初三圆的知识点总结图

2024-08-17

初三圆的知识点总结图(共1篇)

1.初三圆的知识点总结图 篇一

中考数学关于圆的知识点总结

考点

一、圆的相关概念

1、圆的定义

在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

2、圆的几何表示

以点O为圆心的圆记作“⊙O”,读作“圆O”考点

二、弦、弧等与圆有关的定义

(1)弦

连接圆上任意两点的线段叫做弦。(如图中的AB)(2)直径

经过圆心的弦叫做直径。(如途中的CD)直径等于半径的2倍。(3)半圆

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。(4)弧、优弧、劣弧

圆上任意两点间的部分叫做圆弧,简称弧。弧用符号“⌒”表示,以A,B为端点的弧记作“

”,读作“圆弧AB”或“弧AB”。

大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)

考点

三、垂径定理及其推论(重要)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。*推论2:圆的两条平行弦所夹的弧相等。考点

四、圆的对称性

1、圆的轴对称性

圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

2、圆的中心对称性

圆是以圆心为对称中心的中心对称图形。考点

五、弧、弦、弦心距、圆心角之间的关系定理

1、圆心角

顶点在圆心的角叫做圆心角。

2、弦心距

从圆心到弦的距离叫做弦心距。

3、弧、弦、弦心距、圆心角之间的关系定理

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。

推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。考点

六、圆周角定理及其推论

1、圆周角

顶点在圆上,并且两边都和圆相交的角叫做圆周角。

2、圆周角定理(重要)

一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。推论2(△):半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。考点

七、点和圆的位置关系

设⊙O的半径是r,点P到圆心O的距离为d 则有:d

d=r点P在⊙O上; d>r点P在⊙O外。考点

八、直线与圆的位置关系

直线和圆有三种位置关系,具体如下:

(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;

(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。如果⊙O的半径为r,圆心O到直线l的距离为d,那么:

直线l与⊙O相交dr; 考点

九、圆内接四边形

圆的内接四边形定理:圆的内接四边形的对角互补(重要),外角等于它的内对角。即:在⊙O中,∵四边ABCD是内接四边形

∴CBAD180BD180 DAEC

考点

十、切线的性质与判定定理

1、切线的判定定理:过半径外端且垂直于半径的直线是切线;

两个条件:过半径外端且垂直半径,二者缺一不可即:∵MNOA且MN过半径OA外端∴MN是⊙O的切线

2、性质定理:切线垂直于过切点的半径(如上图)(记住理解即可,不会考证明题)考点

十一、切线长定理

切线长定理:从圆外一点引圆的两条切线,它们的切线长 相等,这点和圆心的连线平分两条切线的夹角。

即:∵PA、PB是的两条切线∴PAPB;PO平分BPA(用三角形全等证明)考点

十二、弧长和扇形面积

1、弧长公式

半径为R的圆中,n°的圆心角所对的弧长l的计算公式:

2、扇形面积公式

其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。

3、圆锥的侧面积

其中l是圆锥的母线长,r是圆锥的地面半径。考点

十三、圆幂定理(一般不会考)

1、相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。

即:在⊙O中,∵弦AB、CD相交于点P,∴PAPBPCPD

2、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

即:在⊙O中,∵PA是切线,PB是割线 ∴ PA2PCPB

3、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。

即:在⊙O中,∵PB、PE是割线∴PCPBPDPE

上一篇:广场舞活动启动仪式下一篇:时间作文初三