五年级质数与合数奥数教案

2024-06-23

五年级质数与合数奥数教案(精选10篇)

1.五年级质数与合数奥数教案 篇一

教研内容:

质数与合数、分解质因数

教学目标:

1、能够理解质数与合数的意义。能正确判断一个数是质数还是合数。了解100以内的质数,熟悉20以内的质数。理解质因数、分解质因数的意义。会把一个合数分解质因数,掌握用短除式分解质因数。

2、培养学生观察、比较、概括和判断的能力,以及自主探索、独立思考、合作交流的能力。

3、在研究过程中体验成功带来的学习乐趣,感受数学文化的魅力,同时在教学中渗透对立统一的辩证唯物主义的观点。

教学重点:

1、理解质数和合数的意义,质因数和分解质因数的意义。

2、分解质因数的方法。

教学难点:

1、如何判断一个数是质数还是合数。

2、分清因数和质因数,质因数和分解质因数的联系与区别。用短除法分解质因数。

重难点突破:

1、从研究团体操表演中各方阵人数的特点这一情境入手,抓住学生日常生活中喜闻乐见的事物,把抽象的数学概念与学生的生活实际紧密相连。通过把每个数的因数罗列出来,思考:有两个以上因数的,都能排成方阵吗?进一步研究,验证,概况出质数和合数的定义。再出示几个数,让学生学会判断是质数还是合数,也可让学生自己写出几个质数和合数。给学生充分的时间交流、评判,以达到辨析概念的目的。

2、在认识质因数、分解质因数时,可让学生用自己的方法对合数进行分解,然后从学生中选择用塔式分解式的方法,进行交流,归纳质因数,分解质因数的意义;然后学会用塔式分解式分解质因数。学习短除法分解质因数时,教师可先让学生了解格式,然后学生自己试算,然后归纳步骤。

教学要点:

1、认识质数和合数。围绕排成各个方阵的人数,分别是24、25、40、35、32,这些数有什么特点呢这一问题,放手让学生寻找这些数的特点。教师在学生思考后可适当引导,看组成方阵的人数与它们的因数有关系吗,让学生观察因数的个数,初步得出这些数因数的个数都在两个以上的结论。再利用学具摆一摆,在感知的基础上,对列举的个数按因数的个数进行分类,得出非零自然数按照因数的个数分类可分成质数、合数和1。

2、分解质因数。先安排学生列塔式分解式对具体数进行分解,让学生清楚地认识的到质因数时一个合数的因数,同时还必须是质数的双层含义。在学习用短除法分解质因数时,让学生按照:了解格式,试算,对分解步骤进行归纳这三步完成的。

2.五年级质数与合数奥数教案 篇二

1. 使学生理解质数、合数的意义,会判断一个数是质数还是合数。

2. 培养学生观察、比较、归纳、概括的能力。

3. 培养学生勇于实践、探索的学习品质。

【教学重点】

质数和合数的概念。

【教学难点】

正确判断一个数是质数还是合数。

【教学准备】

1. 教具准备:边长1厘米的小正方形若干、小组合作表格。

2. 学具准备: 小字本。

【教学过程】

一、探究发现,总结概念:

1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?

学生动手在小字本上画一画。

生1:能拼成2个,横着和竖着。

生2:不对,横着和竖着是一样的。

师:你拼出的长方形长是几?宽边呢?

生3:长是3,宽是1。拼成3×1的形状。

根据学生回答教师填写表格。

正方形个数

拼出长方形的个数

长×宽

3

1

3×1

【学生积极动手,虽不知道今天学习什么内容,心中充满了疑惑,但是兴趣都很浓。说明学生是非常喜欢探究的。突破三个同样的小正方形无论这么放都只是一种。】

2、师:这样的四个小正方形能拼出几个不同的长方形?

学生动手画一画。学生各自独立思考后举手回答。并填写表格。

【突破正方形是特殊的长方形,有两种拼法。】

3、师:同学们再想一下,如果有12个这样的小正方形,你能拼出几个不同的长方形?

师:我看到许多同学不用画就已经知道了。(指名说一说)并填写表格。

师:看表格,第三列与第一列有什么关系?

生:3和1是3的因数。……

师:第三列改为正方形个数的因数。

4、师:同学们,如果给出的正方形的个数越多,那拼出的不同的长方形的个数——,你觉得会怎么样?

学生几乎是异口同声地说:会越多。

师:确定吗?(引导学生展开讨论。)

生:刚才四个正方形能排出两个,如果用5个正方形只能排出1个。

师:一个例子就把你们刚才的结论给否定了。多有说服力的反例!

5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种,你觉得当小正方形的个数是什么的时候,只能拼一种?(学生思考着,之后,相互之间展开了热烈的讨论。)

学生举例:3,5,11,13,17……

师:这些数有什么共同的特征?

师:我们发现表示正方形个数的数只有1和它本身两个因数的时候,只能拼成一个长方形,什么情况下拼得的长方形不止一种?

