推理与证明练习题(14篇)
1.推理与证明练习题 篇一
推理与证明课后练习
一、选择题
1.观察下列各式:11,2343,345675,456789107,以得出的一般结论是()
A.n(n1)(n2)
B.n(n1)(n2)
C.n(n1)(n2)
D.n(n1)(n2)(3n2)n2(3n2)(2n1)2 (3n1)n2 2222,可(3n1)(2n1)
22.求证:3725,下述证明过程应用了()
A.综合法 B.综合法、分析法配合使用 C.分析法 D.间接证法 证明过程:因为37和2都是正数,所以为了证明372 只需证明725,展开得102222120,215,只需证明2125.因为2125,所以不等式37
2ab”假设的内容应是()ab3.用反证法证明“如果,那么
A.abB.ab
3333333abababbC. 且D. 或
4.用反证法证明:将9个球分别染成红色或白色,那么无论怎么染,至少有5个球是同色的。其假设应是()
A.至少有5个球是同色的 B.至少有5个球不是同色的C. 至多有4个球是同色的 D.至少有4个球不是同色的5.用火柴棒摆“金鱼”,如图所示:
3按照上面的规律,第n个“金鱼”图需要火柴棒的根数为()
A.6n2 B.8n2 C.6n2 D.8n2
234749,7343,72401,„则72011的末两位数字为()6.观察下列各式
A.01 B.43 C.07 D.49
7.图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个
叠放的图形中,小正方体木块总数就是()
A.25 B.66 C.91 D.120
二、解答题
1b1aa0,b0且ab2,求证:,ab中至少有一个小于2.8.已知
9.求证: 5 > 227
10.若a、b、c是不全相等的正数.
求证:lg(a+b)/2+lg(b+c)/2+lg(c+a)/2>lga+lgb+lgc.11.已知抛物线y2=2px(p>0)的焦点为F,点P1(x1,y1)、P2(x2,y2)、P3(x3,y3)在抛物线上,且2x2=x1+x3,则|FP1|、|FP2|、|FP3|之间有什么关系(梯形中位线)。
12.已知数列{an}的前n项和Sn=n2an(n≥2),而a1=1,通过计算a2、a3、a4,猜想an,并证明。
2.推理与证明练习题 篇二
一、几何推理与图形证明教学的现有问题
一些初中数学教师目前依旧使用较为传统的讲课模式,即将课本上的重点知识和例题进行详尽地讲解,在这样的教学模式下,学生处于一味地接受状态,在课堂上要对庞大的信息量和知识接受让他们应接不暇,大部分学生做不到真正地理解和消化,更不用说培养起有效的几何推理思维和图形证明能力.这样的教学收效甚微,几何证明与普通的数学证明有着一定的区别,它需要学生不仅仅掌握数学证明的技巧和方法,更要有一定的空间想象能力和几何思维能力.
二、定理和重要概念的引入及教学
定理是几何推理的根本,许多几何推理与图形证明所需的知识都是由定理推广而来,因此教师在几何教学的过程中,首先要注重的就是定理和一些重要概念的引入及教学.在引入方面,由于定理具有高度的概括性,学生死记硬背效果不佳,因此教师要注意引入定理和重要概念的时机和方法.许多几何推理题往往就是对定理的反复运用,只要学生能够熟练地运用定理在做题的过程中就能够游刃有余,例如下题.
例1已知在三角形ABC中,D为BC边上的中点,在AD上任取一点E,连接BE,延长BE交AC与F,BE=AC,求证AF=EF.
证明:如图1,连接EC,取EC的中点G,AE的中点H,分别连接DG,HG.
则:GH=DG.
所以:∠1=∠2,
而∠1=∠4,∠2=∠3=∠5.
所以;∠4=∠5,所以:AF=EF.
乍一看这道题的题目比较复杂,实际上就是对于等腰三角形等边对等角这一基本定理的应用,学生对定理掌握的程度较深时,面对“三角形”、“中点”等条件很容易就会进行联想并作出辅助线DG和HG,通过等腰三角形和平行线段的性质进行角与角之间的转换,最后通过“等角对等边”的性质完成证明.这道题就是典型的对定理掌握程度的考察,对于这种题型要注意对定理的灵活应用.
三、学会“读题”,明确题中条件要素
在进行几何推理和图形证明的过程中,教师需要结合大量的例题进行讲解,这是十分必要的,在讲解之前,教师应当注重培养学生的“读题”能力,阅读题设看起来似乎是一件非常简单的事,其实解题和证明所需的大部分要素都包含在简短的题设之中,在读题的过程中对题设进行拆解,提取出其中重要的要素和隐含条件,才能为之后的证明或解题铺好路.尤其是当学生面对较为复杂的题设,要学会从中抽丝剥茧,理清头绪,一步一步地整理题设中所提及的条件,结合图形将它们以合理的逻辑排列出来,与最终需要解答或证明的问题进行条件匹配.这种读题能力就需要教师在课堂上讲解例题时引导学生慢慢去学习和掌握,这样才能在做题的过程中不会被复杂的题设蒙蔽了双眼,做到心中有数[2].
四、培养学生几何推理思维
1. 三种思维的应用
几何推理和图形证明同样属于数学证明的一种题型,对于这样的题型而言,最重要的就是培养学生的逻辑推理思维,在推理的过程中,通常有以下三种思维方式.第一、正向思维,也就是学生在推理和证明的过程中最常用的一种思维方式,从题设和条件出发,一步步地推出结果.这种方式比较常见,因此学生学习和应用起来也比较轻松.第二、逆向思维,顾名思义就是反向地去推理,也就是从结果入手进行推理,最典型的一种逆向思维证明法就是反证法.逆向的思维方式对于学生而言并不是十分常用,但它往往是解决难题的好帮手,难题的题设往往十分复杂繁多,在许多条件的铺陈下,题设拆解分析能力较弱的学生难免会一时之间找不到头绪,不知从何下手,而逆向思维法能够帮助学生迅速找到题目的切入点与突破口,很快进入到推理之中.第三种就是正向思维与逆向思维的结合,这种方法通常应用于难题的推理证明之中,将两种思维方式的特点相结合,同时也将题目中的条件和结果有机结合,帮助学生迅速找到推理的有效路线.在课堂教学之中,教师应当注重这三种思维的教学,尤其是学生不太常用的逆向思维和正逆结合思维,帮助学生开拓几何推理的思维,在解题的过程中可以做到多种思路的选择[3].
2.“动手”做题,辅助线的应用
在学习几何推理和图形证明的过程中,最常用也是最必不可少的一个方法就是做辅助线.当学生遇到单纯靠拆解题设和思维分析无法解决的时候,应当有动手画图做辅助线的意识,这种意识和能力需要教师在课堂教学之中进行重点培养.然而做辅助线有时候并不是万能的,一条错误的辅助线甚至会将学生的推理思路带入误区,导致推理混乱,因此,教师在教学过程中务必将辅助线的教学作为一个重点.
例2已知:在△ABC和△A'B'C'中,AB=A'B',AC=A'C'.AD,A'D'分别是△ABC和△A'B'C'的中线,且AD=A'D'.
求证:△ABC≌△A'B'C'.
证明:分别过B,B'点作BE∥AC,B'E'∥A'C'.交AD,A'D'的延长线于E,E'点.
则:△ADC≌△EDB,△A'D'C'≌△E'D'B'.
所以:AC=EB,A'C'=E'B';AD=DE,A'D'=D'E'.
所以:BE=B'E',AE=A'E'
所以:△ABE≌△A'B'E'
所以:∠E=∠E'∠BAD=∠B'A'D'
所以:∠BAC=∠B'A'C'
所以:△ABC≌△A'B'C'
这一题需要证明三角形ABC和三角形A'B'C'全等,现有的条件是其中的两条边相等,还差一个条件,边BC和边B'C'相等或现有两边的夹角相等,经分析,有边AD和边A'D',我们很容易发现实现角的相等更为容易,AD将我们需证的夹角一分为二,因此需分别证明分角与分角相等,等角很容易让人联想起平行线,这就是辅助线的灵感来源,显然,有了辅助线的帮助就多了一个等角的条件,可以进行角之间的转换.这一题就是典型的辅助线的巧妙应用.
总之,几何推理和图形证明是初中数学的教学中至关重要的一个环节,教师在教学过程中应当打好基础,在定理的教学方面下功夫,努力培养学生的“读题”能力和几何思维方式,提高几何图形课堂教学的效率.
参考文献
[1]葛莹.初中数学几何推理与图形证明对策[J].学周刊,2015(14):222.
[2]焦龙.初中数学几何概念和定理教学探析[J].学周刊,2015(20):163.
