风力发电工作总结

2025-02-15|版权声明|我要投稿

风力发电工作总结(13篇)

1.风力发电工作总结 篇一

个人年终总结

生产技术部—XX 过去的2016年,在部门主任领导下和同事协作下,共同完成了上一工作,取得了一定的成绩,但也存在诸多不足。新年伊始,为更好的开展2017年工作,让自己不断在总结中成长,现就将去年工作内容和今年工作思路做简要汇报。

一、主要工作内容

本人在生产技术部主要负责风力发电机组设备、技术监督管理和保险理赔工作,协助同事完成部门和公司领导安排的其他工作。(一)设备管理方面

按照公司要求,部门工作计划,主要对具体的设备管理工作的进行监督实施。编制了《2016年XX新能源技改检修生产项目工作计划》、《2016年风电光伏材料费/检修费计划表》,参与定制了一至五期《XX新能源风机出质保验收大纲》等文件,并对以上工作计划进行全过程的监督实施。其中对一期33#、二期36#风机全年检工作,二期43#风机出质保验收工作等进行了登机检查;汇总统计了二至五期风机出质保的考核金额;审批了部分风机较大型的检修方案,并对一期7#齿轮箱中间级更换、17#风机偏航刹车盘打磨、14#风机更换发电机集电环等检修工作进行了登机检查;跟踪了159#、38#箱变的维修工作;负责完善了部门设备管理制度,编制了2016年《XX新能源有限公司设备缺陷管理制度》(未发布),建立了设备台账等。(二)技术监督方面

按照公司要求,部门工作计划,主要对具体的技术监督工作的进行监督实施。主要实施和配合完成了风机、箱变、变电站的防雷检测工作;风机油品抽检化验工作;XX期发电机改造工作;XX期风机塔筒法兰生产、监造、检测厂家的统计上报工作;XX110kV变电的预试工作;公司技术监督总结的上报工作;电网关于东汽和上气机组的耐频耐压要求工作;XX330kV远动升级改造工作;2016中电联的全国风电运行指标竞赛数据的上报工作等。(三)保险理赔方面

负责公司现场所有设备出险前期的申报、现场勘察取证及事故证明出具等。配合财务部完善公司2016年资产统保清单;修订了公司企业固定资产目录;参加了2016保险经纪公司组织的保险业务培训;与财务部进行了保险理赔的工作交接,财务部负责案件的后期理赔工作。2016年XX公司现场共计出险16件,因厂家维修未产生费用销案3件,现有13件正在理赔中。

二、管理工作中存在的问题

(一)风机的定期维护工作开展不及时,定期维护工作周期较长,未按照计划时间节点开展维护工作等。2016年维护工作中,一至七期半年/全年维护工作均未按照时间节点开展,其中七期半年检工作周期长达5个月。四至六期全年检至今都未结束。

(二)备品备件管理有待进一步提高。表现在备件的购买周期过长,部分备件的购买达数月;现场备品备件的库存不充分,因无备件停机现象频发;购买备件和现场实际不符等。现场无箱式变压器储备,如XX因箱变烧损受累停机近5个月。XX因箱变故障受累停机达4个月。

(三)个人综合管理素质有待提升。2016年设备管理工作无新意和亮点,具体管理工作落实不够。表现在部分机组维护工作拖沓滞后,备件管理工作跟不上,造成一至三期设备可利用率较低等。现场生产指标的考核细则不健全,考核奖励制度没有真正实施。

三、2017年主要工作思路

(一)进一步完善设备缺陷管理制度,制定与之相对应的考核细则,重在落实。风力发电机定期维护工作和检修工作及时完成,对机组长时间的健康运行至关重要,完善和发布《XX新能源设备缺陷管理制度》和《XX新能源公司生产指标考核细则》,按照公司2017工作计划,严格的落实好风机定期维护、检修工作,通过于考核相结合,提升设备管理的精细化水平。(二)强化备品备件的管理。首先,要有合理的备件储备计划,对备件更换频次、数量、使用周期、消耗规律等方面进行统计,结合现场实际和统计情况上报备件计划。其次,备件的购买质量和周期上进行严格控制,考虑制定“关键件”目录清单,对难采购、影响生产大、占用资金多需重点加强管理。最后,考虑大部件的储备,如箱式变压器,齿轮箱、发电机等大部件,因这些部件占用资金较大,考虑发电企业联合建立区域备品备件的方式进行大部件的储备。

(三)其他工作想法。

1.考虑进行修旧利废的革新,降低备品备件的管理成本。对设备出现故障较高或者跟换备件频繁的地方,组织人员进行原因分析,进行相应小发明小创造的技术改革,降低备件的消耗。

2.借助集中监控平台的建设,考虑整合风速、发电量、数据借口、风机对时、时间统计等关键指标数据的统计口径,风机故障进行大数据分析,远程工作票管理,风电场关键部位安装摄像头,结合现场的小神探基础管理平台和门禁系统,为后期风电行业的信息化、智能化和云计算等功能的实现打好基础,以便真正实现风电场的无人或者少人值守的生产管理自动化。

2.风力发电工作总结 篇二

我国近些年的自动化控制技术水平以及信息技术水平在急剧提升,应用范围正在不断扩大,在风力发电当中的应用算是一种回归,也正是自动化控制技术以及信息技术的发展和推广,为风能的进一步广泛应用与认同提供了更强劲的动力。利用风能源进行发电,具有成本低、动力足与无污染的鲜明优势,风力发电对自动化的要求也凭借着技术的支撑力进一步促进着我国风力发电技术信息化水平的提升。

1.风力发电技术概述

风力发电技术属于新能源应用背景下的重要技术之一。风能就是以风力为主的能源开发,作为一种新型的可再生且绿色无污染的能源,其应用范围于近些年社会经济发展的作用下始终处于不断扩大的进程当中[1]。风力发电作为对风能进行利用的重要手段,虽然技术水平较高,但依然存在着电力储存方面的局限性问题,风力发电对自动化以及风力发电信息系统的应用要求不断增加。当前,能源市场的竞争态势愈演愈烈,市场范围已经拓展到了整个国际,风能凭借着诸多优势性特点逐渐被赋予了高度的重视和广泛的认同。从风能的特点来看,大多存在于陆地和近海区域,资源相对丰富,可供开发的潜力巨大;加之风能作为一种自然现象更是具有取之不尽用之不竭的特点,但凡有气压差值的存在,则将会因空气的流动生成风能,同时还具有无污染的特点[2]。

2.风力发电机对自动化的要求

风能属于随机性较大的一种能源,风能受到季节的影响相对较大,属于自然界不可控制的能源。所以风力发电机组运行过程中,需要实现发电机、电力能源存储以及电力能源输送的自动化控制。建立起风力发电自动化控制系统对于整体的风力发电具有重要意义[3]。

2.1风力发电机的自动化控制

在风力发电系统中,发电机的自动化控制作用无可替代,实为整个发电过程中作用于机械力向电能转化的核心自动控制驱动力量。早些时期的风力发电虽然也需要依赖于自动化的发电机系统,但当时的发电机系统对于电力输出的稳定性却并不高,对于风速的控制经常容易出现失速或者主动失速情况,难以保证输出电荷的自动控制平稳传输,自然也就难以充分满足社会生产与人们日常生活的实际需求,因此在现代化科技发展的今天已经被淘汰。最新的发电机自动控制系统拥有着更先进的技术支撑,恒频变速发电机自动控制系统在电力电子变换器和多级同步电机共同组成的变速变桨距离调节系统直接实现了风力发电机系统优化[4]。2.2电力存储自动化控制

电力存储自动化控制对于风能发电至关重要。风能虽然能够作用于风力发电,但毕竟风能无法被储存,同时风能又具有一定的不稳定性,风力发电的稳定性也就难以被有效保障,电力系统的正常供应便会由此受到影响。因此,风力发电系统的运行尤其是相对偏远的发电站,更需要保证储电池通过自动化控制,能够具有更大的电力储藏量和更稳定的性能。当前,适用于自动化的电能存储主要采用脉宽调制技术、功率MOSFET和IGBT等现代化高科技电子产品,能够直接作用于储电池的自动化控制,使之大幅提升电力存储能力,有利于保证风力发电和电力供应的自动存储稳定性[5]。2.3电力输送自动化控制

风力发电场地的选定通常具有极其严格的限制,一般都远离城镇坐落于偏远地域,因此,如何在风力发电厂将生成的电能高质量传输到用电区域也就成为了一项至关重要的技术要素。当前,用于风力发电的电力传输自动控制模式主要以交流输电为主,但一些问题依然不能回避。时至今日,现代科学技术的发展促成了以HVDC自动控制技术为主的新型输电方式即高压直流输电方式,该自动控制技术的主要优势表现为具有可异步联网、成本低廉、高性价比、结构优越和适应力强等特点,更于近些年在GTO和IGBT等技术的作用下使输电性能得以稳步提升,电力自动控制下的传输效率也由此大幅提高[6]。

3.风力发电信息系统的应用

3.1风力发电信息系统的分析

发电信息系统系统是现场总线型控制系统的简称,其与DCS控制系统的区别在于,其利用了现代智能技术及自动化体系的融合,并配合通信网络组建成全新的地机械电能控制装置。该装置兼具智能化控制、自动化管理等特征,是比DCS技术更加低耗降成本,并具有灵活性和简单操作性的控制系统。而且,从现阶段的实际应用中不难看出,风力发电信息系统系统更符合现代机械电力控制装置应用的需求,其功能扩散范围大,操作具备优势,相较于DCS控制系统拥有更多的优势。

3.2风力发电信息系统的功能

风力发电信息系统的功能主要是对风力发电信息的管理,传统时期的风力发电信息系统一直存在此方面技术的困扰,直到现代信息管理和控制理论的生成,为风力发电新型信息系统控制水平的提升提供了有力地支撑,能够直接作用于复杂风力发电数据和信息的整合,使得风能的信息收集和整理效率不断提升,电能的品质也因此而改善,实现了整体电功率的最大化。

4.结语

综上所述,现代科学技术的迅猛发展,促进了我国风力发电自动化控制的水平的提高,风力发电信息系统的应用技术水平也在不断提升。基于风力能源的发电系统的普及,使自动化技术以及信息技术在其中的应用成为了必然趋势,对于保证发电系统的稳定性和实效性具有积极有效的作用。

摘要:在社会经济迅猛发展的作用下,现代自动化控制技术水平的更新也是日新月异,人们身处信息化发展时代,已经开始越来越地享受着现代自动化控制技术和信息技术为人们生活所创造的诸多便利。与时代发展紧紧相随的是能源形势的越发严峻,为了从容应对生态能源急剧消耗下对社会发展带来的挑战,风力发电技术的探索和开发已被整个国际赋予了高度重视。风能作为新能源的重要组成,具有着可再生特点并且污染低,由此成为了最具潜力和发展前景的最大商业化能源之一。本文以此为出发点,深入分析了风力发电对自动化的要求与风力发电信息系统的应用。

关键词:风力发电,信息系统,自动化

参考文献

[1]刘继承.风力发电对自动化的要求与风力发电信息系统的应用[J].科技与企业,2012,04:69.