学生举例:4、6、8、9、10、12、14、15……

3.五年级下册质数和合数教学反思 篇三

新授部分:也是本节课的主体部分。主要以学生动手操作、探究交流的形式进行。让学生找出自己学号的因数,并请1-12号说出各数的所有因数,并引导学生观察这些因数有什么不同,可以怎样分类。学生通过自主探索,自觉地把这些数分成三类,在分类的基础上,引出质数和合数的概念。这部分衔接自然,紧密。通过寻找1—12的因数,同学们顺利的按因数个数的多少把1~12以内的数分成了两类:一种是只有1和它本身两个约数,另一种是有两个以上因数的数,我环顾了四周,问:“你们觉得分成两类行吗?还有什么问题?”沉默了片刻后,马上有人提问了:“还有1不行!”“那1又是什么数呢?”——(指而不明,引而不发)我带着笑并没有正面回答同学们的疑问,交流一下(同桌),最后,大家通过判断因数个数的.多少,得出了结论:“1既不是质数也不是合数”。同学们在观察、操作、猜测、交流活动中,逐步体会到了数学知识,也获得了积极的情感体验。

但美中不足,根据因数个数不同给自然数分类,学生无动于衷,我继续说,你们讨论讨论,孩子没行动,遂即使我带着孩子一起观察1-12这十二个数分别有几个因数,如何分类,课后我想学生对分类这个概念可能还不太理解。是否再导入是进行复习:可以从不同角度进行分类,比如:男性、女性、成人、儿童等。让学生动手动脑去整理一组数字,并说说是按什么样的标准进行分类的。由此导入归纳数字的一些共同特征,是我们在研究数的问题时所常用的方法,而且从不同的角度会有不同的分类方法,继续认识两个新的关于数的概念这样会好些。

练习巩固部分:制作100以内的质数表,练习应用。在学习100以内的质数表时,并没有让学生死记硬背,而是让学生自主制作质数表。让学生在制表过程中充分体验知识的获取过程,提高学生有序思维、分析、判断及推理的能力。

本节课我设计了一系列形式多样的练习,目的有二:其一是为了加深对新知的理解和掌握,其二是为了让学生感知质数与合数、奇数和偶数这几个概念的区别,让学生在有趣、有层次的练习中获得新知、突破难点。另外编了一则顺口溜给学生,在后来较长时间学生的记忆很牢。

4.质数与合数教案 篇四

教学目标:

1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。

2、知道100以内的质数,熟20以内的质数。

3、培养学生认真学习,善于思考的学习品质。教学重点:

1、理解掌握质数、合数的概念。

2、准确判断一个数是质数还是合数。教学难点: 区分奇数、质数、偶数、合数。教学准备:课件、百数表 教学过程:

一、创设情境,引入新课。

1、课件出示课本107页的情境图

师讲解方阵队列的知识,让学生对队列有一个了解。

2、找出图中提供的信息 你能提出什么问题? 生提问题。

二、探索研究

1.能排成方阵的这些数有什么特点? 生先思考。

2、写出这些数的因数 生独立写。

展示这些数的因数。

3、提出问题质疑

是不是所有的人数都可以排成方阵? 生同位间讨论。

4、让学生利用棋子摆一摆或画一画 师出示数字:1——20中,这些数中哪些可以排成方阵? 生小组合作,利用手中的棋子摆一摆或画一画。师巡视指导。

5、汇报学生的结果

哪些可以排成方阵,哪些不能?

生:1、2、3、5、7、11、13、17、19这些数都不能排成方阵,4、6、8、9、10、12、14、15、16、18、20这些数都能排成方阵。

6、学习质数和合数的概念。

(1)比赛:写因数。一组写1、2、3、5、7、11、13、17、19的因数,另一组写4、6、8、9、10、12、15、16、20的因数。生分组写因数。

师:写得慢的原因是什么?

生:我们组的数的因数个数多。(2)观察:

①每个数的因数的个数是否完全相同?

②按照每个数的因数的多少,可以分几种情况?(学生讨论后归纳)

(3)结合学生的汇报,揭示质数和合数的概念。(板书概念)根据一个数的因数的个数的多少,我们可以把自然数分为几类? 1可以归哪一类?

揭示:1既不是质数,也不是合数。不过,大家可别小看了这个1,本单元中,它可是占有很特殊的地位的,在进行各种题目的判断时,你首先应该想到的就是它了。

(4)小组内说一个数,判断是质数还是合数。

师:我们应该怎样去判断一个数是质数还是合数?有没有必要把所有的因数都找出来?为什么?

生:根据因数的个数来判断是质数还是合数,不必要把所有的因数都找出来,只要发现自然数除了1和本身还有其它的因数,不管有几个,它都是合数。

7、找出100以内的质数,做一个质数表 出示百数表:(1)提问:如何很快的制作一张100以内的质数表?

(2)按质数的概念逐个判断?也可以用筛选法。

(3)介绍筛选法:先排除2以外的所有偶数,接着排除3以外的所有3的倍数,再接着排除5以外的所有5的倍数,最后排除7以外的7的倍数。因为1既不是质数,也 不是合数,所以也必须排除,这样剩下的就是100以内的质数。

100以内的质数(出示图表)

(4)师:判断一个数是不是质数,除了用质数的定义进行判断外,还可以查质数表。

三、巩固练习

1、判断下面各数,哪些是质数,哪些是合数.为什么? 17 22 29 35 37 87

2、判断你自己的学号是质数还是合数,悄悄地告诉你的同桌,并说明理由。

3、判断。

(1)在自然数中,除了1和0,不是质数就是合数。()

(2)一个数如果能被2整除,又能被5 整除,那么这个数就一定是合数。()(3)所有的奇数都是质数。()(4)所有的合数都是偶数。()

3、在()内填上适当的质数 8=()+()20=()+()+()9=()+()+()

4、猜一猜亮亮家的电话号码是多少?

我家电话号码,左起第1位和第2位相同,比最小的合数 多1,第3和5位数相同,10以内最大的质数,第4位是偶数又是质数,第6位和第8位相同,最小的两个质数的积,最后一位既不是质数,也不是合数。

四、全课总结

通过今天的学习,你有什么收获?

5.五年级质数与合数奥数教案 篇五

教学目标:

1.在解决实际问题中,经历“猜测━实验━验证”的研究过程,借助棋子模拟排队,用列举的方法探求质数、合数的特征。学会分解质因数。

2.在探索活动中,初步了解概念学习的基本方法。加深理解知识和提高学习能力。

3.培养同学们分析问题、解决问题的能力。教具准备:电脑课件、计数器、数字卡片

教学重点、难点:质数、合数的特征。会分解质因数。教学过程: 活动一

师:同学们曾经参加过团体操表演吗?看大屏幕:这是团体操表演的场景,仔细观察五个方队人数的特点。它们有什么共同特点?