3.推理与证明 篇三
例1 设函数[f(x) (x∈R)]为奇函数,[f(1)=12],[f(x+2)=f(x)+f(2)],则[f(5)=]( )
A. [0] B. [1] C. [52] D. [5]
解析 法一:利用类比推理.
本题为抽象函数,只给出了性质,没有给出具体函数及特征,未给出解析式. 根据给出性质,与正比例函数相似,故可用正比例函数[y=kx]进行类比,由于[f(1)=12],则[f(x)=12x],该函数是奇函数,且满足[f(1)=12], [f(x+2)=f(x)+f(2)],即该函数符合题设条件,则[f(5)=52],选C.
法二:利用演绎推理.
∵[f(x+2)=f(x)+f(2)],令[x=-1],
则[f(-1+2)=f(-1)+f(2)],
∴[f(1)=f(-1)+f(2)],
而[f(x) (x∈R)]为奇函数,[f(1)=12],
则[f(-1)=-f(1)=-12],
∴[f(2)=1],∴[f(x+2)=f(x)+1],
再令[x=1]得,[f(3)=f(1)+1=32],
∴[f(5)=f(3+2)=f(3)+1]=[52],选C.
点拨 本题的两种解题途径,其一是类比推理,其二是演绎推理;如果作为解答题,类比推理的结论是不可靠的,作为选择题,由于四个选项中只有一个是正确的,暗示着符合题目的条件任何函数[f(x)],则[f(5)]的值不会改变,既然如此,可选取一个特殊函数即可. 对于抽象函数的问题可以通过类比方法得出结论. 几种常见的抽象函数的类比函数可见下表:
[函数[f(x)]满足的条件&可类比函数&[f(x1+x2)=f(x1)+f(x2)]&正比例函数 [y=kx]&[f(x1+x2)=f(x1)f(x2)]&指数函数[y=ax]([a>0],且[a≠1])&[f(x1x2)=f(x1)+f(x2)]&对数函数[y=logax]([x>0)]&[f(x1x2)=f(x1)f(x2)]&幂函数[y=xn]&[f(x1)+f(x2)=2f(x1+x22)f(x1-x22)]&余弦函数[y=cosx]&]
例2 在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第[2,3,4,⋯],[n]堆最底层(第一层)分别按图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第[n]堆第[n]层就放一个乒乓球,以[f(n)]表示第[n]堆的乒乓球总数,则[f(3)=] ;[f(n)=] (答案用[n]表示).
[…]
分析 要求出[f(3)]的值不难,但要求出[f(n)]的表达式,则必需寻找规律,能否从特殊到一般,探索其一般规律;如果[f(n)]的规律难找,可先求第[n]堆乒乓球的每一层的乒乓球的数量规律,然后再求这[n]层的乒乓球数量之和即为所求的[f(n)].
解 法一:利用归纳推理.
设第[n]堆底层的乒乓球的数量为[an],
则[a1=1],[a2=1+2=3],[a3=1+2+3=6],…,
[an=1+2+3+⋯+n=n(n+1)2],
根据题意,第[n]堆乒乓球的数量等于从第1堆开始到第[n]堆每堆最底层球数总和,即
[f(n)=a1+a2+⋯+an=12[(12+22+32+⋯+n2)+(1+2+3+⋯+n)]]
故[f(n)=12(n(n+1)(2n+1)6+n(n+1)2)]
[=n(n+1)(n+2)6].
法二:利用递推关系.
由于第[n]堆底层的乒乓球的数量为
[1+2+3+⋯+n=n(n+1)2=12(n2+n),]
而第2堆乒乓球比第1堆多一层,即多了第2堆的底层,则[f(2)-f(1)=12(22+2)],
第3堆乒乓球比第2堆多一层,即多了第2堆的底层,则[f(3)-f(2)=12(32+3)],
…
第[n]堆乒乓球比第[(n-1)]堆多了一层,即多了第[n]堆的底层,则[f(n)-f(n-1)=12(n2+n).]
以上[n]个不等式相加得
[f(n)-f(1)=12[(22+32+⋯+n2)+(2+3+⋯+n)],]
而[f(1)=1],
故[f(n)=12[(12+22+32+⋯+n2)+(1+2+3+⋯+n)]]
[=12(n(n+1)(2n+1)6+n(n+1)2)]
[=n(n+1)(n+2)6].
法三:利用组合数的性质.
设第[n]堆乒乓球底层的的数量为[an],
则[a1=1],[a2=1+2=3],[a3=1+2+3=6],…
[an=1+2+3+⋯+n=n(n+1)2=C2n+1],
根据题意,第[n]堆乒乓球的数量等于从第1堆开始到第[n]堆每堆最底层球数总和,即
[f(n)=a1+a2+⋯+an=C22+C23+C24+⋯+C2n+1,]
而[C22=C33],
则[f(n)=C33+C23+C24+⋯+C2n+1]
[=C24+⋯+C2n+1=⋯=C3n+2,]
因此[f(n)=n(n+1)(n+2)6].
法四:归纳—猜想—证明.
由于[f(1)=1=1×2×36],[f(2)=4=2×3×46],
[f(3)=10=3×4×56,]…
猜想[f(n)=n(n+1)(n+2)6].
下面用数学归纳法证明该结论.
(1)显然[n=1]时,猜想成立;
(2)假设[n=k]时猜想成立,
即[f(k)=k(k+1)(k+2)6],
当[n=k+1]时,由法二知:
[f(k+1)-f(k)=12[(k+1)2+(k+1)]]
∴[f(k+1)=12[(k+1)2+(k+1)]+f(k)]
[=12[(k+1)2+(k+1)]+k(k+1)(k+2)6]
故[f(k+1)=16(k+1)(k2+5k+6)]
[=16(k+1)[(k+1+1][(k+1)+2],]
所以[n=k+1]时,猜想也成立.
综上,对任意正整数[n]猜想均成立,
因此[f(n)=n(n+1)(n+2)6].
点拨 本题是一道既考查合情推理能力又考查演绎推理能力的题. 寻找第[n]堆乒乓球每一层的数量规律,需要观察、归纳、猜想的思想,再求和时需要严密的逻辑推理. 法三中求和大胆联想到组合数,法四则利用归纳猜想,需要较强的数学领悟能力. 法三、法四供大家参考.
例3 已知[a、b、c∈(0,1)],求证:[(1-a)b、][(1-b)c、][(1-c)a]不能同时大于[14].
证 法一:假设三式同时大于[14],
即[(1-a)b>14,][(1-b)c>14,][(1-c)a>14.]
[∵ a、b、c∈(0,1)],
[∴]三式同向相乘得[(1-a)b(1-b)c(1-c)a>164],
又[(1-a)a≤(1-a+a2)2=14.]
同理[(1-b)b≤14,][(1-c)c≤14.]
[∴ (1-a)b(1-b)c(1-c)a≤164],
这与假设矛盾,故原命题得证.
法二:假设三式同时大于[14],
[∵ 00],
[(1-a)+b2≥(1-a)b>14=12,]
同理[(1-b)+c2>12,][(1-c)+a2>12,]
三式相加得[32>32],这是矛盾的,
故假设错误,所以原命题正确.
点拨 “不能同时大于[14]”包含多种情形,不易直接证明,可用反证法证明,即正难则反.
当遇到否定性、唯一性、无限性、至多、至少等类型问题时,常用反证法.
用反证法的步骤是:
①否定结论[⇒A⇒B⇒C];
②而[C]不合理[与公理矛盾,与题设矛盾,与假设自相矛盾;]
③因此结论不能否定,结论成立.
例4 用数学归纳法证明等式 :
[1-12+13-14+⋯+12n-1-12n=1n+1+1n+2][+⋯+12n]对所以[n∈N]均成立.
证明 (1)当[n=1]时,
左式=[1-12=12],右式=[11+1=12],
∴左式=右式,等式成立.
(2)假设当[n=k(k∈N)]时等式成立,
即[1-12+13-14+⋯+12k-1-12k]
[=1k+1+1k+2+⋯+12k],
则当[n=k+1]时,
[1-12+13-14+⋯+12k-1-12k+12k+1-12k+2]
[=(1-12+13-14+⋯+12k-1-12k)+12k+1-12k+2]
[=(1k+1+1k+2+⋯+12k)+12k+1-12k+2]
[=1k+2+1k+3+⋯+12k+1+(1k+1-12k+2)]
[=1k+2+1k+3+1k+4+⋯+12k+1+12k+2]
[=1(k+1)+1+1(k+1)+2+1(k+1)+3+⋯]
[+1(k+1)+k+12(k+1).]