[2]温春雪,张利宏.三电平PWM整流器用于直驱风力发电系统[J].高电压技术,2011,01:191-195.

[3]李伯颐,蒋传文.风力发电及其信息自动化管理系统[J].自动化仪表,2012,11:12-15+20.

[4]李伟,涂乐.风力发电中液压技术的应用研究[J].液压与气动,2013,03:1-9.

[5]李辉,薛玉石.并网风力发电机系统的发展综述[J].微特电机,2011,05:55-61.

3.美国“试水”海上风力发电 篇三

不过,就在离岸边500米远的海上,未来的气息透过灰色的薄雾若隐若现。一台淡黄色的风力涡轮机在波浪中摇晃,薄薄的叶片缓慢地旋转着。这个20米高的家伙建于去年6月,是一种试验性漂浮设计,规模只有实际大小的1/8。它最多可提供20千瓦电力,基本够6个美国家庭用电。不过,因为是美国近海唯一的海上风力发电场,这个被称为VolturnUS的建筑物正引发广泛关注。

过去几十年间,其他国家如比利时、英国、丹麦和德国在其海岸线周围建造了大规模的涡轮机发电场。然而,由于环境顾虑、官僚制度和政治反对,美国开发海上风电的努力一直没有结果。不过,一切或许将很快得以改观。生态研究显示,经过周密计划建立的风电场不会明显伤害到鸟类或海洋哺乳动物。商业人士和政客对开发和投资海上风电的兴趣也日益增加。

今年5月,美国能源部拨款给新泽西州、俄勒冈州和弗吉尼亚州的3个示范项目。一些州政府也正在为其建造海上风电场的雄心开辟道路,开发商则表示他们最快可于明年开始在海洋中安置涡轮机。

從理论上讲,这种潜力是巨大的。包括难以达到的深水地区,美国近海预计可产生4万亿瓦电力,足够提供4倍于该国现有用电需求的电量。不过,在该领域获得快速发展前,支持者不得不证明海上风电在经济意义上可以同其他能量来源竞争,而且必须清除各州和联邦政府在管制海上风电项目时设置的各种错综复杂的规定。

4.风力发电工作总结 篇四

2017年安全工作计划

一、安全生产目标:

1.不发生承担主要责任的生产性人身重伤及以上或轻伤3人以上的人身安全事故或10万元以上直接经济的火灾等安全事故; 2.不发生负主要责任的一般及以上生产安全事故 1.不发生负主要责任的一般及以上交通事故; 4.不发生负管理责任的一般及以上自然灾害 5.不发生一般及以上设备事故;

6.不发生一般及以上电力安全事故;不发生直接经济损失100万以上的设备安全事故;

7.不发生恶性电气误操作事故;

8.不发生承担主要责任的职业健康、环境保护事故;

9.不发生承担主要责任的造成恶劣社会影响的其他安全生产事故或事件;

10.不发生事故瞒报、谎报、拖延不报等行为。

二、安全管理工作:

1.1月份公布2017年电厂“三种人”资格名单; 2.1月份电厂层层签订2017年安全生产责任书; 3.2月份完成电厂2017年“两措”计划; 4.3月份完善、补充风电场各类警示标志; 5.3月份完成升压站和机组的防雷接地检测工作; 6.3月份委托进行绝缘手套、绝缘靴、接地线半年检测以及验电器、绝缘杆一年检测;

7.3月份完成消防水池水位计安装;

8.3月份完成海上机组平台栅格固定螺栓的检查坚固工作; 9.4月份,进行安全带、安全绳、防坠器的年检; 10.4月份前完成风电场《安全规程》的编制工作; 11.4-5月份,开展电厂春季安全大检查工作; 12.6月份,配合公司安监部开展安全月活动; 13.6月份争取完成电厂安全生产标准化达标一级评审; 14.7月份,助爬器和32台风机的升降机年检; 15.10月份开展电厂秋季安全大检查工作;

16.10月份委托进行绝缘手套、绝缘靴、接地线半年检测; 17.上半年和下半年运行和检修各组织两次应急预案演练; 18.择机委托相关单位进行高空救援和紧急逃生培训演练。

二、例行安全工作:

19.加强职工安全教育,班组安全学习常态化,提高班组成员的安全意识、工作责任心和业务技术水平,杜绝违章行为,不断提高运行管理水平;

20.每月第一个交接班召开电厂安全生产例会,每周由运行、检修班组各组织召开一次安全生产分析会;

21.每次大倒班由值长(班长)组织安全学习和事故预想等安全活动; 22.每天早上由运行、检修专工对前一天的运行、维护等日常记录进行检查,了解升压站及风电机组运行情况,及时发现安全隐患并进行分析、消缺;

23.每季度发布一次风电场安全生产简报; 24.严格执行“两票、三制”,工作票中注明危险点和预控措施,工作前做好安全交底,月底做好两票合格率统计工作; 25.加强风电场“五防”管理,防止发生误操作事故; 26.做好风电场的安全防火、防汛、防小动物工作。

27.加强升压站和机组、电缆、基础、平台、爬梯的巡视检查力度,及时消缺,确保安全运行;

28.加强对下海作业和登高作业人员的安全管理和督促检查,防止违章作业;

29.加强对检修车辆、两栖车的日常管理和检查保养工作,防止违章驾驶和车辆带病运行。

风力发电厂

5.风力发电报告 篇五

风能是一种可再生的清洁能源。近30年来,国际上在风能的利用方面,无论是理论研究还是应用研究都取得了重大进步。风力发电技术日臻完善,并网型风力发电机单机额定功率最大已经到5MW,叶轮直径达到126m。截止2005年世界装机容量已达58,982MW,风力发电量占全球电量的1%。中国成为亚洲风电产业发展的主要推动者之一,其总装机容量居世界第8位,2005年新增装机容量居世界第6位。今后,国内外风力发电技术和产业的发展速度将明显加快。引

风是最常见的自然现象之一,是太阳对地球表面不均衡加热而引起的“空气流动”,流动空气具有的动能称之为风能。因此,风能是一种广义的太阳能。据世界气象组织(WMO)和中国气象局气象科学研究院分析,地球上可利用的风能资源为200亿kW,是地球上可利用水能的20倍。中国陆地10m高度层可利用的风能为2.53亿kW,海上可利用的风能是陆地上的3倍,50m高度层可利用的风能是10m高度层的2倍,风能资源非常丰富。

风能是一种技术比较成熟、很有开发利用前景的可再生能源之一[1]。风能的利用方式不仅有风力发电、风力提水,而且还有风力致热、风帆助航等。因此,开发利用风能对世界各国科技工作者具有极强的魅力,从而唤起了世界众多的科学家致力于风能利用方面的研究。在本文中,将对国内外风力发电技术的现状和发展趋势进行论述。风力发电基本知识

2.1 风能的计算公式

空气运动具有动能。风能是指风所具有的动能。如果风力发电机叶轮的断面积为A,则当风速为V的风流经叶轮时,单位时间风传递给叶轮的风能为

(1)

其中:单位时间质量流量m=ρAV

(2)

在实际中,式中:

PW—每秒空气流过风力发电机叶轮断面面积的风能,即风能功率,W;

(3)Cp—叶轮的风能利用系数;

m—齿轮箱和传动系统的机械效率,一般为0.80—0.95,直驱式风力发电机为1.0; e—发电机效率,一般为0.70—0.98; —空气密度,kg/m3;

A—风力发电机叶轮旋转一周所扫过的面积,m2; V—风速,m/s。

2.2 贝茨(Betz)理论

第一个关于风轮的完整理论是由德国哥廷根研究所的A·贝茨于1926年建立的。

贝茨假定风轮是理想的,也就是说没有轮毂,而叶片数是无穷多,并且对通过风轮的气流没有阻力。因此这是一个纯粹的能量转换器。此外还进一步假设气流在整个风轮扫掠面上的气流是均匀的,气流速度的方向无论在风轮前后还是通过时都是沿着风轮轴线的。

通过分析一个放置在移动空气中的“理想”风轮得出风轮所能产生的最大功率为

—空气密度,kg/m3;

(4)

式中:Pmax—风轮所能产生的最大功率;

A—风力发电机叶轮旋转一周所扫过的面积,m2; V—风速,m/s。

这个表达式称为贝茨公式。其假定条件是风速与风轮轴方向一致并在整个风轮扫掠面上是均匀的[2]。将(4)式除以气流通过扫掠面A时风所具有的动能,可推得风力机的理论最大效率

(5)

(5)式即为有名的贝兹(Betz)理论的极限值。它说明,风力机从自然风中所能索取的能量是有限的,其功率损失部分可以解释为留在尾流中的旋转动能。

能量的转换将导致功率的下降,它随所采用的风力机和发电机的型式而异,因此,风力机的实际风能利用系数Cp<0.593[3]。

2.3 温度、大气压力和空气密度

通过温度计和气压计测试出实验地点的环境温度和大气压,由下式计算出空气密度。

(6)

式中:ρ—空气密度,kg/m3; h—当地大气压力,Pa; t—温度,℃。

从空气密度公式可以看出,空气密度的大小与大气压力、温度有关。

2.4 风力机的主要组成

1)小型风力发电机

小型水平轴风力机主要组成部分有:风轮、发电机、塔架、调向机构、蓄能系统、逆变器等。(1)风轮 风轮是风力机从风中吸收能量的部件,其作用是把空气流动的动能转变为风轮旋转的机械能。水平轴风力发电机的风轮是由1~3个叶片组成的。叶片的结构形式多样,材料因风力机型号和功率大小而定,如木心外蒙玻璃钢叶片、玻璃纤维增强塑料树脂叶片等。

