝的地下墙体。

1.4 TRD工法

TRD工法是将链式切削器插入土中,靠链式切削器的转动并沿水平方向掘削前进,形成连续的沟槽,同时将水泥浆从切削器的端部喷出,与土在原地搅拌混合,形成水泥土地下连续墙,并在水泥土墙中插入型钢,以增加连续墙的强度和刚度,最后在主体结构施工完毕后拔出型钢。TRD工法可以说是SWM工法桩的改进,扩大应用了范围,加深了处理深度。

TRD工法的特点:①整机的地上高度不超过10m,其地上高度与切削沟槽的深度无关,同时箱式刀具在筑造墙体时经常插入地中,故而装置的整体稳定性好。②筑成的墙体垂直精度高,并适合于各种土质条件下施工。③筑成的墙体连续无接缝等厚度,故而可适用于作止水墙体。④在切削沟槽时,因为是在全切削深度的内进行全区域的混合搅拌,故而墙体的质量均匀。⑤可在筑成的墙体内按实际计算结果以最佳间距设置芯材。

TRD工法具有施工效率高,工程造价低,成墙效果好,地层适应性好,环保等优点;TRD工法在地铁车站的基坑工程中的应用在技术上是可行的,在经济上是相当有优势的。

2 地铁车站围护结构施工要点

2.1 钻孔灌注桩施工要点

以某地铁车站为例,该工程采用钻孔灌注桩,围护采用钻孔灌注桩加水泥选喷桩作为止水帷幕,钻孔桩数量大、桩身长,施工质量的优劣直接关系到桩基和围护工程质量,更关系到整个工程的质量,因此,必须正确地选用科学合理的施工工艺,使钻孔灌注桩达到全部优良。

灌注桩属于隐蔽工程,但由于影响灌注桩施工质量的因素很多,对其施工过程中的每一环节都必须要严格要求,对各种影响因素都必须有详细的考虑,如地质因素、钻孔工艺、护壁、钢筋笼的上浮、混凝土的配制、灌注等。若稍有不慎或措施不严,就会在灌注中发生质量事故,小到塌孔、缩颈,大到断桩报废,以致对整个工程质量产生不利影响。所以,必须高度重视并严格控制钻孔灌注桩的施工质量,尽量避免发生事故及减少事故造成的损失,以利于工程的顺利进行。

该车站根据当地的地质情况,有针对性地选择钻孔施工方法:其中位于车站两侧的桩采用旋挖钻进行施工;横跨公路的中间段,由于地质条件良好,旋挖钻施工影响城市交通,采用人工挖孔桩的施工方法成孔。部分岩层较浅的车站围护结构亦可采用冲击钻冲击成孔的施工工艺。在围护结构的桩基施工中,桩基靠近主体结构侧墙一侧,宜远离侧墙边距离10cm左右,并在施工时保证桩基的垂直度,避免侵入主体结构。

水下浇注混凝土是用混凝土从孔底开始灌注,将孔内泥浆置换出来,成为混凝土桩的。在浇注过程中,应及时掌握孔内混凝土面上升的高度及导管插入的深度,测定每个混凝土面位置应取两个以上的测点,测绳受拉伸、湿度等因素的影响,所标长度变化较大,须经常校正。

2.2 旋喷桩施工要点

为保证钻孔灌注桩之间间距的止水性能,必须在灌注桩施工完成后继续施工旋喷桩。高压旋喷桩对处理淤泥、淤泥质土、粘性土、粉土、沙土、人工填土和碎石土等有良好的效果,在地铁车站施工中适用于围护结构止水。旋喷桩与钻孔桩一起形成围护结构止水帷幕,防止明挖施工过程中地下水的汇集、喷涌。

旋喷桩桩底一般施工至强风化岩层,钻杆无法下行为止。钻机采用双管高压旋喷桩及高压注浆泵,当钻杆钻到既定标高后用高压旋喷机把安有水平喷嘴的注浆管下到孔底,高压喷射水泥浆冲击切割土体,随着注浆管的旋转和提升而形成圆柱体桩体,浆与土体经过一系列的物理化学反应,固结成桩。旋喷桩截面必须与钻孔桩相互咬合,以便于保证支护、止水效果。

旋喷桩施工工艺属于一种比较成熟的工艺,在地铁车站围护结构止水有非常良好的应用效果,能够使开挖后的基坑不受潜水、地下涌水的影响。旋喷桩施工必须逐排进行施工,保证施工桩长及桩径。在开挖后如发现旋喷桩与地层相接处有涌水现象,必须及时补桩、堵漏。

2.3 支撐体系施工要点

支撑体系施工属于土方开挖前必须施工的临时构造,是为保证开挖后围护结构阻挡被动土压力所设置的结构。根据现阶段地铁车站所采用的支撑种类,分为钢管支撑与混凝土支撑两种,两种支撑各有优缺点。混凝土支撑具有良好的稳定性,且适用于复杂部位的支撑,但施工进度慢,影响土方开挖。钢管支撑具有施工简易、安拆方便等优点,但对于特殊要求的部位难以应用。

针对明挖车站的施工,为保证整个围护结构的稳定性,第一层支撑应全部采用混凝土支撑,第二、三层支撑标准截面宜采用钢管支撑,非标准截面采用混凝土支撑。如果第一道支撑体系应用钢管支撑,整个结构的稳定性能就非常有可能得不到保证,地铁车站坍塌事故往往出现在该问题的对待和处理上,如杭州凤起某车站。同时在开挖过程中,要对露出的围护结构桩基截面进行喷射混凝土施工,使其表面尽量平整,还要对有涌水的位置进行引流、堵漏处理。基坑内、外不宜做降水处理,但必须实时监测基坑周边以及围护结构水位、土体倾斜度的变化。

3 结 语

随着科学技术的不断提高,建筑新技术及新工艺也不断发展并完善起来。相当多的科研人员及业内人士非常重视地铁围护结构的设计与施工,其作为地下明挖施工的一个重要组成部分,对保证施工的安全、质量与进度具有非常重要的意义。

参考文献

[1]高志宏.浅谈明挖法地铁车站的设计分析方法[J].甘肃科技,2010(09).

4.地铁车站军用梁铺盖法施工设计 篇四

摘 要:采用道路两侧倒边铺设加强型单层**式军用梁铺盖法明挖施工方案进行地铁车站施工,达到交通不断路的目的。通过对24m**式军用梁的结构拼装设计、承台设计、桥面系设计、盖挖顺作配套施工设计,对军用梁在交通行车和临时堆土加载过程中的最不利情况下,运用MidasCivil671软件验算军用梁主要杆件内力,证明该方案的合理性和可行性。

关键词:地铁车站;军用梁;铺盖法;施工;方案设计 工程概况

南京地铁二号线一期工程新街口站位于南京市商业中心地区新街口,车站以新街口环岛为中心分为两段呈东西向布置。西端布置在汉中路路中,东段布置在中山路路中,地面交通十分繁忙,车流密度大,与南北向1号线新街口站呈“T”形相交并相互换乘。环岛下为一号线和二号线共用的大圆盘地下结构,该圆盘已随一号线新街口站施工完毕。

新街口站的总建筑面积为24918m2,其中主体建筑面积22275m2,附属面积2644m2,车站长414.4m,宽21.6m,车站总高约12.69m。顶部覆土约2.836m,车站为3‰坡,西高东低。

新街口站为地下二层岛式车站,车站有效站台宽度14m,地下一层中央为站厅层,两端为商业区,地下二层为站台层,该站主体结构采用军用梁满铺的铺盖法施工,以钻孔咬合桩(直径800,咬合厚度200mm)为车站围护结构。车站临时铺盖工程施工设计总说明

为了最大限度减小车站施工对地面交通的影响,同时满足车站工期要求,结合车站范围内的地质资料,新街口车站采用满足城市A级道路荷载和交通能力要求的军用梁等构件快速形成临时路面系统,东段、西段主体结构均采用军用梁满铺的铺盖顺作法倒边施工,保证东西向15m宽(4车道)通行能力。

