全等三角形辅助线课件

2024-07-02

全等三角形辅助线课件(精选5篇)

1.全等三角形辅助线课件 篇一

一般来说考试中出现的线段与角相等需要证明全等,我们可以用全等的相应知识点来解题。下面是关于全等三角形的课件的内容,欢迎阅读!

一、教材分析

(一)本节内容在教材中的地位与作用。

对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形与全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。同时,苏科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。

(二)教学目标

在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:

(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。

(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。

(3)培养学生勇于探索、团结协作的精神。

(三)教材重难点

由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。

(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。画有相关图片的作业纸。

二、教法选择与学法指导

本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。

三、教学流程

(一)创设情景,激发求知欲望

首先,我出示一个实际问题:

问题:皮皮公司接到一批三角形架的加工任务,客户的要求是所有的三角形必须全等。质检部门为了使产品顺利过关,提出了明确的要求:要逐一检查三角形的三条边、三个角是不是都相等。技术科的毛毛提出了质疑:分别检查三条边、三个角这6个数据固然可以。但为了提高我们的效率,是不是可以找到一个更优化的方法,只量一个数据可以吗?两个呢?……

然后,教师提出问题:毛毛已提出了这么一个设想,同学们是否可以与毛毛一起来攻克这个难题呢?

这样设计的目的是既交代了本节课要研究与学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。

(二)引导活动,揭示知识产生过程

数学教学的本质就是数学活动的教学,为此,本节课我设计了下列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。

活动一:让学生通过画图或者举例说明,只量一个数据,即一条边或一个角不能判断两个三角形全等。

活动二:让学生就测量两个数据展开讨论。先让学生分析有几种情况:即边边、边角、角角。再由各小组自行探索。同样可以让学生举反例说明,也可以通过画图说明。

活动三:在两个条件不能判定的基础上,只能再添加一个条件。先让学生讨论分几种情况,教师在启发学生有序思考,避免漏解。

教师提出3个角不能判定两三角形全等,实质我们已经讨论过了。明确今天的任务:讨论两条边一个角是否可以判定两三角形全等。师生再共同探讨两边一角又分为两边一夹角与两边一对角两种情况。

活动四:讨论第一种情况:各小组每人用一张长方形纸剪一个直角三角形(只用直尺与剪刀),怎样才能使各小组内部剪下的直角三角形都全等呢?主要是让学生体验研究问题通常可以先从特殊情况考虑,再延伸到一般情况。

活动五:出示课本上的3幅图,让学生通过观察、进行猜想,再测量或剪下来验证。并说说全等的图形之间有什么共同点。

活动六:小组竞赛:每人画一个三角形,其中一个角是30°,有两条边分别是7cm、5cm,看哪组先完成,并且小组内是全等的。这样既调动了学生的积极性,又便于发现边角边的识别方法。

最后教师再用几何画板演示,学生进行观察、比较后,师生共同分析、归纳出“边角边”这一识别方法。

若有小组画成边边角的形式,则顺势引出下面的探究活动。否则提出:若两个三角形有两条边及其中一边的对角对应相等,则这两个三角形一定全等吗?

活动七:在给出的画有的图上,让学生自主探究(其中另一条边为5cm),看画出的三角形是否一定全等。让学生在给出的图上研究是为了减小探索的麻木性。

教师用几何画板演示,让学生在辨析中再次认识边角边。同时完成课后练习第一题。

(三)例题教学,发挥示范功能

例题教学是课堂教学的一个重要环节,因此,怎样充分地发挥好例题的教学功能是十分重要的。为此,我将充分利用好这道例题,培养学生有条理的说理能力,同时,通过对例题的变式与引伸培养学生发散思维能力。

首先,我将出示课本例1,并设计下列系列问题,让学生一步一步地走向“知识获得与应用”的理想彼岸。

问题1: 请说说本例已知了哪些条件,还差一个什么条件,怎么办?(让学生学会找隐含条件)。

问题2: 你能用“因为……根据……所以……”的表达形式说说本题的说理过程吗?

这样设计的目的在于体现“数学教学不仅仅是数学知识的教学,更重要的发展学生数学思维的教学”这一思想。

在例题教学的基础上,为了及时的反馈教学效果,也为提高学生知识应用的水平,达到及时巩固的目的,我设计了如下两个练习:

(1)基础知识应用。完成教材P139练一练2。

(四)课堂小结,建立知识体系。

(1)本节课你有哪些收获:重点是将研究问题的方法进行一次梳理,对边角边的识别方法进行一次回顾。

(2)你还有哪些疑问?