(2)发电机

在风力发电机中,已采用的发电机有3种,即直流发电机、同步交流发电机和异步交流发电机。小型风力发电机多采用同步或异步交流发电机,发出的交流电通过整流装置转换成直流电。

(3)塔架

塔架用于支撑 发电机和调向机构等。因风速随离地面的高度增加而增加,塔架越高,风轮单位面积捕捉的风能越多,但造价、安装费等也随之加大。

(4)调向机构

垂直轴风力机可接受任何方向吹来的风,因此不需要调向机构。对于水平轴风力机,为了得到最高的风能利用效率,应用风轮的旋转面经常对准风向,需要对风装置。常用的调向机构主要有尾舵、舵轮、电动对风装置。

(5)限速机构

当风速高于风力机的设计风速时,为了防止叶片损坏,需要对风轮转速进行控制。(6)贮能装置

贮能装置对独立运行的小型风力机是十分重要的。其贮能方式有热能贮能、化学能贮存。(7)逆变器

用于将直流电转换为交流电,以满足交流电气设备用电的要求。2)大型风力发电机

大型风力发电机组由两大部分组成:气动机械部分和电气部分。气动机械部分包括风轮、低速轴、增速齿轮箱、高速轴,其功能是驱动发电机转子,将风能转换为机械能。电气部分包括异步发电机、电力电子变频器、变压器和电网,其功能是将机械能转换为频率恒定的电能。近年来,又研制成功了直驱式变速恒频风力发电机组(无增速齿轮箱)。风力机与风力发电技术

3.1 风力机与风力发电技术的发展史

风能,是人类最早使用的能源之一。远在公元前2000年,埃及、波斯等国已出现帆船和风磨,中世纪荷兰与美国已有用于排灌的水平轴风车。我国是世界上最早利用风能的国家之一,早在距今1800年前,我国就有风力提水的记载。1890年丹麦的P·拉库尔研制成功了风力发电机,1908年丹麦已建成几百个小型风力发电站。自二十世纪初至二十世纪六十年代末,一些国家对风能资源的开发,尚处于小规模的利用阶段[4]。

随着大型水电、火电机组的采用和电力系统的发展,1970年以前研制的中、大型风力发电机组因造价高和可靠性差而逐渐被淘汰,到二十世纪六十年代末相继都停止了运转。这一阶段的试验研究表明,这些中、大型机组一般在技术上还是可行的,它为二十世纪七十年代后期的大发展奠定了基础。

1980年以来,国际上风力发电机技术日益走向商业化。主要机组容量有300kW、600kW、750kW、850kW、1MW、2MW。1991年丹麦在Vindeby建成了世界上第一个海上风电场,由11台丹麦Bonus 450kW单机组成,总装机4.95MW。随后荷兰、瑞典、英国相继建成了自己的海上风电场。

目前,已经备离岸风力发电设备商业生产能力的厂家,主要有丹麦的Vestas(包括被其整合的NEG-Micon),美国的GE风能,德国的Nordex、Repower、Pfleiderer/Prokon、Bonus和德国著名的Enercon公司。单机额定功率覆盖范围从2MW、2.3MW、3.6MW、4.2MW、4.5MW到5MW。叶轮直径从80m、82.4m、100m、110m、114m、116m到126m。

3.2 风力机的种类

风力发电机是把风能转换为电能的装置,鉴于风力发电机种类繁多,因此分类法也是多种。按叶片数量分,单叶片,双叶片,三叶片,四叶片和多叶片;按主轴与地面的相对位置分,水平轴、垂直轴(立轴)式;按桨叶工作原理分,升力型、阻力型。目前风力发电机三叶片水平轴类型居多。

水平轴风力机,风轮的旋转轴与风向平行,如图1所示;垂直轴风力机,风轮的旋转轴垂直于地面或气流方向,如图2所示。国内外风力发电的现状

4.1 世界风力发电的现状

目前,中、大型风力发电机组已在世界上40多个国家陆地和近海并网运行,风电增长率比其它电源增长率高的趋势仍然继续。如表1所示,截止2005年12月31日世界装机容量已达58,982MW,年装机容量为11,310MW,增长率为24%;风力发电量占全球电量的1%,部分国家及地区已达20%甚至更多。2005年世界风电累计装机容量最多的十个国家见表2,前十名合计51750.9MW,约占世界总装机容量的87.7%。

2005年国际风电市场份额的分布多样化进程呈持续发展趋势:有11个国家的装机容量已高于1,000MW,其中7个欧洲国家(德国、西班牙、意大利、丹麦、英国、荷兰、葡萄牙),3个亚洲国家(印度、中国、日本),还有美国。亚洲正成为发展全球风电的新生力量,其增长率为48%[5]。

2002年欧洲风能协会(EWEA)与绿色和平组织(Greenpeace International)发表了一份标题为“风力 12(Wind Force 12)”的报告,勾画了风电在2020年达到世界电量12%的蓝图。报告声明这份文件不是预测,而是从世界风能资源、世界电力需求的增长和电网容量、风电市场发展趋势和潜在的增长率、与核电和大水电等其他电源技术发展历程的比较以及减排CO2等温室气体的要求,论证了风电达到世界电量12%的可能性。报告还指出中国2020年风电装机有可能达到1.7亿千瓦[6]、[7]。

国内风力发电的现状

根据国家气象科学院的估算[8],我国陆地地面10米高度层风能的理论可开发量为32亿kW,实际可开发量为2.53亿kW。海上风能可开发量是陆地风能储量的3倍。内蒙古 实际可开发量

0.618亿kW 西藏

实际可开发量

0.408亿kW 新疆

实际可开发量

0.343亿kW 青海

实际可开发量

0.242亿kW 黑龙江

实际可开发量

0.172亿kW

2005年中国除台湾省外新增风电机组592台,装机容量50.3万kW。与2004年当年新增装机19.8万kW相比,2005年当年新增装机增长率为254%。

截至2005年底,中国除台湾省外累计风电机组1864台,装机容量126.6万kW,风电场62个。分布在15个省(市、自治区、特别行政区),它们按装机容量排序如表3所示。与2004年累计装机76.4万kW相比,2005年累计装机增长率为65.6%。2005年风电上网电量约15.3亿kW.h[9]。

中国“十一五”国家科技支撑计划重大项目“大功率风电机组研制与示范”支持1.5~2.5MW、2.5MW以上双馈式变速恒频风电机组的研制;1.5~2.5MW、2.5MW以上直驱式变速恒频风电机组的研制;1.5MW以上风电机组叶片、齿轮箱、双馈式发电机、直驱式永磁发电机的研制及产业化;1.5MW以上双馈式风电机组控制系统及变流器、直驱式风电机组控制系统及变流器的研制及产业化;近海风电场建设关键技术的研究;近海风电机组安装及维护专用设备的研制;大型风电机组相关标准制定及风电技术发展分析等16个课题的研究[10]。“十一五”末,我国风电技术的自主研发能力将接近世界前沿水平。

4.3小型风力发电机

4.3.1小型风力发电机行业现状

作为农村可再生能源主要支柱之一的小型风力发电行业在2005得到长足的发展,从事小型风电产业的开发、研制、生产单位达到70家。据23个生产企业报表统计,2005年共生产30kW以下独立运行的小型风力发电机组共33,253台,比上年增长34.4%,其中200W、300W、500W机组共生产24,123台,占全年总产量的72.5%;15个单位共出口小型风力发电机组5,884台,比上年增长40.7%,创汇282.7万美元,主要出口到菲律宾、越南等24个国家和地区。并且,由于汽油、柴油、煤油价格飞涨,且供应渠道不畅通,内陆、江湖、渔船、边防哨所、部队、气象站和微波站等使用柴油发电机的用户逐步改用风力发电机或风光互补发电系统。

4.3.2 小型风力发电机行业发展趋势

1)由于广大农牧民生活水平提高、用电量不断增加,因此小型风力发电机组单机功率在继续提高,50W机组不再生产,100W、150W机组产量逐年下降,而200W、300W、500W和1kW机组逐年增加,占总年产量的80%。

2)由于广大农民迫切希望不间断用电,因此“风光互补发电系统”的推广应用明显加快,并向多台组合式发展,成为今后一段时间的发展方向。

3)随着国家《可再生能源法》及《可再生能源产业指导目录》的制定,相继还会有多种配套措施及税收优惠扶植政策出台,必将提高生产企业的生产积极性,促进产业发展。

4)目前我国尚有2.8万个村、700万户、2,800万人口没有用上电,且分散居住在边远山区、农牧区、常规电网很难达到,有关专家分析700万无电用户中、300万户可用微水电解决用电,而400万户可以用小型风力发电或风光互补发电,满足农牧民用电需要[11]。4.3.3浓缩风能型风力发电机

浓缩风能型风力发电机由内蒙古农业大学新能源技术研究所研制,已获得中国实用新型专利(专利号:ZL94244155.9)。该型风电机组将稀薄的风能经浓缩风能装置加速、整流和均匀化后驱动叶轮旋转发电,从而提高了风能的能流密度,降低了自然风的湍流度,改善了风能的不稳定等弱点,提高了风能品位,降低了风电度电成本。该风力发电机具有的切入风速低、发电量大、噪音低、安全性高、寿命长、度电成本低等特点。浓缩风能型风力发电机可独立运行、风光互补运行、多机联网运行和并入低压电网运行。现已研制开发的系列产品有200W、300W、600W、1kW、2kW等机组。浓缩风能型风力发电机经过中试后,可以向中、大型机组发展。这种新型风电技术在中国和世界的应用,将有效地提高风电系统的供电水平和质量,有效地利用低品位的风能,提高风电商品竞争力,具有重要的经济益和生态环保效益[12]。结

在今后的20年内,国际上风力发电产业将是增长速度最快的产业,风力发电技术也将进入快速发展的黄金时期;在中国,并网型风力发电机组装机容量增长速度将明显加快,令世界瞩目,离网型风力发电机组发展的地域广、潜力大,装机总容量最终将超过并网型风力发电机组。