本车站军用梁均采用单层加强型**式军用梁,跨度分别为24m和28m,24m跨度的军用梁应用于车站主体结构(除东西端头井)部位,军用梁榀中心间距为1.0m(局部3.52m、0.6m);28m跨度军用梁应用于东、西端头井部位,军用梁榀间距为0.6m。东段铺盖共设置24m跨度军用梁139片、28m跨度军用梁35片,设置4个出土口,出土口大小为8.85m×3.0m,出土口距东段两端头约为23.5m,中间间距为40.0m;西侧铺盖工程共设置24m跨度军用梁185片、28m跨度军用梁12片,设置5个出土口,出土口大小也为8.85m×3.0m,中间间距为40.0m。现仅以24m跨度军用梁为例,介绍其施工设计方案。

本工程基坑宽为23.3m,铺盖结构拟采用长24.3m加强型**式军用梁。加强型**式铁路军用梁是我国自行研制的中等跨度适用的一种铁路桥梁抢修制式器材,是一种全焊构架、销接组装、单层或双层的多片式、钢桥面体系的拆装式上承钢桁梁。本设计采用单层结构,选用加强型单层**式军用梁(由加强三角架和辅助端构架组合而成)。

主体结构施工前,先处理好北边15.0m宽军用梁铺盖工程下的地下管线,再施工该处的钻孔咬合桩,待钻孔咬合桩施工完毕后,施工桩顶冠梁,待结构混凝土达到强度后,开挖该段第一层土方,并架设军用梁,铺设临时路面,然后恢复北边军用梁铺盖工程处地面交通,然后倒边施工南边剩余9.3m宽军用梁铺盖工程。

倒边铺盖军用梁分2期围挡施工,1期围挡内进行北边15.0m宽4车道临时铺盖工程施工,临时铺盖军用梁每片总长24.3m,1期铺设的军用梁每片长15.0m、间距1m(靠近出土口间距0.6m);2期围挡内施工南边临时铺盖工程,临时铺盖军用梁每片长9.3m,此范围内的9.3m长军用梁与1期已施工15.0m军用梁按照规范连接起来,最终形成每片长为24.3m军用梁铺盖系统工程。3 车站临时铺盖工程详细设计方案 3.1 军用梁结构及桥面系设计方案

根据盖挖顺作倒边施工方案,军用梁各部件用平板拖车运至现场,在现场完成拼装施工,在第一层土方开挖及钢支撑施工完成后,用25t吊车吊装到位。军用梁便桥临时铺盖系统的结构形式设计:车站主体结构盖挖顺作倒边施工部分采用加强型**式军用梁支撑形式和桥面系组成。军用梁只用作承托临时铺盖及地面车辆等荷载。3.2 加强型**式军用梁结构及其承台设计 本车站军用梁均采用单层加强型**式军用梁,跨度为24m,应用于车站主体结构部位。军用梁榀中心间距为1.0m(出土洞口宽3m,出土洞口外围军用梁榀中心间距0.6m);军用梁系统结构采用斜向及纵向联结系,以加强军用梁整体稳定,所有的纵向联结构件均为军用梁系列定型产品。

为满足军用梁铺盖倒边施工的需要,保证1期围挡内临时铺盖工程的稳定性和安全性,1期围挡内施工的临时铺盖军用梁两端固定方案为:北端为L形围护桩承台,南端为1000mm×600mm混凝土支撑墩+钢板桩挡土墙,支撑墩设置正对于军用梁的加强三角下支撑点,钢板桩挡土墙深为5.0m。2期围挡内施工临时铺盖军用梁时,需拔除1期施工完成的南侧钢板桩。

1、2期围挡见图1和图2。

3.3 桥面系统设计

根据设计文件及加强型**式军用梁桥面系使用规范,为尽可能减轻军用梁上荷载,又能满足减振、安全要求,考虑只在北侧双向4车道15m宽的临时铺盖上设置行车桥面系,满足A级荷载要求。因此,车站主体北侧16m宽桥面系,沿车站东西向先铺设40cm宽、5cm厚、间距3m木板(设在钢板下层,起减振、降低噪声作用),再沿南北向铺设单层2cm厚防滑钢板(钢板采用A3花纹钢板,规格尺寸为12m×2m),最后在3m宽出土口部位东西向再铺设一层6m宽、9m长、2cm厚防滑钢板局部加强。根据设计检算,为满足龙门吊将盖挖土方吊至地面后暂时弃于南侧桥面上,在临时弃土范围内铺设1.2cm厚钢板以满足施工要求。

3.4 盖挖顺作配套施工设计

施工时以中间临时立柱为分隔线,两侧均采用两台电动葫芦提升、拼装钢支撑。在军用梁架设之前,完成第一道钢支撑掏槽、导梁和L形支撑承台施工,然后架设军用梁、铺设桥面系,完成临时铺盖工程,快速形成道路交通。对于盖挖段军用梁下面的支撑架设,为满足钢支撑架设需要,还设置了4道东西向导梁,导梁采用I20形工字钢,位于军用梁及第一道钢支撑下,且紧贴第一道钢支撑,两侧导梁通过在冠梁下预埋吊钩焊接牛腿,安装电动葫芦;中间两道导梁采用“U”形卡和钢梁、螺栓固定导梁于军用梁上,每根导梁上安装1台10t电动葫芦,利于钢支撑拼装和架设。施工时以中间临时立柱为分隔线,两侧均采用2台电动葫芦提升、拼装钢支撑。在军用梁架设之前,完成第一道钢支撑掏槽、导梁和L形支撑承台施工,然后架设军用梁、铺设桥面系,完成临时铺盖工程。临时铺盖系统完成之后,通过沿车站纵向布置的导轨梁和横向的桁车天梁下悬吊的10t电动葫芦配合进行车站钢支撑架设、土方倒运和模板、钢筋等材料运输。土方开挖时主要采用挖掘机辅助开挖倒运。

3.5 军用梁行车和堆土时的荷载验算 3.5.1 荷载验算前提条件

材料为15MnVq、16Mnq钢材,车速不超过3km/h,城市A级荷载。3.5.2 计算模型

通过单层24m跨度加强型**式军用梁交通通行和临时堆土受力计算采用韩国MidasCivil671软件计算,Midas为空间结构通用有限元计算软件,内建了国内各种规范规定的材料和荷载,包括城A和各种型钢材料和截面。本次计算加载为加强型**式军用梁结构。

本结构取一片梁建立模型,每片梁间距1m,每片梁间以横向连接系连接,结构计算沿纵向(车行方向)取1m进行荷载简化,计算结构模型见图3,取本标段的第2期围挡所示为计算工况。

在计算模型的左边15m(军用梁北侧)范围为双向4车道车行范围,汽车活载按城市A级荷载考虑。临时路面系统考虑为2cm厚钢板,在每个出土口范围,由于梁片间跨度达3m,需另外在上面再铺一张6m宽、9m长、2cm厚钢板,局部加强。

在计算模型的右边9m(军用梁南侧)范围为出土口施工范围,为在军用梁上临时堆土考虑,在军用梁上铺设一层1.2cm厚钢板,在出土口的两侧分别考虑临时平铺一定高度的开挖土方。3.5.3 荷载(1)恒载

结构自重:钢材容重78.5kN/m3。桥面钢板自重:2cm厚钢板、宽15m,1.2cm厚钢板,宽9m。q1=78.5×0.02=1.57kN/m;q2=78.5×0.012=0.942kN/m。土的自重:按试算法考虑的松土厚度为1.8m,松土的平均容重为16kN/m3,则q3=1.8×16=28.8kN/m。(2)活载

汽车活载:城市A级车辆荷载,4车道布置,车道折减系数0.67。

纵向分布系数:城A车辆荷载为轮间距1.8m,车道间距1.3m。纵向车队取2个最重轴,轴重140kN,轮重70kN,两重轴间距1.2m。其作用影响范围,考虑横向联系位置,取4m,即总共4片梁承受。纵向分布系数=2/4=0.5。

