分式应用题奥数题(精选11篇)
1.分式应用题奥数题 篇一
1.甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。两块地同时开始同时结束,乙应在开始后第几天从A地转到B地? 甲乙丙共要植树 900+1250=2150(棵)合作完成时间是
2150÷(24+30+32)=25(天)甲25天植树 24×25=600(棵)乙帮甲植树
900-600=300(棵)乙帮甲植树 300÷30=10(天)
乙应在开始后第几天从A地转到B地 10+1=11(天)
2.有三块草地,面积分别是5,15,24亩。草地上的草一样厚,而且长得一样快。第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
分析:设1头牛吃一天的草量为一份.10头牛30天吃5亩的牧草,相当于一亩原有牧草加上30天新长的草量,可供10×30÷5=60头牛吃一天,即每亩原有牧草加上30天新长的草量为60份.同样,由28头牛45天吃15亩的草量,知每亩原有牧草加上45天新长的草量为28×45÷15=84份.这两者的差正好对应了每亩45-30=15天新长的草量,于是求得每亩每天新长的草量,从而求出每亩原有草量,这样问题便能得...第二块面积是第一块的15÷5=3倍,由第一块知,第二块也可以供30头牛吃30天,所以(28×45-30×30)÷(45-30)=24(第二块每天生长的草)24÷15=1.6(每亩每天生长的草)
第二块:45天生长的草是24×45=1080那么,原有的草是28×45-1080=180 则,每亩原有的草是180÷15=12 第三块:原有的草是12×24=288 且,80天生长的草是1.6×24×80=3072而共有的草是288+3072=3360 所以第三块可供牛吃80天的头数是3360÷80=42头
3.某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。在保证一星期内完成的前提下,选择哪个队单独承包费用最少? 要先算出甲乙丙的工效和每天工资
(1).甲、乙两队承包,2又5分之2天=2.4天可以完成,甲乙合作1天完成1/2.4=5/12 乙、丙两队承包,3又4分之3天=3.75天可以完成,乙丙合作1天完成1/3.75=4/15 甲、丙两队承包,2又7分之6天=20/7天可以完成,甲丙合作1天完成7/20 甲工作效率是(5/12+7/20-4/15)÷2=1/4 乙工作效率是5/12-1/4=1/6 丙工作效率是7/20-1/4=1/10 单独干这项工程,甲需4天,乙需6天,丙需10天
工程需要在一个星期内完成,可以排除丙
(2).甲乙合作1天需付款1800÷2.4=750元
乙丙合作1天需付款1500÷3.75=400元
甲丙合作1天需付款1600÷20/7=560元
甲单独干1天得到(750+560-400)÷2=455元
乙单独干1天得到750-455=295元
丙单独干1天得到560-455=105元
所以,1个工程队单独完成这项工程需付款
甲:4*455=1820元
乙:6*295=1770元
丙:10*105=1050元
由于丙不能单独在一个星期内完成工程,所以选择乙工程队,支付的工程款是1770元 4.一个圆柱形容器内放有一个长方形铁块。现打开水龙头往容器中灌水。3分钟时水面恰好没过长方体的顶面。再过18分钟水已灌满容器。已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。设长方体底面积为S1 容器为S 3分钟灌水体积=(S-S1)×20 18分钟灌水体积=S×(50-20)=30S 3:18=20(S-S1):30S 9S=36S-36S1 27S=36S1 S1:S=27:36=3:4 答;底面积比是3:4
5.甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套? 把甲的套数看作5份,乙的套数就是5+5×1/5==6份; 10÷(5×80%-6×50%)×5,=10÷1×5,=50(套);
答:甲原来购进了50套.
6.有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池。这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
7.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。小明从家到学校全部步行需要多少时间? 8.甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离。乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地。最后乙车比甲车迟4分钟到C地。那么乙车出发后几分钟时,甲车就超过乙车。
9.甲、乙两辆清洁车执行东、西城间的公路清扫任务。甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
10.今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个。那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
11.师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
12.一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.13.一部书稿,甲单独打字要14小时完成,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时? 14.黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
15.一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地需要多长时间? 16.甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
17.甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
18.一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
19.某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?
20.甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
甲车床加工方形零件4份,圆形零件4×2=8份,乙车床加工方形零件3份,圆形零件3×3=9份,丙车床加工方形零件3份,圆形零件3×4=12份,圆形零件共:8+9+12=29(份),每份是:58÷29=2(个),方形零件有:2×(4+3+3)=20(个),共加工零件:20+58=78(个). 答:这天三台车床共加工零件78个.
21.圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米? 22.某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
23.从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
24.师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成? 25.六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
26.甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?
27.有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?
28.有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.29.师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
30.奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?
31.某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电? 32.王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
33.妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
34.一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
35.小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册? 36.有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
37.爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁? 38.B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
39.甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
40.甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
41.某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
42.甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?
43.大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只? 44.某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?
45.已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?
46.加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?
47.甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5 米,直到终点.那么领先者到达终点时,另一人距离终点多少米? 48.小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之? 49.甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?
50.加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?
51.自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级?
52.两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?
53.甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍? 54.一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离.55.甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离.56.某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?
57.甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米? 58.A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?
59.一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.60.有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积.61.有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树?
62.小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?
63.同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明? 64.一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.65.有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?
66.甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?
67.A、B、C、D、E五名学生站成一横排,他们的手****拿着20面小旗.现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗?
68.小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?
69.小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度.70.小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?