师:这几个数有的有因数2,有的有因数5,那么这些数的共同点与它们的因数有关系吗?

学生通过仔细观察发现了排成各个方队的人数分别是24、25、40、35、32。

生1:这些数有的是奇数,有的是偶数。

生2:24、40、32是2的倍数,25、35、40是5的倍数。

生1:我发现这几个数中最小的是1,最大的是这个数

生2:我发现25有3个因数,40有8个因数,35有4个因数,32有6个因数,24有8个因数。

生1:能。

生2:不一定。

师:有两个以上因数的,都能排成方阵吗? 师:到底谁的说法正确呢? 活动二

我们用摆棋子的的方法来验证一下吧!你们想怎样来验证呢?

生1:我们用一个棋子代表一个人,找几个含有两个因数以上的数,看看是不是所有的都能排成方阵。/ 2

生2:我们来找几个含有两个因数的数,看是不是都能排成方阵。

生3:我们从1开始,分别排。

人数是1、2、3、4、5„„的队伍,看看能排成方阵的数是不是都含有两个以上的因数„„

师:像2、3、5„„这样只有1和它本身两个因数的数,叫做质数(素数);像4、6、8„„这样只有1和它本身两个因数的数,还有其他因数的数,叫做合数。

自主练习:p100 1、2、3、4

师:你能把30写成几个质数相乘的形式吗? 生1:30=5×6 6=2×3„„ 生2:30

∕\ 5 × 6 /\

× 3 师:还可以用短除法

师:30可以写成质数2、3、5相乘的形式,2、3、5叫做30的质因数。

师:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

6.质数和合数教案 篇六

教学内容:

青岛版小学五年级上册第107—109页。

教学目标:

1.经历观察、归纳、推理,获得什么是质数和合数的数学猜想,理解质数和合数的概念,并能判断一个数是质数还是合数,体验从特殊到一般的认识发展过程。

2.使学生理解质因数和分解质因数的含义,初步掌握分解质因数的方 3.培养学生自主探索、独立思考、合作交流的能力。教学过程:

一、复习旧知,做好铺垫。

教师谈话:同学们,我们已经学习了因数和倍数,那么在2×3=6中,6是2和3的什么数?2和3是6的什么数?6除了2和3这两个因数以外,还有那些因数?因此,一个数最小的因数是多少?最大的因数是谁?

二、创设情境,导入新课。

1.谈话:为弘扬奋勇拼搏的体育精神和健身意识,学校准备召开运动会,各班举行了团体操表演,我们一起去看一看各个班整齐的方阵。(出示情境图)你能发现什么?

2.学生会发现了排成各个方阵的人数分别是24、25、32、35、40。问:仔细观察这些数字,它们有什么特点呢? 学生思考后交流。

3.教师适时引导学生发现这些数与它们的因数的关系,帮助学生发现这些数都有两个以上的因数。从而使学生产生疑问:有两个以上因数的都能摆成方队吗?其他数行不行?

[设计意图]这样的教学,使学生悬念顿生,兴趣盎然,思维处于欲罢不能的状态。此时教师巧妙地把握住时机,导入新课。这样入手,激发了全体学生的兴趣,使课堂气氛顿时活跃起来.为本节课的顺利实施提供了有效的条件。

二、动手实践,探索新知。

1.针对疑问,鼓励学生大胆猜测,谈一谈自己的想法。

2.利用准备好的小方块摆一摆,看一看哪些数字能摆成方阵,哪些不能?验证自己的想法。

教师在学生操作过程中,进行巡视,适当指导。[设计意图]教师充分让位还权,放手让学生去探究,留足学生探究的时间与空间,让学生通过观察、动手操作去发现、验证自己的想法,使每个学生都积极参与“做”数学,从而体现出学生学习的主体参与意识。

3.交流自己的发现。

通过动手摆方阵,学生可能发现(1)1、2、3、5、7、11、13、17等数字不能摆成方阵,(2)4、6、8、9、10、12、14、15等数字能摆成方阵。

小组为单位观察、讨论:这两类数字有什么特点? 4.全班交流。

引导学生发现:数字可以分成三类,有的数字只有1和它本身两个因数;有的数字含有两个以上的因数;而1只有一个因数。[设计意图]在学生收集的数据的基础上,教师通过自己的智慧去引导学生,让学生去整理、分析自己的劳动成果,讨论、争辩,从而发现数据的规律,初步感知质数和合数的特征,同时也为揭示概念的本质属性的教学打下了良好的伏笔。5.揭示质数和合数的本质属性。

(1)我们把具有像2、3、5、7、11……特征的数叫做质数。想一想什么叫做质数?引导学生概括:只有1和它本身两个因数的数,叫做质数。我们把具有像4、6、8、9、10、12、14……这样的特征的数叫做合数。想一想什么叫做合数?引导学生概括:除了1和它本身两个因数外,还有其他的因数,这样的数就叫做合数。

(2)质数和合数的区别是什么?

(3)1是质数?还是合数?为什么?

