七年级一元一次方程教学实录及评析

2024-07-15

七年级一元一次方程教学实录及评析(共10篇)

1.七年级一元一次方程教学实录及评析 篇一

七年级《一元一次方程》教学设计

作为一位杰出的教职工,总不可避免地需要编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。怎样写教学设计才更能起到其作用呢?下面是小编收集整理的七年级《一元一次方程》教学设计,欢迎阅读,希望大家能够喜欢。

教学目标:

进一步认识方程,理解一元一次方程的概念,会根据题意列简单的一元一次方程。

认识方程的解的概念。

掌握验根的方法。

体验用尝试法解一元一次方程的思想方法。

重点:

一元一次方程的概念

难点:

尝试检验法

教学过程:

1、温故

方程是含有xx的xx.

归纳:判断方程的两要素:

①有未知数②是等式

(通过填空让学生简单回顾方程概念,并总结方程两要素)

2、知新

根据题意列方程:

(1)一件衣服按8折销售的售价为72元,这件衣服的原价是多少元?

设这件衣服的原价为x元,8折后售价为xx

可列出方程、

(2)有一棵树,刚移栽时,树高为2m,假设以后平均每年长0.3m,几年后树高为5m?

设x年后树高为5m,

可列出方程_______

(3)物体在水下,水深每增加10.33米承受的压力就会增加1个大气压、当“蛟龙”号下潜至3500米时,它承受的压力约为340个大气压、问当它承受压力增加到500个大气压时,它又继续下潜了多少米?

设它又继续下潜了x米,

x米增加大气压个。

可列出方程、

(教师引导学生列出方程)

80%x=72

观察比较方程:

(学生根据方程特点填空)

等式的两边的代数式都是xx___;每个方程都只含有___个未知数;且未知数的指数是_____

(教师总结)这样的方程叫做一元一次方程.

(教师提问:需满足几个特点,学生回答后总结一元一次方程概念)

1、两边都是整式

2、只含有一个未知数

3、未知数的指数是一次、

(教师引出课题——5.1一元一次方程)

3、(接下来一起将前面所学新知与旧知融会贯通)

1、下列各式中,哪些是方程?哪些是一元一次方程?

(1)5x=0(2)1+3x

(3)y2=4+y(4)x+y=5

(5)(6)3m+2=1–m

(这里需要让学生较快的先找出方程(1)、(3)、(4)、(5)、(6),并说说为什么剩下的不是方程。接着找出其中的一元一次方程,着重说说为什么(3)、(4)、(5)不是呢?引发学生套用一元一次方程三个特点说明,教师要补充的是(3)是二次方程,(4)是二元方程,(5)这种情况左边不是整式,进而进一步再强调一次什么是“元”什么是“次”。(3)错在未知数不能出现2次,(4)错在不能出现两个未知数)

4、概念提升(为了能够游刃有的`掌握一元一次方程的概念,我们再对它做一次提升,大家请看下面两个问题。

1、方程3xm-2+5=3是一元一次方程,则代数式m=xx。

2、方程(a+6)x2+3x-8=7是关于x的

一元一次方程,则a=xx。

(通过概念的强调对这题的理解有很大帮助,题1检验学生对一元一次方程中“一次”的理解,题2检验学生对“一元”的理解)

5、一元一次方程的根

思考:

当y为多少时一元一次方程6=y+4成立呢?(本题学生容易猜想得到,教师引出一元一次方程的解的概念)

一元一次方程的解:

使一元一次方程左右两边的值相等的未知数的值叫做一元一次方程的解,也叫做方程的根。

(引导学生掌握验根的方法,并指导学生完成验根过程书写步骤)

判断下列t的值能不能使方程2t+1=7-t左右两边的值相等、

(1)t=-2(2)t=2

(先让学生口头检验,再叫学生说说得出结论的过程,进而引导学生一步步书写(1)步骤,学生齐答教师需要先板书步骤,完成后投影出示步骤,接下来让学生上黑板书写(2)的验根过程)

解:(1)把x=-2代入方程:

左边=2×(-2)+1=-4+1=-3

右边=7-(-2)=7+2=9

∵左边≠右边

∴x=-2不是原方程的解、

6、尝试-检验法(光会验根还不够,我们还应学习怎样找到一元一次方程的根,大家请看这个问题)

一射箭运动员两次射击的成绩都是整数,平均成绩是6.5环,其中第二次射箭的成绩为9环,问第一次射箭的成绩是多少环?