71.数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?
72.一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少?
73.少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵? 74.某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A城多少千米?
75.甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.76.一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?
77.某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?
78.一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?
79.甲、乙两车分别从A、B两地同时相向而行,已知甲车速度与乙车速度之比为4:3,C地在A、B之间,甲、乙两车到达C地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间?
80.一次棋赛,记分方法是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女生的10倍,但其总得分只为女生得分的4.5倍,问共有几名女生参赛?女生共得几分?
81.有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?
82.某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?
83.小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?
84.甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.85.二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?
86.一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比.87.某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米?
88.钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段.现需要绑好钢筋架子100套,至少要用去原材料多少根?
89.有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?
90.小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟?
91.甲、乙、丙三人,甲的年龄比乙的年龄的2倍还大3岁,乙的年龄比丙的年龄的2倍小2岁,三个人的年龄之和是109岁,分别求出甲、乙、丙的年龄.92.快车以60千米/小时的速度从甲站向乙站开出,1.5小时后,慢车以40千米/小时的速度从乙站行甲站开出,.两车相遇时,相遇点离两站的中点70千米.甲、乙两站相距多少千米? 93.甲、乙两车先后离开学校以相同的速度开往博物馆,已知8:32分甲车与学校的距离是乙车与学校距离的3倍,8:39分甲车与学校的距离是乙车与学校距离的2倍,求甲车离开学校的时间.94.有一个工作小组,当每个工人在各自的工作岗位上工作时,7小时可生产一批零件,如果交换工人甲、乙的岗位,其他人不变,那么可提前1小时,完成这批零件,如果交换工人丙、丁的岗位,其他人不变,也可提前1小时,问如果同时交换甲与乙、丙与丁的岗位,其他人不变,那么完成这批零件需多长的时间.95.用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少?
96.公圆只售两种门票:个人票每张5元,10人一张的团体票每张30元,购买10张以上的团体票的可优惠10%.(1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?(2)乙单位208人逛公园,按以上的规定买票,最少应付多少钱?
97.甲、乙、丙三人,参加一次考试,共得260分,已知甲得分的1/3,乙得分的1/4与丙得分的一半减去22分都相等,那么丙得分多少?
98.一项工程,甲、、乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30.甲、乙单独做这项工程各需要几天?
99.有长短两支蜡烛,(相同时间中燃烧长度相同),它们的长度之和为56厘米,将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃前一样长,这时短蜡烛的长度又恰好是长蜡烛的2/3.点燃前长蜡烛有多长?
100.一批苹果平均分装在20个筐中,如果每筐多装1/9,可省下几只筐?
2.分式的运算检测题 篇二
1. 使代数式有意义的x的取值范围是().
A. x ≠ 3且x ≠ - 2 B. x ≠ 3且x ≠ 4
C. x ≠ 3且 x ≠ - 3 D. x ≠ - 2,x ≠ 3,x ≠ 4
2. 已知x为整数,且分式的值为整数,则x可取的值有().
A. 1个B. 2个C. 3个 D. 4个
3. 下列计算中,错误的是().
A.
3 = -B.
2 =
C.
2 = D.
2n =
4. 下列各式错误的是().
A.-== -
B.+= 1
C.-= - 1
D.-=
5. 计算 -+ 的结果应等于().
A. B.
C. D.
6. 计算 - 的结果等于().
A. B.
C. D.
7. 化简 - 的结果是().
A. B.
C. D. a + b
8. 已知x为整数,且++为整数,则x的值有().
A. 2个B. 3个C. 4个 D. 5个
9. 已知a、b满足ab = 1,若M =+ , N =+ ,则M、N的大小关系是().
A. M > NB. M = N
C. M < ND. M ≤ N
10. 在①(- 1)0 = 1,②(- 1)- 1 = - 1,③3a- 2 = ,④(- x)5 ÷ (- x)3 = - x2中,正确的有().
A. 1个B. 2个C. 3个D. 4个
11. 化简a- 3b2 · (a2b- 2)- 4 ÷ (a- 2b- 1)2的结果中只含有正整数指数幂的形式,下列正确的是().
A. B. C. D.
12. 已知a- m = 2,bn = 3,则(a- 2m·b- n)- 3的值是().
A. B. C. D.
13. 已知0.003 × 0.005 = 1.5 × 10n,则n的值为().
A. - 4B. - 5C. - 6D. - 7
14. 已知 = 3 × 10m,450 000=4.5 × 10n,则m + n的值为().
A. - 2B. - 1C. 0D. 1
二、填空题
15. 24. 证明 ++ 的值与a、b、c无关.
25. 光华中学有一块边长为x m的正方形空地,现设想按图1、图2两种方式去种植草皮:如图1,在正方形空地上留两条宽为2m m的小路;如图2,在正方形空地四周各留一块边长为m m的小正方形空地植树.学校准备用5 000元购进草皮.
(1) 试比较按图1、图2两种方式种植草皮的单价.
3.分式应用题奥数题 篇三
小宸今年8岁,小墨今年4岁,2年后,小宸比小墨大几岁?
【题目】 2年级
一个长方形,长是宽的3倍,周长是48厘米,求宽是多少?
【题目】 3年级
两个数相除商是3,余数是10,被除数,除数,商和余数之和是143,求被除数,除数是多少?
【题目】 4年级
一个车队以5米/每秒的速度缓缓地通过一座210米的桥面,共用100秒钟,已知每辆车长5米, 两车之间相隔10米,这个车队共有多少辆车?