田德,吉林松原人,1958年8月生。内蒙古农业大学教授,华北电力大学教授,博士生导师。1985年赴日本留学,1992年9月获得日本明星大学电气工程学博士学位。现任中国农业工程学会理事、中国太阳能学会理事、《太阳能学报》编委、全国“百千万人才工程”第一、二层次人选。享受国务院政府特殊津贴。省级中青年突贡专家。省级优秀留学回国人员。主持完成的项目获内蒙古自治区科技进步一等奖1项,已获得中国实用新型专利1项。正申请国家发明专利3项。发表研究论文50余篇,多篇被EI收录。主持完成和正在主持的科研项目有:3项国家自然科学基金资助项目、3项国际合作项目、1项国家“十一五”科技攻关项目、9项省部级项目、3项横向项目。现从事离网型风力发电系统、并网型风力发电系统和可再生能源利用的研究。

[参考文献] [1]贺德馨.2020年中国的科学和技术发展研究[J].科技和产业,2004,4(1):36.[2][法]D·勒古里雷斯(著),施鹏飞(译).风力机的理论与设计[M].北京:机械工业出版社,1987:31~33.[3]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2006:11~13.[4]陈云程,陈孝耀,朱成名,等.风力机设计与应用[M].上海:上海科学技术出版社,1990:1~11,48~51 [5]世界风能协会.2005年全球风能统计[J].中国风能,2006(1):17~20

[6] The European Wind Energy Association, Greenpeace International.Wind Force 12.2002.http://,2006.12.17.[11]李德孚.2005年小型风力发电行业现状与发展[J].中国风能,2006,(2):9~11 [12]田

6.海上风力发电论文 篇六

【摘要】丹麦在风力发电领域占有领导地位目前丹麦有世界上最大的海上风电场。根据丹麦政府能源计划法案中的第21条,2030年以前海上风电装机将达到4吉瓦,加上陆地上的1.5吉瓦,丹麦风力发电量将占全国总发电量的50%,与此对照一下,年中,丹麦风电总装机容量仅为1.1吉瓦。

20世纪70年代石油危机以后,开始了风能利用的新时代。在一些地理位置不错的陆地上,风能的开发具有一定的经济价值,而人们在另外一个前沿,发现开发风力发电的经济性也相当不错:海上风能。世界上很多国家开始制定计划,考虑开发海上风电场。海上风电场的风速高于陆地风电场的风速,但海上风电场与电网联接的成本比陆地风电场要高。综合上述两个因素,海上风电场的成本和陆地风电场基本相同。

兆瓦级的风机,廉价的基础以及关于海上风条件的新知识更加提高了海上风电的经济性。研究人员和开发者们将向传统的发电技术进行挑战,海上风力发电迅速发展成为其它发电技术的竞争对手。

海上风电场的开发主要集中在欧洲和美国。大致可分为五个不同时期:

欧洲对国家级海上风电场的资源和技术进行研究(1977~1988年);

・欧洲级海上风电场研究,并开始实施第一批示范计划(1990~19);

・中型海上风电场(1991~年);

・大型海上风电场并开发大型风力机(~);

・大型风力机海上风电场(20以后)。

一、丹麦的风力发电

1.丹麦的第21条计划

丹麦在风力发电领域占有领导地位目前丹麦有世界上最大的海上风电场。根据丹麦政府能源计划法案中的第21条,2030年以前海上风电装机将达到4吉瓦,加上陆地上的1.5吉瓦,丹麦风力发电量将占全国总发电量的50%,与此对照一下,1998年年中,丹麦风电总装机容量仅为1.1吉瓦。

丹麦电力系统中共计5.5吉瓦的风电装机意味着风力发电将会阶段性过量地满足丹麦电力系统的需求。因而,在未来,丹麦的海上风力发电场将会成为以水电为基础的斯堪的纳维亚电力系统中不可分割的一部分。

丹麦计划法案对4吉瓦的海上风电投资共计480亿克郎(约合70亿美元),这将成为世界上风电中最大的投资。

2.丹麦海上风力发电时间表

丹麦电力公司已经申请了750兆瓦海上风场的建设计划,根据时间表,在2027年之前,丹麦风电装机将达4吉瓦,第一阶段在建一个比哥本哈根海岸风电场稍小一点的40兆瓦海上风电场。

丹麦电力公司给环境和能源大臣的报告确定了丹麦海域四个适合建风电场的区域,其蕴藏量达8吉瓦。选择这些区域的理念很简单:出于对环境的考虑,委员会只对那些为数不多且偏远的水深在5~11米之间区域的容量关心。所选的这些地区必须在国家海洋公园、海运路线、微波通道、军事区域等之外,距离海岸线7到40千米,使岸上的视觉影响降到最低。最近,对风机基础深入的`研究表明,在15米水深处安装风机比较经济,这意味着丹麦海域选择的风电场潜藏容量达16吉瓦。

二、风机的海上基础

海上风能面临的问题主要是削减投资:海底电缆的使用和风机基础的构建使海上风能开发投资巨大。然而,风机基础技术,以及兆瓦级风机的新研究至少使水深在15米(50英尺)的浅水风场和陆地风场可以一争高下。总的说来,海上风机比邻近陆地风场风机的输出要高出50%,所以,海上风机更具吸引力。

1.较混凝土便宜的钢材

丹麦的两个电力集团公司和三个工程公司于~间首先开始对海上风机基础的设计和投资进行了研究,在报告中提出,对于较大海上风电场的风机基础,钢结构比混凝土结构更加适合。所有新技术的应用似乎至少在水深15米或更深的深度下才会带来经济效益。无论如何,在较深的水中建风场其边际成本要比先前预算的要少一点。

对于1.5兆瓦的风机,其风机基础和并网投资仅比丹麦Vindeby和Tunoe Knob海上风电场450~500千瓦风机相应的投资高出10%到20%,这就是以上所述的经济概念。

2.设计寿命

与大多数人们的认识相反,钢结构腐蚀并不是主要关注的问题。海上石油钻塔的经验表明阴极防腐措施可以有效防止钢结构的腐蚀。海上风机表面保护(涂颜料)一般都采取较陆地风机防腐保护级别高的防护措施。石油钻塔的基础一般能够维持50年,也就是其钢结构基础设计的寿命。

3.参考风机

在防腐研究中,采用了一台现代的1.5兆瓦三叶片上风向风机,其轮毂高度大约为55米(180英尺),转子直径为64米(210英尺)。

这台风机的轮毂高度相比陆地风机要偏低一些。在德国北部,一台典型的1.5兆瓦风机轮毂高度大约为60~80米(200到260英尺)。

由于水面十分光滑,海水表面粗糙度低,海平面摩擦力小,因而风切变(即风速随高度的变化)小,不需要很高的塔架,可降低风电机组成本。另外海上风的湍流强度低,海面与其上面的空气温度差比陆地表面与其上面的空气温差小,又没有复杂地形对气流的影响,作用在风电机组上的疲劳载荷减少,可延长使用寿命,所以使用较低的风塔比较合算。

4.海上基础类型

(1)常用的混凝土基础

丹麦的第一个引航工程采用混凝土引力沉箱基础。顾名思义,引力基础主要依靠地球引力使涡轮机保持在垂直的位置。

Vindeby和Tunoe Knob海上风电场基础就采用了这种传统技术。在这两个风场附近的码头用钢筋混凝土将沉箱基础建起来,然后使其漂到安装位置,并用沙砾装满以获得必要的重量,继而将其沉人海底,这个原理更像传统的桥梁建筑。

两个风场的基础呈圆锥形,可以起到拦截海上浮冰的作用。这项工作很有必要,因为在寒冷的冬天,在波罗的海和卡特加特海峡可以一览无遗地看到坚硬的冰块。

在混凝土基础技术中,整个基础的投资大约与水深的平方成比例。Vindeby和Tunoe Knob的水深变化范围在2.5~7.5米之间,说明每个混凝土基础的平均重量为1050吨。根据这个二次方规则,在水深10米以上的这些混凝土平台,因受其重量和投资的限制,混凝土基础往往被禁止采用。因此,为了突破这种投资障碍,有必要发展新的技术。

(2)重力+钢筋基础

现有的大多数海上风电场采用重力基础,新技术提供了一种类似于钢筋混凝土重力沉箱的方法。该方法用圆柱钢管取代钢筋混凝土,将其嵌入到海床的扁钢箱里。

(3)单桩基础

单桩是一种简单的结构,由一个直径在3.5米到4.5米之间的钢桩构成。钢桩安装在海床下10米到20米的地方,其深度由海床地面的类型决定。单桩基础有力地将风塔伸到水下及海床内。这种基础一个重要的优点是不需整理海床。但是,它需要重型打桩设备,而且对于海床内有很多大漂石的位置采用这种基础类型不太适合。如果在打桩过程中遇到一块大漂石,一般可能在石头上钻孔,然后用爆破物将之炸开,继而打成小石头。

(4)三脚架基础

三脚架基础吸取了石油工业中的一些经验,采用了重量轻价格合算的三脚钢套管。

风塔下面的钢桩分布着一些钢架,这些框架分掉了塔架对于三个钢桩的压力。由于土壤条件和冰冻负荷,这三个钢桩被埋置于海床下10~20米的地方。

三、海上风电场的并网

1.电网

丹麦输电网1998年总发电量共计10吉瓦。在建或未建的海上风电场共计4.1吉瓦。丹麦西部和东部电网没有直接并网,而是采用AC(交流输电线)方式并入德国和瑞典的输电系统。其它风电场与瑞典、挪威和德国的联网方式采用直流方式。

海上风电场的并网本身并不是一个主要技术问题,该技术人所共知。但是为确保经济合理性,对偏远海上风电场的并网技术进行优化非常重要。

丹麦第一批商用海上风电场位于距离海岸15~40千米的海域,水深5~10或15米,风电场装机在120到150兆瓦之间。第一批风电场使用1.5兆瓦的风力发电机,该机型需在陆地上试运行5年。

2.敷设海底电缆

海上风电场通过敷设海底电缆与主电网并联,此种技术众所周知。为了减少由于捕鱼工具、锚等对海底电缆造成破坏的风险,海底电缆必须埋起来。如果底部条件允许的话,用水冲海床(使用高压喷水),然后使电缆置人海床而不是将电缆掘进或投入海床,这样做是最经济的。

3.电压

丹麦规划的120-150兆瓦的大风电场可能与30~33千伏的电压等级相联。每个风电场中,会有一个30~150千伏变电站的平台和许多维修设备。与大陆的联结采用150千伏电压等级。