设第一次的射箭成绩为x环,可列出方程。

(请一学生回答得出的方程)

思考:同学们,请猜想一下,结合实际,x能取哪些数呢?

(学生可能会说出0、到10所有整数都可能若说不出再引导)(每次射箭最多是10环,

而且只能取整数环)(要检验11次有点多,能不能再把范围缩小一点呢?引导学生对比已知的一次成绩与平均成绩的高低,从而得出未知成绩应该比平均成绩小,学生得出可以代入检验7次):由已知得,x为自然数且只能取0,1,2,3,4,5,6、把这些值分别代入方程左边得。(让学生检验得到根,接下来课件梳理验根的结果)

把x为0,1,2,3,4,5,6这些值分别代入方程左边得:

当x=4时,=6.5,所以x=4就是一元一次方程

=6.5的解、

(刚刚我们得出方程根的方法叫)----尝试检验的方法

(投影出示其概念并强调其对于找出方程根的重要意义)

7、收获总结

一元一次方程概念(强调三个特点)

一元一次方程的根(有验根以及尝试检验法找根)

8、时间多余做书本练习

板书设计:

5.1一元一次方程

1解:(1)把x=-2代入方程:

一元一次方程的概念2

3

掌握验根步骤

一元一次方程的解

尝试检验法寻根

2.七年级一元一次方程教学实录及评析 篇二

【归纳板书】 解“ax+b=cx+d”型的一元一次方程的步骤:(1) 移项,(2) 合并同类项,(3) 系数化为1

(综合训练) 解下列方程(任选两题)

设计理念:第(2)、(3)两题未知数系数是相同类型的,所以让学生任选一题即可。通过综合训练能让学生更进一步巩固用移项和合并同类项去解方程了。

(中考试练)若x=2是关于x的方程2x+3m-1=0的解,则m的值为

设计理念:通过本题的训练让学生明确中考在本节的考点,同时激励学生在数学知识的学习中要抓住知识的核心和重点。

(四)我总结、我提高:

通过本节课的学习我收获了??????。

设计意图:通过小组之间互相谈收获的方式进行课堂小结,让学生相互检查本节课的学习效果。可以引导学生从本节课获得的知识、解题的思想方法、学习的技巧等方面交流意见。

(五)当堂检测(50分)

1.下列方程变形正确的是( )

A.由-2x=6, 得x=3

B.由-3=x+2, 得x=-3-2

C.由-7x+3=x-3, 得(-7+1)x=-3-3

D.由5x=2x+3, 得x=-1

2.一批游客乘汽车去观看“上海世博会”。如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和游客各有多少?(只设出未知数和列出方程即可)

3.(20分)已知x=1是关于x的方程3m+8x=m+x的解,求m的值。

(师生活动)学生独立答题,教师巡回检查,对先答完的学生进行及时批改,并把得满分的学生作为小老师对后解答完的学生的检测进行评定,最后老师进行小结。

(六)实践活动

请每一位同学用自己的年龄编一 道“ax+b=cx+d”型的方程应用题,并解答。先在组内交流,选出组内最有创意的一个记在题卡上,自习在全班进行展示 。

3.七年级一元一次方程教学实录及评析 篇三

本节为全章起始节,是后继学习解一元一次方程的基础.针对教材及学生认知的特点,设计时,我有如下思考:

1.本节课从提出间题,引起学生的认知冲突引出学习的必要性.在每个环节的安排中,突出了问题的设计,教师通过一个个的问题,把学生的思维激发起来,从而使学生主动、有效地参与到学习中来.