冲击系数μ=0.6686-0.3032×lg(24)=0.25。3.5.4 荷载组合

结构自重+桥面钢板自重+土的自重+汽车活载×0.67×0.5×(1+0.25)。

3.5.5 单元内力计算结果

计算结果数值以拉为正,以压为负,计算结果如表1所示。3.5.6 结论

在出土口两侧允许平均堆土厚度1.8m的情况下,以上各杆件都满足承载力的要求。其中最外端加强三角的外斜杆,是整体承载力控制杆件。本结构按纵向(车行方向)4m计算,如果覆土不是集中在4m宽范围内,可按照体积相应提高容许土层厚度。在平均堆土厚度为1.8m的情况下,按高峰期单个出土口每天最大可出土300m3考虑,则出土口两侧允许堆土宽度的范围为300/(9×1.8)=18.5m,即出土口单侧考虑9.3m就可以满足施工出土高峰期需求。实际施工中可考虑在其余地段也满铺钢板,用作堆放钢支撑等其他施工材料。4 结语

5.地铁车站施工难点分析 篇五

[摘 要]随着我??城市建设的飞速发展,交通堵塞等城市问题日益突出。地铁是解决城市公共交通和实现城市可持续发展的途径之一,近十几年来,我国大中城市纷纷兴起了建造地铁的热潮。本文主要分析的就是地铁车站主体结构工程施工方式,进而提出以下内容,希望能够为同行业工作人员提供相应的参考价值。

[关键词]地铁车站;主体结构;施工方式

中图分类号:U231.3 文献标识码:A 文章编号:1009-914X(2017)11-0149-01

1.地铁结构的特点

地铁结构设计特点:百年大计、周边环境复杂、岩土及地下工程具有明显的地域性和多变性、涉及专业多、协调配合多、设计与施工紧密联系。地铁结构的特点决定了地铁结构设计的流程多、设计周期长、反复多,其设计过程始终处于边设计、边施工的状态。对于一般的明挖车站从设计开始到施工结束一般需要2年的时间。

2.工程概况

某地铁4号线二期工程车站主体结构采用二层单柱双跨钢筋混凝土框架结构,防水以自防水为主,辅以全包防水,主体结构尺寸见表1。

3.主体结构施工流程

3.1 主体结构施工分段

分为站前段、站后段和车站主体等五个部分进行施工,主体施工分段进行,每段长度根据设计情况初步确定为20米左右,共12节段。每节段的施工时间为 25天,考虑到各阶段的搭接施工时间,节段施工按20天计算,南关岭车站主体结构采用“纵向分段、竖向分层”的原则施工,施工分段的原则是施工缝位于两个中间柱跨距的1/4-1/3处,并结合其它因素一并考虑。

3.2 施工前准备工作

一是基坑开挖到设计标高,仔细进行测量、放样及验收,严禁超挖。二是掌握车站结构浇筑和支撑拆除的要求及操作程序,对侧墙、中(顶)板模型支撑系统进行设计、检算、报监理业主审批后,根据施工进度提前安排进料。三是对内部结构施工顺序,施工进度安排,施工方法及技术要求向工班及全体管理人员进行认真交底,做到人人心中有数。四是垫层浇筑前,认真做好接地网等的施工。

4.钢筋施工

4.1 钢筋加工制作

(1)钢筋必须有质保书或试验报告单。(2)钢筋进场时分批抽样物理力学试验。使用中发生异常,要补充化学成份分析试验。(3)钢筋加工的形状、尺寸必须符合设计要求。钢筋的表面保持洁净、无损伤,油渍、漆污和铁锈等在使用前清除干净。不使用带有颗粒状或片状老锈的钢筋。(4)钢筋的弯钩或弯折按国标GB规定执行。

4.2 钢筋焊接

(1)钢筋焊接使用焊条、焊剂的牌号、性能以及接头中使用的钢板和型钢均必须符合设计要求和有关规定。(2)焊接成型时,焊接处封锁水锈、油渍等。焊接后在焊接处无缺口、裂纹及较大的金属焊瘤,用小锤敲击时,应发出与钢筋同样的清脆声。钢筋端部的扭曲、弯折必须校直或切除。(3)钢筋焊接的接头形式、焊接工艺和质量验收,按国家现行标准《钢筋焊接及验收规程》的有关规定。(4)轴心受拉和小偏心受拉杆件中的钢筋接头,均采用焊接。普通砼中直径大于 22mm 的钢筋和轻骨料砼中直径大于20mm的I级钢筋及直径大于25mm的Ⅱ、Ⅲ级钢筋的接头,均采用焊接。

5.模板施工

5.1 模板及支架体系的选择

车站主体为二层框架结构,脚手架采用φ48×3.5 钢管扣件式金属脚手架系统。结构板采用组合钢模板,侧墙采用大块模板,结构板的掖角采用特制钢模板。

5.2 侧墙模板施工

侧墙采用 槽钢支承,φ48钢管斜撑与满堂脚手架结构固定的方法。施工方法:(1)在底板或中板上预埋 φ25、50cm长钢筋,其间距为 1000mm,分3排设置,与侧墙边的距离分别为1.5m、3.0m、4.5m。(2)按顺序先安装钢模板,然后竖向安设10cm×10cm长方木(方木间距为 50cm),再装纵向槽钢(,最后装φ48斜撑钢管。

5.3 模板施工技术要求

(1)模板必须支撑牢固、稳定、无松动、跑模、超标准的变形下沉等现象。对超重、大体积砼施工时模板支撑刚度须进行施工设计计算,并经监理验算。(2)模板拼缝平整严密,并采取措施填缝,保证不漏浆,模内必须干净。模板安装后及时报验及浇砼。(3)模板安装前,必须经过正确放样,检查无误后才立模安装。(4)中、顶板结构支立支架后铺设模板,并考虑预留沉降量。当跨度大于 4m 时,模板起拱,起拱高度为跨度的3%以确保净空和限界要求。侧墙模板采用大模板,模板拼缝处内贴止水胶带或玻璃胶,防止漏浆。

5.4 混凝土浇筑

要选择合适的混凝土浇筑方案,可以使用C30P8 防水商品混凝土,并将其运送在靠近工作面处,使用混凝土输送泵来进行混凝土的灌注。平均2-4台地泵,负责一个工作面。可以使用耐高压橡胶管作为工作面泵管端头的活动端,便于对其进行调节。在灌注时未使用插入式捣固器进行振捣,捣固器的直径约为32毫米。使用8米长的捣固器振捣侧墙。可以使用阶梯式分层浇筑法进行混凝土浇筑,对于侧墙则是用分层浇注的方法,将每层的高度控制在50-70厘米之内,保混凝土面上升的均匀性。要使用防水混凝土来进行地铁车站主体结构的浇筑,保障其抗渗标号和抗压强度、抗裂性能。在混凝土浇筑的过程中,首先要注意对其自由起落的高度进行有效的控制,避免出现混凝土离析。用振捣器振捣混凝土,保障 30 秒的振捣时间。从低处向高处分层灌注,尽量减少间隙时间。要事先制定钢筋密集处、预留孔洞图和结构预埋件的位置,进行加强振捣。

总结:地铁车站主体结构工程的施工质量关系着地铁行车的稳定性,必须要抓好每一个施工环节的质量,保障地铁车站主体结构的整体施工质量。

参考文献

6.地铁车站施工难点分析 篇六

郝旋

中铁一局集团第五工程有限公司、陕西宝鸡、721000 摘要:车站钻孔灌注桩及临时格构柱施工是一项质量要求高、施工工序多,并在较短的时间内连续完成的地下隐蔽工程。钻孔灌注桩及临时格构柱的成孔、清孔钢筋笼及格构柱的制作、吊运、安装等施工工艺。