【题目】 5年级
甲乙两人加工一批帽子,甲每天比乙多加工10个途中乙因事休息了5天,20天后甲加工的帽子正好是乙加工的一半,这时两人各加工帽子多少个?
【题目】 6年级
甲乙分别自AB两地相向步行,2小时后在中途相遇,相遇后甲乙步行都提高了1千米/小时当甲到达B地后立刻按原路向A地反行,当乙到达A地后也立刻按原路向B地反行,甲乙两人在第一次相遇后3小时36分又再次相遇,则AB两地的距离是多少?
4.二年级奥数题 篇四
1、一个数加上8,乘以8,减去8,除以8,结果还是8,求这个数?
2、小华参加数学竞赛,共有10道赛题。规定答对一题给十分,答错一题扣五分。小华十题全部答完,得了85分。小华答对了几题?
3、2,3,5,8,12,(),()
4、1,3,7,15,(),63,()
5、1,5,2,10,3,15,4,(),()6,8、8、10、6、12、4、()、()
7,1、2、3、2、3、4、3、4、5、()、()
8,16、3、8、9、4、()、()9,在合适的地方插入“+”或“-”,使等式成立。2 3 4 5 6 7 8 9 = 99
10、△+○=9 △+△+○+○+○=2 △=()○=()
11、5只猫吃5只老鼠用5分钟,20只猫吃20只老鼠用多少分钟?
12,学校派一些学生去搬树苗,如果每人搬6棵,则差4棵,如果每人搬8棵,则差18棵,这批树苗有()棵。
13,小雷、二雷、大雷去称体重,大雷和小雷一起称是50千克,小雷和二雷一起称是49千克,三个人一起称是76千克。小雷的体重是()千克。
14,81位同学排成9行9列的方阵表演体操,小红在方阵中,正左边有2个同学,正前方有3个同学,这时整个方阵的同学向右转,则小红的正前方有()个同学,正右边有()个同学。
15,有一个老妈妈,她有三个男孩,每个男孩又都有一个妹妹,问这一家共有几口人?
16、果园里有桃树126颗,是梨树棵数的3倍,果园里桃树和梨树一共多少棵?
17、有人问孩子年龄,回答:“比爸爸的岁数的一半少9岁。”又问爸爸的年龄,回答说:“比孩子的4倍多2岁。”孩子年龄()岁。
18、哥弟俩共有邮票70张,如果哥哥给弟弟4张邮票后还比弟弟多面手多2张,哥哥原来有邮票多少张?(写出过程)
19、按规律填数。
(1)1,3,5,7,9,()
(2)1,2,3,5,8,13()
(3)1,4,9,16,(),36
(4)10,1,8,2,6,4,4,7,2,()
20、在下面算式适当的位置添上适当的运算符号,使等式成立。
(1)8 8 8 8 8 8 8 8 = 1000
(2)4 4 4 4 4 = 16
(3)9 8 7 6 5 4 3 2 1 = 22
21、30名学生报名参加美术小组。其中有26人参加了美术组,17人参加了书法组。问两个组都参加的有多少人?
22、用6根短绳连成一条长绳,一共要打()个结。
23、篮子里有10个红萝卜,小灰兔吃了其中的一半,小白兔吃了2个,还剩下()个。24、2个苹果之间有2个梨,5个苹果之间有几个梨?
25、在一次数学考试中,小玲和小军的成绩加起来是195分,小玲和小方的成绩加起来是198分,小军和小方的成绩加起来是193分。问他们三人各得多少分?
26、有两个数,它们的和是9,差是1,这两个数是()和()
27、小红今年4岁,小英今年的岁数是小红的2倍,小花今年的岁数是小英的2倍。小花今年的岁数是小红的几倍?
28、有一天,大熊老师在黑板上写了一列数字,然后他停下来,让小兔妮妮和熊猫冰冰来猜一猜. ⑴ 第25个数是几? ⑵ 这25个数的和是多少?
1,2,3,2,3,4,3,4,5,4,5,6,……
29、15个小朋友排成一排报数,报双数的小朋友去打乒乓,队伍里留下()人。
30、一只梅花鹿从起点向前跳 5米,再向后跳4米,又朝前跳7米,朝后跳10米;然后停下休息,你知道梅花鹿停在起点前还是起点后?与起点相距几米?
31、哥哥给了弟弟2支铅笔后还剩5支,这时两人的铜笔一样多,弟弟原来有铅笔()支。
32、林林、红红、芳芳三个小朋友买糖吃。林林买了7粒,红红买了8粒,芳芳没有买。三个小朋友要平分吃,芳芳一共付了1元钱,其中给林林()角,给红红()。
33、姐妹俩人有糖若干,如果姐姐给妹妹3块,两人的糖数就相等,如果妹妹给姐姐2块,姐姐的糖就是妹妹的3倍。姐姐妹妹原来各有多少块糖?
34、环形跑道上正在进行长跑比赛。每位运动员前面有7个人在跑,每位运动员后面也有7个人在跑。跑道上一共有()个运动员?
35、把16只鸡分别装进5个笼子里,要使每个笼子里鸡的只数都不相同,应怎样装?请把每只笼子里的鸡的只数分别填入下面五个方框中。
36、今天红红8岁,姐姐13岁,10年后,姐姐比红红大()岁。
37、汽车每隔15分钟开出一班,哥哥想乘9时10分的一班车,但到站时,已是9时20分,那么他要等()分钟才能乘上下一班车。
38,求1+2+3+…+24+25的和.