2.重视学生多元智能的开发.教师对教科书上的两幅图采取了两种不同的处理方法.既有直观的实验演示,又有学生的图形观察;既要求学生从实验中归纳结论,又要求学生理解图形用实验验证.对发现的结论用自己的语言、文字语言、字母表达式表示出来.让学生充分地进行实验、观察、归纳、表达、应用.

3.突出对等式性质的理解和应用.实验演示、观察图形、语言叙述、字母表示、初步应用等都是为了使学生能理解性质,在解方程的过程中,要求学生说明每一步变形的依据,解题后及时地进行小练所有这些都围绕本节课的重点,也为后续的学习打下基础.

4.教学效果:

这堂课老师教得轻松,学生学得愉快,每个学生都参与到活动中去,投入到学习中来,使学习的过程充满快乐和成功的体验,促使学生自主学习,勤于思考和勇于探究,形成良好的学习品质.

4.七年级一元一次方程教学实录及评析 篇四

今天李老师开了一节 《一元一次方程》一课。纵观这节课的教学过程,有以下几个特点:

1.创设问题情景 激发学习兴趣

在教学过程中,使学生体验数学的意义,经历数学知识的形成与应用过程。从实例中激发兴趣。在活动中回顾方程的概念,对比算术方法与方程方法,认识从算式到方程是数学的进步。从现实生活中提炼问题,并且注意到数学应用的广泛性。新教材的一个特点是数学问题的生活化。通过比较、鉴别、归纳等数学活动,建立一元一次方程的概念。较好的体现了数学来源于生活、应用于生活的本质。从知识的运用中提升兴趣。课堂上的三个练习,使知识从巩固落实到灵活运用逐步提升。练习1的配备旨在巩固一元一次方程的概念;

2、营造探究氛围 引导合作交流

教师在课堂上努力营造学生自主探究和合作交流的氛围,有意识的给学生创造一个探究问题的平台。各小组学生展示,合作学习,强化人人参与,提高小组协作能力。不仅如此,还培养了学生自主学习的能力,一题多解,学生通过充分探讨提出了不同的答案,享受成功的喜悦。

3、巩固基础知识 训练基本技能

在问题解决的`过程中,巩固基础知识和基本技能。本节内容是在列方程研究问题过程中,建立一元一次方程的概念,这也是新教材的特点。遵循这样一条主线,让学生学会将普通语言转化成数学符号语言的能力。强调问题中的基本数量关系,既把握通则通法,又鼓励思维的灵活多样。每个例题都让学生抓住问题的核心,不去死记硬背各种题型的解决招数。在概念建立后,让所有学生都掌握认识一元一次方程的方法,体现了人人都能获得必须的数学,让不同学生编出不同水平的问题,体现了不同人学习数学的不同感悟。

本节课中体现了教学过程活动化、情景展示生活化、学习方式多样化。

5.七年级一元一次方程教学实录及评析 篇五

学习难点:

移项法则的归纳与应用.教学过程:

一、创设情境,引入新课

1、一头半岁蓝鲸的体重22t,90天后体重为30.1t,蓝鲸的体重平均每天增加多少?

2、解方程90x+22=30.1时,能否直接把等号左边的22改变符号移到等号右边? 方程90x+22=30.1与90x=30.1-22的差别在哪里?

二、合作质疑,探索新知 问题二:

1、解方程 4x-15=9.2、解方程 2x=5x-21.3、在解方程2x=5x-21时,能否直接把等号右边的5x改变符号移到等号左边?为什么?

概括:将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项.注意:移项要变号!

三、数学应用,例题讲解

1、解方程x-3=4-x

巩固练习一 找错:

⑴ 6+x=8,移项得 x =8+6(2)3x=8-2x,移项得3x+2x=-8(3)5x-2=3x+7,移项得5x+3x=7+2

巩固练习二 解下列方程: 问题一:

(1)6x – 2 = 10

(2)2xx3

(3)5x+3=4x+7

四、自主归纳,形成方法

学生自主归纳:如何解一元一次方程?