学生以小组为单位自由讨论。全班交流、辩论,相互补充得出结论:1既不是质数也不是合数。

[设计意图]教师通过组织学生观察、讨论、探索从而发现了质数和合数的本质属性,得出了概念。接着引导学生去比较、辨析发现新的规律:关于质数和合数的区别及1的分类问题。这样不仅提高了学生对概念的理解而且拓展了学生对概念的内涵和外延的把握。

三、实践应用,巩固新知。1.把下面数中的合数圈起来。80 7 35 23 40 56 47 94 28 43 31 9 2.在自然数11-20中,质数有(),合数有(),既是奇数又是合数的数有()。

3.抢答游戏:老师出一个数,谁能最快的判断它是质数或是合数,进行抢答。51 2 10 11 23 12 29 34 57 91 100 1 4.判断

(1)一个非零的自然数,不是奇数就是偶数。

(2)一个非零的自然数,不是质数就是合数。(3)大于2的偶数都是合数。(4)所有的质数都是奇数。

5.某校五年级各班人数情况统计如下 班别 一班 二班 三班 四班 人数 40 42 48 45 各班要划分活动小组,如果每组5人,哪个班能正好分完?每组4人或6人呢?

[设计意图]通过练习进一步明确质数与合数的概念,能够正确的判断出一个数是质数还是合数。通过判断题明确奇数、偶数、质数、合数的区别与联系,得出偶数只有2是质数,其它的都是合数,4是最小的合数,1既不是质数也不是合数。

四、回顾反思

总结提升 谈谈这节课你有哪些收获? 全课总结。总设计意图:

第一、创设情境是落实新课程标准的重要措施。新课程标准就数学学习方式提出如下建议:数学教学应“从学生的生活经验和已有知识背景出发,想他们提供充分的从事数学活动和交流的机会,促使他们在自主探索的过程中真正理解和掌握基本的数学知识技能,数学思想和方法,同时获得广泛的数学活动经验。”本节课利用学生熟识的体操比赛创设情景,通过研究方阵人数引入课题,激发学生的兴趣,从而使学生体会到数学与实际生活的联系。

7.质数和合数 教学设计 教案 篇七

1.教学目标

1.1 知识与技能:

理解掌握质数、合数的概念和判断方法,能灵活选择方法判断一个数是质数还是合数。1.2过程与方法:

引导学生通过动手操作、观察比较、猜想验证、理解感悟质数、合数的含义。1.3 情感态度与价值观:

培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

2.教学重点/难点

2.1 教学重点:

理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。2.2 教学难点:

能运用一定的方法,从不同的角度判断、感悟质数合数。

3.教学用具

多媒体、板书

4.标签

教学过程

一、情景导入

1、创设情境:(出示表演方阵图片)

学生欣赏,从中明确:“方阵”就是两排或两排以上的正方形或长方形队伍。

2、联系实际:

我们五年级4个班的学生参加表演,哪个班能排成整齐的方阵?

学生汇报,交流方法:

48=2×24=3×16=4×12=6×8(能排成四种不同的方阵)49=7×7(能排成一种方阵)41=1×41(不能排成方阵)47=1×47(不能排成方阵)

3、思考:能否排成方阵与什么有关? 预设一:与因数的个数有关。

学生交流,明确:41和47的因数只有1和它本身,所以只能排成一列;而48和49除了1和本身还有其它的因数,所以可以排成不同的方阵。

预设二:与奇数和偶数有关。

7可以排成方阵,48是偶数也可以排成学生交流,并用反例说明:49是奇数,49=7×不同的方阵,所以能否排成方阵与奇数、偶数无关。

4、揭示课题:这节课我们就来进一步认识“质数和合数”。

【设计意图】:以“能不能排成方阵”这一问题情境引入新课,借助身边熟悉的生活,常见的队列队形为载体来学习质数和合数,是在现实生活中找到一个重要的数学模型。学生在分析问题的过程中,明确了是否能排成方阵与一个数因数的个数有关,初步感受到质数合数的本质,从而引入新课的学习。

二、完善概念 1、1~20以内的因数(学生利用学号牌活动)(1)20以内的质数:

独立思考:学号所代表的数是质数还是合数? 上台展示:请是质数的同学上台(举起学号牌)2、3、5、7、11、13、17、19、23、29、31、37、41、43、47 集体订正:站错的同学,明确用找因数个数的方法来判断是否是质数。小结明确:这些数都有一个共同的特点,就是只有1和它本身两个因数。(2)20以内的合数:

随机采访:请仍留在座位上的学生说一说自己所拿的学号为什么是合数?

交流明确:除2外,2的倍数都是合数;3的倍数都是合数,但3本身除外;5的倍数都是合数,但不包括5。……

小结方法:判断一个数是否是合数,可以用能被2、3、5整除的数的特征去判断,有时还可以用7、11……去判断。

(3)特殊数“1”:

提出疑问:学号为“1”的同学,你为什么不站起来? 交流明确:1既不是质数,也不是合数。

一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。1不是质数,也不是合数。

【设计意图】:此环节的设计突出了两个对比:一是质数合数和特殊数1的对比,通过活动让学号是质数的学生站在前台,合数的学生随环节的进行起立站在座位上,学号是1的同学始终静止不动,这样的对比,让学生切实感受到“1”既不是质数也不是合数;二是站在前台的质数2、3、5、7和合数中有因数2、3、5、7的数的对比,如,同样是2的倍数,“2”本身是质数,而“2”的其他的倍数都是合数,“3、5、7”也同样如此。使学生在实践中不断地明确了判断的方法。

2、判断下面各数,哪些是质数,哪些是合数.17 22 29 35 37 87

【设计意图】:“找一找”这个环节,分为两部分:找1~2数的质数合数,目的是形成100以内的质数表。主要依托活动,以活动的形式,既活跃了课堂气氛,使枯燥的教学富有朝气,又扩展了学生的参与面。每个学生经过思考后站到相应的位置,然后报出学号,其他学生进行评判,不仅形成了学生与本的互动,还促进了师生和生生之间的互动,从辨别纠错中,从对比中,不断地提炼出方法,帮助学生构建完整的知识体系,培养学生良好的数感。