即[n=k+1]时,等式也成立,
由(1)(2)可知,等式对[n∈N]均成立.
点拨 在利用归纳假设论证[n=k+1]等式成立时,注意分析[n=k]与[n=k+1]的两个等式的差别. [n=k+1]时,等式左边增加两项,右边增加一项,而且右式的首项由[1k+1]变为[1k+2]. 因此在证明中,右式中的[1k+1]应与-[12k+2]合并,才能得到所证式. 因而,在论证之前,把[n=k+1]时等式的左右两边的结构先作分析常常是有效的.
由本例可以看出,数学归纳法的证明过程中,要把握好两个关键之处:一是[f(n)]与[n]的关系;二是[f(k)]与[f(k+1)]的关系.
例5 用数学归纳法证明:
[(1+11)(1+13)(1+15)⋯(1+12n-1)>2n+1][(n≥2,n∈N)].
证明 (1)当[n=2]时,
左式=[(1+11)(1+13)=83=649],右式=[5],
∵ [649>5], ∴[649>5],
即[n=2]时,原不等式成立.
(2)假设[n=k(k≥2, k∈Z)]时,不等式成立,
即[(1+11)(1+13)(1+15)⋯(1+12k-1)>2k+1],
则[n=k+1]时,
左边=[(1+11)(1+13)(1+15)⋯(1+12k-1)(1+12k+1)]
[>2k+1(1+12k+1)=2k+22k+1]
右边=[2k+3],要证左边>右边,
只要证[2k+22k+1>2k+3],
只要证[2k+2>(2k+3)(2k+1)],
只要证[4k2+8k+4>4k2+8k+3,]
只要证4>3.
而上式显然成立,所以原不等式成立,
即[n=k+1]时,左式>右式.
由(1)(2)可知,原不等式对[n≥2,n∈N]均成立.
点拨 运用数学归纳法证明问题时,关键是[n=k+1]时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题. 在分析[f(k)]与[f(k+1)]的两个不等式,应找出证明的关键点(一般要利用不等式的传递性),然后再综合运用不等式证明的方法. 本题关键是证明不等式[2k+22k+1>2k+3]. 除了分析法,还可以用比较法和放缩法来解决.
例6 已知[f(n)=1+12+13+14+⋯+1n(n∈N),]求证:[n>1]时,[f(2n)>n+22].
证明 (1)[n=2]时,
左式=[f(22)=f(4)=1+12+13+14=2512],
右式=[2+22=2],
∵ [2512>2], ∴ 左式>右式,不等式成立.
[n=3]时,
左式=[f(23)=f(8)=1+12+13+14+⋯+18],
右式=[3+22=52],
左式-右式=[15+17-18>0],
左式>右式,不等式成立.
(2)假设[n=k(k∈N, k≥3)]时不等式成立,
即[f(2k)=1+12+13+14+⋯+12k>k+22],
当[n=k+1]时,
[f(2k+1)=1+12+13+14+⋯+12k+12k+1]
[+12k+2+⋯+12k+1]
[=f(2k)+12k+1+12k+2+⋯+12k+12k项]
[>k+22+12k+1+12k+1+⋯+12k+12k项]
[=k+22+2k2k+1=k+32=(k+1)+22,]
即[n=k+1]时,不等式也成立.
由(1)(2)可知,[n>1, n∈N]时,
都有[f(2n)>n+22].
点拨 注意[f(n)]的意义,它表示连续自然数的倒数和,最后一项为[1n]. 可以通过第一步验证中加强对[f(n)]的理解,本题中验证了[n=]2、3两个数值,正是由于此原因(当然不是必要的). [f(2n)]的表达式应为[f(2n)=]1[+12+13+14+15+⋯+12n-1+12n]. 因此在归纳法证明中,重视第一步的验证工作,许多难题的特殊情形启发我们的思路,甚至蕴含一般情形的方法.
【专题训练九】
1. 下面几种推理过程是演绎推理的是( )
A. 两条直线平行,同旁内角互补,如果[∠A]和[∠B]是两条平行直线的同旁内角,则[∠A+∠B=180°]
B. 由平面三角形的性质,推测空间四面体性质
C. 某校高三共有10个班,1班有51人,2班有53人,三班有52人,由此推测各班都超过50人
D. 在数列[{an}]中,[a1=1,an=12(an-1+1an-1)][(n≥2)],由此推出[{an}]的通项公式
2. 命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是( )
A. 使用了归纳推理
B. 使用了类比推理
C. 使用了“三段论”,但大前提错误
D. 使用了“三段论”,但小前提错误
3. 通过观察下列等式,猜想出一个一般性的结论,并证明结论的真假.
sin215°+sin275°+sin2135°=[32];
sin230°+sin290°+sin2150°=[32];
sin245°+sin2105°+sin2165°=[32];
sin260°+sin2120°+sin2180°=[32].
4. 已知[a、b、c]都为正数,那么对任意正数[a、b]、[c],三个数[a+1b、b+1c、c+1a]( )
A. 都不大于2 B. 都不小于2
C. 至少有一个不大于2
D. 至少有一个不小于2
5. 定义在[R]上的函数[f(x)],满足[f(x+y)=f(x)+f(y)(x、y∈R)],且[f(1 )=2],那么在下面的四个式子:
①[f(1 )+2f(1 )+⋯+nf(1 )];
②[fn(n+1)2];
③[n(n+1 )];
④[n(n+1)f(1 )].
其中与[f(1 )+f(2)+⋯+f(n)]相等的是( )
A. ①③ B. ①②
C. ①②③④ D. ①②③
6. 比较大小[7+6] [8+5],分析其结构特点,请你再写出一个类似的不等式: ;请写出一个更一般的不等式,使以上不等式为它的特殊情况,则该不等式可以是 .
7. 如果命题[P(n)]对[n=k]成立,则它对[n=k+2]也成立. 又若[P(n)]对[n=2]成立,则下列结论正确的是( )
A. [P(n)]对所有自然数都成立
B. [P(n)]对所有正偶数都成立
C. [P(n)]对所有正奇数都成立
D. [P(n)]对所有大于1的自然数都成立
4.推理与证明练习题 篇四
一、选择题
1.下面叙述正确的是()
①归纳推理是由部分到整体的推理②归纳推理是由一般到一般的推理③演绎推理是由一般到特殊的推理④类比推理是由特殊到一般的推理⑤类比推理是由特殊到特殊的推理
A.①②③B.②③④C.②④⑤D.①③⑤
2.由①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形,根据“三段论”推理出一个结论,则这个结论是()
A.正方形的对角线相等B.矩形的对角线相等C.正方形是矩形D.以上均不正确
3.下列平面图形中与空间的平行六面体作为类比对象较合适的是()
A.三角形B.梯形C.平行四边形D.矩形
4.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b∥平面α,直线a平面α,则直线b∥直线a”,结论显然是错误的,这是因为()
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误
二、填空题
4.(1)在演绎推理中,只要___________________是正确的,结论必定是正确的.(2)用演绎法证明y=x2是增函数时的大前提是_________________________.(3)由“等腰三角形的两腰相等”可以类比推出正棱锥的类似属性是____________________
x5.已知:f(x)=,设f1(x)=f(x),fn(x)f(fn1(x))(n>1且n∈N*),则f3(x)的表达式1-x
为____________,猜想fn(x)(n∈N*)的表达式为________.x/(1-3x)
16.若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=r(a+b+c),2根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V=________.1/3r(S1+S2+S3+S4)
7、若数列an是等差数列,对于bn1(a1a2an),则数列bn也是等差数列。类n
比上述性质,若数列cn是各项都为正数的等比数列,对于dn0,则dn=时,数列dn也是等比数列。
8.在平面几何里,有勾股定理“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A—BCD的三个侧面ABC、ACD、ADB两两互相垂直,则________________.”
9.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么
这个数列叫做等和数列,这个常数叫做该数列的公和.
已知数列{an}是等和数列,且a12,公和为5,那么a18的值为______________,这个数列的前n项和Sn的计算公式为_________ 3,10.设f(x),利用课本推导等差数列前n项和的公式的方法,可求得f(-5)+f(-4)+„+f(0)+„+f(5)+f(6)的值为_______3√
2bn-am11.已知命题:若数列{an}为等差数列,且am=a,an=b(m≠n,m、n∈N*),则am+n=;n-m
现已知等比数列{bn}(bn>0,n∈N*),bm=a,bn=b(m≠n,m、n∈N*),若类比上述结论,则
n-mb可得到bm+n=________.a三.解答题
12.数列an满足Sn2nannN*。
(1)计算a1,a2,a3,a4;(2)猜想数列an的通项公式;
3313.已知:sin230°+sin290°+sin2150°=,sin25°+sin265°+sin2125°.2
2通过观察上述两等式的规律,请你写出一般性的命题,并给出证明.