五.反思设计,分组活动

六.课堂小结,感悟收获

通过以上问题,你觉得本节课的收获是什么?

【课后作业】

一、填空

1、在等式2a3b两边都加3,可得等式 ;

2、在等式x21两边都减2,可得等式 ;

3、如果3a5b,那么3ab();

4、如果y2x6,那么y()+6;

5、已知方程①3x-1=2x+1 ②32x1x ③x1233x2 ④713x23x1474中,解为x=2的是方程()

6、方程2x13=x-2的解是()

6.七年级一元一次方程教学实录及评析 篇六

5.1:《认识一元一次方程》第一课时

一:教学目标

1、知识与技能:

①理解一元一次方程及解的概念,会检验一个数是不是某个方程的解;

②会根据数量关系或简单问题情境列一元一次方程。

2、过程与方法:

①经历判断一元一次方程的过程,进一步理解一元一次方程的含义。

②经历对实际问题情境的分析过程中感受方程模型的意义,感受数学与生活的联系。

3、情感、态度与价值观:通过已知的方程推导出未知量,形成概念,通过本节的学习,感受数学的实际价值,从中发现事物发展变化的规律,并培养学生的科学态度。二:教学重点:

一元一次方程的概念和解法是学习方程及其应用的重要基础。三:教学难点:

准确把握一元一次方程的概念是本节的难点一;本节内容还提出用尝试、检验的方法解决实际问题,这是难点二。四:教学方法:

1页

.本节课宜采用自主探索与互相协作相结合,交流练习互相穿插的活动课形式。同时,利用发现法和问题讨论等教学方法。五:教学过程:

Ⅰ、创设情境,引出课题 创设情境:

老师活动: 同学们,今天我们要认识数学王国里的几位新朋友。认识新朋友,可也别忘了我们的老朋友。看,老朋友来了!

(1)1+2=3(2)5=7-2(3)3+b=2b+1(4)4+x=7(5)2x-2=6 同学们,你们还认识它们吗?能叫出他们的名字吗?如果觉得有困难,就小组讨论一下 学生活动:讨论说出等式,方程的概念。

老师活动:好,再和老朋友加深一下印象。判断下列各式是不是方程

(1)-2+5=3()(2)3χ-1=7()(3)m=0()(4)χ﹥ 3()(5)χ+y=8()(6)2χ2-5χ+1=0()(7)2a +b()(8)x=4()

学生活动:积极判断

老师活动:同学们能不能总结一下“方程”这位老朋友的特征? 学生活动:判断方程的两要素: ①有未知数 ②是等式 老师活动:看,这边有两位小朋友在玩猜年龄的游戏,瞧瞧去!老师活动:引导学生看投影仪(课本130页),并思考怎样算年龄。

学生活动:算术法或方程法

2页

.老师活动:小彬同学遇到点儿困难,我们看能不能帮帮她。学生活动:继续看投影仪,并列方程。老师活动:继续引导学生用方程解决问题

学生活动:独立完成P130---P131四个问题根据题意列方程 老师活动:“方程”真是我们的好朋友,能帮我们解决这么多的问题!那,请同 学们思考一下,怎样列方程呢?

学生活动:分组讨论,总结列方程的步骤

(1)设未知数,看题目中求的是什么,一般求什么就设什么为

x(设其 他量也可以)

(2)分析已知量和未知量的关系,找出相等关系

(3)把相等关系的左、右两边的量用含

x(未知数)的代数式表示出来(列方程)

老师活动:同学们观察所列方程,总结一元一次方程特征 Ⅱ、交流对话,探求新知 引出课题:一元一次方程

大家观察这几个方程,思考一下,他们有什么共同的特点吗? 知识点1(一元一次方程的概念)

通过对一元一次方程的观察,找出方程的特点,并引导归纳一元一次方程的概念。

(难点:等号两边都是整式这个特征学生较难得出,教师需适当引导。)

一元一次方程:方程的两边都是整式,只含有一个未知数并且未

3页

.知数的指数是1的方程。

引导:联系概念的名称,发现一元一次方程的特点“一元”、“一次”、“这样的方程”

老师活动:一元一次方程就是我们今天所要认识的新朋友,它的特征你记住了吗?同桌两个相互检查一下,再考考你们的眼力。

判断下列方程是不是一元一次方程?