三、形成能力

例1 找出100以内的质数,做一个质数表。要求:以三人为一小组合作学习。建议:①划去2的倍数(但2除外)

②划去5的倍数(但5除外)

③划去3的倍数(但3除外)

④划去7的倍数(但7除外)

想:划去的数都是什么数?为什么2、5、3、7 要除外? 学生交流后,明确: 自然数按因数的个数分为:质数、因数和1; 我们也可以用这种方法制作100以内的质数表。生在练习纸上制作,可小组交流。

照这道题的要求划去2、3、5、7的倍数,但2、3、5、7本身不能划去,最后把1划去,剩下的数就是100以内的质数了。

出示完整的100以内的质数表。3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 古希腊的数学家就是用这种方法“筛选法”找质数的。100以内的质数表

顺口溜:二、三、五、七、一十一 十三、十七、一十九 二三九、三一七 五三九、六一七 四一三七、七一三九 八三、八九、九十七

2、结合所学的这些知识介绍自己的学号。随机抽取学生介绍,并适时拓展。

3、辨解质数、合数和奇数、偶数之间的关系。(1)辨析:“所有的质数都是奇数”。学生举反例反驳。

引导:你是怎样很快的找到这个数的,能说说方法吗? 交流,明确:先写出所有的质数,再找其中不是奇数的。板书找的过程,并标注特殊数。引申:这句话怎样改就对了?

交流,明确:除2外,所有的质数都是奇数。

(2)辨析:“所有的偶数都是合数”、“所有的奇数都是质数”、“所有的合数都是偶数”。学生分组辨析,每两大组辨析其中的一句话。小组合作,用刚才列举的方法找到特殊数。小组代表上台板演辨析的过程。(3)对比,明确:

除2外,所有的质数都是奇数,所有的偶数都是合数;

因为9、15等特殊数的存在,“所有的奇数都是质数,所有的合数都是偶数”是错的。【设计意图】:“辨一辨”环节分为三个层次:一是从自然数的两种不同的分类中,感受质数和奇数,合数和偶数存在某种必然的联系;二是结合这些数的特点介绍自己的学号是什么样的数,如9是奇数又是合数等,答案是丰富的,全面认识了一些自然数的特性,从中一些夹在两者间的特殊数就显现出来了,为下面的辨析做准备;三是辨析有关联的两数之间的关系,上升到理论的高度,从具体到抽象,再从方法的指引中将抽象的问题形象化,让学生举一反三,由此及彼,逐步学会运用逻辑思维的方法,形成一定的辨别的能力。

四、提升认识

1、填空:

最小的奇数是(1),最小的质数是(2)。最小的合数是(4)

在10以内,既是奇数又是合数的数是(9)。即是偶数又是合数最小的是(4)。20以内的质数是:2、3、5、7、11、13、17、19 一个两位数由最小的奇数和最小的合数组成,这个数是(14或41)

由最小的质数,最小的合数以及最小的奇数组成的最小的三位数是:(124)知识拓展:

一七四二年,哥德巴赫发现,每一个大于4的偶数都可以写成两个质数的和。例如,6=3+3。又如,24=11+13等等。他对许多偶数进行了检验,都说明这是确实的。但是这需要给予证明。因为尚未经过证明,只能称之为猜想。他自己却不能够证明它,就写信请教赫赫有名的大数学家欧拉,请他来帮忙作出证明。一直到死,欧拉也不能证明它。

从此这成了一道世界难题,吸引了成千上万数学家的注意。两百多年来,多少数学家企图给这个猜想作出证明,都没有成功。

值得骄傲的是,到目前为止,这个世界难题证明的最好的,是我国著名的数学家陈景润,他的研究成果处于国际领先的地位。这一成果被命名为“陈氏定理”。但是他的证明离成功只有一步之遥,就匆匆的走完了他的一生。

老一辈数学家留下来的任务,要靠我们下一代来完成,所以现在我们应该好好学习知识,说不定将来的第二位陈景润就在我们中间。

【设计意图】:运用不同的形式,选取不同层次类型的题目,加深认识,达到对知识的熟练和灵活运用。

五、巩固练习

1.将下面各数分别填入指定的圈里。27 37 41 58 61 73 83 95 11 14 33 47 57 62 87 99

2.判断下面各数,哪些是质数,哪些是合数.17 22 29 35 37 87 17的因数:1 17(质数)22的因数:1 2 11 22(合数)29的因数:1 29(质数)35的因数:1 5 7 35(合数)37的因数:1 37(质数)87的因数:1 3 29 87(合数)3.下面的说法对吗?

所有的奇数都是质数。(错)所有的偶数都是合数。(错)在自然数中,除了质数以外都是合数。(错)4.下面各数,哪些是质数,哪些是合数。17 22 29 35 37 87 17、29、37 是质数。22、35、87是合数。

5.你能把下列各数改写成几个质数和的形式吗?

6.有一个五位数,万位上的数既不是质数也不是合数;千位上的数比最小的合数多1;百位上的数是10以内最大的素数;十位上的数既是偶数,又是质数;个位上的数是最小的两个连续质数的积。(这个数字是15726)

课堂小结

师:通过这节课的学习,你们有什么收获?