(2)设直线y=-2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.14.已知函数f(x)=x3-3ax,(1)求函数f(x)的单调区间;
(2)当a=1时,求证:直线4x+y+m=0不可能是函数f(x)图象的切线.
15.已知函数f(x)
(II)若f(x)a2(I)若a1,证明f(x)没有零点; xlnx,21恒成立,求a的取值范围。2
16.设点C为曲线y2(x>0)上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于x
5.推理与证明 篇五
初中新教材对推理与证明的渗透,也是从说理开始的,但内容比较少,也就是教材中的直观几何内容。很快便转向推理,也就是证明。刚开始推理的步骤,是简单的两三步,接着到四五步,后面还一定要求学生写清楚为什么。在学习这一部分内容的时候,好多学生在后面的括号里不写为什么,我便给他们举例小孩子学走路的过程,一个小孩刚开始学走路的时候,需要大人或其他可依附的东西,渐渐地,她会脱离工具自己走。学习证明的过程亦如此,起先在括号里写清为什么,并且只是简单的几步,然后证明比较难一点的,步骤比较多的。
随着社会的进步,中学教材加强了解析几何、向量几何,传统的欧式几何受到冲击,并且教材对这一部分的编排分散在初中各个年级,直观几何分量多了还加入了变换如平移变换、旋转变换、对称变换,投影等内容。老师们对内容的编排不太理解,看了专家的讲座,渐渐明白了:这样编排不是降低了推理能力,而是加强了推理能力的培养,体现了逐步发展的过程,把变换放到中学,加强了中学和大学教材的统一,但一个不争的事实是,对演绎推理确实弱了。
关于开展课题学习的实践与认识
新课程教材编排了课题学习这部分内容,对授课的老师,还是学生的学习都是一个全新的内容,怎样上好这部分内容,对老师、对学生而言,都是一个创新的机会。至于课题学习的评价方式,到现在为止,大多数省份还是一个空白,考不考?怎样考?学习它吧,学习的东西不能在试卷上体现出来,于是,好多老师对这部分采取漠视的处理方法;不学习吧,课本上安排了这部分内容。还有一部分老师觉得,课题学习是对某一个问题专门研究,很深!老师不知讲到什么程度才合理,学生不知掌握到什么程度。
经过几年的实践与这次培训的认识,我觉得课题学习是“实践与综合应用”在新课课程中的主要呈现形式,是一种区别于传统的、全新的,具有挑战性的学习,课本的编写者安排的主要目的是:
1.希望为学生提供更多的实践与探索的机会。
2.让学生通过对有挑战性和综合性问题的解决,经历数学化的过程。
3.让学生获得研究问题地方法和经验,使学生的思维能力、自主探索与合作交流的意识和能力得到发展。
4.让学生体验数学知识的内在联系,以及解决问题的成功喜悦,增进学生学习数学的信心。
5.使数学学习活动成为生动活泼的、主动的和富有个性的过程。
6.推理与证明试题与答案 篇六
(1)a2b23abab);(2)+>22+5。
2、设a,b,x,y∈R,且
3、若a,b,c均为实数,且,,(8分)
求证:a,b,c中至少有一个大于0。(8分)
4、用数学归纳法证明: 1222n2n(n1)(Ⅰ);(7分)1335(2n1)(2n1)2(2n1)
(Ⅱ)1
5、数学归纳法证明:
6、已知数列{an}满足Sn+an=2n+1,(1)写出a1, a2, a3,并推测an的表达式;
(2)用数学归纳法证明所得的结论。(12分)
能被整除,.(8分)1111nn;(7分)2342
17、(12分)观察以下各等式:
202003 sin30cos60sin30cos60
202000sin20cos50sin20cos5040
3,sin15cos45sin15cos454202000
分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性
9、(10分)已知正数a,b,c成等差数列,且公差d0,求证:,不可能是等差数abc
列。
10、(14分)已知数列{an}满足Sn+an=2n+1,(1)写出a1, a2, a3,并推测an的表达式;
(2)用数学归纳法证明所得的结论。
1、证明:(1)∵a2b2
2ab,a23,b23;
将此三式相加得
2(a2b23)2ab,∴a2b23abab).(2)要证原不等式成立,只需证(6+7)>(22+),即证242240。
∵上式显然成立,∴原不等式成立.2、可以用综合法与分析法---略
3、可以用反证法---略
4、(1)可以用数学归纳法---略
(2)当nk1时,左边(1221111k)(kk1)k 22122
11111k(k
kk)k2kk1=右边,命题正确 222
22k项
5、可以用数学归纳法---略
6、解:(1)a1=37151, a2=, a3=,猜测 an=2-n248
21,2k(2)①由(1)已得当n=1时,命题成立;②假设n=k时,命题成立,即 ak=2-
当n=k+1时, a1+a2+……+ak+ak+1+ak+1=2(k+1)+1,且a1+a2+……+ak=2k+1-ak
∴2k+1-ak+2ak+1=2(k+1)+1=2k+3,∴2ak+1=2+2-11,a,k+1=2-2k2k
11都成立2n4即当n=k+1时,命题成立.根据①②得n∈N, an=2-
7、猜想:sin2cos2(30)sincos(30)
证明: +
1cos21cos(6002)sin(3002)sin300
sincos(30)sincos(30)2222200
cos(6002)cos2111[sin(3002)]222
2sin(3002)sin30011 01[sin(302)]222
3113 00sin(302)sin(302)
7.推理与证明十策(上) 篇七
我们学习数学的一个重要的目的是提高推理论证能力,在小学,数学推理多为合情推理,看着像就差不多了,到了中学,随着思维能力的提高,逻辑推理的成分逐步提高,使推理论证逐步达到了主导地位.证明也成了学习与考试的重要内容,并且往往也是难点内容,如何证明问题?下面给出一些方法,当然,证明一个问题,常常需要多种方法并举才能达到目的。endprint
我们学习数学的一个重要的目的是提高推理论证能力,在小学,数学推理多为合情推理,看着像就差不多了,到了中学,随着思维能力的提高,逻辑推理的成分逐步提高,使推理论证逐步达到了主导地位.证明也成了学习与考试的重要内容,并且往往也是难点内容,如何证明问题?下面给出一些方法,当然,证明一个问题,常常需要多种方法并举才能达到目的。endprint
我们学习数学的一个重要的目的是提高推理论证能力,在小学,数学推理多为合情推理,看着像就差不多了,到了中学,随着思维能力的提高,逻辑推理的成分逐步提高,使推理论证逐步达到了主导地位.证明也成了学习与考试的重要内容,并且往往也是难点内容,如何证明问题?下面给出一些方法,当然,证明一个问题,常常需要多种方法并举才能达到目的。endprint
8.推理与证明练习题 篇八
答案:
2解析:m·n=x+(2-2x)=2-x.∵ m⊥n,∴ m·n=0,即x=2.2.用反证法证明命题“如果a>b,那么a>b”时,假设的内容应为______________. 答案:a=b或a
3333解析:根据反证法的步骤,假设是对原命题结论的否定,即a=b或a
解析:由分析法可得,要证6-22>5-7,只需证6+7>5+22,即证13+242>13+41010.因为42>40,所以6-5-7成立.
4.定义集合运算:A·B={Z|Z=xy,x∈A,y∈B},设集合A={-1,0,1},B={sinα,cosα},则集合A·B的所有元素之和为________.
答案:0
π解析:依题意知α≠kπ+,k∈Z.423π2①α=kπ+(k∈Z)时,B=,422
22A·B=0,; 22
π②α=2kπ或α=2kπ+∈Z)时,B={0,1},A·B={0,1,-1}; 2
π③α=2kπ+π或α=2kπ-(k∈Z)时,B={0,-1},A·B={0,1,-1}; 2
kπ3π④α≠α≠kπ+∈Z)时,B={sinα,cosα},A·B={0,sinα,cosα,-sinα,24
-cosα}.
综上可知A·B中的所有元素之和为0.115.(选修12P44练习题4改编)设a、b为两个正数,且a+b=1≥μ恒成立ab的μ的取值范围是________.
答案:(-∞,4]
1111ba=2+≥2+2解析:∵ a+b=1,且a、b为两个正数,∴ +=(a+b)abababab
1=4.要使得≥μ恒成立,只要μ≤
4.ab
1.直接证明
(1)定义:直接从原命题的条件逐步推得命题成立的证明方法.(2)一般形式
本题条件
已知定义已知公理已知定理ÞAÞBÞ
C„本题结论.
