《运算定律与简便计算》的教学反思

2024-06-30

《运算定律与简便计算》的教学反思(共12篇)

1.《运算定律与简便计算》的教学反思 篇一

[建议]:

1、“先学后教+当堂训练”教学模式不能学形式。如果不看自己所教班级的实际情况,把整个“引导——学练——堂堂清”教学模式的形式的一切一切,照搬过来,可以说,您的收获一定大不了,甚至会出现退步,可能要出现成语中“鸡飞蛋打”的效果。要把“先学后教—当堂训练”教学模式的实质和所教班级、学情联系起来,取其精华,这样才会取得较大的成绩。遵循的原则:凡是能使学生学习变好、能使学生习惯好转的方法、要求都可以强化,但千万不要在原方法和制度的基础上动作过大,否则学生、老师都吃不消,循序渐进,使这些方法和制度逐渐加强。

2、“先学后教—当堂训练”教学模式,有利于培养学生的自学能力,更有利于分层推进,这就需要教师一步一步地扔掉原来的不好的方法和经验。“先学后教—当堂训练”教学模式最主要的就是:学生是主体,在知识的学习中主要以学生自学、学生讲解为主。但有的老师总认为自已不讲讲,学生不会,不自己讲讲,学生总结不全面,这就错了。如果学生总结的深度不够或者各方面不全,那是老师“引导”这个工作没有做好。就需要我们在“引导”的内容上下功夫。只要引导得当,学生可能比老师想得全面。

3、“先学后教+当堂训练”教学模式。无论是备课还是上课、无论是自习还是作业批改,要真正按照“先学后教—当堂训练”教学模式去教好学,工作量是特别繁重的。课前预习你一定要分析清课程的知识点、重点、难点,还要把引导的内容和过程设计一下,即使在上课时的设计和实际不一定相吻合也要认真设计好,因为这是有的放矢的第一步。课上的巡回指导和提问会使感到劳累。课下的辅导和作业更需要的细心和奉献。

4、“先学后教+当堂训练”教学模式。如果学生从来没有自己预习过课本、从没有自己总结过知识点、从没有自己讲过课、没有养成认真听讲的习惯,那在开始时就要有个思想准备:设计教学的每一个环节都可能出现失败,这就需要教师严格落实“一丝不苟的学习态度、一滴不漏的学习要求、始终如一的学习习惯”的学风训练,执行好学习常规。

5、“先学后教+当堂训练”教学模式。不能是教师只学模式的形式,不研究教学实质,第二就是不能持之以恒。只要认准了目标,就一定要走下去,不管在学习、教学的道路上有多少阻力和挫折,只有执着地追求、探索,就一定会成功。如果能正确地分析学习中的各个环节,并把已经成功的目标教学、创新教学应用到教学中去,成绩肯定比现在还要好,课堂教学水平肯定有质的飞跃。

[反思]:

在本单元教学过程,我们主要采取利用讲学稿“先学后教,当堂训练”的教学模式进行教学,我们觉得有以下几点是比较成功的:

1、简便计算不仅是一种知识技能,它更是一种优化思想,这种优化思想不是一节课就能完成的的事,它不能灌输,更不能速成,它需要一个长期感悟的过程。

2、简便计算与学生的数感是密不可分的。因此,培养学生良好的数感,对于学生提高运算能力,大有益处。

3、简便运算的思路会有很多,我们要注意培养学生算法多样化,培养学生灵活、合理选择算法的能力。

4、在教学中,教师要把各种简算题型分类整理,让学生从整体认识到个别比较,加深简算的印象。同时,加强变式、逆向的练习,提高学生举一反三、有效迁移的能力。

5、简便计算的意识还要渗透于解决问题中,在没有“简便计算”这样的显性要求下,学生也能考虑简便计算。

6、我们应该努力让学生在简便计算的过程中,逐渐提高简算的兴趣,逐渐掌握简算的依据,逐渐领会简算的技巧,真正具备简算的意识,让学生明白三个层次:

①、进行简算应该由一定的运算定律、性质作为依据;

②、必须正确、适当地运用运算定律、性质进行简算;

③、应该根据数据特征灵活选用运算定律、性质。

2.《运算定律与简便计算》的教学反思 篇二

一、关注知识迁移

首先,需探究“整数乘法运算定律”是否适合“小数乘法”,这是本节课的主要内容之一。小数乘法的简便运算这部分内容,是在学生已经掌握了整数乘法的运算定律,并能运用乘法定律进行整数简便计算的基础上安排的,是整数乘法的知识迁移,主要是让学生理解整数乘法的运算定律在小数乘法中同样适用。因此,我先引导学生回顾整数乘法的运算定律,复习简便计算的方法,然后让学生先观察整数乘法算式有什么特点,再进行验证。通过验证,让学生发现整数乘法的运算定律在小数乘法中同样适用,从而顺利地把旧知迁移到新知中,为学生下一步探究奠定基础。