关键词:地铁车站;钻孔灌注桩;临时格构柱;施工工法

1、工程概况

1.1工程简介

XX站位于杭州市西湖区,星洲街和星艺街之间的古墩路下南北向设置。全站总长200.8m,站台宽度12.6m,标准段净宽21.3m,主体建筑面积为11087 m。车站为地下二层双柱三跨框架结构,共设置4个出入口(其中D出入口预留,本期不实施),2组风亭。主体采用φ1200钻孔灌注桩,共38根,临时支撑格构柱共38根,采用Q345B钢制作,焊条采用E43型。附属抗拔桩采用φ800钻孔灌注桩,共35根,(A出入口2号风亭每根30~35m,共29根;1号风亭每根25m,共6根)。临时支撑格构柱共7根,采用Q345B钢制作。

21.2工程地质及水文概况

主体基坑主要位于人工填土层、(淤泥质)粘土、(淤泥质)粉质粘土层。基坑底板基本坐落在⑥1淤泥质粘土、⑦1粘土、⑦2粉质粘土层。地下连续墙底进入⑨2粉质粘土层。附属基坑底板基本坐落在④1淤泥质粘土及④2淤泥质粉质粘土层中。钻孔灌注桩底部位于中风化泥质粉砂岩。

2、主要管理人员配置

工程施工主要人员配置: 1名专业工程师、1名质检工程师、1名安检工程师、1名测量工程师、1名试验工程师、1名现场领工员、2名技术员,由项目总工和生产副经理全面负责安全、质量和进度。

3、施工工艺及施工要点

3.1施工工艺流程

临时格构柱基础钻孔桩成孔采用SR150C型旋挖钻机。旋挖成孔首先是通过底部带有活门的桶式钻头回转,并直接将其装入钻斗内,然后再由钻机提升装置和伸缩钻杆将钻斗提出孔外卸土,这样循环往复,不断地取土卸土,直至钻至设计深度。对粘结性好的岩土层,可采用干式或清水钻进工艺,无需泥浆护壁。而对于松散易坍塌地层,或有地下水分布,孔壁不稳定,必须采用静态泥浆护壁钻进工艺,向孔内投入护壁泥浆或稳定液进行护壁。

3.2钻孔灌注桩施工要点 3.2.1场地处理

根据设计要求合理布置施工场地,先平整场地、清除杂物、换除软土、夯打密实,局部土质较软部分考虑采用砖渣铺设压实。在进行场地整平后,将场地平整夯实,清除杂物;钻机的安置应考虑钻孔施工中孔口出土清运的方便。

3.2.2桩位放样

桩位放样采用全站仪放样,按“从整体到局部的原则”进行灌注排桩桩位放样,放线定位严格遵守《工程测量规范》中有关桩基施工的规定。为确保桩位准确无误,桩位经坐标计算后,必须校核,桩位采用全站仪进行放样。在复核确认控制点无误后,由专业测量人员放样桩位。

3.2.3护筒埋设

桩位确定后,利用十字线放出四个控制桩基中心位置,并以四个控制桩为基准进行埋设护筒。埋设钢护筒时通过四个控制桩控制,把钢护筒吊放进孔内,找出钢护筒的圆心位置,使钢护筒中心与钻机钻孔中心位置重合。同时用水平尺或垂球检查,使钢护筒垂直。在孔底回填夯实300-500mm厚度的粘土后,再安放护筒,以免护筒底口处渗漏塌方,夯填时要防止钢护筒偏斜,随夯填随检查。

3.2.4泥浆调制

本工程泥浆采用膨润土备制,泥浆材料配比如下:CMC:纯碱:膨润土:水=1:12:250:3120,采用泥浆搅拌机制作。由于地基岩土中夹有杂填土、粉质粘土等,且地下水位较高,调制出良好泥浆的各项性能指标尤为重要。泥浆相对密度:1.02-1.10,粘度:18-22s,砂率≤4%,泥皮厚度:<2mm,PH值:大于7。施工过程中随时检测清孔后灌注砼时泥浆的各项性能指标,确保泥浆对孔壁的撑护作用,避免发生施工事故。

3.2.5钻机就位

钻机就位前,施工场地平整处理,保证钻机底座场地应平整、夯实,用枕木垫稳,避免在钻进过程中钻机产生沉陷。检查钻机的性能状态是否良好。保证钻机工作正常。钻机钻头相对桩位中心偏差不得大于20mm。

3.2.6钻孔施工

钻机就位后,调整钻杆垂直度,注入调制好的泥浆,然后进行钻孔。当钻头下降到预定深度后,施加压力,将土挤入钻斗内,仪表自动显示筒满时,钻斗底部关闭,提升钻斗将土卸于堆放地点。钻机施工过程中保证泥浆面始终不得低于护筒底部,保证孔壁稳定性。通过钻斗的旋转、削土、提升、卸土和泥浆撑护孔壁,反复循环直至成孔。

3.2.7成孔检验

对孔深、孔径、孔位、孔形和斜度等进行检查,孔径和孔深必须符合图纸要求。

3.2.8清孔

清孔是钻孔灌注桩施工保证成桩质量的重要一环,通过清孔确保桩孔的质量指标、孔底沉渣厚度、循环液中含钻渣量和孔壁泥垢等符合桩孔质量要求。可采用泵吸反循环抽浆的方法清孔。灌注桩桩孔因有较厚的易坍土层,清孔后不能立即终孔,而在孔内下入钢筋笼,安装好灌浆导管后施行二次清孔作业,以使砼灌注前孔底沉渣厚度符合要求,保证砼成柱质量。

3.2.9钢筋笼加工

钢筋笼所用原材料严格执行双控,有出厂质量证明书,且经复试合格后方准使用。钢筋笼制作前,铺设钢筋笼制作平台,安装钢筋笼制作胎具,依据钢筋笼制作大样图,按设计图纸及规范要求制作,钢筋笼几何尺寸允许偏差须满足设计规范要求。钢筋笼加工完成后方可进行下道工序。

3.3格构柱施工要点

3.3.1立柱桩格构柱构造

临时格构柱应插入钻孔灌注桩(桩顶)以下3.0m。缀板间距均不应大于800mm、700mm。个别特殊部位间距不应大于900mm。

格构柱采用Q345B钢制作,焊条采用E43型。因此钢板进场前按照图纸设计尺寸及数量要求钢板厂家用机械冲切成片,保证缀板边角顺直。按设计要求尺寸调整摆放好,用100*100方形混凝土垫块及铁楔子初步控制平整度,并用水平尺和卷尺微调后固定好。通过三片缀板点焊固定后,开始进行“半边”格构柱剩余缀板的点焊,为避免焊接过程中钢结构受热产生的变形,需对固定后的格构柱仍需要使用卡具及手动调紧器固定。要求控制好格构柱整体平整度、整体顺直度、整体设计尺寸以及断面方正度(偏差±1°内)。

格构柱制作好后应整齐堆放在平整干净场地内,且格构柱端头位置焊接4根直径28mm吊筋(带吊耳),吊筋长度应根据场地标高计算确定;分别与4根角钢端头双面焊接15cm,焊缝质量必须满足要求。

格构柱间对接焊接时接头应错开,保证同一截面的角钢接头不超过50%,相邻角钢错开位置不小于50cm。角钢接头在焊缝位置角钢内侧采用同材料短角钢进行补强。

3.3.2钻孔灌注桩钢筋笼及临时格构柱吊放安装

钢筋笼吊装采用一台50t汽车吊分节吊起钢筋笼,吊点位置和数目按正负弯矩相等的原则计算确定,在型钢柱离地面一定高度后,再由50t的履带吊垂直起吊,成竖直方向后,用大吊车一次进行起吊安装就位。

将吊起的格构柱缓慢放入钢筋笼内,格构柱进入桩顶3m,尽量避免碰撞钢筋笼。钢格构柱下部与钢筋笼焊在一起,在钢格构柱上部设吊环。钢格构柱吊装到设计位置后,用φ100mm圆钢横担于护筒上,将钢格构柱吊住,稳定在设计标高位置,防止其上浮。然后采用导管法灌注水下砼成桩。

3.3.3格构柱定位 格构柱安装工程质量控制工序如下:

确定定位点→定位器就位→格构柱就位→格构柱与钢筋笼焊接→垂直度控制→(导向架)格构柱定位→垂直度复测→下导管。

3.3.4格构柱的固定

将用定位的四个点引测至型托梁上,垂直方向用两台全站仪进行位置控制,标好位置,同时报请监理人员根据观测记录再次进行复核,在钢筋笼入孔后,格格柱位置安装定位导向架,架高1500mm,架体为14#槽钢对拼焊接,导向架中部定位孔每边与格构柱大50mm,便于螺检连接和柱位调整,格构柱顶至导向架设置与格构柱同规格导柱,导柱与下部格构柱四边通过Φ28螺栓连接,格构柱在下落过程中用靠尺进行检测,最终保证格构柱中心及方位符合设计要求。

3.4砼灌注成桩

灌注桩实际灌注高度应比设计桩顶高出1.5m,保证桩顶标高以下砼强度符合设计要求。实际浇灌的水下砼强度比设计的砼强度提高一级。水下砼用的水泥、集料、水、外掺剂以及砼的配合比设计、拌和、运输等必须符合规范的规定。现场取样制作试块(150mm*150mm*150mm),标准养护28天。

导管采用直径30cm钢管,每套70m。接头应具备装卸方便,连接牢固,并带有密封圈,保证不漏水不透水。导管内壁光滑、圆顺,内径一直,接口严密。导管直径与桩径及混凝土浇筑速度相适应。使用前进行试拼、承压和接头抗拉试验。导管组装后的轴线偏差,不超过钻孔深得0.5%。

导管长度按孔深和工作平台高度决定。漏斗底距孔上口大于一节中间导管长度。导管安装后,其底部距孔底有250mm-400mm的空间。导管安装完毕后二次测定孔底沉渣厚度,达不到规定要求时二次清孔,达到规定要求时,立即灌注砼。

水下混凝土灌注过程中,应经常测探井孔内混凝土面的位置,及时地调整导管埋深,导管埋深宜控制在2~6m。严禁导管拔出混凝土面,安排专人测量导管埋深及管内外混凝土面高差。在灌注过程中宜使导管在一定范围内上下窜动,防止混凝土凝固,增加灌注速度。为确保成桩桩顶砼质量,在桩顶设计标高上超灌1.5米砼,防止浮浆过多,影响桩头质量,技术人员计算剩余砼数量,然后通知搅拌站需要的砼数量,以免造成浪费。

4、进度安排

根据业主对总体工期和各节点工期的安排计划,为了确保任务圆满完成,结合现场的实际施工情况和上道施工工序的完成时间,在基础施工中,必须增加各项投入(物力、财力、人力、机械设备等),加大力度,组织好各项施工。

在现场各项准备工作就绪,具备钻孔灌注桩及临时格构柱开工条件后,每台钻机一天完成成品桩2根。

5、资源配置计划

专业有同类经验的桩机施工队,根据施工进度与工程状况按计划分阶段进退场,保证人员机械的稳定和工程的顺利展开。根据工程量,确定分阶段施工人员数量及需用计划。检查施工人员资质情况,确保各工种持证上岗。

根据地质勘察报告提供的场地地质、水文情况和本工程桩的设计要求,经比较各种钻机的技术性能及优缺点,决定工程选用QY150G219反循环钻机。组织桩机及配套机具进场组装调试,并完成施工机械检验工作。

6、施工保证措施

钻机操作人员,要经过专门的培训,取得操作合格证后才能上岗。成孔机械操作时应安放平稳,防止成孔作业时突然倾倒,造成人员伤亡或机械设备损坏。地质条件和孔内情况变化,认真控制泥浆密度、孔内泥浆高度、护筒埋设深度、钻机垂直度、钻进和提钻速度等,以防塌孔,造成机具塌陷事故。所有成孔设备,电路要架空设置,不得使用不防水的电线或绝缘层有损伤的电线;电闸箱和电动机应有接地装置,加盖防雨罩;电路接头应安全可靠,开关应有保险装置。

6.1泥浆制备、贮存

泥浆池四周要加防护栏杆,防止机械、人员掉入泥浆池。使用泥浆泵应注意接线柱盖要密封,不得漏进泥浆。

6.2钢筋笼制作及吊装

钢筋加工时非操作人员不得擅自动用机械,切断钢筋时应让刀口与钢筋垂直,防止切飞伤人。钢筋笼吊装前认真检查吊具及吊点的安全性,起吊时注意钢索受力情况,避免不均匀受力及扯挂现象。吊臂工作半径内不准有人走动或停留。夜间起吊钢筋笼,要有足够的上、下照明,并要有经验的起重工指挥。上下钢筋笼对接时,人员应站在两端协助定位,无关人员禁止站在笼边。焊接上下钢筋笼时,吊车司机应集中精力并绝对保证刹车安全可靠。不准用小吨位的吊车吊偏重的钢筋笼。钢筋笼起吊后,应用拖绳控制其稳定,不准用手扶。

6.3混凝土浇筑

混凝土灌注时,装、拆导管人员必须做好安全防护;拆卸导管时,其上空不得进行其他作业,导管提升后继续浇灌混凝土前,必须检查其是否垫稳或挂牢。后压浆桩高压注浆时,浆液应过滤;高压泵应有安全装置,当超过允许泵压时,应能自动停止工作。注浆人员应戴防护眼镜、手套等防护用品;注浆结束时,必须坚持泵压回零,才能拆卸管路和接头,以防浆液喷射伤人。

6.4其他

施工机械设备应按操作规程进行操作。所有电器设备要有接地装置,雷雨天要停止操作。灌注桩成孔后在不灌注混凝土之前,应用盖板封严,以免掉土或发生人身安全事故。恶劣气候应停止成孔作业,休息或作业结束时,应切断电源总开关。

7、文明施工及环境保护措施

施工组织设计中突出对环保施工、文明施工的管理,施工方案按照技术可靠、措施完善的原则编制,把“景观施工”、良好生产秩序、良好生活秩序作为总平面布置、施工顺序安排的前提和原则,尽力创建文明、环保的施工环境,维护市政府形象。施工前充分调查了解工程周边环境情况,施工紧密结合环境保护、文明施工进行。施工中实施文明施工,减少废气、振动、噪声、扬尘污染,杜绝随意排放污水、胡乱丢弃垃圾等对环境的污染,维护交通运输,注重“景观感”。施工过程实施环境管理体系标准,建立环境管理体系和控制程序,进行环境管理。建设“绿色工地”,实施“环保施工”。

结束语

自2015年1月钻孔灌注桩及临时格构柱开始施工后,通过本施工工艺指导,施工过程中未出现安全责任事故与不良行为,确保了工程节点工期,使其质量达到设计要求。

参考文献

[1]《地下铁道工程施工及验收规范》(GB50299-2003)。[2]《建筑基坑工程技术规范》(YB9258-97)。[3]《建筑桩基技术规范》(JGJ 94-2008)。[4]《钢筋焊接及验收规程》(JGJ18-2012)。[5]《钢筋机械连接通用技术规程》(JGJ107-2010)。[6]《混凝土外加剂应用技术规范》(GB50119-2003)。

[7]浙江省工程建设标准《建筑基坑工程技术规范》(DB33/T1096-2014)。国家、部委颁发的其他相关规范和标准及省、市有关规定。

7.地铁车站施工难点分析 篇七

目前, 地下车站的防水体系分为全包防水和半包防水两种, 这两种防水体系的理念不尽相同。本文从深圳地铁3号线地下车站防水设计和施工质量等方面对两种防水体系进行比较, 并提出一些观点供同行讨论。