4.无功功率,高压直流输电

无功功率和交流电相位改变相关,相位的改变使能量通过电网传输更加困难。海底电缆有一个大电容,它有助于为风电场提供无功功率。这种在系统中建立可能是最佳的可变无功功率补偿方式决定于准确的电网配置。如果风电场距离主电网很远,高压直流输电(HVDC)联网也是一个可取的方法。

5.远程监控

显然,海上风电场远程监控要比陆地远程监控更重要一些,Tunoe Knob和Vindeby海上风电场采用远程监控已达数年。

人们预测这些风电场用1.5兆瓦的大机组,在每件设备上安装一些特别的传感器,以用来连续地分析传感器在设备磨损后改变工作模式而产生的细微振动,这样可能会带来一定的经济效益。同样地,为了确保机器得到适当的检修,工业中一些产业也需要对这项技术非常了解。

6.定期检修

在天气条件比较恶劣的情况下,维修人员很难接近风机,风机得不到正常检修和维护,造成安全隐患。所以,确保海上风机高可靠性显得尤其重要。对于一些偏远的海上风电场,应合理设计风机的定期检修程序。

四、前景

海上风电场的发电成本与经济规模有关,包括海上风电机的单机容量和每个风电场机组的台数。铺设150兆瓦海上风电场用的海底电缆与100兆瓦的差不多,机组的大规模生产和采用钢结构基础可降低成本。目前海上风电场的最佳规模为120~150兆瓦。在海上风电场的总投资中,风电机组占51%、基础16%、电气接入系统19%、其它14%。

丹麦电力公司对海上风电场发电成本的研究表明,用IEA(国际能源局)标准方法,目前的技术水平和设计寿命,估测的发电成本是每千瓦时0.36丹麦克朗(0.05美元或人民币0.42元)。如果寿命按25年计,还可减少9%。

欧洲一些国家都为海上风电场的发展进行了规划。从长远看,荷兰的目标是到风电装机2.75吉瓦,其中1.25吉瓦安装在北海大陆架区域。近期计划主要是建设商业性示范工程,在年前丹麦拟开工兴建5个海上风电场,每个规模约150兆瓦,加上其它已建项目累计约750兆瓦。荷兰计划先建100兆瓦的示范项目,选在Egmond ann Zee岸外12海里处,采用1.5兆瓦或2.0兆瓦的机组。德国的计划包括“SKY”项目,规模100兆瓦,距离Lubeck湾15千米的波罗的海中;400兆瓦项目在距离Helgloand岛17千米的北海,最终规模将达到1.2吉瓦,采用单机容量4兆瓦或5兆瓦机组。此外,爱尔兰和比利时分别有250兆瓦和150兆瓦的海上风电场计划。

7.风能与风力发电 篇七

1 取之不尽、用之不竭的风力资源

风能是空气在流动的过程中所产生的能量, 确切地说, 风能来自于太阳能。太阳的辐射穿越地球的大气层到达地球表面, 因地表高低不平和各种差异导致照射受热不均, 地球表面各处的温度也不尽相同, 从而产生温差, 温差产生压力差, 风就这样形成了。自然界中的风能资源十分丰富且分布广泛, 对风能的开发、利用是解决能源危机的有效途径。据世界气象组织估计, 全球可利用的风能总资源大约为全部水能资源的10倍, 即200亿千瓦。我国国土面积的1/5具有相对丰富的风能资源, 据估算, 我国风能资源的经济可开发量约在10亿千瓦左右。

2 全球风电的发展状况

随着全球经济的快速发展, 对能源的需求也越来越大, 各国都在面对能源紧缺的压力, 原始能源的成本太高, 且对生态环境破坏极大, 因此风力发电越来越受到重视。近年来, 各国对风电的投资比重加大, 风电技术得到进一步完善与发展, 应用规模及所占发电行业的比例逐年增大。我国的风电事业增长较快, 基本保持每年翻一番的增速;美国也实现了快速发展, 风电装机总容量增长了1 130万千瓦, 同比增长25%;欧盟的装机容量达到1 182万千瓦, 同比增长23%。

3 风力发电的特点

风力发电从其动力资源、风电转换系统及其设备、系统运行特性到电功率输出、从技术到经济方面都不同于常规发电。与常规发电相比, 风电既有突出的优点, 又有明显的不足。

3.1 风力发电的优点

第一, 风能资源储量丰富。如加大对风能的开发与利用, 将来有可能取代火力发电, 并且可以满足部分或大部分对电力需求大的国家。

第二, 风能是可再生资源。目前, 地球上可利用的常规能源如煤炭、石油等日益匮乏, 若干年后就会枯竭, 但是风能却是可再生资源, 可以无限利用。

第三, 清洁无污染。与火力发电相比, 风力发电不产生二氧化碳等污染气体, 且降低全球的二氧化碳排放量, 使温室效应得到有效控制, 有利于全球生态环境的保护。

第四, 投资少, 回报快。一户可配套微型风电装置, 一村可兴建小型风电装置, 如果是大型的风电场, 可以由国家、集体或个体企业负责合股建造, 几年内即可收回成本。

第五, 施工周期短。安装一台就可以投产一台, 三个月就可以运输安装单台风力机, 一年内就可以建造10MW级的风电场。

3.2 风力发电的缺点

其一, 波动性和易变性。风速具有波动性和易变性, 并且难以准确地预测。因此, 风电机组的输出功率也具有不稳定性。

其二, 原动力不可控。风力发电是以自然风为前提, 而自然风的风速、风向等都不可控, 给风能的吸收和输出带来较大影响。

其三, 风能不能直接大量储存。电能储存技术尚不够完善, 必须及时使用, 大型风力发电机的输出电能更是无法存储, 必须与大电网相接, 并网运行, 只有那些小型的风力发电机可以采用蓄电池储电方式。

其四, 不宜安装在居民区。在风电机组运行时会产生机械噪声和电磁噪声, 在建造时要充分考虑是否与周围环境相协调等因素。

4 风力发电的趋势

A.风力发电机组的单机容量不断增加。风电机组的单机容量随着风力发电技术的发展而不断增加。目前, 国内风电市场的主流机型已经达到1.5~2MW级, 并且将来还会不断增大, 利用率也会相应地提高。

B.定桨距向变桨距发展。风能的稳定性较差, 在风速风向变化时叶片的攻角也会相应地发生变化, 机组的传动转矩产生震荡现象, 输出功率和发电效率产生明显波动, 这样会降低电能的质量并对电网的稳定性产生严重影响。近年来, 风力发电技术不断提高, 变桨距调节技术成为主流, 其叶片的安装角随着风速的随机变化而改变, 从而在可变的风速范围内有效地保持良好的空气动力学特性, 使风电机组的效率提高, 而且当风速大于额定风速时, 也可使其输出平稳的功率。

C.智能化控制技术的广泛应用。风电制造商和有关部门将智能化控制技术运用到风力发电中, 逐步实现了风电机组的最优运行和控制规律, 不断尝试减小疲劳载荷, 并且努力避免在极限载荷状态下运行风电机组, 实现将其与整机设计技术有效地结合起来, 这些技术将逐渐成为风电控制技术的首要发展方向。

D.直驱式和全功率变流技术得到迅速发展。为了更大限度地减少因齿轮箱的问题而对机组产生的影响, 无齿轮箱采用直驱方式, 这样不但提高了系统运行的可靠性和使用寿命, 而且维护成本也相对减少, 为进一步迈向市场奠定了坚实的基础。

摘要:本研究对风能资源以及风能的发展现状进行论述, 并介绍国内外风力发电的发展状况及未来的发展趋势, 详细分析了风力发电的优缺点, 并指出风能作为一种可再生的清洁能源和替代能源, 其发展前景十分广泛。

8.风力发电发展历程及前景 篇八

人类对于风能的利用始于很久以前,最早可追溯到公元前3000年,可以说人类对于风能的利用与关注从那时就开始了,而风能真正用于发电是在19世纪。丹麦建成了世界上第一个风力发电装置。但在其后的一段时间,世界对能源的需求经由煤、石油的开采而得到满足,加上技术的不成熟,风能发电并没有得到及时的发展。

受1973年世界范围内的石油危机和空气动力学理论的发展的影响,在常规能源告急和全球生态环境恶化的双重压力下,人们开始重新审视新能源,再次将视线转向风力。风电以其自身独有的优点,作为新能源的一部分,有了新的快速的发展。因此风能发电设施日趋进步,大量的生产降低了成本,风力发电也被普遍应用。从1981年到1992年风力发电量的增长率达到了13%。到2008年,全球以风力产生的电力约有94.1百万千瓦,这已超过全世界用电量的1%。风能虽然对大多数国家而言还不是主要的能源,但在1999年到2005年之间已经成长了四倍以上。而目前风电保持着每年30%的增长率,大有与其他发电行业相媲美的趋势。

目前风电成本已接近常规发电方式,风电规模也受国家政策及能源发展趋势的影响高速扩大,风电技术得到明显提高。在2003年底,我国就已建成并网型风电场40座,累计运行风力发电机组1042台,总容量达567.02MW,世界各地的风电场更是数不胜数。虽说我国的风电技术有明显提高,但较之世界发展水平就远远落后,特别是一些发达国家。我国一些风机依赖于国外进口或者与外商合作生产,现在生产的最大风电机组功率接近1000千瓦,国际主流机型兆瓦级风电设备在我国仅仅处于研发阶段。这说明风电在我国还有非常广阔的发展空间。

我国是世界上风能最为丰富的国家之一,风力发电对于我国乃至全球都具有十分广阔的发展前景。首先,风能作为一种无污染和可再生的新能源有着巨大的发展潜力,特别是对于沿海岛屿,交通不便的边远山区及地广人稀的草原牧场,远离电网或短期内电网还难以达到的农村、边疆,它是解决生产和生活能源的一种可靠途径,风电的发展具有重大的意义。其次,过去几十年经济的高速发展,致使环境受到严重的污染。目前减少二氧化碳排放成为全世界关心并要求共同实现的目标,因此具有节能减排特征的风能的应用成为近来能源发展的方向。

风电的发展不仅与大气环境相适应,与国家经济、世界安全也是分不开的。一直以来风电的发展都受到世界经济和其他能源的重大影响。就目前而言,风力发电是新能源中技术最成熟的、最具规模开发条件和商业化发展前景的发电方式。随着风轮机的大型化、高效化,风力发电的成本在不断下降,风电价格已能与石油、煤、天然气这些不可再生能源发电及核电竞价。

21世纪是高效、洁净、安全、经济可持续利用能源的时代,世界各国都在向此方向发展,都把能源的利用作为科研领域的关键予以关注。而通过历史的筛选,及近年来全球新能源的发展动向,我们可以看出风能将成为能源开发的重要角色,而风电也将随之得到极大的发展。

9.发展风力发电具有什么优势 篇九

风电技术日趋成熟,产品质量可靠,可用率已达95%以上,已是一种安全可靠的能源,风力发电的经济性日益提高,发电成本已接近煤电,低于油电与核电,若计及煤电的环境保护与交通运输的间接投资,则风电经济性将优于煤电。风力发电场建设工期短,单台机组安装调试仅需几周,从土建、安装到投产,只需半年至一年时间,是煤电、核电无可比拟的。投资规模灵活,有多少钱装多少容量。对沿海岛屿,交通不便的边远山区,地广人稀的草原牧场,以及远离电网和近期内电网还难以达到的农村、边疆来说,可作为解决生产和生活能源的一种有效途径,因此显得更加重要。

为什么说风能是一种绿色能源?