二、注重方法引导

1.加强口算训练,这十分必要,也很关键。一些与本课内容有密切关系的数的口算,如0.25、1.25、0.08、 0.4……应让学生牢记。学生口算能力强的话,计算定律的运用也就比较容易,即会很自然地应用口算定律来解决问题,因为简便运算的本质就是口算,只不过在这个过程中需要应用一些方法和技巧而已。

2.重视学生解题思路和不同计算方法的指导,使学生形成能力。我根据学生认知规律,按照由易到难的原则,把新知的学习分为三个知识点,即“三个数连乘、两个数相乘、乘加乘或乘减乘”;课堂练习围绕三个问题来展开:怎么算?怎么想到这样算?运用什么运算定律?这样算有什么作用;在课堂中,渗透迁移的原理和凑整的思想,让学生能运用运算定律掌握小数乘法的简便计算。教师要把握每个知识点中不同的教学侧重点,使内容不重复,学生学习起来不感到枯燥,又使运算定律的教学落到了实处。通过教学,让学生明白小数乘法简算题的基本方法,能根据题目中数据的特点,运用乘法交换律、结合律、分配律及积的变化规律,把小数进行合理的变化后再进行简算。

3.纠正学生作业中常出现的乘法结合律与乘法分配律相混淆或不会运用乘法分配律的错误。如2.5× 32,学生知道32可以先拆分成4×8,第二步应该用2.5×4×8,但有的学生却用2.5×4之后再乘上2.5×8, 结果变成了 (2.5×4)×(2.5×8),在这里多乘了一个2.5,本来可运用乘法结合律解决的,但是学生却与乘法分配律混淆了。而在做4×(2.5+1.25) 这样的题目时,一些学生又写成了4×2.5+1.25,忘记1.25还要与4相乘。这两类练习题,是学生出现问题最集中的。针对学生作业错误,我在教学中重点帮助学生分析错误的原因,课后及时进行作业分析、讲评和订正,使学生不再犯类似的错误。

4.进一步理清学生的思路。复习时,我对小数乘法的简便运算类型做了一些归类。一类是能计算出满十、满百、满千或者容易口算出结果的算式,如0.25× 4.78×4、2.33×0.5×4。第二类是直接运用乘法分配律进行运算的,如1.1×2.5+0.9×2.5=(1.1+0.9)×2.5。第三类是拆数后可利用乘法分配律计算,其中又可把一个数拆分成两个数相乘,这个数能被4、8除尽的,如6.4、32等;还有两个数相加减,这个数接近1、10、 100、200……如0.25×32×1.25=0.25×4×8×1.25、4.86× 99=4.86×(100-1)、0.65×201=0.65×(200+1)。其中,把一个数拆分为两个数相乘的,拆分后可以运用交换律和结合律进行计算;拆分为两个数相加减的,拆分后可以运用分配律计算。

3.小学数学中简便运算的教学策略 篇三

关键词:小学数学;简便运算;生活经验;运算定律;意识

简便计算在教学中的功能,不仅仅作为一种技能、一种运算定律或性质的简单应用,而应成为借助于运算律的理解与掌握来比较与优化的计算方法,它能提高学生运算能力和解决问题的能力,增强数感、发展数学意识。如何有效地进行简便计算教学,简便运算教学有哪些策略,本文将对此展开论述。

一、当前小学数学教学中简便计算的现状

(一)教学目标单一化

传统的简便计算作为一种计算技巧,其作用在于对运算律或性质的巩固运用。这就造成了在教学过程中过分侧重于简算技能技巧的训练,而对于灵活运用简便计算解决问题的这一层面不够重视。教师往往通过大量繁杂的简便计算题目进行机械重复的练习,达到巩固内化运算律或性质的目的,教学目标单一化。

(二)运算律或性质的教学与简便计算教学断层

运算律或性质的教学和简便计算的教学是相辅相成的。简便计算教学是立足于运算律或性质基础上的算法简便化的过程,而简便计算是对运算律或性质的综合应用过程,能够提高学生对数学的应用能力。传统的简便计算孤立起来教学运算律和简便计算,教师往往是本末倒置的:对于运算律或性质一带而过,不厌其烦地讲解例题,然后让学生做练习,学生成了计算的奴隶,学生是为了简算而简算。

(三)学生简算意识淡薄

“简算意识”是指面对一个运算问题,能从多个角度,产生多种拓展运算途径联想,并灵活、合理选择简算方法,获得运算结果的一种思维方式,是学生经过思考后自发的行为。在实际教学中,由于教师过分着重于简算技能的训练,而忽视了对于学生简算意识的培养,于是对于一道可以简便运动但没作简算要求的题目,绝大多数学生都会产生不利的思维定式,按部就班地算下来。对学生来说,学会了简算却不会自发应用,简算只是成为应付作业和考试的工具罢了,也就失去了它的意义。