一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。1不是质数,也不是合数。

板书

质数和合数

8.《质数与合数》教学反思 篇八

依据什么分类标准分为奇数和偶数?同学们知道分类的标准不同,所分的结果也有不同。......今天我们要学习一个新的分类标准。

二、探究新知

9.《质数与合数》教学反思(通用) 篇九

在社会一步步向前发展的今天,我们的工作之一就是课堂教学,反思过去,是为了以后。反思我们应该怎么写呢?下面是小编精心整理的《质数与合数》教学反思(通用5篇),仅供参考,欢迎大家阅读。

《质数与合数》教学反思1

前几天我们学习了质数与合数这一部分教学内容,此部分内容尤为重要,尤其是质数这一部分内容。在教学质数和合数一课时,我运用了自主、合作、探究的教学方法,使学生在参与中产生求知欲望,调动学习积极性。首先让学生独立写出1-20这20个数的因数,再根据因数多少进行分类,然后以小组为单位交流,学生通过交流,有的分为两种,奇数和偶数;有的认为分为6种,有6种因数的个数;有的分为因数的个数为单数个和偶数个等等。然后让学生自学书上的分类方法,并感悟到,最科学的分类是自然数按照因数的个数可以分为质数、合数、0和1。明白含义后这时出示一组数据,让学生判断。

在教学中我努力放手,让学生从自己的思维实际出发,给学生以充分的思考时间,对问题进行独立探索、尝试、讨论、交流,学生充分展示自己的思维过程。在合作交流中互相启发、互相激励、共同发展。学生经历和感受了合作、交流、成功、愉悦的情感体验。

其实数学就在我们身边。在课中,我尊重学生,信任学生,敢干放手让学生自己去学习。整个教学过程让学生通过分类、讨论、质疑、释疑、归纳、验证,经历了知识的发现和探究过程。最后任意出各种数让学生进行辨析,巩固质数和合数的含义。最后出示例1中的1~100,让学生找100以内的质数。在找之前先让学生说一说你想如何来操作,才不会重负和遗漏掉。有的说根据含义逐个判断,有点的说根据前面学过的2、3、5的倍数的特征,先划掉这些数。我补充说明,在数比较多的时候,用后者比较合适,这种方法叫筛选(排除法)。除了划掉2、3、5的倍数,还要记得划掉7的倍数才行。

在这节课中,学生的思维比较活跃,学得灵活。但还有些地方需要改进。练习的形式还可以多样。反馈的速度过快,部分同学对质数的概念了解不够深入,学生掌握的效果并不太好,还需要在以后的教学中加以改进。

《质数与合数》教学反思2

《质数和合数》是在学生已经掌握了因数和倍数的意义,了解了2、5、3倍数的特征之后学习的又一重要内容,它是学生学习分解质因数,求最大公因数和最小公倍数的基础,在本章教学内容中起着承前启后的重要作用。五年级的学生已具备一定的观察、分析、理解能力,掌握了一些学习数学的方法。学生对学习充满热情和好奇心,有主动参与的意识,迫切地希望体验探究学习的过程。因此,我根据教学内容选择了探究性的学习方式。通过体验与探究的活动,让学生亲历概念的自我建构过程,培养学生勇于探索的科学精神。

本节课我把重点放在自主探究、观察、比较中,这样有利于培养学生的思维能力和探究精神。在课中,我尊重孩子,信任他们,勇敢的放手让学生自己去学习。首先我是让孩子们快速找出1到20各数的因数,然后引导他们观察,主要是从因数的个数上去观察。刚开始学生将他们分为两类:有1个或两个因数的:1,2,3,5,7,9,11,13,17,19;其余的有三个或三个以上因数的。我给与肯定并告诉孩子在数学上“1”这个数比较特殊,我们把它分为单独一类,有两个因数的归为1类,并将这样的数称为质数,然后让孩子根据这些数因数的特点给“质数”定义一下,学生们通过观察发现这些数只有两个因数,这两个因数就是“1”和“本身”,自然而然就得出质数的定义,理解质数后,合数的理解就很简单了。

其次,教师的鼓励为学生体验成功搭设了舞台。成功与快乐是学习的一种巨大的情绪力量,教师不失时机的积极鼓励,能使学生产生学好数学的.强烈欲望。因此,教师要对学生任何成功的言行都要给予及时、明确和积极的强化。如微笑、点头、重复和阐述学生的正确答案。在讲“质数、合数”这节课,教师在引导学生发现判断质数、合数方法的过程中,自始至终都没有以一个“裁判者”的身份出现,而是力求使自己成为学生学习的促进者、参与协商,鼓励和监控学生的讨论和练习过程,但不控制学生的讨论结果。同时教师也把自己当作学习者,与学生一道共同完成学习任务,由于采用了新课程标准的理念,让学生充分体验了成功的喜悦。

本节课教师充分放手让学生去探究,留足学生探究的时间与空间,关注有差异的学生去发现,去完成自己的学习目标,使每个学生都积极参与“做”数学,能再课上研究的问题就在课上处理,不只局限于使学生理解、掌握知识,更多关注的是培养学生探究知识能力,最大限度的满足了每一个学生数学学习的需要,让不同的人在数学上得到了不同的发展。

《质数与合数》教学反思3

本节课的内容是学习因数和倍数、2、3、5倍数特征的基础上进行教学的。本节课所涉及的质数与合数的概念也是初等数论的基础知识,为后面学习约分、通分奠定基础。

成功之处:

1、正确区分奇数与偶数、质数与合数的分类标准。在教学质数与合数时,首先让学生回顾奇数与偶数的特征及分类标准,即自然数按照2的倍数特征可以分为两类:奇数和偶数。接着一个非零自然数还可以按照什么标准进行分类呢以此引入新课,通过找出1—20各数的因数,观察这些数因数的个数你发现了什么,由此学生发现有的数只有1和它本身两个因数,有的除了1和它本身还有别的因数(两个以上的因数),有的只有1个因数,那么根据因数的个数可以把这些数分为几类,得出三类:质数、合数、1。最后在对比奇数、偶数的分类标准,让学生知道不同的分类标准可以得出不同的结果。