39、二(1)班小朋友排成长方形队伍参加体操表演。红红左看是第6名,右看是第2名,前看是第4名,后看是第3名。二(1)班共有()小朋友。
40、汽车场每天上午8时发车,每隔8分钟发一辆。那么从8时到8时40分,共发了()辆车?
41、一只苹果的重量等于一只桔子加上一只草莓的重量,而一只苹果加上一只桔子的重量等于9只草莓的重量,请问,一只桔子的重量等于几只草莓的重量。
42,两个桶里共盛水30斤.如果把第一个桶里的水倒3斤给第二个桶里,两个桶里的水就一样多了.问每个桶里各有多少斤水?
43,今年的“六一”儿童节是星期二,再过16天是星期几?
44,兄弟两人去钓鱼,一共钓了23条,哥哥钓的鱼比弟弟的两倍还多两条,哥哥弟弟各钓了多少条?
45,小马虎在做一道减法时,把减数的个位数字9看做7,把十位数字5看做8,结果是98。正确的答案是多少?
46,李大妈买3千克苹果和2千克白菜共付16元钱。按钱数算1千克苹果可以换2千克白菜。1千克白菜与1千克苹果各多少钱?
47,某人要到一座高层楼的第8层办事,不巧停电,电梯停开,如从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒?
48,学校买来一批新书,2年级借走了一半,1年级借走了剩下的一半,还剩下5本,问:学校一共买来了多少本新书?
49,一瓶油,连瓶一共重800克,吃去一半的油,连瓶称,还剩550克。瓶原来有多少克油?空瓶重多少克?
50,六年级一班共有42人,其中20人参加了数学竞赛,10人参加了作文竞赛,已知全班有2人既参加了数学竞赛又参加了作文竞赛,没参加比赛的有几人?
51,东东做一道加法题时,把个位上的1看成7,把十位上的6看成9,结果是75,可是正确的的答案应该是()。
52、小明买文具盒花的钱乘4,除以2,加上3,减去2,再除以3最后得3,小明的文具盒到底()元。
53、妈妈买回不到20块糖,3块3块地数还余2块,5块5块地数还余2块,妈妈到底买回()块糖。
54、一座桥长25米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏在桥的终点,桥上一共有()盏灯。
55、1千克梨有8个,1千克苹果比1千克梨的个数多1个,妈妈买了2千克梨和2千克苹果,共有苹果和梨()个。
56、一座5层高的塔,最上边一层装了2只灯,往下每低一层多装4只灯,最下面一层要装多少只灯?(写出过程)
57、今年哥哥和弟弟的年龄和是32岁,两年后哥哥比弟弟大4岁,今年哥哥和弟弟各是多少 岁?
58、一只蜗牛向前爬25厘米,又朝后退15厘米,在朝前爬10厘米,结果前进了()厘米。
59、小明第一天写5个大字,以后每一天都比前一天多写2个大字,6天后小明一共写了()个大字。
60、一辆公共汽车上有6个空座位。车开到团结站,没有人下车,但上来了9人,空座位还有2个,上车的人中有()人站着。
61、两箱苹果都重40千克,从第一箱中拿出8千克到第二箱后,第二箱比第一箱多()千克。
62、学校校门的右边插了8面彩旗,每两面彩旗之间的距离都是2米,从第1面彩旗到第8面彩旗之间共有()米。
63、一个三位数,十位上的数字是9,正好是个位数字的3倍,三个数位之和是13。这个三位数是()
64、冬冬今年10岁,爸爸今年40岁,冬冬()岁时,爸爸的年龄正好是冬冬的2倍。
65、小明栽树5棵,大强、李卫、大华和冬冬每个人栽的棵数和小明同样多。他们一共栽树()棵。
66、鸡兔共有腿50条,若将鸡数与兔数互换,则腿数变为54条,鸡有()只,兔有()只。
67、晚上小华在灯下做作业的时候,突然停电,小华去拉了两下开关。妈妈回来后,到小华房间又拉了三下开关。等来电后,小华房间的灯()(填“亮”或“不亮”)68、花果山上的桃熟了,小猴忙到树上摘桃。第一次,它摘了树上桃的一半,回家时还随手从树上摘了2个;第二次,它将树上剩下的8个桃全部摘回家。小猴共摘回()个桃。
69、节日里,学校门前的彩灯从左到右按2个红3个黄4个蓝的顺序排列。从左到右看,第12只彩灯是()色,第36只彩灯是()。
70、把一杯水倒入空瓶,连瓶共重140克,如果倒入三杯水,连瓶共重260克。空瓶的重量是()克。
71、李奶奶家现有16个鸡蛋,还养了两只每天下一个蛋的母鸡。如果李奶奶家每天都吃4个鸡蛋,她家可以连续吃()天。
72、一条毛毛虫由幼虫长成成虫,每天长大一倍,30天能长到20厘米。问长到5厘米时要用()天。
73、每3个空瓶可以换一瓶汽水,有人买了27瓶汽水,喝完后又用空瓶换汽水,那么,他最多喝()瓶汽水。
74、小红做计算题时,由于粗心大意,把一个加数个位上的8错误地当作了3,把百位上的6错当成了9,所得的和是138,所得的和是438,正确的和是多少?(写过程)
5.奥数之训练题 篇五
例1 小明准备邮寄一份资料,需要贴9角钱的邮票,他只有一些1角和2角的邮票,如果用这些邮票,一共有几种贴法?