二、小学数学中简便运算的教学策略

(一)要引导学生多积累生活经验

学生对计算方法的选定,更多的是依赖于生活实践中积累的真实想法与最自然化的理解。那么我们在教学简便计算运算时应该把数学知识与生活实际相结合,激发学生对“简便计算”的自发需求。

在简便计算教学中,教学背景要力求生活化,使学生感到这些问题是自己平常接触到的一个生活场景。如在运用乘法分配律进行简便计算时,可以出现这样的生活背景:学校购买校服,一件上衣55元,一条裤子45元,购买63套,一共需要多少钱?生甲列式为:55×63+45×63=6300(元);生乙列式为:(55+45)×63=6300(元),计算完毕后组织学生对两种解答方法进行分析、比较,学生除了得出两种算法有相同的结论,都可以适用外,更重要的是发现两种物品的单价正好凑成整数时,先求和再相乘更简便,从而得到了一种优化的解题方案。学生所达成的这种共识是源自学生独立判断后的一种选择,是学生在解题过程中经过观察、分析、比较后自行悟出的。基于这样的生活场景下进行知识的运用,学生的头脑中才会留下深深的烙印。

(二)教学中多设置简便运算的情境

教学过程中要把简算意识贯穿教学全过程,帮助学生理清简便计算的思维方式,建构一种新型的思维方式,即看到题目后,产生多种解决问题的思路,然后能够根据题目的特点,自主判断是否能够简算,最后确定最合理的方法,计算出结果。

(三)不可忽视“运算定律”的教学

“运算定律”在简便计算的教学中起着至关重要的作用,很多教师在“运算定律”的教学中注重学生对“运算定律”掌握使用程度,却忽视了学生对运算定律是怎么来的这一过程。

例如:我们依然用学生所熟悉的买校服的情境来引入“乘法分配律”。我们班准备买校服,冬装每套65元,夏装每套35元,现在我们班级一共44个同学,每个同学要买冬装和夏装各一套,一共需要多少元?让学生解答计算,一般有两种情况:(1)65×44+35×44;(2)(65+35)×44。在这里让学生比较这两种方法的联系与区别,得出:65×44+35×44=(65+35)×44。当学生利用这样的生活情境来理解:“两个数分别去乘一个相同的数等于用这两个数的和去乘这一个数”,最后得到“运算的结果不变”,便有了现实生活经验的支撑,这样我们再把这个运算定律提取出数学模型,然后让学生理解这个定律就变得轻而易举,水到渠成。

(四)教学中培养简便运算的意识很重要

在实际的教学中,要让技能上升为意识,并不是件简单的事情。在日常教学中,教师应随时随地地引导学生思考:“有没有一种简单的方法呢?”“能不能想出更好的思路呢?”逐渐由教师的提示变为学生自发的思维方式。

综上,简便运算一直是小学数学教学中一个不能缺少的内容,它被视为对学生进行思维训练的一种重要手段,是培养数学能力的主要途径之一。教师要努力使学生的简便计算不再为了因为题目要求而简算,而是要使每一个学生头脑中的简便计算变成一种意识,从而真正促进数学的最优化。

参考文献:

[1]方云凯.老师,能用简便方法计算吗?[J].小学教学,2010,(12).

[2]彭国庆.小学生简便计算的错因分析及对策[J].教育实践与研究,2011,(05).

4.运算定律与简便计算教案 篇四

教学目标:

1.引导学生探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便运算。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

第一课时:加法交换律

一、教学内容:

P28/例1(加法交换律)练习五有关习题

二、教学目标

1、知识与技能:使学生经历探索加法交换律的过程,理解并掌握加法交换律,初步感知加法交换律的价值,发展应用意识。

2、数学思考:使学生在学习用符号、字母表示加法交换律的过程中,初步发展学生的符号感,逐步提高归纳、推理的抽象思维能力。

3、解决问题:运用加法交换律的思想探索其他运算中的交换律。

4、情感与态度:使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

三、教学重点:理解并运用加法交换律。

四、教学难点:在学生已有知识经验的基础上引导学生归纳出加法交换律。

五、教学关键:引导学生运用各种不同的表达方法理解加法交换律的思想。

六、教学过程

(一)情境,形成问题

1、谈话:同学们喜欢运动吗?你最喜欢哪项体育运动?李叔叔是一个自行车旅行爱好者,咱们一起去了解一下李叔叔的情况。

1、出示李叔叔骑车旅行的情境图。仔细观察这幅图,你从图上知道哪些信息?

3、讨论与思考:

(1)根据这些信息,你能提出什么问题?(2)解决问题:李叔叔今天一共骑了多少千米?(3)独立列式计算。

4、交流、呈现不同的列式:40+56=96(千米)

56+40=96(千米)

5、请学生观察两组算式,说说有什么发现?