2、注重从新知中提取知识点,让学生进行记忆。在教学质数与合数的概念后,让学生想一想最小的质数是几,最小的合数是几,质数只有几个因数,合数至少有几个因数,一个非零自然数按照因数的个数可以分为几类,各是什么。在教学100以内的质数表后,让学生重点记忆20以内的质数有哪些。通过这样提取知识点可以让学生在做题目时能够比较准确的写出正确答案。

不足之处:

1、因为补充的知识点比较多,导致课堂练习时间过少,对知识的巩固有所欠缺。

2、个别学生对于分类的标准还存在模糊现象,导致在做练习时出现填写完20以内的质数后,在填写合数时出现漏数现象,不知道除了1和质数外,剩下的都是合数。

《质数与合数》教学反思4

概念的教学往往是枯燥的,一般不是有教师和学生的重复不断语言就是有很多的练习题训练。而这一节课教学使学生感到特别兴奋。

第一、在概念教学中,师生的这种融洽的、和谐的,而又不失激情的课堂氛围感染了我。它一改概念教学的枯燥与乏味。让学生在做中学,源于课本又超越了课本,学生用本册刚刚学到的数据收集和整理的知识,来动手操作研究这一节课,使得学生的兴趣一下子就被调动起来了。

第二、探究、合作、讨论、自主学习是新课程标准的基本理念。在概念教学中如何实施这一理念是这一节课的特色,教学中教师通过自己对教材的理解,对学生的了解。精心设计了问题,巧妙地进行引导学生思考、讨论探索、总结发现规律。学生通过异质的组合来讨论、探究知识,促进相互的学习,提高合作的能力,这对学生一生的发展都的有用的。

第三、大数学观是小学数学新课程标准的重要理念,这一片段的教学中不仅体现了小学数学知识的综合性强的特点,而且真正的把数学知识的教学、动手能力、合作能力等人文素养的培养结合在一起。学生的异质组合讨论、动手拼一拼、相互商议、个别争论等都无不体现了教师先进的教育教学理念。

《质数与合数》教学反思5

我根据学生的课堂表现改变了原有的教学思路,摒弃了让学生自主分类的方法,直接把分类的方法呈现给学生,当时课堂上作这一考虑是源于学生的无绪回答。我认为对于按因数的个数分类,能按质数与合数分类标准的进行分类的学生应该很少,除非提前预习了课文的内容,不然,大部分学生都会按因数的个数进行一一分类,如果顺着学生的思路下去,这样的分类将毫无意义,最终都会因达不到教师的教学目的,教师又得重起炉灶,将质数与合数的分类标准传授给学生,这样不仅会浪费宝贵的时间,另一方面又会给学生造成一种错觉:我们自己想出来的没有老师讲得好,最后还得听老师的,不如我一开始就等待。

10.质数与合数 教学教案设计 篇十

数学课程标准中明确指出:“有效的数学学习活动不能单纯地依靠模仿与记忆,动手实践、 自主探索与合作交流是学生学习数学的重要方式。”而学生的参与和探究又主要依赖于下列几个方面的因素:

1.教师教学目标的制定是否是有价值的。这就要求教师在教学设计中,准确把握教学内容在数学知识体系中的价值和作用,同时还要清楚地掌握学生已有知识状况以及可能生成的问题。

2.根据学生和教材的情况教师要合理的创设问题情境。问题情境只要能使儿童产生认知的“不平衡”,引起他们的思维冲突,就能激起他们的好奇心、求知欲,就会使教学过程始终在动态平衡中前进,实现真正意义上的有效教学。“问题”可以来自数学系统外部,即现实生活;当然也可以来自数学知识内部。

3.课堂教学的实效性还体现在教学活动的过程之中。也就是每一个活动环节的设置是否真正有利于学生参与,是否具有研究的价值,同时还取决于是否有利于学生产生有效的思维碰撞。

4.注重把握数学教学的实效性与课堂教学密度的关系,因此教师应充分的发挥主导作用,从而确保在有限的教学时间内,达到最优的教学效果。既不可过松,让学生一味发挥,也不可敷衍了事走过场。

综上所述,我个人认为,数学课堂教学实效性的研究在教学设计中,教师应注意把握多方面的因素,这是一个多元化的问题,因加深了学生对概念的理解,同时启迪了学生进一步学习的欲望。

教学背景分析

(一)教学内容分析“质数与合数”一课选自北京版小学数学教材第十册,在学生认识了整除的概念,熟练掌握了2、3和5的整除特征,因数、倍数已经认识和掌握的基础上进行的。教材的编排思路是先借助对一些数因数情况的研究比较,在学生根据因数的情况进行分类的基础上,对质数和合数的概念进行定义的。并在此基础上,引导学生找出100以内的质数表。质数和合数的概念在整除这一个单元中意义非常重大,首先概念特征本身,不同于奇数和偶数的特征那么明显,相对隐性不易于学生的理解与感受。同时,对概念的认识,也为进一步研究分解质因数和解决公因数和公倍数的问题,奠定了基础。

(二)学生情况分析

在学习该知识前,绝大多数学生对质数与合数的概念相对陌生,但也有部分学生对通过不同的信息渠道对知识有了不同程度的认识。但是学生对概念的认识到底掌握到什么程度?因此在进行教学设计前,教师通过前测,了解学生的基本状况:

调研对象:五年级(4)班 43人

调研方法:

1.利用教学第一环节(用小正方形摆长正方形)提出三点质疑:即影响摆的方案的因素:数的大小;奇数、偶数;因数个数。

再由每个学生独立作出第二次选择。

出示数据:51、36、46、26、47、33

学生选择情况

51 36 26 46

选择人数(人) 4 13 1 25

所占百分比 9.3% 30.23% 2.3% 58.1%

2.学生对质数的了解情况。(访谈43人)