(3)综合法
① 定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法称为综合法.
② 推证过程
已知条件Þ
„Þ
„
Þ结论
(4)分析法
① 定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法称为分析法.
② 推证过程
结论
Ü„Ü„Ü
已知条件
2.间接证明
(1)常用的间接证明方法有(2)反证法的基本步骤
① 反设——假设命题的结论不成立,即假定原结论的反面为真.
② 归谬——从反设和已知出发,经过一系列正确的逻辑推理,得出矛盾结果. ③ 存真——由矛盾结果,断定反设不真,从而肯定原结论成立. [备课札记]
题型1 直接证明(综合法和分析法)
例1 数列{an}的前n项和记为Sn,已知a1=1,an+1=
S
(1)数列n是等比数列;
n+
2(n=1,2,3,„),证明: nn
(2)Sn+1=4an.n+2
(n=1,2,3,„),∴(n+2)Sn=n(Sn+1-Sn),nn
Sn+1S整理得nSn+1=2(n+1)Sn,∴,nn+
1Sn+1n+1S即2,∴ 数列n是等比数列.
Sn
Sn+1Sn-1Sn-1
(2)由(1)知:=(n≥2),于是Sn+1=4·(n+4an(n≥2).又a2=3S1
n+1n-1n-1
=3,∴ S2=a1+a2=1+3=4a1,∴ 对一切n∈N*,都有Sn+1=4an.例2 设a、b、c均为大于1的正数,且ab=10,求证:logac+logbc≥4lgc.lgclgc
证明:(分析法)由于a>1,b>1,c>1,故要证明logac+logbc≥4lgc,只要证明lgalgb
lga+lgb
14lgc,即≥4,因为ab=10,故lga+lgb=1.≥4,由于a>1,b>1,故
lgalgblga·lgb
lga+lgb21211
lga>0,lgb>0,所以0 4lgalgb2 变式训练 设首项为a1的正项数列{an}的前n项和为Sn,q为非零常数,已知对任意正整数n、m,Sn+m=Sm+qmSn总成立.求证:数列{an}是等比数列. 证明:因为对任意正整数n、m,Sn+m=Sm+qmSn总成立,令n=m=1,得S2=S1+qS1,则a2=qa1.令m=1,得Sn+1=S1+qSn ①,从而Sn+2=S1+qSn+1 ②,②-①得an+2=qan+1(n≥1),综上得an+1=qan(n≥1),所以数列{an}是等比数列. 题型2 间接证明(反证法) 证明:(1)∵ an+1=Sn+1-Sn,an+1= 例3 证明:2,3,5不能为同一等差数列中的三项. 证明:假设2,3,5为同一等差数列的三项,则存在整数m、n满足3=2+md ①, =2+nd②,①×n-②×m3n5m=2(n-m),两边平方得3n2+5m2-15mn=2(n-m)2,左边为无理数,右边为有理数,且有理数≠不能为同一等差数列的三项. 备选变式(教师专享) 已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,其中至少有一个方程有实根,求实数a的取值范围. 解:若方程没有一个实数根,则 16a-4(3-4a)<0, 3(a-1)2-4a2<0,解之得-2-1.4a2+8a<0,3 a≥-1或a≤.故三个方程至少有一个方程有实数根的a的取值范围是a 2 1.用反证法证明命题“a·b(a、b∈Z)是偶数,那么a、b中至少有一个是偶数.”那么反设的内容是__________________________________. 答案:假设a、b都是奇数(a、b都不是偶数) 解析:用反证法证明命题时反设的内容是否定结论. 2.已知a、b、c∈(0,+∞)且a<c,b<c+1,若以a、b、c为三边构造三角形,ab 则c的取值范围是________. 答案:(10,16) 解析:要以a、b、c为三边构造三角形,需要满足任意两边之和大于第三边,任意两边 19b9a=10之差小于第三边,而a 11111019 16,∴c<16.又>,=1,∴c>10,∴10 1f0(x)-,fn(x)=fn-1(x,(n≥1,n≥N),3.设函数f0(x)=1-x2,f1(x)=22 n11 则方程f1(x)=________个实数根,方程fn(x)=3有________个实数根. 3+ 答案:4 2n1 1111 51-x2=x2-= x2=x2=有4个解. 解析:f1(x)=22366 ∵ 可推出n=1,2,3„,根个数分别为22,23,24,1n+∴ 通过类比得出fn(x)=3有2n1个实数根. 4.若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m.(1)若x2-1比1远离0,求x的取值范围; (2)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离ab.(1)解:x∈(-∞2)∪(2,+∞). (2)证明:对任意两个不相等的正数a、b,有 a3+b3ab,a2b+ab2ab.因为|a3+b3-ab|-|a2b+ab2-2ab=(a+b)(a-b)2>0,所以|a 3+b3-2abab|>|a2b+ab2-2abab|,即a3+b3比a2b+ab2远离2abab.1.已知a>b>c,且a+b+c=0,求证:b-证明:要证b-ac<3a,只需证b2-ac<3a2.∵ a+b+c=0,∴ 只需证b2+a(a+b)<3a2,只需证2a2-ab-b2>0,只需证(a-b)(2a+b)>0,只需证(a-b)(a-c)>0.∵ a>b>c,∴ a-b>0,a-c>0,∴(a-b)(a-c)>0显然成立.故原不等式成立. 2.已知等差数列{an}的首项a1>0,公差d>0,前n项和为Sn,且m+n=2p(m、n、p∈N*),求证:Sn+Sm≥2Sp.证明:∵m2+n2≥2mn,∴2(m2+n2)≥(m+n)2.又m+n=2p,∴m2+n2≥2p2.3.如图,ABCD为直角梯形,∠BCD=∠CDA=90°,AD=2BC=2CD,P为平面ABCD外一点,且PB⊥BD.(1)求证:PA⊥BD; (2)若PC与CD不垂直,求证:PA≠PD.证明:(1)因为ABCD为直角梯形,AD2AB2BD,所以AD2=AB2+BD2,因此AB⊥BD.又PB⊥BD,AB∩PB=B,AB,PBÌ平面PAB,所以BD⊥平面PAB,又PAÌ平面PAB,所以PA⊥BD.(2)假设PA=PD,取AD中点N,连结PN、BN,则PN⊥AD,BN⊥AD,且PN∩BN=N,所以AD⊥平面PNB,得PB⊥AD.又PB⊥BD,且AD∩BD=D,得PB⊥平面ABCD,所以PB⊥CD.又因为BC⊥CD,且PB∩BC=B,所以CD⊥平面PBC,所以CD⊥PC,与已知条件PC与CD不垂直矛盾,所以PA≠PD.x- 24.已知f(x)=ax(a>1). x+ 1(1)证明f(x)在(-1,+∞)上为增函数;(2)用反证法证明方程f(x)=0没有负数根. 证明:(1)设-1<x1<x2,则x2-x1>0,ax2-x1>1,ax1>0,x1+1>0,x2+1>0,x-2x-23(x-x) 从而f(x2)-f(x1)=ax2-ax1+-ax1(ax2-x1-1)+>0,所以 x2+1x1+1(x2+1)(x1+1) f(x)在(-1,+∞)上为增函数. x0-2 (2)设存在x0<0(x0≠-1)使f(x0)=0,则ax0=-x0+1 x0-21 由0<ax0<10<-<1,即<x0<2,此与x0<0矛盾,故x0不存在. 2x0+1 1.分析法的特点是从未知看已知,逐步靠拢已知,综合法的特点是从已知看未知,逐步推出未知.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较烦;综合法从条件推出结论,较简捷地解决问题,但不便于思考,实际证明时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来. 2.反证法是从否定结论出发,经过逻辑推理,导出矛盾,说明结论的否定是错误的,从而肯定原结论是正确的证明方法.适宜用反证法证明的数学命题:①结论本身是以否定形式出现的一类命题;②关于唯一性、存在性的命题;③结论以“至多”“至少”等形式出现的命题;④结论的反面比原结论更具体更容易研究的命题. 期末复习:推理与证明,复数 一、推理 1.归纳推理是由,从的推理。 Ex1:将全体正整数排成一个三角形数阵:按照以上排列的规律,(二)间接证明:反证法 反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结 论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为: (1)反设;(2)归谬;(3)结论。 