板书:40+56=56+40 在这组加法算式中,什么变了?什么没变?(板书:交换位置

和不变)

6、提出猜想。在加法中是不是存在这么一个规律:两个数相加,交换它们的位置,和不变呢?我们一起来验证一下。

(二)猜想,形成结论

1、男女生猜想。验证我们的猜想是否正确,我们可以举更多的例子,符合猜想的例子越多,猜想将被认为越可靠。女生完成:3024+76

96+237 „„ 男生完成:76+3024

237+96 „„

学生汇报发现:两个数相加,交换加数的位置,和不变。符合猜想。

2、小组内猜想。自己设计一 组式题验证,小组交流结果,汇报结论。

3、事例验证。(寻找身边的例子)

如:(1)四(1)班有男生31人,女生25人,全班有多少人?

31+25=25+31

(2)○○○○

○○○○

4×2=2×4 交流:从这些事例中你又能得出什么结论?(对学生举出乘法交换律的例子只予以肯定,但不作探索)

4、加法交换律的表示方法。

(1)你能用自己喜欢的方法表示我们猜想的这个规律吗?可以用符号、字母、文字等等表示,试试看。

(2)观察不同的表示方法:等式中的符号表示什么。如:○+□=□+○中,“□”和“○”代表什么?(代表任意不同的数)○+□=□+○又表示什么呢?„„

(3)小结:同学们想到的方法可真多!两个数相加,交换加数的位置,和不变,这一规律在数学中称为加法交换律(板书:加法交换律),通常用字母表示:a+b=b+a。

(三)应用,巩固新知

1、根据加法交换律填空。在()里填上合适的数,在○里填上运算符号。

①()+165=165+35 ② 1013+214=()+()③ 80○50=50○80

④ 48+29+52=48+()+()⑤()+()=()+()(1)自主练习。

(2)交流:第④小题中有三个数,还能利用加法交换律吗?对你有什么启发?(引导学生完善加法交换律:三个或三个以上的数相加,交换加数的位置,和不变)

(3)最后一题:可以怎么填?表示什么?(引导学生用字母表示数进行抽象,渗透符号化思想)

2、加法交换律的应用。

(1)讨论:对加法验算时,我们用什么方法?你知道这是根据什么吗?

(2)小结:我们用交换两个加数的位置,再加一遍的方法验算加法运算,就是应用了加法交换律。

(四)总结,引申定律

1、师生共同回顾学习过程:这节课我们研究了什么问题?我们是怎样研究这个问题的?师生归纳研究问题的方法:质疑→举例→观察→归纳→验证→应用。

2、质疑引申:学了今天这节课后,你还有什么疑问吗? 板书设计: 加法的运算定律

(1)李叔叔今天一共骑了多少千米?

40+56=96(千米)

56+40=96(千米)

40+56=56+40

┆(学生举例)

两个加数交换位置,和不变。

这叫做加法交换律。

a+b=b+a

第二课时:加法结合律

一、教学内容:

P29/例2(加法结合律)练习五有关习题

二、教学目标

1、经历加法结合律的探索过程,理解并掌握加法结合律,并能运用加法交换律、结合律进行一些简便运算。

2、领会“形成问题一提出假设一验证假设一形成规律”的思维方式,让学生在观察、归纳、概括中发展数学思维。

3、根据数据特点,灵活运用加法交换律和结合律简便计算,学会“具体问题具体解决”。

4、情感与态度:在运算中初步体会加法交换律和结合律的价值,增强学习兴趣。

三、教学难点:引导学生通过讨论、计算、举例等活动发现并总结出加法结合律。

四、教学关键:通过大量实例的验证引发对规律的认识。

五、教学过程

(一)情境引入

形成问题

1、出示教材插图,让学生说说插图的意思,并把它编成一道应用题。

2、呈现需要解决的问题:李叔叔三天一共行了多少千米?

3、自主列式计算。

4、请学生介绍并展示不同的算法。(88+104)+96

88+(104+96)=192+96

=88+200 =288(千米)

=288(千米)

5、讨论:(1)每种方法你是先算什么?再算什么?结果怎样?

(2)由两种算法的结果相同,可以看出这两个算式有什么关系?这种关系可以怎样表示?(同桌相互说一说,然后指名回答)教师板书:(88+104)+96=88+(104+96)

(3)从这两个算式中你发现了什么?用自己的话说一说你的想法。

(二)尝试探究

构建模型

1、提出假设。

(1)小组讨论并交流:在加法中,除了交换律之外,根据这两个算式,你还能发现什么?