1 工程概况

深圳市地铁3号线工程, 是国家批复的《深圳市城市轨道交通建设规划》中的建设项目之一, 是《深圳市城市轨道交通建设近中期发展综合规划》线网中的骨干线, 连接特区中心组团、中部服务组团、东部物流组团、龙岗中心组团, 及布吉、横岗、龙岗三个卫星新城。3号线位于城市东部的产业发展轴上, 由特区沿深惠路, 经布吉、横岗、龙城、大工业区、坪地向惠州方向伸展, 是与粤东地区联系的主要通道和极具潜力的产业带。地铁3号线的修建把特区内外和沿线组团连接起来, 带动了东部发展轴快速发展, 促进了沿线土地开发和经济发展。2011年6月深圳成功举办第26界世界大学生运动会, 作为连接深圳市中心区与大运会所的“大运线”, 地铁3号线起到了重要作用。

2 地下车站防水设计

深圳地铁3号线全线长约42 km, 共设站30座, 其中地下车站14座。地下车站除少年宫站、莲花村站采用复合结构形式的车站外, 其余12座地下站均采用叠合结构。地下车站的防水设计依据GB 50157—2003《地铁设计规范》和GB 50108—2008《地下工程防水技术规范》, 并结合深圳地铁3号线的工程环境、地质水文、土壤腐蚀性等条件, 按防水防腐综合考虑的思路, 本着“使用安全、经济合理”的精神, 深圳地铁3号线地下车站按下列原则确定防水模式:强调结构自防水, 并遵循“以防为主、刚柔相济、多道防线、因地制宜、综合治理”的原则。

2.1 复合结构防水设计

复合结构通过围护结构与主体结构侧墙之间敷设柔性防水层 (1.5 mm厚防水板) , 顶板涂刷2.5 mm厚聚氨酯防水涂膜, 底板下方铺设1.5 mm厚防水板来实现全包防水的设计理念。图1为全包防水横断面构造图, 图2为全包防水设计下顶板与侧墙交接处构造图, 图3为全包防水设计下底板与侧墙交接处构造图。

1—素土分层回填夯实;2—70厚细石混凝土保护层;3—纸胎油毡隔离层;4—2.5厚聚氨酯涂膜防水层;5—现浇防水混凝土车站顶板;6—现浇防水混凝土车站侧墙;7—柔性防水层;8—围护结构;9—止水构件;10—注浆嘴;11—现浇防水混凝土车站底板;12—混凝土垫层;13—施工缝

2.2 叠合结构防水设计

叠合结构的车站围护结构采用800 mm或1 000mm厚的地下连续墙+400 mm的内衬墙作为车站正常使用阶段的侧墙, 地下连续墙与内衬墙之间通过设置连接钢筋连接为一体。叠合结构通过顶板设置2.5mm厚聚氨酯涂膜防水层, 内衬墙与底板内侧涂刷水泥基渗透结晶型防水涂料来实现半包防水理念。图4为半包防水横断面构造图, 图5为半包防水设计下顶板与侧墙交接处构造图, 图6为半包防水设计下底板与侧墙防水构造图。

3 地下车站渗漏水分析

据跟踪地下车站的施工过程及施工质量, 地下车站渗漏水的主要表现形式有:点漏、施工缝渗漏、大面积渗水、裂缝渗漏等[1]。以下分别描述复合结构及叠合结构渗漏水的表现形式, 并分析原因。

1—素土分层回填夯实;2—70厚细石混凝土保护层;3—2.5厚聚氨酯涂膜防水层;4—抗裂金属扩张网 (顶板外侧钢筋保护层内设计) ;5—现浇防水混凝土车站顶板;6—水泥基渗透结晶型防水涂料;7—防水抗裂钢筋混凝土车站侧墙;8—围护结构;9—止水构件;10—注浆嘴;11—施工缝;12—现浇防水混凝土车站底板;13—混凝土垫层

3.1 复合结构车站

复合结构的渗漏水以点漏、施工缝渗漏、裂缝渗漏为主, 渗水部位主要集中在底板和侧墙的施工缝、混凝土收缩裂缝、混凝土浇筑振捣不密实处。单纯以防水施工质量而言, 底板的柔性防水层铺设质量、顶板的防水涂料涂刷质量均易得到保证。但是, 侧墙防水层的敷设质量往往难以达到预期效果, 其原因分析如下:

1) 柔性防水层的基面设计要求:铺设防水层前, 需保证地下连续墙无明水 (允许潮湿) ;地下连续墙平整度应满足D/L≤1/6 (D为基面相邻两凸面凹进去的深度, L为基面相邻两凸面间的距离) 。然而现场施工时, 由于工程进度、质量控制等因素, 往往难以达到设计要求。

2) 柔性防水层的固定要求:设计要求防水层敷设平整后, 采用专用固定钉进行固定, 以避免浇筑主体结构混凝土时防水层脱落。然后, 在现场施工时, 往往会随意采用水泥钉等固定措施来替代专用钉, 造成防水层局部破损。侧墙钢筋绑扎时, 也有造成防水层破损的现象发生。

3) 侧墙柔性防水层的粘结:普通自粘防水卷材的粘结机理为物理吸附, 受湿热循环、水泡等外界影响, 粘结力下降, 容易空鼓、窜水。

3.2 叠合结构车站

叠合结构的渗漏水以点漏、缝漏和面漏为主, 主要集中在顶板以外的其他部位, 其漏水原因分析如下:

1) 连续墙施工质量:地下连续墙成槽质量与地质条件有很大关系, 由于采用水下混凝土浇筑施工, 连续墙的施工质量难以保证。现场存在连续墙露筋、墙间夹泥等现象, 导致地下水形成渗水通道。

2) 地下连续墙接头:连续墙接头采用“燕尾形”钢板连接, 连续墙混凝土浇筑时, 在接头位置易形成渗水通道。

3) 侧墙裂缝:地下连续墙作为侧墙的主要部分, 先于内衬墙浇筑施工, 内衬墙混凝土浇筑时其基本上完成了混凝土的收缩变形, 待内衬墙凝固收缩时, 受地下连续墙的约束易形成张拉裂缝。

4) 水泥基渗透结晶型防水涂料的涂刷:水泥基渗透结晶型防水涂料是以硅酸盐水泥或者普通硅酸盐水泥、石英砂等为基材, 掺入活性化学物质制成的一种新型刚性防水材料, 它与水作用后, 材料中含有的活性化学物质通过载体向内部渗透, 在混凝土中形成不溶于水的结晶体, 堵塞毛细孔道, 使混凝土致密、防水[2]。叠合结构在侧墙内侧涂刷水泥基渗透结晶型防水涂料, 从现场施工质量来看, 防水效果并不理想, 这或许与其涂刷质量难以检测有关。

3.3 复合结构与叠合结构比较

复合结构与叠合结构的防水设计可从以下几个方面进行比较。

1) 造价:复合结构侧墙比叠合结构侧墙厚约400mm, 加上基坑开挖时增加土方量, 故复合结构造价要高于叠合结构。

2) 防水理念:复合结构强调防水层防水, 主体结构自防水作为防水设计的第2道防线;叠合结构强调结构自防水, 水泥基渗透结晶型防水涂料作为防水设计的第2道防线。

3) 结构独立性和完整性:复合结构侧墙独立浇筑, 从各个角度来讲其侧墙的完整性均比叠合结构要好, 这样更有利于结构自防水。

4) 防水效果:从地下车站渗漏水情况来看, 车站注浆堵漏前, 复合结构的防水效果要优于叠合结构。

5) 渗漏水治理:通常复合结构与叠合结构治理渗漏水均采用注浆堵漏处理, 叠合结构侧墙内侧涂刷水泥基渗透结晶型防水涂料的优势并未在渗漏治理中得以体现。

4 总结及建议

地下车站渗漏水原因众多, 防水设计又是一个系统工程, 防水设计宗旨即为防止地下水通过渗水路径渗入车站内, 其控制措施主要是防止产生渗水通道和堵塞既有的通道。结合深圳地铁3号线的防水设计及施工质量, 对地下车站的防水设计及施工进行总结和建议, 以供同行讨论。

1) 加强主体结构自防水:不管是复合结构还是叠合结构, 只要能做到主体结构混凝土浇筑密实, 无贯通缝隙产生, 基本上可满足GB 50108—2008《地下工程防水技术规范》中各防水等级的相关要求。