2.全等三角形辅助线课件 篇二

一、培养学生的动手能力, 促进知识的消化吸收

俗话说“智慧就在你的手指尖上”, 学生通过动手操作得来的知识总是记忆犹新。为此笔者在教学中特别重视学生动手能力的培养。比如, 初探三角形全等条件“边角边”时, 让学生充分动手折叠、剪拼、度量、作图, 通过学生参与把握三角形全等的条件, 通过多感官的刺激, 增强他们的感性认识, 从而为上升为理性认识做好有力的铺垫。学生们学得轻松, 教学效果斐然。在后来探讨三角形全等其他条件的时候, 笔者一直坚持这样的思路, 收效都特别明显, 全等各种条件的认识自然就水到渠成了。

二、培养语言的转换能力, 促进有条理思考表达

在几何教学中“图形语言、符号语言、文字语言”这三种语言的转换占据着特别重要的地位。笔者在教学中重视培养学生三种语言的切换能力, 要求学生能够自由切换, 以打通学生的思维, 寻找正确的解题通道。在每一种全等三角形条件探索时无不如此, 如教学直角三角形全等的条件“HL”时, 从文字语言“斜边和一直角边对应相等的两个直角三角形全等, 简写为‘斜边, 直角边’或‘HL’”。这对于刚接触直角三角形全等的学生来说, 文字语言过于抽象, 学生不能形成深刻的印象, 于是笔者出示下列图形辅助理解, 再用符号语言来表述, 这样学生就能从多个角度理解了“斜边、直角边”这一说明两个直角三角形全等的方法, 为将来运用它来解决实际问题做好了准备。

三、培养正确的解题方法, 努力提高解题技巧

1. 分析法、综合法

在全等三角形的教学中, 如何打开解题思路是一个很重要的问题。在教学中笔者主要渗透的是两种方法:一个执果索因的分析法, 也就是通常所说的由结论想条件;另一个执因索果的综合法即由条件想结论。新课程标准中, 全等的要求没有传统教材的要求高, 一般用一种方法就可以奏效。对于复杂一点的问题两种方法都运用, 这样降低了问题的难度, 同时也能够提高学生学习的兴趣。

2. 分离法

对于难度较小的问题学生解决起来不费吹灰之力, 但是对于图形复杂、条件比较繁杂的问题, 就不能那么轻松了, 就要讲究方式方法了。笔者根据多年的新课程的教学实践中, 努力探索研究发现, 分离图形是一个很好的方法, 就是说要善于从复杂图形中, 分离出重点三角形, 单独对其进行研究, 这样目标明确, 已知条件与缺少的条件一目了然, 从而做到了有的放矢。

四、有机整合多媒体手段, 促进应变能力的提高

随着新课程改革的逐渐深入, 现代化教学手段越来越得到广泛的运用。通过多媒体手段的整合让图形动起来, 利用几何画板等软件编辑动画, 有意识地渗透平移、翻折、旋转变换思想, 极大地提高了学生学习数学的兴趣, 增强了学生的识图能力, 发展了学生的空间观念。教学实践笔者注意渗透下列变换:

1. 平移

例1:已知:如图, A、D、C、F在同一直线上AB∥EF, BC=DE, 且AD=FC。

(1) AB与FE相等吗?请说明理由。

(2) 若△ABC向右平移一定距离, 说明AB与FE相等吗?请说明理由。

通过几何画板演示, 学生从图 (1) 过渡到图 (2) , 清楚地认识到对应边AC、FD的相等关系, 应该根据不同的情况如何进行转换, 从而有效地提高了学生的应变能力。

2. 翻折

江苏省2010年中考数学题中, 对这方面就有一定的考查。所出的问题虽然难度不大, 但是对翻折的重视可见一斑。在教学中我们也进行了相关训练:

例2:已知:如图, AB=AC, AD=AE, ∠BAE=∠CAD, BD与CE相等吗?为什么?

在翻折的变换中, 运用动画的手法, 让学生充分领悟图形变化的规律, 正确应对变化灵活解题。

3. 旋转

近年的中考信息表明, 图形变换的例子到处可见。其中旋转变换也是最有难度的一种变换。而利用多媒体手段旋转变换, 这类问题也就迎刃而解。

例3:如图, 等腰Rt△COD和Rt△AOB有公共端点O, (1) 如图1时, AC与BD数量关系如何?位置关系又如何? (2) 当Rt△AOB绕点旋转到如图位置时, AC与BD数量关系如何?位置关系又如何?