(2)师生交流并板书初步的发现。

(3)提出要求:这只是我们根据这两个算式归纳出来的,是否正确,还有待于我们运用更多的事实去验证它。

2、验证假设。(1)个别举例验证。

女生完成(69+172)+28

155+(145+207)男生完成 69+(172+28)

(155+145)+207 从而得到:(69+172)+28 = 69+(172+28)

155+(145+207)=(155+145)+207 汇报答案:得数相同,符合猜想。男生用“凑整法”使计算更简便。(2)自由举例验证。

学生自由举例,小组交流总结。(3)寻找生活实例。如:张老师上午到书店买书用去27元,又到文具店买圆珠笔用去18元;下午去文具店买钢笔用去12元。他一共用去几元?(用两种方法解答,并找出这两个算式间的关系)(27+18)+12 = 27+(18+12)(4)小组讨论并归纳。讨论小结:

①每组算式两边都有三个加数,加数不一样。

②一边都是先把前两个数相加,再同第三个数相加;另一边则是先把后两个数相加,再同第一个数相加。③等号左右两边的和相等(不变)。④改变计算的顺序可以使计算简便。

总结:三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。

(5)学生尝试用自己的方式来表示结合律。达成一致后板书:(a+b)+c=a+(b+c)

3、形成规律。

指导学生阅读课文第29页,并齐读课题和内容。(导出规律的命名)

4、辨析加法结合律和加法交换律的异同点及它们的特点。相同点:加法交换律和加法结合律都是加法的运算定律,其计算结果——和不变。不同点:

(1)加法交换律是变换了加数的位置,如a+b=b+a;加法结合律不改变加数的位置,加上小括号而改变了加数的运算顺序,如a+b+c=(a+b)+c=a+(b+c)。

(2)应用加法交换律改变加数的位置后,计算时仍要按照从左到右的顺序依次计算;应用加法结合律改变运算顺序后,要先算小括号里面的,再算括号外面的。

(3)应用加法结合律时,加数的数据具有一定的特征——几个加数可以“凑整”(一般凑

十、凑百„„)。

(三)使用规律

巩固新知

1、我能填得又快又对。

a+(b+c)=(□+b)+c

(28+36)+64=28+(□+64)

□+235+65=78+(235+□)

182+18+276+24=(182+□)+(□+24)(1)独立完成习题,并说说分别运用了哪些加法运算律?(2)讨论:四个数相加,结合律还可以用吗?更多的数相加呢?(3)尝试归纳四个或四个以上的数相加时的结合律。(如果出现要使用交换律、结合律的,暂不研究)

2、我能很快比较它们的大小。

(63+25)+35○63+(25+35)

a+(b十c)○(a+b)+c

(33+232)+3768○33+(232+3768)

418+(56+82)○(418+82)+43 讨论:怎样比较更快?我请谁帮忙?

3、用简便方法计算下面各题。

91+89+1

178+46+154 168+250+

3285+15+41+59

第三课时:加法运算定律的运用及练习

一、教学内容

加法运算定律应用例3(P30)练习五习题

二、教学目标

1、知识与技能:让学生经历运用加法运算定律进行简便计算的探索过程,掌握其计算方法,会正确地进行简便计算。

2、数学思考:在教学过程中,培养学生思维的灵活性和初步的逻辑思维能力。

3、解决问题:利用“凑整”的基本思想合理、灵活地选择算法进行简便计算。

三、教学重点:运用加法运算律进行简便计算。

四、教学难点:选择合适的算法进行简便计算。

五、教学关键:根据数据特点凑整。

六、教学过程

(一)基本练习口答:

(1)根据运算定律在下面的()里填上适当的数。

46+()=75+()()+38=()+59 24+19=()+()

a+57=()+()

要求学生说出根据什么运算定律填数。

(2)根据每组第一个算式直接说出第二个算式的结果。632+85=717

85+632=()304+215=519 215+304=()

(二)创设情境

探讨算法

1、设问启忆。同学们,在前面几节课里我们已经为李叔叔骑车解决了哪些问题?李叔叔骑车旅行一个星期还剩下几天?想知道李叔叔接下来是怎么安排的吗?

2、出示插图。李叔叔后四天的行程计划

整理图意:第四天 城市A→B

A→B 115千米 第五天 城市B→C

B→C 132千米 第六天 城市C→D

C→D 118千米 第七天 城市D→E

D→E 85千米

3、观察、交流:从图中你知道了哪些信息?你能解决小精灵提出的问题吗?

4、尝试独立列式计算。

5、展示、交流不同的算法。

(1)呈现学生不同的算法,主要有以下两种:

① 115+132+118+85

②115+132+118+85

=247+118+85

=115+85+132+118

„„加法交换律

=365+85

=(115+85)+(132+118)„„加法结合律 =450(千米)

=200+250

=450(千米)(2)师生交流。你是怎样计算的?你运用了哪种运算定律?你更喜欢哪一种?为什么?