2) 加强防水施工质量控制:地下车站防水工程分部验收往往是与主体结构分部验收同时进行的, 其验收标准是根据主体结构的渗漏水情况来反映防水工程施工质量的, 而防水施工过程中监管力度不够, 导致防水施工质量得不到保证。

3) 结构形式的选择:复合结构的主体结构受围护结构影响较小, 结构受力明确, 同时防水体系完整, 主体结构自防水能形成第2道防线;叠合结构虽然建设期间相对复合结构造价低, 但后期渗漏病害治理费用较高。因此, 结合后期运营综合考虑, 建议采用复合结构。

4) 侧墙柔性防水层选择:考虑侧墙防水层铺设和主体结构混凝土浇筑时的影响, 建议侧墙防水层采用能与侧墙混凝土发生物理吸附和化学作用、形成有效粘结的卷材。

摘要:根据深圳地铁3号线地下车站的防水设计及实际施工质量分析, 对地下车站采用的叠合结构和复合结构形式的防水设计、施工质量、防水效果进行了比较和总结, 并提出相应的建议以供同行讨论。

关键词:深圳地铁,地下车站,叠合结构,复合结构

参考文献

[1]刘梅斌.地下铁道车站几种渗漏现象的原因分析[J].建筑技术, 2001, 32 (4) :256-257.

8.地铁车站施工难点分析 篇八

【关键词】地铁车站;深基坑;地面变形特点

Study on Ground Deformation Characteristics of Deep Foundation Pit Construction in Subway Station

Wang Ze-dong

(China Railway eleventh Bureau Group Fourth Engineering Co,ltdNingbaoZhejiang315100)

【Abstract】Most of the urban subway construction in the surrounding buildings are more intensive areas, the construction environment is more complex. Nanchang City, the first time for subway construction, no relevant experience, so the east coast of Gan River in Zhongshan West Station as an experimental station, in conjunction with the construction of the construction of the deep foundation pit on the ground deformation characteristics and the surrounding environment and other issues , Research, both to ensure the smooth construction of the experimental station, but also for the next subway Nanchang design, construction has accumulated relevant experience.

【Key words】Subway station;Deep foundation pit;Ground deformation characteristics

1. 引言

随着城市不断发展,拥挤的交通既影响了市民的出行,也阻碍了社会经济的发展。为合理开发城市空间、改善市民出行的条件、减少地面交通的压力,南昌市的地铁工程开始进入真正的建设实施阶段。轨道交通1 号线是南昌市同时也是江西省的第一条地铁。地铁车站深基坑[1~3]开挖施工存在着较大的安全风险,国内外因为深基坑施工出现的质量、安全事故较多。基坑内土体开挖后,在坑外土压力及水压力的作用下,围护结构往往会变形,进而易出现基坑围护结构渗漏水、涌水、涌砂、坑底隆起等,进而引起坑外地面及建(构)筑物变形[4~6]等,更为甚者酿成基坑失稳坍塌的安全事故。为此,根据南昌市的工程及水文地质情况,并结合国内地铁深基坑施工情况采用资料筛选及文献总结法对深基坑施工对地面变形特点、深基坑施工监测的意义、深基坑施工监测方法等进行研究。

2. 工程概况

南昌市轨道交通1号线总体呈由先由东向西向然后转由南北向,奥体中心站是起点,途经北京东路、北京西路、中山路、中山西路、穿赣江、世茂路、丰和大道,一路向北到下罗的蛟桥站。线路为24.8Km,一共有24座车站。

2.1地形地貌。

(1)施工场地处赣抚冲积平原1级阶地,场地西侧约200m处为赣江,北侧约30m处为抚河支流;东侧约280米处为抚河,南侧为中山西路详见图3.现场场地标高在19~24m之间,总体上呈南高北低,场地南侧的中山西路地面标高一般为23~24m,场地北侧为居民生活区,场地标高一般为19~24.2m,高差3~5m。

(2)拟建场地及周边环境较为复杂,场地处在中山西路及居民生活区,居民住房为底层,层数为1~3层,民房之间建有大量的临时搭建房。车站基坑北侧30m左右为抚河,宽为70m左右,两侧均有混凝土挡墙护岸,其在场地的西北端汇入赣江。其北侧空地原为抚河一部分,后来由于抚河南岸护堤的修建,后被回填成现状。填土较厚,一般为4~5m,成份主要为生活垃圾及碎石块,填土底部夹有0.3~0.5厚的淤泥。场地西北侧为南昌市水利局宿舍楼及航务局机修段,层高为3~6层,局部地段原为水塘,后修建住房而回填;基坑西侧填土底部有老抚河护堤的块石、河流防汛墙基础。南侧为蓝湾半岛花园高档小区,均为高层建筑,且均带有地下室。

2.2工程地质构造。

2.2.1拟建场地位于江南台隆构造单元的萍乡-乐平台陷之北侧,构造上主要受赣江大断裂影响。上部为第四系松散层所覆盖,厚约20.00m左右,基底为巨厚的泻湖相碎屑岩沉积层。第三系中存在着一些北东向、近南北向和北西向缓倾斜背斜和向斜构造,勘探深度内未见有断裂构造痕迹。

2.2.2据钻探揭露及勘探深度内,场地地层上部为人工填土(Qml)、第四系全新统冲积层(Q4al)、下部为第三系新余群(Exn)基岩。按其岩性及其工程特性,自上而下依次划分为①1杂填土、①2素填土、②1粉质粘土、②2粉土、②3细砂、②3-1砾砂、②5粗砂、②5-1淤泥质粉质粘土、②6砾砂、⑤泥质粉砂岩。

本车站(图1)在位于西河滩路以东,亨字路以西、中山西路以北,呈东西走向,为地下三层岛式站台车站,地下三层为站台层、地下二层为设备层、地下一层为站厅层。

2.3水文条件。

2.3.1地表水。

勘察场地范围内地分区表水主要为赣江及抚河,场地西侧约200米处是江西省第一大河流赣江,全长827Km,总流域面积8.3万Km2。据场地上游6公里处外洲水文站资料,赣江最高洪水位25.5m(1988年,吴淞高程,),最低水位13.50m(2007年),勘察期间水位标高为14.59m(4月26日测);最大洪峰流量21200 m3/s(1982年6月20日),最枯流量172m3/s,最大流速2.53m/s。

场地北侧为抚河支流,在场地西北端300m左右处汇入赣江,往市郊东南隅由青岚湖汇入鄱阳湖。抚河在南昌境内流域面积200.3Km2,平均年迳流量146亿m3。据钱溪闸水文站资料,多年平均最高洪水位20.07m,多年平均最低水位15.38m,勘察期间水位标高为15.10m,河流两侧岸坡均有砼挡墙护岸。

2.3.2地下水。

根据地下水含水空间介质、水动力特征及赋存条件,拟建工程场地地下水类型可分为上层滞水、松散岩类孔隙水、碎屑岩类裂隙溶蚀水三种类型。

2.3.3上层滞水。

上层滞水主要赋存于杂填土层之中,主要接受降雨入渗补给、抚河及城区下水管的渗漏补给。水位随气候变化大,无连续的水位面。勘察实测地该层地下水的埋深在3.40~4.90m。

2.3.4松散岩类孔隙水。

孔隙水主要赋存于第四系全新统冲积层的砂砾石层中,该层地下水为潜水,地下水位埋深较浅,且含量较为丰富。勘察期间属平水期,其水位埋深3.90~9.60m,标高14.52~15.21m。地下水位年变幅1~3m,地下水主要接受赣江及抚河地表水体的侧向补给,地下水受人为开采影响小,平水季节及枯水季节地下水补给地表水,地下水向赣江、抚河排泄;汛期赣江、抚河水位上涨,地表水体返补给地下水。勘察期间抚河水位标高为15.10m(测量日期4月24日),赣江(八一桥上游)水位标高为14.59m(测量日期4月27日)。