Ex: 用反证法证明数学命题: 设0a,b,c1,求证:(1a)b,(1b)c,(1c)a,不可能同时大于1 4三、复数 24k4k+14k+24k+ 31、虚数单位i,规定:i=;i=;i=;i=;i=(kN*) 2、复数的代数形式是,全体复数所成的集合叫做________集。用字母________来表示。 3.z=a+bi(a、bR),则复数z的实部是;复数z的虚部是。复数z是实数,复数z是虚数,复数z是纯虚数 4、z1=a+bi(a、bR),z2=c+di(c、dR),复数z1=z2;复数z1>z2 5、复数的几何表示:建立了直角坐标系来表示复数的平面叫做________,x轴叫做________轴,y轴叫做 _______轴.实轴上的点都表示______数;除原点外,虚轴上的点都表示__________数。 6、z=a+bi(a、bR),则|z|=|a+bi|=,|z|的几何意义是 7、z1=a+bi(a、bR),z2=c+di(c、dR),则z1+z2=,对应向量运算; z1-z2=,对应向量运算 8、z1=a+bi(a、bR),z2=c+di(c、dR),则|z1-z2|=,|z1-z2|的几何意义是 9、z1,z2是两个已知复数,z是满足下列等式的复数,写出z所对应的图形分别是什么? (1)|z-z1|=a(aR,a>0) (2)|z-z1|=|z-z2| (3)||z-z1|+|z-z2||=2a(aR,|z1-z2|<2a) (4)||z-z1|-|z-z2||=2a(aR,|z1-z2|>2a) 10、复数乘除法:(1)43i54i(2)2i74i11、z=a+bi(a、bR),则复数z的共轭复数为z=,zz= 12、实系数一元二次方程ax+bx+c=0(a、b、cR,且a0)的根的情况 当>0时,方程有根,分别为 当=0时,方程有根,为 当<0时,方程有根,分别为 四、题型分类 (一)i的运算1、1iiii12321232010、1iiii20101232010i3、i2i3i20105、f(n)=iinn2010、1i111i2i3i2010nn(nN*)的值域是1i 6、1i1i1i= 7、n为奇数,=1i1i (二)复数分类 21、z=(2+i)m-3(1+i)m-2(1-i)(mR),z是实数,m取值; z是虚数,m取值;z是纯虚数,m取值; 2、z1=a+bi(a、bR),z2=2+ci(cR),则z1> z2的充要条件是 (三)复数的坐标表示、与向量之间的关系1、3+4i的点关于原点对称的点对应的复数为 22、(m+m-2)+(6-m-m2)i对应复平面上的点一定不在第象限 3、平行四边形中,z1=1+2i,z2=-2+i,z3=-1-2i对应复平面上的点为三个顶点,第四个顶点对应的复数 为 4、复数3-4i和5-6i分别对应向量,求向量AB所对应的复数 (四)共轭运算 1、z1z223i,z1=1-5i,则z2= 2、(z+2)(z2)z,则z= (五)模的运算及几何意义 2(12i)5(34i) 1、= 2、| z1+ z2|| z1|+| z2| 5(2i) 3、若集合M={z| |z+1|=1, zC},集合N={z| |z-2i|=|z|,zC},则MN= 4、复数z满足条件|z|=1,则|z+3-i|的取值范围是 5、复数z=cos+isin,(R),则|z+1-i|的取值范围是 6、复数z1 z2满足| z1|=3,| z2|=4,| z1+ z2|=5,则|z1 –z2|= 7、|z|+z=8-4i,则z= 8、(1+i)z115i, z2=a-2i , |z1z2||z1|, a的范围(六)函数 1、f(z)=1-z,则z1=2+3i, z2=5-i, 则f(z1z22、f(z)=z-1,则z1=2-3i,f(z1 –z2)=4+4i,求z2=, |z1+z2|= (七)一元二次方程1、2+ai,b+i(a、bR)是实系数一元二次方程x2pxq0的两根,2、、是方程xxm0(mR)的两个根,且||=2,求m的值 3、复数、是方程xxm0(mR)的两个根,且||||=2,4、方程x+(k-2i)x+4+2i=0有一个根是2,复数另一个根为 五、反思小结 六、巩固练习 【关键词】几何推理 数学证明 教学 策略 1前言 有效教学指的是在教学活动中教师遵循一定的教育教学规律,采用各种方式和手段,以尽可能少的时间、精力、教学设施的投入,取得尽可能多的教学效果,实现特定的教学目标,满足社会和个人的教育价值需求而组织实施的活动。提高课堂教学效率是无数教育工作者的共同心愿和奋斗目标,时代要求我们构建一种新型的、高效率的课堂教学模式。教学有没有效益,并不是指教师有没有教完内容或教得认真不认真,而是指学生有没有学到什么或学得好不好。因此,教学策略显得尤为重要。 2教学策略及其特点、分类 教学策略是实施教学过程中的教学思想、方法模式、技术手段这三方面动因的简单集成,是教学思维对其三方面动因的进行思维策略加工而形成的方法模式。 教学策略具有指向性、整合性、可操作性、灵活性、调控性、层次性等特点。所谓指向性,指教学策略是为实际的教学服务的,是为了达到一定的教学目标和教学效果。目标是教学整个过程的出发点。教学策略的选择行为不是主观随意的,而是指向一定目标的。所谓整合性,指教学过程是一个彼此之间相互联系、相互作用的整体,各个教学环节连接紧密,各个教学因素的变化都会起到牵一发而动全身的作用。所谓可操作性,指所有的教学活动并不是一成不变的,一成不变的教学只会让学生感觉枯燥乏味,影响教学效果,因此,必须从学生的整体出发不断调整适合学生的、学生易于接受的教育教学策略。所谓灵活性,指教师在教学活动中具有很强的调控权利,能够从学生的整体利益和教育教学效果出发,适当调整自己的教育教学方法策略,灵活地运用多种教学策略。所谓调控性,是教师在教育教学工作中的调控能力。每一位教师都有自己的教育教学策略和教学风格,最好的教育教学策略是真正适合大部分学生的方式方法,所以,教师在选择教育教学策略时的调控力显得更为重要。层次性指教学具有不同的层次,加涅把教学分为课程级、科目级、单元级和要案级四种水平。 根据各种教学策略的不同特点,可以将其分为产生式教学策略、替代式教学策略、独立学习与小组学习策略和竞争与合作学习策略。 3几何推理与数学证明的教学策略研究 几何推理和数学证明具有抽象性,并且对于毕业生来说,该部分所占分数比例较重,但是掌握了相关的方法策略确实很容易得分,因此,教师必须设计较为良好的教学策略,使学生在短时间内更好地掌握。 3.1讲授法 讲授法是指教师通过口头语言,辅助以板书、挂图、投影等媒体向学生传递语言信息的方法,是一种教师讲、学生听的活动。讲授法的优点是能在短时间内让学生获得大量系统的科学知识;缺点则是学生比较被动,师生都难以及时获得反馈信息,个别差异也很难全面照顾。因为几何定理的符号语言是证明过程中的基本单位,所以首先要采用讲授法教学生,并在讲授的基础上归纳出“一划二画三写”的步骤,让学生尽快熟悉每一个定理的基本要求。 例如定理:直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。 “一划”就是找出定理的题设和结论,题设用直线,结论用波浪线,要求在划时突出定理的本质部分,如“直角三角形”“高线”“相似”。 “二画”就是依据定理的内容,能画出所对应的基本图形。“三写”即能用符号语言表达,争取不丢分。 3.2演示法 演示法指借助实物、图片,或使用投影、电视、电影等手段,将要感知的过程或要学习的技能记录下来播放、演示,通过不同形式的直观化方式,增强学生的感性认识,或在已有理性认识的情况下,再通过感性材料深化理性认识的教学方法。借助现代教学媒体,如电影、电视、多媒体计算机等,可以化静态为动态,因而其逼真程度和直观程度更高。学生觉得几何抽象还因为几何推理形式多样、过程复杂而又摸不定,往往听课时知道该如何写,而自己书写时又漏掉某些步骤,因此必须采用演示的方法,使学生能够有一个全方位的理解。演示法的具体教学步骤:首先选择各种类型的证明题,根据方法利用进行分类,再将正确的、规范的解答步骤向学生演示,同时给予一道解题方法相似的题目加以巩固。 3.3训练和实践法 训练和实践法是让学生通过一系列设计好的实践活动来进行练习,运用所学知识解决同类任务,以增加技能的熟练程度或增加新能力的方法。使用这种方法的前提是假设学习者在练习之前已基本掌握了与某种训练有关的概念、原理和技能。现代多媒体技术、人工智能技术和虚拟现实技术可以为学习者创设逼真的学习和实践情境,使学习者在真实的情境中进行练习和实践。基本推理模式中的骨干部分还是定理的符号语言。因而在这一环节,我们让学生在证明的过程中找出单个定理的因果关系、多个定理的组合方式,然后由几个定理组合后构造图形,进一步强化学生“用定理”的意识。 4小结 教学策略是教学效果的重要影响因素,结合几何推理与数学证明问题的抽象性和考试相关要求提出的教学策略具有适应性、针对性、灵活性和快捷性。