例2 把一张1角的人民币换成5分、2分、1分的硬币,一共有多少种换法?
例3 甲、乙两人各有钱若干元,他们钱数的和是60元,并且甲、乙两人的钱都是10元一张的人民币,他们每人可能有多少元?
例4 把5支铅笔分给甲、乙、丙三个小朋友,每个小朋友每次都要分得有铅笔。有多少种不同的方法?
例5 妈妈今年44岁,小丽今年14岁,几年前妈妈的年龄是小丽年龄的6倍?
例6 哥哥今年18岁,弟弟今年12岁。当两人的年龄和是40岁时,兄弟两人各多少岁?
例7 甲、乙、丙三人各有若干本故事书,甲拿出自己的一部分书给乙、丙,例乙、丙两人的书增加一倍,乙拿出一部分书给甲、丙,使甲、丙两人的书增加一倍,丙也拿出一部分书给甲、乙,使甲、乙两人的书也增加一倍,这时甲、乙、丙三人的书都是16本。甲、乙、丙原来各有多少本故事书?
例8 有一只水桶装满了8千克水,如果把这桶水平均分装在两只水桶内,两只水桶分别可装5千克与3千克。最少需要倒多少次?
例9 甲、乙、丙三校在体育用品商店买了不同数目的足球,共48个。第一次从甲校的足球中拿出与乙校个数相同的足球并入乙校;第二次再从乙校现有的足球中拿出与丙校个数相同的足球并入丙校;第三次又从丙校现有的足球中拿出与这时甲校个数相同的足球并入甲校。经过这样的.变动后,三校足球的个数正好相等。已知每个足球的售价是12元,问三校原来买的足球各值多少元?
6.分式中的典型题评析 篇六
例1实数m、n满足什么条件时,分式的值为0?
分析:只满足分子m-2n=0这一条件显然是片面的,要研究一个分式应首先要求分式有意义,即分母不为0,所以应满足m=2n,且m≠n.但“m=2n且m≠n”是不是最精炼的表达呢?条件“m=2n且m≠n”可转化成2n≠n,因而此题必须满足的条件为“m=2n且n≠0”.
例2计算÷(m+2-).
分析:分式的运算离不开因式分解,为便于正确运算,要尽可能使分式的分子、分母最高项系数为正.此题中,整式m+2可看成分母为1,进行通分.
解:原式=÷[-]
=-÷
=-×
=-.
例3k为何值时,方程-4=会产生增根?
分析:理解分式方程增根的意义.分式方程转化成整式方程后求得的根使原分式方程的公分母为零,这种根叫做原方程的增根.此类题目的解题策略为:(一)将分式方程转化为整式方程;(二)使最简公分母为0,找到增根;(三)增根代入化好的整式方程求出k值.
解:去分母得整式方程:-x-4(x-3)=k.令最简公分母x-3=0,x=3为原分式方程的增根,
∴ x=3为-x-4(x-3)=k的根,解得k=-3.
当k=-3时方程-4=会产生增根.
例4解分式方程:1-=.
分析:与解一元一次方程的步骤类似,只增加了检验这一步.去分母时要注意常数项不能漏乘最简公分母.
解:方程两边同乘以最简公分母(x+2)(x-2)得:
(x+2)(x-2)-(x-14)=(x-2)2
x2-4-x+14=x2-4x+4
3x=-6
x=-2.
检验:把x=-2代入(x+2)(x-2)=0,∴ x=-2为原方程的增根.∴原方程无解.
例5甲、乙两人同去一家粮店购买两次大米,两次大米的价格有变化,他们两人购买的方式也不相同,其中甲每次购买50千克的大米,乙每次购买50元的大米.问这两种买米方式,谁的购买方式更合算?
解析:要知道何种购买方式更合算,需比较他们各人平均每千克大米花了多少钱,当然单价越低越合算.
设两次购买的大米单价分别为x元/千克和y元/千克 (x>0,y>0且x≠y),
甲两次购买大米的平均单价为=(元/千克),
乙两次购买大米的平均单价为==(元/千克),
甲、乙所购大米的平均单价的差是
-=-==.
∵ x、y是正数且x≠y,∴>0,
∴->0,∴>,
∴乙的购买方式更合算.
7.小学一年级奥数题 篇七
1.小华的爸爸1分钟可以剪好5只自己的指甲。他在5分钟内可以剪好几只自己的指甲? 4.6匹马拉着一架大车跑了6里,每匹马跑了多少里?
5.一只绑在树干上的小狗,贪吃地上的一根骨头,但绳子不够长,差了5厘米。你能教小狗用什么办法抓着骨头呢?
6.王某从甲地去乙地,1分钟后,李某从乙地去甲地。当王某和李某在途中相遇时,哪一位离甲地较远一些?
8.在广阔的草地上,有一头牛在吃草。这头牛一年才吃了草地上一半的草。问,它要把草地上的草全部吃光,需要几年?
12.一个房子4个角,一个角有一只猫,每只猫前面有3只猫,请问房里共有几只猫?
14.小军、小红、小平3个人下棋,总共下了3盘。他们下的盘数一样多,问他们各下了几盘棋?(每盘棋是两个人下的)
15.小明和小华每人有一包糖,但是不知道每包里有几块。只知道小明给了小华8块后,小华又给了小明14块,这时两人包里的糖的块数正好同样多。同学们,你说原来谁的糖多?多几块?