(1)xy=x+1(2)1/x +2=7(3)x=2(4)y2-x=0(5)3(x+1)+5x/2=4(6)3x-y=2 学生活动:再试身手

1、下列各式中,哪些是一元一次方程?

(1)5x=0(2)1+3x(3)y²=4+y(4)x+y=5

(5)1/x=4x(6)4x +(x+4)=8

2、已知 8Xa-1+5=0是关于x一元一次方程,则a的值为

老师活动:1是5x=0 的解吗?怎么验证?

学生活动:(急切的)只要代入方程„„(一起计算,得到验证)老师活动:使方程左右两边的值相等的未知数的值叫方程的解。知识点2(一元一次方程的解)

应用练习:2是2x=4的解吗? 拓展练习:3是2x+1=8的解吗?

Ⅲ、应用新知,体验成功

例 检验下列各数是不是方程x-3=2x-8的解

(1)X=5(2)X=-2

4页

.解(1)把x=5代入方程左右两边,左边=5-3=2,右边=2×5-8=2,左边=右边.

所以x=5是方程x-3=2x-8的解.(2)把x=-2代入方程左右两边,左边=-2-3=-5,右边=2×(-2)-8=-12,左边 ≠ 右边.

所以x=-2不是方程x-3=2x-8的解.

学生活动:总结检验一个数是不是方程的解的步骤:

1、将数值代入方程左边进行计算,2、将数值代入方程右边进行计算,3、比较左右两边的值,若左边=右边,则是方程的解,反之,则不是.

Ⅳ、梳理概括,知识内化

提问:本节课学到了哪些知识呢?体会到哪些数学思想呢?

1、一元一次方程的概念;

2、方程的解的概念;

3、用尝试检验的数学思想方法解决问题;

4、应用方程思想解决实际问题比小学的算术法更优越。Ⅳ、推荐作业,拓展应用

5页

.1、书面作业:作业本5.1

2、智力闯关,谁是英雄

① 第一关:xk-1+21=0是一元一次方程,则k=

第二关:xk+21=0是一元一次方程,则k=

.第三关:(k-1)xlkl+21=0是一元一次方程,则k=

.第四关:(k+2)x2+kx+21=0是一元一次方程,则k=

② 已知5是关于x的方程3x-2a=7的解,则a的值为()

目的是巩固基础知识和基本技能 V 教学反思:

V板书设计: 课题

1)概念 一元一次方程

例题

2)方程的解

6页

7.七年级一元一次方程教学实录及评析 篇七

【设计思路】

本节复习课要复习的主要内容是第三章第一部分:相关概念和一元一次方程的解法。我的设计思路是:

一、小组合作完成相关概念的填空,使学生对本章的基本概念有个清晰地认识;

二、对与相关概念有关的、同学经常出错的典型问题加以罗列,并通过小组合作的方式解决这些问题,同学相互合作使小组每位成员都真正理解弄懂;

三、巩固练习一元一次方程的解法,这也是本节课的重点,我先罗列出常见的集中类型的一元一次方程给同学们练习,并结合同学们出现的问题加以说明和强调。

【复习目标】

知识目标:1.理解并能区分方程、方程的解、一元一次方程的概念;