因受岩性变化所致,局部钙质泥岩、含钙砂岩层段,其构造节理发育时,多具一定的溶蚀现象,为碎屑岩层中地下水的相对富集地带,根据区域地质资料,其单井涌水量总体而言相对较大,含水层综合渗透系数为1~15m/d,单井涌水量多在200~500 m3/d左右,最大可达1500m3/d;已有资料与原有工程经验均反映,此类构造裂隙溶蚀水富水区的分布与岩性、胶结物和构造发育有关。

3. 地铁车站深基坑施工对地面变形特点的研究

3.1地铁车站深基坑变形监测中等精度的特点。

在对地铁车站深基坑工程监测时,并不要求监测出绝对值,只要监测到相对的变化值就可以,在对深基坑的测量中,要对建筑物在地面进行相对的定位,可得出绝对量的坐标和高程的测量,在进行深基坑围护结构侧壁变形观测时,仅仅测量深基坑边壁相对于开挖前的移动即可。

3.2地铁车站深基坑变形监测中时效性的特点。

在监测地铁车站深基坑变形时,严格要求时间的时效性,在使用变形监测的设备和方法时,在采集数据时要适应不同的天气条件,无论白天还是夜晚都需要进行整天的操作。

3.3地铁车站深基坑变形监测中高精度的特点。

在监测地铁车站深基坑变形时,要用精度相对高的仪器进行监测,监测出来的数据将十分准确,不仅可达到高精度监测的目的,还能够适应高精度监测的要求。

4. 地铁车站深基坑施工变形监测的意义、内容和要求

4.1地铁车站深基坑施工变形监测的意义。

(1)因为地铁车站深基坑的施工为城市地下施工的内容,它与普通的建筑施工不一样,在开挖地铁车站深基坑时会受到地质条件的影响,再由于地铁车站是人流量相对大和建筑物十分密集的地方,对深基坑开挖中会由于周边的环境受到限制,这也对周边的建筑物有较多的影响。所以在对深基坑施工的过程中进行变形监测,可增加全部工程的安全性,除了对地铁车站的安全性有相关保障,还可以确保地铁车站工程的质量,对于保证线路和人员以及周围建筑构筑物、管线等的安全有着非常重要的意义。

(2)对地铁车站深基坑的工程而言,它是一项较为复杂的工程,不要仅仅依靠以往的施工经验去施工。由于工程地质及水文地质的复杂性,无法判断和预测深基坑的变形,一定要严格按照开工前编制的《深基坑监测方案》要求的监测项目及频率进行监测。

4.1.1要掌握变形的大小,依照深基坑监测的数据进行分析,就能够定量的评定深基坑开挖对周边建筑物的影响,以便施工单位确定施工的进度。

4.1.2因为在施工中要受到许多环境的影响,而且在深基坑开挖时周围的建(构)筑物不稳定,对于其变形并无章可循。所以要根据现场变形监测的数据去评定基坑的变形状况,可以为施工单位确定科学且合理的施工方案提供可靠的依据。

4.1.3因为深基坑的开挖是一项较为复杂的工程,在施工中,施工单位没有考虑深基坑监测数据的重要性,故会造成安全事故,通过对变形监测的数据进行分析,可以迅速发现安全隐患,并及时采取措施进行处理,消除安全隐患,保证施工安全。

4.2地铁车站深基坑施工变形监测的内容。

在地铁车站深基坑开挖的过程中,要关注变形监测的内容。通常的变形有:坑底周围土体、深基坑外地层、围护结构的变形或坑底回弹的变形等。所以要针对上述的变形进行监测,这样才可以保证地铁车站深基坑施工的安全性以及可靠性。

4.3地铁车站深基坑变形监测的要求。

4.3.1在进行深基坑变形的监测前,除了编制监测专项方案,制定监测的计划,还需要按照相关的技术文件去执行,这样才能够保证监测数据的准确性以及完整性。在进行监测中,需要使用精度较高的监测仪器,要求工作人员及时对监测仪器进行保养和维修,并确保工作人员在使用监测仪器时可以观测出准确度高的数据,要提高工作人员的技术水平,可以进一步的确保监测数据的可靠性。因为深基坑的开挖是动态的,所以在监测时,要求及时发现安全隐患,并及时采用措施去预防。

4.3.2对深基坑变形的监测之前,要按照实际工程的现场以及特点设定预警值,当发现大于预警值时,就要采取相关措施去解决。在对深基坑变形监测中,要确保观测记录的完整可靠,以及监测的连续性。在地铁车站深基坑监测时,要按照固定的表格去记录监测数据,并对记录进行保存。对于每次的监测得到的数据,要迅速进行反馈,若某个或某几个数据超过预警值,必须分析原因,并及时解决,以消除隐患。

5. 地铁车站深基坑施工变形监测的方法

5.1对围护墙体的变形进行监测。

在围护墙体的变形中,通常分为垂直和水平两个方向。水平方向的变形是由于深基坑开挖的深度太深所致,导致墙体内侧的土体的支撑力缺乏,但外侧的土体中的作用力都在围护结构上,便导致墙体的变形或倾斜。但这种压力不均匀的,对紧靠坑体底部位置的压力十分小,墙体的变形也相对小。所以要加固围护墙,这即可保证开挖深基坑中的安全,还可以保证周围建筑物的稳定。

5.2对墙后土体沉降进行监测。

由于工程地质及水文地质较为复杂,在深基坑开挖时,因为土体的流动性较大,地下土体从基坑由外而内的移动,就会导致墙后土体沉降,要使用精度较高的仪器去监测,并对数据进行分析,便可掌握围护结构的全部变形特征。

5.3对深基坑坑底土体变形进行监测。

基坑开挖后,由于挖去了坑内土体,破坏了坑内土体的原始应力,坑底土体就有可能隆起变形。若基坑开挖较深时,一定要监测围护结构的内移。在监测坑底土体是否隆起时,通常就是利用精密水准仪监测,此时要在不同的时间对相同的地方进行多次监测,然后分析监测获取的数据,从而算出实际变形值的大小。

5.4对不同的监测项目进行不同的监测频率。

为了保证监测数据的真实性以及可靠性,需要对不同的监测项目进行严格监测,在发现问题时,要迅速处理,并针对以上三点对不同项目分别进行监测,尤其对监测指标变化较大的项目要提高监测频率,相反,对监测数据变化不大,或数据相对稳定的项目,其监测频率可以适当降低。这样可以有效的保证地铁车站深基坑施工的安全。

6. 结束语

地铁车站深基坑施工,对地下的土体和周围的环境会造成一定的影响,且由于深基坑的施工是动态的,在施工过程中避免不了突发情况,要保证地铁车站深基坑施工的安全性,除了完整的设计施工图纸和可靠的施工方案外,还必须要制定详细的《深基坑监测方案》。除了利用监测仪器,还要把握监测仪器的精准度,在基坑开挖前、开挖过程中直至主体结构施工结束后都必须对深基坑施工进行相关的监测,并保证监测质量,提高监测水平,对在施工过程中出现的问题,要即时采取措施并迅速解决,这样可以很好的保证深基坑施工的顺利进行及施工的安全性。根据工程施工实践,上述方法值得推广。

参考文献

[1]杜习磊,花雷.深基坑开挖有限元模拟分析[J].山西建筑.2011(24).

[2]刘铭,李翔宇.上海地铁车站深基坑连续墙变形的统计[J].低温建筑技术.2011(02).

[3]杨敏,卢俊义.基坑开挖引起的地面沉降估算[J].岩土工程学报.2010(12).

[4]王体广.软土地区深基坑变形过大的原因分析[J].西部探矿工程.2010(03).

[5]兰守奇,张庆贺.地铁车站深基坑地下连续墙变形监测[J].低温建筑技术.2009(06).

[6]杨丽萍,吴野.某地铁深基坑变形控制技术分析[J].勘察科学技术.2008(05).

上一篇:八年级物理声音的产生与传播教学设计下一篇:执行担保法律规定