答案:
1.20只,包括手指甲和脚指甲
4.6里;
5.只要教小狗转过身子用后脚抓骨头,就行了。
6.他们相遇时,是在同一地方,所以两人离甲地同样远;
8.它永远不会把草吃光,因为草会不断生长;
12.4只;
14.2盘;
15.原来小华糖多;14-8=6块,因为多给了6块两人糖的块数正好同样多,所以原来小华比小明多12块。
一年级奥数题
姓名
年级
班
1、黑兔、兔和白兔三只兔子在赛跑。黑免说:“我跑得不是最快的,但比白兔快。”请你说说,谁跑得最快?谁跑得最慢?()跑得最快,()跑得最慢。
2、三个小朋友比大小。根据下面三句话,请你猜一猜,谁最大?谁最小?
(1)芳芳比阳阳大3岁;(2)燕燕比芳芳小1岁;(3)燕燕比阳阳大2岁。
()最大,()最小。
3、图形的变化规律
在下图的一组图形中,“?”处应填什么样的图形?
4、猜猜他几岁?
小亮今年7岁,爸爸比他大30岁,三年前爸爸是多少岁?
5、填空格
如下图所示。在正方形空格里填上适当的数,使每一横行、竖行、斜行的四个数相加都得34。
6、填数字计算
在下面的○中填上数字,使得每一条线上的三个○中的数字加起来都等于15
7、数一数
环形跑道上正在进行长跑比赛。每位运动员前面有7个人在跑,每位运动员后面也有7个人在跑。跑道上一共有()个运动员?
8、趣味题
8.小学一年级奥数题 篇八
2、篮子里有12个红萝卜,小灰兔吃了其中的一半,小白兔吃了剰下的一半,还剩下( )个。
3、3个梨子之间有6个草莓,5个梨子之间有( )个草莓。
4、用1、2、3三个数字可以组成( )个不同的三位数。
5,有两个数,它们的和是9,差是1,这两个数是( )和( )
6、3个小朋友下棋,每人都要与其他两人各下一盘,他们共要下( )盘。
7、汽车每隔15分钟开出一班,哥哥想乘9时10分的一班车,但到站时,已是9时20分,那么他要等( )分钟才能乘上下一班车。
8、15个小朋友排成一排报数,报双数的小朋友去打乒乓,队伍里留下( )人。
9、一只梅花鹿从起点向前跳 5米,再向后跳4米,又朝前跳7米,朝后跳10米;然后停下休息,你知道梅花鹿停在起点前还是起点后?与起点相距几米?
10、哥哥给了弟弟2支铅笔后还剩5支,这时两人的铜笔一样多,弟弟原来有铅笔( )支。
11、林林、红红、芳芳三个小朋友买糖吃。林林买了7粒,红红买了8粒,芳芳没有买。三个小朋友要平分吃,芳芳一共付了1元钱,其中给林林( )角,给红红( )。
12、三个人吃3个馒头,用3分钟才吃完;照这样计算,九个人吃9个馒,需要( )分钟才吃完?
13、环形跑道上正在进行长跑比赛。每位运动员前面有7个人在跑,每位运动员后面也有7个人在跑。跑道上一共有( )个运动员?
14、把16只鸡分别装进5个笼子里,要使每个笼子里鸡的只数都不相同,应怎样装?请把每只笼子里的鸡的只数分别填入下面五个方框中。
9.小学数学二年级奥数题 篇九
2、天才一班有学生27人,天才二班有学生33人,要使两班学生的人数相等,必须从天才二班调多少人到天才一班?
3、喜羊羊星期天去买了20个苹果,它第一天吃3个,第二天吃5个,第三天吃了多少它给忘记了。最后还剩下4个苹果没有吃。请问喜羊羊第三天吃了多少个苹果?
4、学校买来一批新书,2年级借走了一半,1年级借走了剩下的一半,还剩下5本,学校一共买来了多少本新书?
5、一瓶油,连瓶一共重800克,吃去一半的油,连瓶称,还剩500克。瓶原来有多少克油?空瓶重多少克?