2.灵活运用一元一次方程解法的一般步骤; 3.熟练掌握一元一次方程的解法。

能力目标:通过小组讨论交流培养学生善于表达自己意见、用数学语言陈述自己的观点的能力;通过练习培养学生熟练解一元一次方程的能力。

情感目标:在小组合作交流的过程中,培养学生学习数学的兴趣和信心。

【教学重难点】 重点:解一元一次方程; 难点:一元一次方程解法的灵活运用。【教学过程设计】

小组讨论交流完成知识点梳理

(1)每4人一小组交流讨论完成以下相关概念的填空(2)理出本章知识框架

要求:1.各小组每位成员都有责任让小组内其他成员理解各知识点

2.各小组任意一个成员都能陈述出本小组讨论结果

一、知识点回顾

1.什么叫方程,只含有一个未知数,并且未知数的次数都是,这样的方程叫做一元一次方程(注意:一元一次方程等号两边都是)叫做方程的解。

2.等式性质1:.即如果a=b,那么a±c=b±c 等式性质2:.即如果a=b,那么ac=bc;如果a=b(c≠0),那么.3.移项法则:把等式(方程)一边的某项 后,从等号的一边移到另一边。

4.解一元一次方程的一般步骤:

(1)去分母:在方程的两边都乘以各分母的,既不要漏乘 项,又要注意当分子为多项式,去掉分母时分子要加.2)去括号:一般先去小括号,再去中括号,最后去大括号,去括号时需正确运用乘法分配律和 法则,不要漏乘括号里的某些项.如果括号前面是负号,去掉括号和它前面的负号,括号中的每一项都要。

(3)移项:把含有未知数的项移到方程的一边,其他项移到方程的另一边,移项时一定 要,同时不能漏项.(4)合并同类项:当未知数系数为1或-1时,.(5)系数化为1:在方程两边都除以 的系数a,得到方程的解,系数化为1时,系数只能作分母,如果系数是字母要强调其不为0.5.分数的基本性质:分数的分子、分母都,分数的值.6.列一元一次方程解应用题:

(1)读题分析法:„„„„ 多用于“和,差,倍,分问题” 仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: „„„„ 多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.7.解实际应用题:

知识点1:市场经济、打折销售问题

(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润×100% 商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量 知能点2: 方案选择问题 知能点3储蓄、储蓄利息问题

(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税

(2)利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%)

(3)利润每个期数内的利息100%,本金知能点4:工程问题

工作量=工作效率×工作时间 工作效率=工作量÷工作时间

工作时间=工作量÷工作效率 完成某项任务的各工作量的和=总工作量=1 知能点5:若干应用问题等量关系的规律

(1)和、差、倍、分问题 此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。增长量=原有量×增长率 现在量=原有量+增长量

(2)等积变形问题

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.

①圆柱体的体积公式 V=底面积×高=S·h=r2h ②长方体的体积 V=长×宽×高=abc 知能点6:行程问题

基本量之间的关系: 路程=速度×时间 时间=路程÷速度

速度=路程÷时间

(1)相遇问题(2)追及问题 快行距+慢行距=原距 快行距-慢行距=原距

(3)航行问题 顺水(风)速度=静水(风)速度+水流(风)速度

逆水(风)速度=静水(风)速度-水流(风)速度

抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系

知能点7:数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:100a+10b+c。然后抓住数字间或新数、原数之间的关系找等量关系列方程.

(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。

二、典型问题分析

1、下列各式中,哪些是方程?哪些是一元一次方程? ①2x+3;②2×6=12;③1/2x-3=2;④1/x+3x=5;⑤y=0.小组合作交流讨论:

要求:1.要说出每一个式子为什么是方程(一元一次方程)或者为什么不是方程(一元一次方程)

2.小组每位成员都有责任使其他每位同学理解为什么。思考:

如果xk-1+21=0是一元一次方程,则k=____ 如果x|k|+21=0是一元一次方程,则k=____ 如果(k+1)x|k|+21=0是一元一次方程,则k=__ 如果(k+2)x2+kx+21=0是一元一次方程,则k=____ 已知方程(a-2)x|a|-1=1是一元一次方程,则a=____ ,x=_____.2.方程的解