听说过质数的11人,但了解质数的5人。

针对上述调研情况,说明通过第一个环节的操作,学生对数与因数个数之间的内在联系缺乏清晰的认识,大部分学生不了解质数。

(三)教学方式与教学手段说明

1、教学层次的确定

基于绝大多数学生对概念并不了解,同时概念本身又相对抽象。因此,在教学设计中教师通过第一个教学实践的安排,让学生通过用小方块摆长方形或正方形初步感受数与约数个数间的隐性联系,适时地挖掘学生对概念的不同认识,引导学生通过第二次有选择的实践活动,亲身分离出数与因数个数间的内在联系,主动获取对概念的感知。由于第二次的实验是由学生在独立思考的基础上,自主地选择学具,并在活动中确立了因数个数与数的联系。排除了对概念的模糊认识,因此对概念的理解更加深刻,便于学生发现和归纳概念。在此基础上再回到第一组的实践活动中,数与因数个数之间的联系,从而确立质数与合数的概念。最后在学生掌握了概念的基础上,鼓励学生大胆提出想进一步研究的有关质数与合数的问题,激发学生进一步探索和研究的欲望。

2、数学文化的渗透

设计有学生提出感兴趣的问题和猜想,并沿着学生可能生成的问题,介绍古今中外人们对质数与合数的研究和探索,不仅激发了学生的求知欲望,同时也渗透了人类对有关质数问题探索情况。有利于渗透学生对数学文化的了解,提高学生探究数学的兴趣。

(四)技术准备

学具

(1)每组一袋装有小方砖的学具筐。

(2)每组方案表一张。

(3)可选择的装有小方砖的信封若干。

教具

(1)数形图。

(2)教学课件。

三、教学环节

(一)教学目标

1.通过学生的主动参与,在操作体验的基础上理解质数和合数的意义,明确质数与合数的内在特征,感受素数、合数和1与因数之间的关系。

2.引导学生经历操作,体验,再操作、再体验的数学活动过程,并在这一过程中深刻把握质数与合数的特征,发展学生的提出问题和研究解决问题的能力,帮助学生建构数的特征。

3.形结合的数学建构模式;使学生初步认识数学与人类生活的密切联系,体验学习活动充满着探索与创造,感受数学的严谨及数学结论的确定性。

(二)教学过程1.

课前谈话

引导学生欣赏参加军训的相片,引发排方阵的问题。

2.提出问题

(1)师:刚才我们提到了军训中的排方阵,今天李老师为每组都准备了一些小方块,你们能用上所有的小方块摆出长方形或正方形吗?(学生分成七组,每组的数量分别是4、5、7、9、11、12、24)

(2)学生:能

(3) 师:咱比一比哪一组的设计方案最多,并将设计好的方案记录在表格里。

记 录 单

总块数 每行的块数 行数

(4)学生分成七组研究并记录研究方案。

【设计意图】教师进行巡视,解答学生研究过程中的问题,并注意收集学生对方案多少产生的疑惑,为引导学生进一步研究做好准备。这一环节设计的目的主要是引导学生初步建立数与形之间的感性认识,为进一步的研究奠定基础。

3.交流并引发冲突

(1)引导学生分组汇报研究成果(教师帮助学生记录研究成果)

第一组:4=4×1=2×2

第二组:5=5×1

第三组:7=7×1

第四组:9=9×1=3×3

第五组:11=11×1

第六组:12=12×1=6×2=4×3

第七组:24=24×1=12×2=8×3=6×4

师:第七组太棒了!,你们真了不起,设计的方案最多。你们是今天当之无愧的冠军!(引发冲突)

生:不公平。

(2)教师收集学生的意见并记录下来

教师板书学生的质疑

(3)教师适时的评价,引发学生进一步研究

师:相信你们说的都有各自的道理,刚才我看到了每个组的同学都在想办法,想使方案尽可能多,但有些数摆完后,方案只有一种,有的就不止一种。我们一起来看一看。

【设计意图】教师引导学生将方案中只有一种和方案不止一种的数形图选出来,分别呈现在黑板上。

师:那么方案的多少到底与谁有关呢?刚才老师提供的学具不公平,如果让同学自己选你们愿意吗?

【设计意图】教师通过课堂评价有意制造矛盾冲突,由此引发学生进一步探索和研究的欲望。

4.再次尝试

(1)老师呈现再次可供选择的块数(46、25、59、32、36、51)

(2)各组学生分别派代表自主选择并进行研究。

(3)引导学生交流研究体验,发现因数的个数是影响方案多少的决定性因素。

师:通过刚才的研究对于影响的三种因素,你们有什么新的想法?(通过再次的体验,引导学生关注数与因数之间的关系)

5.比较归纳

(1)观察归纳

师:既然因数的个数是决定性因素,就让我们共同观察我们曾经研究过的数的因数。方案只有一种的这些数有什么特点?

【设计意图】引导学生从因数的特点、因数的个数和数形图不同的维度进行观察。

(2)引导学生归纳质数的概念

(3)在学生准确归纳质数的基础上归纳合数的概念

(4)判断练习每一个学生利用手中的数字牌,独立判断自己手中的数是质数还是合数,请判断是质数的同学到前排,是合数的同学们留在座位上。

请学生互相判断并提出质疑。

【设计意图】重点处理“2”和“1”的问题

6.引发思考

(1)过渡:从毕达哥拉斯、欧几里得和陈景润等数学家对质数和合数的探索,激发学生进一步探索和研究。

(2)对于质数和合数还有没有进一步想研究的问题?

【设计意图】引发学生提出对质数相关知识的已有了解,以及产生的问题。

7.课外拓展对质数和合数还想有更多的了解,可进一步查询有关的资料。认识概念并形成知识的建模。

上一篇:关于特教学校活动的总结下一篇:事迹材料封皮