在教育教学工作中,结合学生实际情况,有针对性地创新教学策略,使学生易于接受、牢固记忆,不断促进教育教学工作更好发展。 【参考文献】 [1]和学新.教学策略的概念、结构及运用[J].教育研究. [2]熊川武.反思性教学[M].上海:上海华师大出版社. (二)【学习目标】 1、结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法 和综合法的思考过程、特点。 2、结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考 过程、特点。 【知识要点】阅读教材(必修1)P42~P45,P80~P83,P111~P113完成下列填空 1、直接证明 2、间接证明 反证法:假设原命题(即在原命题的条件下,结论不成立),经过正确的推理,最后得出。因此说明假设错误,从而证明了原命题成立,这样的证明方法叫反证法。 【基础检测】完成教材(必修1)P42~P45,P80~P83,P111~P113完成习题 1.分析法是从要证的结论出发,寻求使它成立的()A.充分条件B.C.充要条件D.2.若a>b>0,则下列不等式中总成立的是() A.a+>b+C.a+ 1b 1a B.D.bb1>aa12aba a2bb 11>b+ ba 3.要证明+<2,可选择的方法有以下几种,其中最合理的是 () A.综合法B.分析法C.反证法D.归纳法 24.用反证法证明命题:若整系数一元二次方程ax+bx+c=0(a≠0)有有理数根,那么a、b、c中至少有一个是偶数时,下列假设中正确的是() A.假设a、b、c都是偶数B.假设a、b、c都不是偶数 C.假设a、b、c至多有一个偶数D.假设a、b、c至多有两个偶数 5.设a、b、c∈(0,+∞),P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P、Q、R同时大于零”的() A.充分而不必要条件B.C.充D.【例题分析】 a2b2c 2例 1、设a,b,c>0,证明:≥a+b+c.bca 例 2、已知a>0,求证: a2 1a 2-2≥a+ -2.a 例 3、已知a、b、c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能同时大于.2511例 4、已知a>0,b>0,且a+b=1,试用分析法证明不等式.ab≥ ab 【方法总结】 【基础训练】 1.用反证法证明“如果a>b,那么a>b”假设内容应是 ()A.3a3b C.3a3且3a 31a2b 2,则p,q的大小关系2.已知a>b>0,且ab=1,若0<c<1,p=logc,q=logc 2ab B. D.3a3b 或3a3 是() A.p>q B.p<q C.p=qD.p≥ q 3.设S是至少含有两个元素的集合.在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中 有唯一确定的元素a*b与之对应).若对任意的a,b∈S,有a*(b*a)=b,则对任意的a,b∈S,下列等式中不恒成立的是() A.(a*b)*a=aB.[a*(b*a)]*(a*b)=a C.b*(b*b)=bD.(a*b)*[b*(a*b)]=b 4.如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则()A.△A1B1C1和△A2B2C B.△A1B1C1和△A2B2CC.△A1B1C1是钝角三角形,△A2B2CD.△A1B1C1是锐角三角形,△A2B2C 5.已知三棱锥S—ABC的三视图如图所示:在原三棱锥中给出下列命题: ①BC⊥平面SAC;②平面SBC⊥平面SAB;③SB⊥AC.其中命题正确的是(填序号) .6.对于任意实数a,b定义运算a*b=(a+1)(b+1)-1,给出以下结论: ①对于任意实数a,b,c,有a*(b+c)=(a*b)+(a*c);②对于任意实数a,b,c,有a*(b*c)=(a*b)*c; ③对于任意实数a,有a*0=a,则以上结论正确的是.(写出你认为正确的结论的所有序号) 7、已知a,b,c为正实数,a+b+c=1.求证:(1)a+b+c≥;(2)3a2+ 3b2+c2≤6.8、已知函数y=a+ x 2x2 (a>1).x 1(1)证明:函数f(x)在(-1,+∞)上为增函数;(2)用反证法证明方程f(x)=0没有负数根.9、已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2(n=1,2,„),a1=1.(1)设bn=an+1-2an(n=1,2,„),求证:数列{bn}是等比数列;(2)设cn= an2 n (n=1,2,„),求证:数列{cn}是等差数列; 课题:推理与证明 目的要求: 1、进一步体会合情推理在数学中的作用,掌握演绎推理的基本方法并能运用; 2、进一步理解证明的基本方法——综合法、分析法、反证法、数学归纳法(理)及其思考过程与特点 重难点: 要点回顾: 1、合情推理包含推理、推理。 2、演绎推理是从到的推理。 3、直接证明包括。 4、间接证明指的是证明方法 5、数学归纳法 (1)归纳——猜想——证明仍是高考重点; (2)常与函数、数列、不等式等知识结合,在知识的交汇处命题是热点; (3)题型以解答题为主,难度中等偏上。 数学归纳证题的步骤: (1)证明当n取第一值n0(n0N)时命题成立: (2)假设n=k(k≥n0,k∈N)时命题成立,证明当n=k+1时命题也成立。 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立。 注: 1、第一个值n0是否一定为1呢?不一定,要看题目中n的要求,如当n≥3时,则第一个值n0应该为3。 2、数学归纳法两个步骤有何关系?数学归纳法中两个步骤体现了递推思想,第一步是递推基础,也叫归纳奠基,第二步是递推的依据,也叫归纳递推。两者缺一不可。 例题分析: 推理部分: 1、观察下列不等式: 1+131151117<1++1++<„ 22222323223242 4照此规律,第五个不等式为________. 2、观察下列事实|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12 „.则|x|+|y|=20的不同整数解(x,y)的个数为 A.76B.80C.86D.923、若Snsin7sin2 7...sinn 7(nN),则在S1,S2,...,S100中,正数的个数是() A、16B、72C、86D、1004、在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k丨n∈Z},k=0,1,2,3,4.给出如下四个结论: ①2011∈[1] ②-3∈[3]; ③Z=[0]∪[1]∪[2]∪[3]∪[4]; ④“整数a,b属于同一“类”的充要条件是“a-b∈[0]”.其中,正确结论的个数是 A.1B.2C.3D.45、观察下列各式:553125,5615625,5778125,...,则52011的末四位数字为() A.3125B.5625C.0625D.812 5证明部分: 1、某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。 (1)sin213°+cos217°-sin13°cos17° (2)sin215°+cos215°-sin15°cos15° (3)sin218°+cos212°-sin18°cos12° (4)sin2(-18°)+cos248°-sin2(-18°)cos248° (5)sin2(-25°)+cos255°-sin2(-25°)cos255° Ⅰ 试从上述五个式子中选择一个,求出这个常数 Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。 2、如果3sinsin2,求证tan2tan 课后作业: 1.观察下列数的特点 1,2,2,3,3,3,4,4,4,4,„ 中,第100项是() (A)10(B)13(C)14(D)1002、有下列推理: ①A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,则P的轨迹为椭圆 ②由a1=1,an=3n-1,求出S1,S2,S3,猜想出数列的前n项和Sn的表达式 ③由圆x2+y2=r2的面积πr2,猜想出椭圆 ④科学家利用鱼的沉浮原理制造潜艇 以上推理不是归纳推理的序号是______.(把所有你认为正确的序号都填上)xa22yb221的面积S=πab3、由图(1)有面积关系: SPAB SPAB.图(1)图(2)PAPBPAPB,则由(2)有 VPABC VPABC 4、若干个能唯一确定一个数列的量称为该数列的“基本量”.设{an}是公比为q的无穷 比数列,下列{an}的四组量中,一定能成为该数列“基本量”的是第组.