(3)重点讨论第②种算法:在这种算法中,分别运用了哪些加法运算定律?把115和85、132和118分别结合在一起相加有什么好处?(4)小结并揭示课题。把能凑成整

十、整百、整千的数结合起来先算,可使运算简便。(板书:关键:“凑整”; 方法:运用“加法运算律”)(5)评价其他不同的写法。

③ 115+132+118+85

④115+132+118+85 =(115+85)+(132+118)

=200+250 =200+250

=450(千米)=450(千米)

说明:这两个算法也运用了加法运算律。前者可以省略有些过程。后者缺少小括号,作为口算也是可以的。

(三)自主练习

优化算法

1、选择自己喜欢的方法计算。

425+14+185

75+168+25

245+180+20+155

67+25+33+75

(1)独立完成。并说说你是怎么计算的?为什么这样计算?(2)师生共同归纳方法:碰到一个加法算式,先看——有没有能“凑整”的数,如有,再运用——加法交换律和结合律进行简便计算。

2、对比练习比较下面的算式,有什么异同点?你喜欢计算哪个算式?为什么? 56+78+22+44

(56+22)+(78+44)

(56+44)+(78+22)

3、计算下面各题,怎样简便就怎样计算。同桌互说用了什么运算律?

60+255+40

282+41+159

548+52+468 135+39+65+11

13+46+55+54+87

5+137+45+63+50 【设计意图:通过三个不同层次的练习:归纳算法练习、优化算法练习和运用算法练习,让学生在运用中观察、比较不同的算法,从而达到优化算法的目的】

(四)解决问题

体验价值

1、小结启问。今天我们学习了什么?加法交换律、结合律在计算中有什么作用?关键是什么?

2、解决高斯的数学题。你能试着用今天学习的知识来解决这个数学问题吗?

1+2+3+4+……+99+100

=(1+100)+(2+99)+……+(50+51)

二101 ×50

二5050

3、交流。高斯的聪明表现在哪儿?学习加法交换律、结合律对计算有什么帮助?

五、随堂练习练习五(4)

六、作业布置 练习五(5)

七、板书设计: 加法运算定律的应用

按照计划,李叔叔在后四天还要骑多少千米? 115+132+118+85

=115+85+132+118

法交换律

=(115+85)+(132+118)结合律

=200+250

=450(千米)

←加

5.《运算定律与简便计算》的教学反思 篇五

【例题1】计算下列各题:(1)94×125×8

(2)25×161、根据乘法运算定律,在括号中填入适当的数.(1)38×105=105×()

(2)8×(125×37)=(×)

×372、用简便方法计算下列各题.(1)50×63×2

(2)25×24

(3)125×7×8×93、用简便方法计算下列各题.(1)50×25×4×2

(2)16×25×25

练习

1、积的末尾有多少个零?积是几位数?

【例题2】一套课座椅售价102元,买25套需要多少元?

1、根据乘法分配律,在括号中填入适当的数.⑴(26+25)×8=()×8+()×8

125×(9+8)=()×()+()×()

2、一件上衣125元,一条裤子78元,买这样的8套衣裤需要多少元?

3、用简便方法计算下列各题.⑴(200+4)×25

⑵201×58

练习

1、不计算,在□中填“>”、“<”或“=”.(1)80×(25×125)□80×(25+125)

(2)

(95+1)×60□95×60+1

(3)5656×65□6565×562、有甲、乙两组数,甲组有2个数,分别是15、16,乙组有一个数,是20,用甲组的每个数分别与乙数相乘,所得的乘积的总和是多少?

【例题3】简便计算下列各题.⑴36×54+46×36

⑵79×199+791、根据乘法分配律,在横线上填入适当的数.⑴61×39+39×39=(+)×

.⑵11×22+11×77+11=(+

+)×

.2、简便计算.⑴55×65+65×45

⑵97×99+973、简便计算.⑴125×15+125

75×45+17×25

练习

1、简便计算:45+99×99+542、简便计算:⑴43×99+43

6.《运算定律与简便计算》的教学反思 篇六

教学要求:

通过复习,使学生进一步理解小学阶段所学习的运算定律,能应用其进行合理灵活的计算。

进一步理解四则混合运算顺序,能正确、熟练地进行计算。

教学过程:

复习运算定律与简便算法。

请同学们回忆一下,小学阶段学过了哪些运算定律?

请同学们把教材87页上边的表填完整。

学习例1

观察例1这个算式的各个数什么特点,能用什么运算定律进行简算。

学生独立解答例1,并说明如何运用计算定律的。

小结:结合本班学生的实际情况提出应注意的问题。

试做87页的“做一做”。

复习四则混合运算

说明第一级运算和第二级运算的概念。

请同学们说说四则混合运算的顺序

请学生独立完成例2

小结:在进行四则混合运算式题中,应做到:一看,算式中含有哪些运算?有哪些数?二想,这些运算和数字有何特点,是否可以简算?三算,动笔计算。四检验,检查各计算是否正确。

巩固练习

完成教材90页第7题。学生做完后,可以互相交流一下简算的方法。

选择正确的答案序号填在括号里。

4/7+4÷4/7+4计算结果是         A  1        B    11 4/7       C   12

8×( 6+ 1/4)=8×6+8×1/4=48+2=50的计算依据是()

7.除法的简便运算的教学反思 篇七

四年级:杨国超

一、“教”要适应“学”,教学必须遵循学生数学学习的认知规律

《数学课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上,教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