风能是一种干净的自然能源,没有常规能源(如煤电,油电)与核电(裂变)会造成环境污染的问题。平均每装一台单机容量为1.5MW的风能发电机,每年可以减排3,000吨二氧化碳(相当于种植1.5平方英里的树木)、15吨二氧化硫、9吨二氧化氮。风能产生1,000度的电量可以减少0.8到0.9吨的温室气体,相当于煤或矿物燃料一年产生的气体量。除了部分鸟类,风力发电机组不会危害其它野生动物。在常规能源告急和全球生态环境恶化的双重压力下,风能作为一种高效清洁的新能源有着巨大的发展潜力。

我国风能总量有多少?

我国10米高度层的风能资源总储量为32.26亿千瓦,其中实际可开发利用的风能资源储量为2.53亿千瓦。而据估计,中国近海风能资源约为陆地的3倍,所以,中国可开发风能资源总量约为10亿千瓦。其中青海、甘肃、新疆和内蒙可开发的风能储量分别为1,143万千瓦、2,421万千瓦、3,433万千瓦和6,178万千瓦,是中国大陆风能储备最丰富的地区。

什么是风能?

风能就是空气的动能,是指风所负载的能量,风能的大小决定于风速和空气的密度。

风能来源于何处?

10.测试便宜的风力发电机 篇十

由美国伊利诺理工大学(IllinoisInstitute of Technology)牵头的一家风能研究联营机构被授予联邦刺激资金,该资金将加速小型风力涡轮机的测试——这将为生产更有效的公共事业规模的机器指明道路。位于德克萨斯州锡达帕克(Cedar Park)的VirydTechnologies公司生产的8千瓦的涡轮机使用了一种机械方法——无级变速器(CVT)技术——把变化的风速转换成电网所需的精确的交流电。假如它可以取代如今在大多数涡轮机中的昂贵的电力控制技术,那么这项新技术可以削减任何规模的风力发电的成本。

现在的问题是CVT是否足够坚固持久。Viryd的总公司FallbrookTechnologies已经将其技术作为变速器平滑传动的替代法进行商业化了,并应用于高端自行车中的齿轮和变速器,并且正在致力于研究更大型的车辆应用。据位于科罗拉多州戈登市的美国能源部国家风力技术中心(Departmentof Energy's National Wind TechnologyCenter)高级工程师贾森·科特雷尔(Jason Cotrell)说,不管怎样,风力发电是一个尤其需要应用的领域。科特雷尔说:“风力涡轮机需要承受高转矩,其运行时间为8万小时,所以这是一个非常具有挑战性的环境。CVT往往很复杂,我们还没有证实它们是否坚固持久。”

大多数CVT通过使金属带在一套精确弯曲角度的零部件上上下滑动(这种设计在高转矩情况下实现时代价昂贵)来改变传动比。据首席技术官罗布·史密森(Rob Smithson)表示,Fallbrook's technology公司依靠相对简单的部件,确保较低的成本和较高的耐用性。他说:“它基本上是一个大的滚珠轴承,一个全球性的产品。”

CVT在一组环——一个输入环和一个输出环——中传输电力,通过夹在它们中间的一组滚动的珠子(在Viryd公司的设计中,有7、8个滚珠,每个都略小于高尔夫球)。倾斜滚珠的转动轴会使环因为每个滚珠的旋转而移动不同的距离。不断加压的变速器箱油会使滚珠和环在这个过程中相互接触。

Viryd公司的首席执行官约翰-兰登(John Langdon)说,其涡轮机控制系统能控制滚珠倾斜使涡轮机的转子以最佳频率旋转,在特定的风速下获取最大限度的能量,并使涡轮机发电机发出的交流电与电网的电流汇合。因此,他们大量减少使用电力电子器件,并且使用简单的发电机。他承诺,涡轮机将比现有的8千瓦的涡轮机便宜20%,后者目前的安装成本约为4万美元。

由美国伊利诺理工大学瓦格纳可持续能源研究所领导的这项价值800万的项目,是测试便宜的涡轮机能否持久的项目之一。如果这些样机合格,兰登的计划是在明年上半年内为经销商安装50多台,然后在下半年开始把涡轮机销售到私房业主和小企业。每年涡轮机额定生产电力约1万千瓦小时,这已接近美国私房业主的平均电力预算。多亏了州和政府的刺激措施,兰登预测了一个可利用的市场。

Viryd公司的最终目标是把规模扩大到公共事业规模的风力发电厂。扩大CVT技术以履行承诺的方法是增加滚珠的大小和数量,以应付来自公共事业规模机器更大型叶片——长度超过60米(是Viryd公司的8千瓦涡轮机叶片长的15倍)——的更高转矩。兰登说,公共事业规模的涡轮机需要12个50厘米直径的滚珠。

11.风力发电的中国之路 篇十一

1.1 风能和风能发电的定义

风能, 地球表面大量空气流动所产生的动能。风力发电技术就是利用风力带动风车的叶轮旋转, 进而在增速机的带动下大幅度提升旋转速度, 从而带动电圈旋转而产生电能。

1.2 目前中国电能供给状况

1.2.1 国内目前主要能源供给依赖于火力发电, 从而导致了巨大的环境问题

目前中国国内主要的电能供应来自于火力发电, 而火力发电的原料是煤炭, 2010年中国国内火电的发电量大约占到全国各类发电量的80.8% (1) , 每年火电发电用煤占到全国的50% (2) 以上, 这也导致了近年来频繁出现的煤慌和电荒的发生。而煤炭无论是在开采, 还是在燃烧的过程中都存在着巨大的环境负影响, 2010年全国供电煤耗率大约为333克/kWh (3) , 同时燃烧每吨煤炭所产生的污染物的排放量以及各种污染无的治理成本如表所示。

燃煤电厂污染物排放率及治理成本 (如表1) 。

从表中我们可以看到在环境污染的治理方面所花费的投资是巨大的。这也导致了火电的大规模建设必然带来巨大的环境成本, 从而为中国风电发展提供了机遇。

1.2.2 发展风力发电是解决中国国内能源供应的紧张局面、减少环境污染的有效途径

2009年内, 申华控股旗下的内蒙古太仆寺旗风电厂和彰武曲家沟、马鬃山风力发电厂, 累计发电14870万kWh;同比传统火力发电节约煤炭近5.4万t, 减少向大气中排放二氧化碳14万t、二氧化硫455t;节约树木近130万棵 (龚艳2010) 。风能在中国的发展已经带来了较大的经济效益和环境效益。

2 国内风能发展的现状

中国陆地可利用的风能资源大约有3亿kWh, 在2005年到2010年的5年间, 中国国内火电的装机容量已经27.9倍, 发电量已经较2005年增长了30.9倍, 达到了494亿kWh, 占到2010年全国各类发电量总数的1.1%。

3 风能在中国发展的可行性

3.1 资源优势

风能可以减弱工业化社会对化石能源的消费依赖, 风力发电是一种干净的可再生能源, 它没有常规能源所造成的环境污染, 而且技术成熟, 单机容量大, 建设周期短, 完全是一种安全可靠的能源。风电发展除了解决能源的急需外, 还能为改善气候作出贡献:一是大幅度削减造成温室效应的二氧化碳, 缓和气候变暖的状况;二是大幅度缓解我国愈加频繁的沙尘暴危害, 从而抑制荒漠化的发展。

3.2 政策优势

我国政府积极参与和推进全球可持续发展进程。2006年1月, 发改委发布了《可再生能源发电价格和费用分摊管理试行办法》, 规定由政府主管部门批准或核准建设的风力发电项目自投产之日起, 15年内享受补贴电价;运行满15年后, 取消补贴电价;补贴范围包括:发电项目上网电价高于当地脱硫燃煤机组标杆上网电价的部分、公共可再生能源独立电力系统运行维护费用高于当地省级电网平均销售电价的部分及接网费用等。补贴资金通过向电力用户征收收可再生能源电价附加费解决。电价补贴调整周期不少于一年。

4 风电的发展前景

对风电项目进行科学、全面的价值评估则对风电项目投资及相关政策的制定起着关键性的作用。在2011年10月19日举行的北京国际风能展上, 国家发改委能源研究所发布了我国首个风电发展综合规划——《中国风电发展路线图2050》。该路线图预测到2020、2030和2050年, 中国风电装机容量将分别达到2亿、4亿和10亿kW, 到2050年风电将满足国内17%的电力需求;2030年后, 储能、智能电网以及其他先进电力系统技术普遍应用, 将从根本上解决风电并网与消纳问题;从2011年至2050年, 由风电开发带来的累积投资将达到12万亿元;随着风电技术进步和开发规模扩大, 以及煤电成本的增加, 预计在2020年中国陆上风电成本将与煤炭发电成本持平。另外, 由于设备成本下降以及生产效率提高, 未来五年陆上风电成本将下降12%。据估计, 由于规模经济和供应链效率提高, 每当陆上风力涡轮机的装机容量增加一倍, 其成本将下降7%。全球风力涡轮机价格已经从1984年的200万欧元/MW下降至2011年上半年的不到88万欧元/MW。在涡轮机成本下降的同时, 单个涡轮机输出功率的稳步上升是第二个拉低风力发电价格的因素。通过更高更大的涡轮机, 技术上更好地利用空气动力学, 更好地控制和变速箱以及提高发电效率, 这些改进在过去27年中使得涡轮机功率明显提高。此外由于经营者更有经验以及涡轮机质量改善, 风机的整体发电成本从20世纪80年代的50欧元/MWh下降到了现在的11欧元/MWh, 而风电设备单位投资水平下降、风场选址水平提高以及风电机组效率的提高, 风电成本将进一步降低。我国已经颁布的风电区域上网电价为0.51~0.61元/kWh, 比常规电力价格高出30%左右。风电装备价从2010年初的4000元/kW下降到年底的3500元/k W左右, 降幅高达12.5%。因此, 尽管现阶段风电与火电、水电等传统能源相比缺乏竞争力, 但随着风电成本逐渐下降, 风电将与火电、水电等传统能源的发电成本持平。

(数据来源:《构建基于生命周期评价的火电企业环境成本估算模型》)

摘要:近年来, 伴随着中国国内日渐加剧的煤电供应紧张的局面, 风能得到了很大的青睐。本文详细阐述中国的风能发展状况的基础上结合中国国内的政策给出风电在中国发展的预测。

关键词:风电,可行性,低碳能源

参考文献

[1]龚艳.风能发电:最具开发潜力的新能源[J].沪港经济, 2010, 40~41.