10.五年级上册奥数训练题 篇十
甲说:“乙是骗子。”
乙说:“甲和丙是同一种人。”
丙是________。
2、狼在星期一、二、三讲假话,其余各天都讲真话;狐狸在星期四、五、六讲假话,其余各天都讲真话。
有一天,有人遇见狼,它说了两句话:
(1)昨天是我说假话的日子;
(2)后天和大后天仍是我说假话的日子。
这天是星期________。
3、小明、小强、小兵三个人进行赛跑,跑完后,有人问他们比赛的结果。
小明说:“我是第一。”
小强说:“我是第二。”
小兵说:“我不是第一。”
实际上,他们中有一个人说了假话。______是第一,_______是第二,______是第三。
4、有甲、乙、丙三人,每人或者是老实人,或者是骗子。
甲说:“我们都是骗子。”
乙说:“我们中间恰好有一个人是老实人。”
甲是_______,乙是_______,丙是_______。
5、有甲、乙两人,他们是老实人,或是骗子。
甲说:“我们两人中至少有一人是骗子。”
甲是______,乙是________。
6、有人问三位青年的年龄。
小刘说:“我22岁,比小陈小2岁,比小李大1岁。”
小陈说:“我不是年龄最小的,小李和我差3岁,小李是25岁。”
小李说:“我比小刘年纪小,小刘23岁,小陈比小刘大3岁。”
这三位青年每人回答的三句话中,有一句是故意说错的。小刘______岁,小陈______岁,小李_______岁。
7、狼在星期一、二、三讲假话,其余各天都讲真话;狐狸在星期四、五、六讲假话,其余各天都讲真话。狼和狐狸都化了装,使别人难以辨认它们。
有一个说:“我在星期天说谎。”
另一个说:“我在明天说谎。”
先说话的是______,这一天是星期_______。
8、张、王、李、赵四位同学住在一个宿舍里。一天晚我,他们中间最晚回来的那位同学忘了关灯,第二天宿舍管理员查问谁回来的最晚,
(1)张说:我回来时,小李还没回来。
(2)王说:我回来时,小赵已经睡了,我也就睡了。
(3)李说:我进门时,小王正在床上。
(4)赵说:我回来就睡了,别的没注意。
他们说的都是实话,______回来最晚。
9、甲、乙、丙三人中有一位是意大利牧师,有一位英国骗子,还有一位美国赌棍。牧师不说谎话,骗子总说谎话,赌棍有时要说谎。
甲说:“丙是牧师。”
乙说:“甲是赌棍。”
丙说:“乙是骗子。”
甲是_______,乙是_______,丙是________。
10、一位法官在审理一起盗窃案中,对涉及到的四名嫌疑犯甲、乙、丙、丁进行了审问。四人分别供述如下:
甲说:“罪犯在乙、丙、丁三人之中。”
乙说:“我没有做案,是丙偷的。”
丙说:“在甲和丁之间有一个是罪犯。”
丁说:“乙说的是事实。”
11.五年级奥数题集 篇十一
一、简单列举题
1.用0,1,2,3四个数字组成一个三位数,可以组成多少个偶数(每个数字最多用一次)?
2.在一个长方形中划6条直线,最多能把它分成多少份? 3.从1到100的自然数中,完全不含数字“9”的有多少个? 4.a和b是自然数,且a+b=81。a和b的积最大是多少?
5.a,b,c是三个互不相等的正整数,且a+b+c=30,那么a,b,c的积最大是多少?最小是多少?
二、数字趣味题
1.一个三位数的各位数字之和是17,其中十位数字比个位数字大1,如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198。求原数。
2.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数。
3.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?
4.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数。
5.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数。
参考答案(数字趣味题):476;2.46;3.121;4.857142;5.3963
三、专题训练题:“牛吃草”问题 故事:牛顿的“牛吃草”问题
英国伟大的科学家牛顿,曾经写过一本数学书。书中有一道非常有名的、关于牛在牧场上吃草的题目,后来人们就把这类题目称为“牛顿问题”。“牛顿问题”是这样的:“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。”
这类题目的一般解法是:把一头牛一天所吃的牧草看作1,那么就有:(1)27头牛6天所吃的牧草为:27×6=162(这162包括牧场原有的草和6天新长的草。)(2)23头牛9天所吃的牧草为:23×9=207(这207包括牧场原有的草和9天新长的草。)(3)1天新长的草为:(207-162)÷(9-6)=15(4)牧场上原有的草为:27×6-15×6=72(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)
所以养21头牛,12天才能把牧场上的草吃尽。
请你算一算:
有一牧场,如果养25只羊,8天可以把草吃尽;养21只羊,12天把草吃尽。如果养15只羊,几天能把牧场上不断生长的草吃尽呢?
其他试题:
1、有一堆割下来的青草可供45头牛吃20天,那么可供36头牛吃多少天? 2.有一堆割下来的青草可供20头牛吃15天,若一头牛每天的吃草量相当于4头羊的吃草量,那么这堆青草可供120头羊吃多少天?
3.牧场上一片草,可供23匹马吃9天,或者可供27匹马吃6天,如果草每天匀速生长,可供21匹马吃多少天
4.一片青草,每天生长的速度相同,如果24头牛6天可以把草吃完,或者20头牛10天可以把草吃光。那么多少头牛12天可以把草吃尽?
5.一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果3人淘水40分钟可以淘完;6人淘水16分钟可以把水淘完,那么,5人淘水几分钟可以把水淘完?
6.27头牛在吃牧场上一片匀速生长的青草可以吃6周,如果卖掉4头牛,那么这些青草可供这群牛吃9周,如果卖掉2头牛,那么这些青草可供这群牛吃 2 几周?
7.一水库存水量一定,河水均速入库,12台抽水机连续6天可以抽干,6台同样的抽水机连续15天可以抽干,那么5台抽水机多少天可以抽干?
8.有一口水井,井底连续不断涌出泉水,每分钟涌出的水量相等,如果使用5架抽水机来抽水,20分钟可以抽完;如果使用3架抽水机来抽水,36分钟可以抽完,现在要求12分钟内抽完进水,需要抽水机多少架?
9.某公园的检票口,在开始检票前已有一些人排队等候,检票开始后第10分钟有100人前来排队检票,1个检票口每分钟能让25人入内。如果只有1个检票口,检票开始8分钟后就没有人排队;如果同时开放2个检票口,那么检票开始后多少分钟就没有人排队?
10.一场牧场长满青草,这些青草可供10头牛吃20天,或者可供15头牛吃10天,问可供25头吃多少天?
四、竞赛提高题
一片茂盛的草地,每天的生长速度相同,现在这片青草16头牛可吃15天,或者可供100只羊吃6天,而4只羊的吃草量相当于1头牛的吃草量,那么8头牛与48只羊一起吃,可以吃多少天?