(出 所有符合要求的组号)其中n为大于1的整数, Sn为{an}的前n项和.①S1与S2;②a2与S3;③a1与an;④q与an.5、设b0,数列an满足a1b,annban1an1n1(n≥2) (1)求数列an的通项公式; 【关键词】初中数学 几何推理 图形证明 方法 【中图分类号】G633.63 【文献标识码】A 【文章编号】2095-3089(2016)34-0233-01 一、初中数学几何推理与图形证明教学中的缺陷 现阶段,我国的初中数学教学过程中,几何推理与图形证明是难点和重点内容之一。学生在对这部分知识进行学习的过程中,需要具备较强的抽象性思维和空间想象力。然而,现阶段我国部分初中数学教师在教学过程中,仍然沿用传统的教学模式,即在详细讲解课程重点理论知识的基础上,通过大量的习题,引导学生内化知识内容。这种教学模式在应用过程中,教师是课堂主体,学生作为客体,只能够对理论知识进行死记硬背,然而较强的理论性和逻辑性知识,不仅导致学生在记忆过程中难度较大,同时学习兴趣大大下降,在长时间的知识学习过程中,很容易产生对各种理论的混淆,学生的几何推理思维和图形证明能力无法得到有效培养。由此可见,传统以教师为主的教学模式不利于提升初中数学教学质量,新时期,教师必须从以下两方面入手,切实提升学生的解题能力,才能够为培养学生的數学素养奠定良好的基础。 二、抓住题干要素正确解题 初中数学几何推理与图形证明教学中,教师应将各种类型的例题引入课堂,帮助学生对知识点进行消化和理解才能够提升教学效率和质量。在例题的讲解中,首要任务就是培养学生正确的“读题”能力。事实上,题干看起来短小,但是其中包含了大量的关键要素,是解题和证明的关键,在读题中,教师应引导学生拆解题干,将其中的重要要素提取出来,并挖掘隐含的条件,从而为构建清晰的解题思路奠定良好的基础。如果题设相对复杂,学生更应当具备抽丝剥茧的能力,将题设中的各个要素提取出来,在对各个要素进行排列的过程中,应结合图形进行,并将这些要素应用于证明问题的过程当中。读题的能力需要教师在教学过程中长期对学生进行引导,才能够促使学生在解题的过程中,不受其他因素的干扰,做出正确的判断,并提升解题速度。 三、几何推理与图形证明教学中引入定理和重要概念 在几何推理中,根本性因素是定理,在对定理进行推广的过程中,可以演变出更多的几何推理与图形证明知识。在这种情况下,教师在实际教学过程中,应积极引进各种定理和概念。同时,较高的概括性是定理的主要特点,如果一味的要求学生进行死记硬背,不仅不利于提升学习效率和质量,甚至还很容易打击学生的学习积极性,因此定理和相关概念的引入,必须注重应用科学的方法。在反复应用相关定理的基础上,多数几何推理题都能够迎刃而解。 例如,在以下例题中,教师就可以适当的引入定理,帮助学生对理论知识进行掌握和深入理解的同时,提升学生实际解题的能力。“已知三角形ABC如图一所示,边BC的中点为D,连接AD,E为AD上任意一点,并连接、延长BE,F是AC与BE的交点,此时AC=BE,那么证明EF=AF。”单纯的解读题干可以发现,题目内容相对复杂,然而,在对题干进行深入挖掘的过程中学生就能够意识到,该题干描述的是等腰三角形,而所涉及的定理是“等边对等角”。在这种情况下,学生通过对“中点”、“三角形”等基础知识的联想,就会意识到需要对HG和DG等辅助线进行构建,接下来,在进行角与角之间的转换过程中,需要对平行线段性质以及等腰三角形相关性质进行应用,最后在完成证明的过程中,对“等角对等边”的理论进行应用。 在这种情况下,实际证明过程如下:连接EC,G为EC中点,H为AE中点,接下来,分别对HG和DG进行连接,那么可知DG=GH。因此角1和角2相等,由于角2、角3、角5是相等的,而角1同角4是相等的,那么则说明角4同角5相等,因此可以得到AF=EF。 由该例题可以看出,在实际的几何推理与图形证明教学中,要求学生能够对各种定理进行充分的了解,并提升学生灵活应用定理的能力,才能够顺利解答任何题型。 结束语: 新课程在重新审视传统几何教学目标的基础上对推理与证明重新提出了明确的要求:“能通过观察、试验、归纳、类比等获得数学猜想,并进一步寻求证据,给出证明或举出反例”,“从几个基本事实出发,证明一些有关三角形、四边形的性质,从中体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化思想”。《新课程标准》同时指出“应注重对证明的理解,而不追求证明的数量和技巧”,这就既保留了传统几何中推理论证的部分要求,有明确防止过分“形式化”的证明。培养推理证明能力成为几何教学的主要价值体现。而事实上,推理既有合情推理,也有演绎推理,“演绎推理”就是我们平常说的“证明”,是结论已知的必然性推理;“合情推理”是根据已有的知识和经验,在某种情境和过程中推出可能性结论的推理(包括归纳、类比、统计推理等形式)。任何一个科学结论(包括数学定理、法则、公式等)的发现往往发端于对事物的观察、比较、归纳、类比,即通过合情推理得出猜想,然后再通过演绎推理说明猜想的正确或错误。所以,我认为在教学中应该做到如下几点: 一、激发学生对数学的学习兴趣 兴趣是人们力求认识事物和探求知识的心理倾向,它能激发和引导人们在思想感情和意志上去探索各种事物的底蕴,直接影响一个人工作效率和智力的发挥。在数学教学中,如何激发学生的学习兴趣呢?结合具体的教学内容,介绍数学在现代化建设中的地位和作用,介绍学好数学在现实生活中的巨大作用,让学生认识到学好数学既是发展的需要,又是现实的需要。 1、注重师生交流,强调情感育人 如果教师不注意与学生的感情交流,动不动就批评、指责,会导致他们对数学学习的`彻底绝望,那怎样才能增进师生的感情交流呢?我认为,应着力做好两个方面的工作: 一是交心。在教学中应该热爱自己的学生,用爱心去教化他们,缩短师生间的距离,让学生感到你是他们的朋友。教学中注意“轻、亲、清”,即轻松愉快、感情亲近、条理清晰,使学生感到轻松愉快,感情亲切,使师生感情进一步融洽。 二是引领。良好的师生关系是一堂课的关键,一位学生喜欢教师走进课堂,课堂气氛就会活跃愉快,这就有利于学生获得最大限度的进步和发展,师生之间的友谊就会发生教学的积极反馈。反之则形成教学的消极反馈,降低效果。 2、理论联系实际,注重直观教学 数学多为抽象、枯燥的数字符号,学生学起来感觉无味,这也会影响学生的学习兴趣。因而在教学中,教师应该尽量将书本上的知识加以研究使之变为生动有趣的问题。教学中要放手引导学生高度参与教学活动,让他们“够一够”后能品尝到撷取知识“果实”的乐趣和获得成功的愉快,通过多提问、板演、讨论等多种方法向学生提供体验这种愉快心情的机会。 3、讲究,激发学生兴趣 数学是一门非常严谨而又逻辑性十分强的学科,然而它又是丰富多彩、生动形象的学科。教学中除应注重其严谨性,掌握比较详实的数学史料外,同时还要把握教材内容和学生心理特点,将数学史料适时溶于教学中,用生动的事例及故事激发学生的学习兴趣。 二、树立学生学好证明的信心 因为推理论证的过程就是证明,在初中一提到证明,学生就联系到几何,对于证明,学生感到不知所措,因为在小学数学中,接触的是计算题、问答题,好像没有证明题。在初中数学教学中,首先告诉学生,别担心,其实你们小学计算题中也包括证明。例如:计算学生都知道等于几,具体过程是?为什么等?学生肯定答得出,既然你们能说出其中的理由,就说明了你们在小学已经具有一定的推理论证能力。另外告诉学生,证明题有时比计算题更具一定的方向性,因为计算题只有条件没有结果,而证明题既有条件,又有结论,只不过要你说出如何从条件到结论的理由罢了! 三、注意所学知识的比较和归纳 因为推理过程就是一个论证过程,它必须要有理论依据,而数学推理论证的依据是已知条件和学生已学过的定义、定理、公理等。这就要求学生在学习过程中善于总结和归纳,如果学生不归纳总结,学生所学的知识是松散的、零碎的,没有形成网络化,这就给推理论证带来了一定的困难。在平时的教学中,每学一节、一章,笔者都让学生前后联系,分门别类进行归纳、总结和比较。另外,对于一些证明方法,要求学生进行归纳、总结。例如:证两条线段相等,证两条直线平行,证两角相等,证两直线垂直等等都有哪些方法。 四、注意教师的示范性 【推理与证明练习题】推荐阅读: 复数与推理证明练习题01-08 高二文科期中考试集合、推理与证明、常用逻辑、复数练习12-28 高二文科期中集合、常用逻辑、推理与证明、复数考试综合练习12-04 高二复习推理与证明11-14 数学选修12推理与证明12-13 推理与证明单元测试题10-14 高二数学1-2推理与证明测试题10-15 几何证明完成推理10-22 期末复习推理证明11-109.期末复习:推理与证明,复数 篇九
10.几何推理与数学证明的教学策略 篇十
11.第三十八讲 推理与证明 篇十一
12.推理与证明练习题 篇十二
13.推理与证明练习题 篇十三
14.推理与证明练习题 篇十四