本案例中,教学时,跳过了连除应用题的教学,因此,学生对于“用被除数除以一个数,等于用被除数连续除以这个数里的各个因数”较难理解。但是,由于老师给他们建立了从事数学活动的机会,通过分发练习纸活动,感悟出分的多种方法,然后再探究分练习本(数量增多),让学生计算、讨论,得到计算方法的多样化。

因此,我们在教学实践活动时,除了要重视对客观形态的数学认知结构进行钻研外,还必须强调对学生主观形态的数学认知结构进行深入分析和研究,从学生角度设想其从事新学习时可能发生的心理过程,把握其规律,只有这样,我们的数学教学才能做到有的放矢,更加有效地促进学生的认知发展。

二、把握课堂教学的契机

《数学课程标准》指出:有效的数学学习活动不能单纯地依赖模仿和记忆。动手实践,自主探索,合作交流是学生数学的重要方式。

在本案例中,学生从动手分发练习纸,自主探索分发练习本,经过合作交流得出多种方法计算240÷48。因为有了分练习纸的经验,同学们的计算方式多样化,有一小组一小组分的,也有按四人小组分的,把48拆成8×6、12×4、4×12„„列出的算式也各不相同。但是,我却没有把握这个契机,让学生建立数学模型,只对第1、2种方法进行重点讲解,并进行比较,后面几种只是一句带过。其实,这几种方法,体现了学生思维方式的多样化,从多个角度思考问题、解决问题。学生的潜力是无穷的,出现算法的多样化后,我们应该利用这个契机,让学生把分步式的列成综合式,从而建立起这堂课的数学模型:240÷48=240÷(8×6)=240÷(12×4)=240÷(4×12)为后面的变式(拆数,合成一个数,交换数的位置),灵活、合理地进行除法的简便运算打下扎实的基础。

三、教学时,要敢于摆脱教材、教案的束缚

8.《除法简便运算》教学反思 篇八

一、数学教学必须遵循学生数学的认识规律。

让学生在认识发展水平和已有的知识经验基础上,教师应激发学生学习知识的积极性,向学生提供从数学活动的机会,帮助他们在自主探索和小组合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

在教学时,学生对于“一个数连续除以两个数”,可以用这个数除以这两个数的积较难理解。但是,由于我给学生建立了从事数学活动的机会,通过分小木棒的活动,感悟出分的两种方法,然后再探索分小木棒,让学生计算、讨论,得出简便计算方法。

二、有效的`数学学习活动不能单纯地依赖模仿和记忆。让学生动手实践,自主探索,小组合作交流是学生学习数学的重要方式。

学生从动手分小木棒,自主探索分小木棒,经过小组合作交流得出两种方法计算12÷3÷2,和12÷(3×2),列出的算式不相同,我及时把握这个契机,对第1、2种方法进行重点讲解,并进行比较,得出简便计算方法。其实,这两种方法,体现了学生思维方式的多样化,从各个角度思考问题、解决问题。学生的潜力是无穷的,出现两种算法后,我让学生把分步式列成综合算式,从而建立起这堂课的数学模型:12÷3÷2=12÷(3×2)=2为后面的变式,灵活、合理地进行除法的简便运算打下扎实的基础。

三、敢于摆脱教材的束缚。

当我提问,用哪些方法比较简便,学生出现争论的情况时,我出示例3题让学生讨论,学生通过讨论做数学,体会到到底哪些方法比较简便。这个念头当时我被教材所束缚了,不敢打破导学设计,而是按原来的导学设计,出示测评训练题。这样就失去了一次让学生评判的机会,如果当时把后面简便计算的练习题提上来,通过计算,孰优孰劣,一感便知。

9.《运算定律与简便计算》的教学反思 篇九

歇马镇小学

李萍

教学思路:通过对整数加法运算定律的复习,利用迁移的方法让学生把学过的加法运算定律推广到分数加法。从而认识到整数加法运算定律对于分数加法同样适用。

教学目标

1.通过教学,学生懂得应用加法运算定律可以使一些分数计算简便,会进行分数加法的简便计算.

2.培养学生仔细、认真的学习习惯.

3.培养学生观察、演绎推理的能力.

教学重点

整数加法运算定律在分数加法中的应 用,并使一些分数加法计算简便教学难点

整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.

教学过程:

一、复习准备

1、口算(大比武)

2.整数加法的运算定律有哪几个?用字母怎样表示?

板书:a+b=b+a

(a+b)+c=a+(b+c)

2.下面各等式应用了什么运算定律?

①25+36=36+25 ②(17+28)+72=17+(28+72)

③6.2+2.3=2.3+6.2 ④(0.5+1.6)+8.4=0.5+(1.6+8.4)

师:加法交换律和结合律适用于整数和小数,是否也适用于分数加法呢?这节课我们就一起来研究。

二、学习新课

1.出示:下面每组算式的左右两边有什么关系?