12.2013复习资料(风力发电) 篇十二

第1章 风力发电技术;第2章风能利用的历史

1.风力发电的意义及特点?(简答)

2.风力发电迅猛发展的原因?(论述)

3.风力发电技术未来发展趋势?(简答)

Ps:可自行查询资料,该部分题目答案同学们可以自由发挥

第3章 风力机的基本理论

名词解释、填空:风功率、阻力风机、升力风机

第4章 风力发电机组的结构设计

名词:叶尖速比、变桨径向线、弹性线、重心线、压力线、填空:叶轮与塔架的位置关系可把水平轴风机分为()和();叶尖的最大速度应不超过();风力机的辅助机构和特殊装置?

简答(填空):风机的类型按按照用途的分类?

论述:风力机的结构组成?分别阐述各组成部分的功能?

第5章 风特性、风功率和测风

名词解释、填空:风、三圈环流、季风、风的测量、风级、年平均风速、风能、风功率密度 简答、填空或论述:自动测风系统组成,各部分的作用(p34)

第6章 Betz理论

名词解释、填空:贝兹极限

后面章节内容

名词:风力发电的逆变器、风力发电机组的并网运行、独立运行的风力发电机组、风力发电场,风力发电场的宏观选址、简答:考虑发电机系统的方案时重点解决那些问题、什么是恒速(变速)恒频风力发电系统、风力发电系统按照发电机运行方式的分类、风力发电电能储存的必要性及蓄能方式、风力发电控制器的用途、风力发电机组并网运行的运行方式及各自的特点、风力-柴油发电联合运行的目的、目标、影响因素、风力-柴油联合发电系统的结构组成、风力与太阳光联合发电系统的构成及作用、独立运行的风力发电系统主要部件及作用、风力发电场宏观选址的原则、风力发电机组微观选址的一般原则、风力发电场选址与风力机机型选择的关键是什么?风力发电场并网对电力系统的冲击?影响风力发电经济性的主要因素有哪些、风力发电场对环境的有利及不利影响、风力发电的经济性指标、风力发电机组工作参数及其安全运行范围

13.风力发电研究现状及发展趋势 篇十三

摘要:本文首先针对风力发电与其他能源的优势进行对比;接着阐述我国风力发电产业的研究现状;再对我国未来风力发电发展趋势进行了分析。

关键词:风力发电;可再生能源;现状;趋势

The Status and Development Trend of Chinese Wind

Power Abstract: The wind power generation and the Other forms of energy are compared;The status of wind power in China are introduced;Our future wind power status are analyzed.Key words: wind power;renewable energy;present situation;status

引言

风能是由地球表面大量空气流动所产生的动能。由于地面各处受太阳辐照后气温变化不同和空气中水蒸气的含量不同从而引起各地气压的差异,在水平方向高压空气向低压地区流动,即形成风。风能资源决定于风能密度和可利用的风能年累积小时数。风能密度是单位迎风面积可获得的风的功率,与风速的三次方和空气密度成正比关系。

随着世界经济规模的不断增大,世界能源消费量持续增长。能源危机的阴影正日益困扰着人类的生产和生活,世界上越来越多的国家也认识到,一个能够持续发展的社会应该是一个既能满足社会的需要,而又不危及子孙后代前途的社会

[1]。节约能源,提高能源利用效率,尽可能多地利用洁净能源替代高含碳量的矿物燃料,已成为世界利用能源的主题。近年来,人们已经逐渐认识到风力发电在减轻环境污染、调整电网中的能源结构、解决偏远地区居民用电问题等方面的突出作用,无论从调整电网结构,还是从商业化方面都促使人们开始重视发展风力发电[2]。

1风力发电与其他能源相比较有以下几方面的优势

1.1全球拥有丰富的风能资源

风的产生式由于地球表面上的大气受到太阳辐射引起部分空气的流动,是太阳能的一种转化形式,风能是地球与生俱来的资源。世界拥有巨大的风能资源。据估计,世界风能资源高达每53万亿千瓦时,预计到 2020年全球电力需求会上升至年25578万亿千瓦时, 也就是说全球风能资源是世界预期电力需求的2倍[3]。

1.2风能是可再生的清洁能源

风能是不需要开采、运输、不产生任何污染的清洁可再生能源。而且1台单机容量1000千瓦的风机与同容量火电装机相比,每年可减排二氧化碳2000吨、二氧化硫10吨、二氧化氮6吨。仅2007年, 全球940亿瓦风机容量就将减少

[4]二氧化碳排放12200万吨,相当于20个大型燃煤发电站的排放量。

1.3风机建造周期短、运行和维护成本低

风力发电和其他发电方式相比,建设周期一般很短(1台风机的安装时间不超过3个月),1个50万千瓦级的风力发电厂建设期不到1年,而且安装1台投入运行1台,装机规模灵活。目前风电厂造价为 8000-9000元/千瓦,其中,机组(设备)占75%,基础设施占20%,其他为5%;风能利用小时数在2700-3200小时/年,其风电成本约0.45-0.6元/千瓦时。风电机组的设计寿命一般为20-25年,其运行和维护费用一般相当于风电机组成本的 3%-5%[5]。

1.4风力发电占地少,现场所需人员少

风力发电相关建筑仅占风力发电场约7%的土地,其余场地仍可供其他产业使用;可以灵活地建设在山丘、海边、荒漠等地[6]。风电厂建成后,现场几乎不需要运行人员,可进行远程控制操作。中国风电发展的现状

2.1中国风力资源分布情况

我国风能资源比较丰富。根据全国第2次风能资源普查结果,中国陆地风能离地面10米高度的经济可开发量2.53亿千瓦, 离地面50米估计可能增大一倍。近海资源估计比陆地上大3倍,10米高经济可开发量约7.5亿千瓦,50米高约15亿千瓦

[7]。

我国的风力资源主要分布在两大风带: 一是三北地区(东北、华北和西北地区)。包括东北3省和河北、内蒙古、甘肃、青海、西藏、新疆等省区近200千米宽的地带, 可开发利用的风能储量约2亿千瓦, 约占全国可利用储量的79%。该地区风电场地形平坦, 交通方便, 没有破坏性风速, 是我国连成一片的最大风能资源区, 有利于大规模地开发风电场。二是东部沿海陆地、岛屿及近岸海域。冬春季的冷空气、夏秋的台风, 都能影响到沿海及其岛屿, 是我国风能最佳丰富区, 年有效风功率密度在200瓦/平方米以上。如台山、平潭、东山、南鹿、大陈、嵊泗、南澳、马祖、马公、东沙等, 可利用小时数约在7000至8000小时。这一地区特别是东南沿海,由海岸向内陆丘陵连绵, 风能丰富地区仅在距海岸50千米之内。另外, 内陆地区还有一些局部风能资源丰富区[8]。

从上述风力资源分布情况来看, 中国有相当大的地区有着丰富的风能资源, 具有很大的开发利用价值, 商业化、规模化的潜力很大。

2.2 风电场发展迅速,建设规模不断扩大

我国的风力发电始于20世纪50年代后期,在吉林、辽宁、新疆等省建立了单台容量在10kW以下的小型风力发电场,但其后就处于停滞状态。到了20世纪70年代中期以后,在世界能源危机的影响下,特别是在农村、牧区、海岛等地方对电力迫切需求的推动下,我国的一些地区和部门对风力发电的研究、试点和推广应用又给予了重视与支持,但在这一阶段,其风电设备都是独立运行的。直到1986

年,在山东荣城建成了我国第一座并网运行的风电场后,从此并网运行的风电场建设进入了探索和示范阶段,但其特点是规模和单机容量均较小。到1990年已建成4座并网型风电场,总装机容量为4.215兆瓦,其最大单机容量为200千瓦。在此基础上,风力发电从1991年起开始步入了逐步推广阶段,到1995年,全国共建成了5座并网型风电场,装机总容量为36.1兆瓦,最大单机容量为500千瓦。1996年后,风力发电进入了扩大建设规模的阶段,其特点是风电场规模和装机容量均较大,最大单机容量为1500千瓦[9]。据中国风能协会最新统计,2007年中国除台湾省外新增风电机组3,144 台。与2006 年相比,2007年当年新增装机增长率为145.8%,累计装机增长率为126.6%。2008年又新增风电装机容量630万千瓦,新增容量位列全球第2,仅次于美国.截至2008年底总装机容量达到1215.3万千瓦,同比增长106% ,总装机容量超过了印度,位列全球第4,同时跻身世界风电装机容量超千万千瓦的风电大国行列.2007年中国除台湾省外累计风电机组6458