2.有一口井,井底匀速泉水,若用6台抽水机20天就能把井水抽干,若用8台抽水机10天就可以把水抽干,若要5天把水抽干,需要多少台同样的抽水机来抽?
3.一片草地,可供5头牛吃30天,或者可供4头牛吃40天,如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天?
4. 17头牛吃28公亩的草,84天可以吃完;22头牛同样牧场33公亩的草54天可吃完,几头牛吃同样牧场40公亩的草,24天可吃完?(假设每公亩牧草原草量相等,且匀速生长)
5.一水池有若干相同的抽水管,有一进水管,进水管匀速不断地进水。若用24根抽水管抽水,6小时可把池中的水抽干,若用21根抽水管抽水,8小时即可把池中的池水抽干,那么用16根抽水管抽水,多少小时即可把水池的水抽干?
6.有一口井,井底不断有泉水匀速,若要把井水抽干,8台抽水机需要12小时,10台同样的抽水机需要8小时,那么用6台同样的抽水机可以几小时抽 3 完?
五、数的整除
1.任一个三位数连续写两次得到一个六位数.试证:这个六位数能同时被7、11、13整除.2.证明:任何两个自然数的和、差、积中,至少有一个数能被3整除.3.某个七位数2000□□□能同时被1、2、3、4、5、6、7、8、9整除,那么最后三位是什么?
4.在865后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能的小。
5.求能被26整除的所有六位数(x1991y)。参考答案:
1.提示:该数能被1001整除;2.略;3.8,8,0;4.865020;5.819910、119912、719914和619918
六、最大公约数和最小公倍数
1.两个数的最大公约数是4,最小公倍数是252,其中一个数是28,另一个数是多少?
2.已知两个自然数的积是5766,它们的最大公约数是31.求这两个自然数。3.已知两个自然数的和是54,并且它们的最小公倍数与最大公约数之间的差为114,求这两个数。
4.将一块长3.57米、宽1.05米、高0.84米的长方体木料,锯成同样大小的正方体小木块.问当正方体的边长是多少时,用料最省且小木块的体积总和最大?(不计锯时的损耗,锯完后木料不许有剩余)
5.写出小于20的三个自然数,使它们的最大公约数是1,但其中任意两个数都不互质。
参考答案:
1.36;2.31,186或62,93;3.24,30;4.21厘米;5.6,10,15或10,12,15或10,15,18
七、奇偶分析
1.能否在下式中填入适当的“+”,“-”,使等式成立? 9□8□7□6□5□4□3□2□1=28 2.在a、b、c三个数中,有一个是2003,一个是2004,一个是2005。问(a-1)(b-2)(c-3)是奇数还是偶数。
3.用代表整数的字母a、b、c、d写成等式组:
a×b×c×d-a=1991
a×b×c×d-b=1993
a×b×c×d-c=1995
a×b×c×d-d=1997
试说明:符合条件的整数a、b、c、d是否存在。
4.有一串数,最前面的四个数依次是1、9、8、7.从第五个数起,每一个数都是它前面相邻四个数之和的个位数字.问:在这一串数中,会依次出现1、9、8、8这四个数吗?
5.任意改变某一个三位数的各位数字的顺序得到一个新数.试证新数与原数之和不能等于999。
参考答案:
1.不能;2.偶数;3.不存在;4.提示:先按规律写出一些数来,再找其奇、偶性的排列规律,便可得到答案:不会依次出现1、9、8、8这四个数。5.略
八、行程问题
1.甲、乙、丙三人进行200米赛跑,当甲到终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米?
2.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。
3.甲、乙、丙是一条路上的三个车站,乙站到甲、丙两站的距离相等,小强和小明同时分别从甲、丙两站出发相向而行,小强经过乙站100米时与小明相遇,然后两人又继续前进,小强走到丙站立即返回,经过乙站300米时又追上小明,问:甲、乙两站的距离是多少米?
4.周长为400米的圆形跑道上,有相距100米的A、B两点,甲、乙两人分 5 别从A、B两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A时,乙恰好跑到B.如果以后甲、乙跑的速度和方向都不变,那么追上乙时,甲共跑了多少米(从出发时算起)?
5.一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?
参考答案:1.5又5/9米;2.16.5千米;3.300米;4.1000米;5.5分钟 九、一周测验
1.用数字6,7,8各两个,组成一个6位数,使它能被168整除。这个六位数是多少?
2.有4个不同的正整数,其中任两个数的和总能被它们的差整除,要求最大的数与最小的数的和尽可能小,求这4个数。
3.两个数的差为2,并且其最小公倍数与最大公约数的差为142。求这两个数。
4.A和B是奇数,它们的最大公约数是3,求A+B和A-B的最大公约数。5.某校六年级学生参加区数学竞赛,试题共40道,评分标准是:答对一题给3分,答错一题倒扣1分.某题不答给1分,请说明该校六年级参赛学生得分总和一定是偶数。
6.假设n盏有拉线开关的灯亮着,规定每次拉动(n-1)个开关,能否把所有的灯都关上?请证明此结论,或给出一种关灯的办法。
7.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?
【分式应用题奥数题】推荐阅读:
分式方程的应用06-11
奥数应用题训练题10-02
初中数学分式09-18
专题12分式函数08-12
分式方程解决实际问题06-18
《分式的概念》说课稿07-11
八年级数学分式教案07-27
分式的基本性质教案10-22
初中数学《分式》优秀教案09-30
《分式的乘除》的说课稿10-10