在教学上述例题时, 笔者在学生仔细审题之后得出第 (1) 问的结果, 然后引导学生根据几何画板的动画演示, 猜想线段AC、BD之间的数量及位置是否仍然成立?进而进行验证、推理。学生理解起来很轻松。教学由于旋转变换最能激活学生的思维, 笔者进行了题组教学出示下面一个例题:

例4:两个不全等的△ABC和Rt△ADE叠放在一起, 并且有公共点A, 将图 (1) 中的Rt△ABC绕点A顺时针旋转一个锐角, 连结BD、CE, 得到图 (2) 。

(1) 请判断图 (2) 中线段BD、CE的数量关系, 并说明理由。

(2) 在图 (2) 中, 直线BD、CE所成的锐角是_________度。

当然, 全等变换的形式不是单一的, 有时候是几种变换同时都存在, 比如例4中就是利用旋转构建的翻折。在教学中必须注意正确引导, 从而让学生以静制动, 学会以不变应万变。

3.关于全等三角形教学课件 篇三

一、教材分析

本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形》的第一节。这是全章的开篇,也是全等条件的基础。它是继线段、角、相交线与平行线及三角形有关知识之后出现的。通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用。

教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法。通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质。

二、教学目标分析

知识与技能

1。了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法。

2。能准确确定全等三角形的对应元素。

3。掌握全等三角形的性质。

过程与方法

1。通过找出全等三角形的对应元素,培养学生的识图能力。

2。能利用全等三角形的概念、性质解决简单的数学问题。

情感、态度与价值观

通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度。

三、教学重点、难点

重点:全等三角形的概念、性质及对应元素的确定。

难点:全等三角形对应元素的确定。

四、学情分析

学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期。为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识。

五、教法与学法

4.全等三角形辅助线课件 篇四

找全等三角形的方法:

(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;

(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。三角形中常见辅助线的作法:

①延长中线构造全等三角形;②利用翻折,构造全等三角形; ③引平行线构造全等三角形;④作连线构造等腰三角形。常见辅助线的作法有以下几种:

(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

思路分析:

1)题意分析:本题考查等腰三角形的三线合一定理的应用

2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。

解答过程:

证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中,∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。又∠1+∠F=∠3+∠F=90°,故∠1=∠3。

在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。

解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。

(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。求证:ΔABC是等腰三角形。

思路分析:

1)题意分析:本题考查全等三角形常见辅助线的知识。

2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。

解答过程:

证明:延长AD到E,使DE=AD,连接BE。又因为AD是BC边上的中线,∴BD=DC 又∠BDE=∠CDA ΔBED≌ΔCAD,故EB=AC,∠E=∠2,∵AD是∠BAC的平分线 ∴∠1=∠2,∴∠1=∠E,∴AB=EB,从而AB=AC,即ΔABC是等腰三角形。

解题后的思考:题目中如果出现了三角形的中线,常加倍延长此线段,再将端点连结,便可得到全等三角形。

(3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。

例3:已知,如图,AC平分∠BAD,CD=CB,AB>AD。求证:∠B+∠ADC=180°。

思路分析:

1)题意分析:本题考查角平分线定理的应用。

2)解题思路:因为AC是∠BAD的平分线,所以可过点C作∠BAD的两边的垂线,构造直角三角形,通过证明三角形全等解决问题。

解答过程:

证明:作CE⊥AB于E,CF⊥AD于F。∵AC平分∠BAD,∴CE=CF。

在Rt△CBE和Rt△CDF中,∵CE=CF,CB=CD,∴Rt△CBE≌Rt△CDF,∴∠B=∠CDF,∵∠CDF+∠ADC=180°,∴∠B+∠ADC=180°。解题后的思考:

①关于角平行线的问题,常用两种辅助线;

②见中点即联想到中位线。

(4)过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”

例4:如图,ΔABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF交BC于D,若EB=CF。求证:DE=DF。

思路分析:

1)题意分析: 本题考查全等三角形常见辅助线的知识:作平行线。

2)解题思路:因为DE、DF所在的两个三角形ΔDEB与ΔDFC不可能全等,又知EB=CF,所以需通过添加辅助线进行相等线段的等量代换:过E作EG//CF,构造中心对称型全等三角形,再利用等腰三角形的性质,使问题得以解决。

解答过程:

证明:过E作EG//AC交BC于G,则∠EGB=∠ACB,又AB=AC,∴∠B=∠ACB,∴∠B=∠EGB,∴∠EGD=∠DCF,∴EB=EG=CF,∵∠EDB=∠CDF,∴ΔDGE≌ΔDCF,∴DE=DF。

解题后的思考:此题的辅助线还可以有以下几种作法:

例5:△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ。

思路分析:

1)题意分析:本题考查全等三角形常见辅助线的知识:作平行线。

2)解题思路:本题要证明的是AB+BP=BQ+AQ。形势较为复杂,我们可以通过转化的思想把左式和右式分别转化为几条相等线段的和即可得证。可过O作BC的平行线。得△ADO≌△AQO。得到OD=OQ,AD=AQ,只要再证出BD=OD就可以了。

解答过程:

证明:如图(1),过O作OD∥BC交AB于D,∴∠ADO=∠ABC=180°-60°-40°=80°,又∵∠AQO=∠C+∠QBC=80°,∴∠ADO=∠AQO,又∵∠DAO=∠QAO,OA=AO,∴△ADO≌△AQO,∴OD=OQ,AD=AQ,又∵OD∥BP,∴∠PBO=∠DOB,又∵∠PBO=∠DBO,∴∠DBO=∠DOB,∴BD=OD,又∵∠BPA=∠C+∠PAC=70°,∠BOP=∠OBA+∠BAO=70°,∴∠BOP=∠BPO,∴BP=OB,∴AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ。

解题后的思考:(1)本题也可以在AB上截取AD=AQ,连OD,构造全等三角形,即“截长法”。(2)本题利用“平行法”的解法也较多,举例如下:

①如图(2),过O作OD∥BC交AC于D,则△ADO≌△ABO从而得以解决。

④如图(5),过P作PD∥BQ交AC于D,则△ABP≌△ADP从而得以解决。

小结:通过一题的多种辅助线添加方法,体会添加辅助线的目的在于构造全等三角形。而不同的添加方法实际是从不同途径来实现线段的转移的,体会构造的全等三角形在转移线段中的作用。从变换的观点可以看到,不论是作平行线还是倍长中线,实质都是对三角形作了一个以中点为旋转中心的旋转变换构造了全等三角形。

(5)截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。

例6:如图甲,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。求证:CD=AD+BC。

思路分析:

1)题意分析: 本题考查全等三角形常见辅助线的知识:截长法或补短法。2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。

解答过程:

证明:在CD上截取CF=BC,如图乙

∴△FCE≌△BCE(SAS),∴∠2=∠1。又∵AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠CDE=90°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4。

在△FDE与△ADE中,∴△FDE≌△ADE(ASA),∴DF=DA,∵CD=DF+CF,∴CD=AD+BC。

解题后的思考:遇到求证一条线段等于另两条线段之和时,一般方法是截长法或补短法:

截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;

补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。

1)对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法将其放在一个三角形中证明。

2)在利用三角形三边关系证明线段不等关系时,如直接证明不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明。

小结:三角形

5.全等三角形错题汇集与解析 篇五

例1已知△ABC与△DEF全等,∠A=∠D=90°,∠B=37°,则∠E的度数是______.

【错误解答】因为△ABC≌△DEF,所以∠E=∠B=37°.

【错因剖析】已知△ABC与△DEF全等,因已有∠A=∠D,所以两三角形全等还有两种对应关 系 :△ABC≌△DEF和△ABC≌△DFE.

【正确解答】在△ABC中,∠C=180°∠A-∠B=53°,因为△ABC与△DEF全等,所以当△ABC≌△DEF时,∠E=∠B=37°,当△ABC≌△DFE时,∠E=∠C=53°.

【点评】本题考查了全等三角形的性质,分两种情况进行讨论是解决本题的关键,容易忽视△ABC≌△DFE这一情况,解题时要特别注意.

例2如图所示,点E、F在BC上 ,BE =CF,AB =DC,∠B = ∠C,问AF与DE相等吗?

【错误解答】在△ABF和△DCE中,AB=DC,∠B=∠C,BE=CF,所以△ABF≌△DCE,所以AF=DE.

【错因剖析】没有对照所证的两个三角形的对应边(或角),只注重文字条件中两边一角相等,而此两边一角并不是这两个三角形的对应边(或角).

【正确解答】因为BE=CF,所以BE+EF=CF+EF,所以BF=CE,在△ABF和△DCE中,AB=DC,∠B=∠C,BF=CE,所以△ABF≌△DCE,所以AF=DE.

【点评】在寻找两三角形全等的条件时,我们要认真结合图形来分析,仔细审题,严格对照三角形条件中的边角关系看是否具备.