32○ 23 7557 213213()○()34434

4说明:整数加法运算定律,对分数加法同样适用。

提问:整数加法的运算定律可以在什么范围内使用?

(加法的交换律、结合律中的数,既包括了整数,又包括了小数和分数)2.出示 计算:2311 7474观察:这些加数分母和分子有什么特点?

思考:怎样可以使计算简便?

学生口述,板书:

2131()()7744

331177

提问:这道题哪里应用了加法交换律?哪里应用了加法结合律?

最后结果要注意什么问题?

学生总结:应用整数加法的运算定律可以把分母相同的分数先加起来,或凑成整数再计算比较简便。

三、巩固反馈

1.在下面的○里填上合适的运算符号.

14314○3()7 7 ①27722332○

②3 14143

2.用简便方法计算下面各题. 2131213

① 3443 ②535

四、课堂总结.

整数加法的交换律、结合律对分数加法同样适用,应用加法运算定律可以把分母相同的分数先加起来,或凑成整数再计算比较简便。

五、布置作业.

用简便方法计算下面各题。

5114271(1)61212(2)115115

5814(3)915159

六、板书设计 例3:

23117474(271317)(44)371137

应用整数加法的运算可以

10.《加法的运算定律》教学反思 篇十

对于加法的交换律学生很容易理解,但是在三个或三个以上加数相加时,他们分辨不清是该交换律还是结合律了。通过本节运用课,我发现孩子们对结合律掌握得不太好。尤其是在交换律和结合律同时使用时,他们有简便的意识,却对定律的辨析不够清晰,缺少明晰的步骤。

如:在解决115+132+118+85这一题时,学生们都知道将115+85相加、另外两个加数相加,但是他们缺少这一交换和结合的步骤,而是直接在第一步就写道200+250,还有部分同学直接在横式上加括号。这一现象表明:学生们对于简便的计算方法、加法的运算定律只是初步理解了,有简便的意识,但练习还缺少规范性。

面对学生的错误,我又觉得有些矛盾:我们的教学应该是为了让学生会用,而不是将重心盯在让学生辨别是交换律,还是结合律之上,我们都知道:会用才是目的。但是没有规范的要求,他们仅将简便的过程藏在心里,无疑显露出他们对简便运算与定律掌握不太牢固,运用时缺少足够的信心,还未能理清晰计算过程,表现力尚为缺乏。所以学生们尚需走稳每一步,看似简单的内容也得扎实的理解、熟练地运用。

11.《运算定律》教学反思 篇十一

教学中,两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并叙述所发现的规律然后让学生用自己喜欢的方法表示规律,而不是像过去那样,统一用字母来表示。这样一方面有利于符号感的培养,方便记忆;另一方面提高了知识的抽象概括程度,也为以后正式教学用字母表示数打下初步的基础。在充分感知个性创造的基础上,使学生体会到符号的简洁性,从而发展了学生的符号感。构建了简单的数学模型

本节课的教学,学生经历了探索、发现、反思的过程,对加法交换律和加法结合律有了充分的认识和自己的理解。关于两种运算定律的特点,虽然在教学中让学生进行了观察和描述,但并未将两者放在一起对比,抽象出异同。在学完两种运算定律后,应给学生一定的时间比较两种运算定律的区别,加深学生的理性认识,促进学生思维灵活性的发展。

12.《运算定律与简便计算》的教学反思 篇十二

大沟林区九年制学校 李恒生

整理运算定律是本课的教学重点。在复习的过程中。学生会感觉到学过的运算定律有很多,需要对它进行整理。那怎样进行整理呢?我设计了几个问题引导学生自主合作进行整理:(1)你能说出我们学过的所有运算定律吗?(2)你能把它们进行分类整理吗?(3)你能用什么方式表示呢?在问题的引导下,学生积极思考、主动探究、合作交流,学生可以得出按运算方式将运算定律分成两类或按运算定律的意义将其分成三类,并总结出用字母表示运算定律是最好的整理方法,既简洁又清晰,便于理解和记忆。这样一个自主活动的过程,能让学生切实体会到分类整理是一种很好的学习方法,在以后的知识整理中还可以借鉴这种方法.一、教学时应将简便计算的讨论与实际问题的解决有机的结合起来,使问题解决的多样化与计算方法的多样化融为一体。这样既能让实际问题的生活背景成为学生理解简便计算方法及其算理的经验支撑,又能使解决问题能力与计算能力的培养相互促进,同步提高。

二、注意正确理解算法多样化,个性化的实质。

首先,鼓励独立思考,尽可能地让学生自己探索不同算法,其次,注意组织互相交流,尽可能是个别学生的创意为其他学生共享;第三,允许学生自主选择,包括允许学生采用不同的探究方法,采用不同的直观支撑,选择自己喜欢的或适合自身特点的计算方法。第四,尊重学生的个体差异,在教学要求的把握上,因人而异,区别对待。

上一篇:国学经典名句大全下一篇:周年庆典音乐会主持稿