[10]台,装机容5890兆瓦。截至2010年底,我国新增风电装机1600万千瓦,累计装

机容量达到4182.7万千瓦,均居世界第一,其中3100万千瓦装机实现并网发电。目前,甘肃酒泉、蒙东、蒙西、东北、河北、新疆、江苏、山东等多个千万千瓦风电基地正有序推进,蒙西和甘肃酒泉风电基地装机均超过500万千瓦,河北、吉林等多个地区装机超过250万千瓦。上海世博会期间,上海东海大桥10万千瓦海上风电场并网发电,成为除欧洲之外世界上第一座海上风电场。随后,总规模100万千瓦的海上风电特许权项目也在江苏启动。2010年,风电发电量达到450

[11]亿千瓦时,比上年增长63%。

2.3 国家及政府有关部门重视和支持风力发电

风电的迅速发展与国家的政策扶持密不可分。“十一五”时期,我国陆续出台了《可再生能源法》、《关于风电建设管理有关要求的通知》及《可再生能源中长期发展规划》等一系列配套政策和实施细则,这些政策不仅为风电长远发展提供了法律保障、政策支持,也明确提出了装备先行、市场化的发展战略。截至目前,风电企业享受所得税“三免三减半”、“增值税减免50%”、“即征即退”等一系列优惠政策。除了国家推出的标杆电价外,部分省份还另外推出风电补贴,[12]山东、广东的风电上网电价均高于国家标杆电价。

2.4 专业队伍和国产化水平逐渐提高

风力发电的“装备先行”战略使风电快速发展[13]。据统计,2004年全国装机的风电设备中,进口设备占90%,2010年全国装机的风电设备中国产设备占90%。随着国内风电市场的发展,有10余家风电设备制造企业实现了规模化生产,华锐、金风等7家制造企业已经跻身2010年世界风电设备制造15强,其中华锐风电已经跃居世界第二。经过多年的技术积累和资本投入,国内风电设备生产水平不断提高,兆瓦级风机等科技难关被相继攻克。

风电设备的国产化,带动了国内风电技术水平和运营质量的快速提升。目前,国内风电机组普遍采用当今世界主流技术,世界领先的3兆瓦机和海上风电项目均在国内落户。单位千瓦造价已从“十一五”初期的7000元左右降到4000元以

[14]下,降幅达40%。

2010年全国累计风电装机容量已突破40000兆瓦,海上风电大规模开发正式起步。国内风电市场竞争形势日趋激烈,使得企业在满足国内需求的基础上,积

极拓展海外市场。中国风力发电行业发展前景广阔,预计未来很长一段时间都将保持高速发展,同时盈利能力也将随着技术的逐渐成熟稳步提升。“十二五”期间,我国风电产业仍将持续每年10000兆瓦以上的新增装机速度,风电场建设、[15]并网发电、风电设备制造等领域成为投资热点,市场前景看好。

3全球风力发电的趋势

风力发电是一种主要的风能利用形式,风力发电已经开展了多年,随着能源环境的变化和风力发电产业的成熟,未来几年风力发电将呈现新的趋势。

3.1风力发电投资成本降低

风力发电相对于太阳能、生物质等可再生能源技术更为成熟、成本更低、对环境破坏更小。在过去20多年里,风力发电技术不断取得突破,规模经济性日益明显。

根据美国国家可再生能源实验室NREL的统计,从1980年至2005年期间,风力发电的成本下降超过90%,下降速度快于其他几种可再生能源形式[16]。根据丹麦RIS国家研究实验室对安装在丹麦的风力发电机组所进行的评估,从1981~2002年间,风力发电成本由15.8欧分/千瓦时下降到4.04欧分/千瓦时,预计2010电成本下降至3欧分/千瓦时,2020年降低至2.34欧分/千瓦时[17]。

随着风力发电技术的改进,风力发电机组将越来越便宜和高效。增大风力发电机组的单机容量就减少了基础设施的投入费用,而且同样的装机容量需要更少数目的机组,这也节约了成本。随着融资成本的降低和开发商的经验丰富,项目开发的成本也相应得到降低。风力发电机组可靠性的改进也减少了运行维护的平均成本。总体上,风力发电成本将得到大幅降低[18]。

3.2风力发电国产化必要性

实现风力发电技术装备国产化的目的是提高我国风力发电装备的制造能力和技术水平,降低风力发电成本,提高市场竞争能力,为推动我国风力发电技术大规模商业化发展奠定基础。加大风力发电机组的国产化力度,一方面可为风力发电场建设采用国产设备提供优质廉价的选择;另一方面,也可迫使国外同类企业在参与我国市场竞争时大幅度降低产品价格。风力发电技术装备国产化的指导思想是以市场为导向,以工程为依托,在引进消化吸收国际先进技术的基础上,进行创新提高,开发具有自主知识产权的风力发电设备[19]。

风力发电国产化水平日益提高,如全部实现风力发电机组国产化,预计可降低风力发电机组成本30%,在不改变其它条件的前提下,可使风力发电成本降至0.332元/千瓦时。为此,国家必须加大科研开发投资力度,在目前条件下以风力发电场建设投资1.5%-3%的比例支持我国的风力发电技术科研开发和国产化是适宜的[20]。其重要意义不仅仅在于降低风力发电成本,还将推动我国风力发电机组产业的形成,利用我们的优势走向国际市场。

3.3海上风力发电将成为风力发电的新视点

海上有丰富的风能资源和广阔平坦的区域,使得近海风力发电技术成为近来研究和应用的热点。多兆瓦级风力发电机组在近海风力发电场的商业化运行是国内外风能利用的新趋势。

国际上,到2003年末,围绕欧洲海岸线的海上风力发电总装机已达到600兆瓦,其中大部分都集中在丹麦、瑞典、荷兰和英国。目前最大的海上风力发电场是位于丹麦南海岸的Nysted风力发电场,容量为165.6兆瓦,由72台Bonus2.3兆瓦海上风力发电机组组成,于2003年12月开始发电。到2010年,欧洲海上风力发电的装机容量已达到10000兆瓦。海上风速大且稳定,年利用小时数可达到3000小时以上。同容量装机,海上比陆上成本增加60%,电量增加50%以上。随着风力发电的发展,陆地上的风机总数已经趋于饱和,海上风力发电场将成为未来发展的重点。海上发电是近年来国际风力发电产业发展的新领域。[21]

海上风能资源储量远大于陆地风能,储量10米高度可利用的风能资源超过7亿千瓦,而且距离电力负荷中心很近。目前上海已开始海上风力发电项目的建设,到2010年,上海的风力发电总装机容量将达到200-300兆瓦[22]。为达到这一目标,第一座长距离跨海大桥东海大桥两侧将建成内地首个海上风力发电场。随着海上风力发电场技术的发展成熟,经济上可行,将来必然会成为重要的可持续能源。

3.4大型发电机组是风力发电必然的趋势

随着现代风力发电技术发展的日趋成熟,风力发电机组正不断向大型化发展。2002年前后,国际风力发电市场上主流机型已经达到1500千瓦以上。目前,欧洲已批量安装3600千瓦风力发电机组,美国已研制成功7000千瓦风力发电机组,而英国正在研制巨型风力发电机组。目前风力发电机组的规模一直在不断增大,国际上主流的风力发电机组已达到2-3兆瓦。国家2008年7月发改委共核准了222.45万千瓦大型风电项目,是2007年底全国累计装机600万千瓦的[23]37%。

大体上大型风力发电机组有两种发展模式。陆地风力发电,其方向是低风速发电技术,主要机型是2-5兆瓦的大型风力发电机组,这种模式关键是向电网输电。近海风力发电,主要用于比较浅的近海海域,安装5兆瓦以上的大型风力发电机,布置大规模的风力发电场,这种模式的主要制约因素是风力发电场的规划和建设成本,但是近海风力发电的优势是明显的,即不占用土地,海上风力资源较好[24]。

4结论

风力发电具有既能保证能源的有序利用,又能战胜全球气候变化,更有利于全球的环境资源保护的优点。通过对我国风能资源及利用状况的调查,我国的风能开发和利用已经进入一个崭新时期,尤其是小型风机的生产和应用已经相当广泛,效果也非常不错,并且前景非常广阔。我们要充分有效地利用风能这种可再生、无污染、环保节净的自然资源,通过致力于风力发电的技术创新与科研开发,使我国的风力发电得到长足发展,使风电在我国得到更加广泛的应用。

参考文献:

[1] 刘宝兰,文华里.世界风力发电现状与前景[J].能源工程,2000,(4):12-14.[2] 宋正良.世界风力发电发展概况[J].上海大中型电机,2004,(2):1-3.[3] 黎发贵,郭太英.风力发电在中国电力可持续发展中的作用[J].贵州水利水电,2006(2):7-12.[4] 李俊峰,高虎,马玲娟.我国风力发电现状和展望[J].中国科技投资,2007,(11):1-7.[5] 严陆光.力促大规模非水可再生能源发展[J].山西能源与能,2009(5):1-3.[6] 杨磊.浅析风力发电可持续发展[J].应用能源技术,2007(9):33-34.[7] 李贤明,张霄,刘红雷,等.浅谈我国风力发电产业的现状和市场前景[J].上海大中型电机,2006,(3):1-4.[8] 邓杉杉.我国风电发展的现状、问题与对策研究[D].西南交通大学(成都),2006.[9] 郑源,张德虎.风力发电机组控制技术[M].北京:中国水利水电出版社,2009:33-41.[10] 施鹏飞.2008年国内外风电持续快速发展[J].可再生能源,2009,27(2):6-10.[11] 李俊峰,高虎,王仲颖,等.2008 中国风电发展报告[M].北京:中国环境科学出版社, 2008:7-17.[12] 王玉萍,赵媛.对我国风电电价政策的分析与建议[J].电力需求管理,2007,(06):13-19

[13] 吴庆广.中国风力发电公司融资模式探讨[J].环境科学与管理,2008,(01):5-9.[14] 赵子健.促进风电产业发展的政策分析[D].上海交通大学(上海),2009.[15] 宋艳霞.我国风电产业发展的财税支持政策研究[D].财政部财政科学研究所(北京),2010.[16] 王素霞.国内外风力发电的情况及发展趋势[J].电力技术经济,2007,19(1):29—31.

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:iwenmi@163.com

上一篇:科学第三单元练习下一篇:《我国高校本科应用型创新人才培养》社会调查问卷

付费复制
学术范例网10年专业运营,值得您的信赖

限时特价:7.99元/篇

原价:20元
微信支付
已付款请点这里联系客服
欢迎使用微信支付
扫一扫微信支付
微信支付:
支付成功
已获得文章复制权限
确定
常见问题