例3如图2所示,在△ABC和△ADE中,∠BAD=∠CAE,BC=DE,且点C在DE上 ,若添加一个条件能判定△ABC≌△ADE,这个条件是( ).

A. ∠BAC=∠DAE B. ∠B=∠D

C. AB=AD D. AC=AE

【错误解答】选C或D.

【错因剖析】三角形全等的条件中必须有三个要素,并且一定有一组对应边相等,解题时要按判定全等的方法逐个验证,特别注意SSA不能作为判定条件.

【正确解答】因为∠BAD=∠CAE,所以∠BAD+∠DAC=∠CAE+∠DAC,所以∠BAC=∠DAE,又因为BC=DE,A选项中条件与∠BAC=∠DAE重复;添加B选项根据AAS判定△ABC≌△ADE;添加C、D选项,由于SSA不能作为判定条件,所以均不能判定△ABC≌△ADE.

【点评】本题重点考查了三角形全等的判定定理,一般的两个三角形全等共有四个定理:AAS,ASA,SAS,SSS,HL,但不能用AAA,SSA证明两个三角形全等.

例4如图3所示,△ABC中,D为BC上一点,且AD=AC,AB=AE,CB=DE,则图中与∠CAD相等的角是_______.

【错误解答】∠BAE.

【错因剖析】根据SSS判定△ABC≌△AED,所以∠BAC=∠EAD,由等式性质得∠CAD=∠BAE,没能进一步找与∠BAE相等的角,而由三角形内角和定理可证明∠BDE=∠BAE.

【正确解答】由AD=AC,AB=AE,CB=DE,根据SSS判定△ABC≌△AED,所以∠BAC=∠EAD,∠B=∠E,由等式性质可得∠CAD=∠BAE;又因为∠AOE=∠BOD(AB交DE于O点),∠B=∠E,由三角形内角和定理可得∠BDE=∠BAE. 所以图中与∠CAD相等的角是∠BAE和∠BDE.

例5如图4所示,在△ABC中,AD是∠BAC的平分线,BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F. 求证:BE=CF.

【错误解答一】认为DE =DF,并以此为条件,在Rt△BDE与Rt△CDF中,因为DE =DF,BD =CD,所以Rt△BDE≌Rt△CDF(HL). 所以BE = CF(全等三角形的对应边相等).

【错误解答二】认为AD⊥BC,并以此为条件,通过证明△ABD≌△ACD,得AB=AC. 再由Rt△AED≌Rt△AFD,得AE=AF.从而得到:BE=CF.

【错因剖析】错解一中认为DE=DF,并直接作为条件应用,因而产生错误;错解二中,认为AD⊥BC,没有经过推理,而直接作为条件应用,因而也产生错误. 产生上述错误的原因是审题不清,没有根据题设,结合图形找证题方法,推证过程不符合全等的判定方法.

【正确解答】因为AD是角平分线,所以∠DAE=∠DAF,又因为DE⊥AB,DF⊥AC,所以∠AED=∠AFD=90°,又因为AD=AD,所以△ADE≌△ADF,所以DE=DF,在Rt△BDE和Rt△CDF中,DE=DF,BD=CD,所以Rt△BDE≌Rt△CDF(HL),所以BE=CF.

例6如图5所示,已知AB=AC,∠B=∠C,CE=BD,M是ED的中点 ,试说明 :AM⊥ED.

【错误解答】在△ABO和△ACO中,AB=AC,∠B=∠C,AO=AO,△ABO≌△ACO(SSA),所以BO=CO,又因为BD=CE,所以OD=OE,又因为M是ED的中点,所以DM=EM,又OM=OM,所以△OME≌△OMD(SSS),所以∠OME=∠OMD,又∠OME+∠OMD=180°,所以∠OME=∠OMD=90°,所以AM⊥ED.

【错因剖析】本题错在判定△ABO≌△ACO时,错用了“SSA”的判定方法,这是不正确的,因为有两条边及其中一边的对角对应相等的两个三角形不一定全等.

【正确解答】连接AE、AD,在△ABD和△ACE中,AB=AC,∠B=∠C,BD=CE,所以△ABD≌△ACE(SAS),所以AE=AD,又因为M是ED的中点,所以DM=EM,又AM=AM,所以△AME≌△AMD(SSS),所以∠AME=∠AMD,又∠AME+∠AMD=180°,所以∠AME=∠AMD=90°,所以AM⊥ED.

上一篇:质朴的作文下一篇:杭州市农村电子商务发展报告