(1)下列各数中是方程x2+5x+6=0的解的是()A.x=0 B.x=2 C.x=3 D.x=-3(2)小明在解方程5a-x=13(x是未知数)时,误将-x看成了+x,得到方程的解是x=-2,则原方程的解为()

A.x=-3 B.x=0 C.x=2 D.x=1(3)已知关于x的方程4x-m=0的解是x=m,则m的值是.点评:要抓住方程解的概念

3、小明的苦恼

小明在学完等式的性质后,作了下面推理:如果a=b(1)两边都乘以2得:2a=2b(2)两边都减去(a+b)得:a-b=b-a(3)两边都除去(a-b)得:,即1=-1 为什么会出现这个错误的结果呢? 以上各题均有小组合作完成。

三、解一元一次方程

找4位同学上黑板完成,待所有学生都完成后,让每位同学和同桌互批,并指出同学的错误帮其纠正。老师逐题点评,强调应注意的地方。

一元一次方程的解法:

变形名称 注意事项 去分母 防止漏乘(尤其没有分母的项),注意添括号; 去括号 注意符号,防止漏乘; 移项 移项要变号,防止漏项; 合并同类项 系数为1或-1时,记得省略1; 系数化为1 分子、分母不要写倒了; 拓展思维:解下列方程

(1)2x+5=3(x-1)(2)(x-1)/4=(3-2x)/6-5/2 四、一元一次方程应用 1.配套问题

某生产车间有60名工人生产太阳镜,1名工人每天可生产片200片或镜架50个。应如何分配工人生产镜片和镜架,才能使每天生产的产品配套?

2.工程问题

一件工程,甲独做需10天,乙独做需12天,丙独做需15天,甲、乙合作3天后,甲因事离开,丙参加工作,问还需多少天完成?

3.利润问题

一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

4.球赛积分问题

某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?

5.电话计费问题

某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?

【课堂小结】

一、相关概念

1、方程

2、一元一次方程

3、方程的解

4、等式的性质

8.七年级一元一次方程教学实录及评析 篇八

例1 一种蔬菜加工后出售,单价可提40%,但重量要降低20%,现有未加工的这种蔬菜1000千克,加工后共卖了1568元,问不加工每千克可卖多少钱?1000千克能卖多少钱?比加工后少卖多少钱?

例2 某企业生产一种产品,每件成本价400元,销售价510元,为了进一步扩大市场,该企业决定降低销售价的同时降低生产成本.经过市场调研,预计下季度这种产品每件销售价降低4%,销售量将提高10%,要使销售利润保持不变,该产品每件的成本价应降低多少元?

例3(中考题)某商品的标价是1100元,打八折(按标价的80%)出售,仍可获利10%,则此商品的进价是________元.

例4 某商品按进价的百分之几标价,然后再8折优惠销售,这件商品的获得率仍为20%.

参考答案

例1 分析 本题的关键是第一问,第一问求出其他问题就解决.由题意可知如下相等关系:

加工后的蔬菜重量×加工后的蔬菜单价=1568元

而加工后的蔬菜重量=1000×(1-20%),如果设加工前这种蔬菜每千克可卖x元,则加工后这种蔬菜每千克为(1+40%)x元,故可得方程.

(120%)(140%)x1568

解 设不加工每千克可卖x元,依题意,得1000 解方程得:x1.4

15681400168

所以1000x1400 答:不加工每千克可卖1.4元,1000千克能卖1400元,比加工后少卖168元.

说明:在计算数比较难算的题时,我们可以借助于计算器进行计算.

例2 分析 由已知可得如下相等关系

调整成本前的销售利润=调整成本后的销售利润

若设该产品每件的成本价应降低x元,假定调整前可卖m件这种产品,则调整前的销售利润是(510-400)m,而调整后的销售阶为510(l-4%),调整后的成本价为 400-x.调整后的销售数量

m(l+10%),所以调整后的销售利润是:[510(14%)(400x)](110%)m,由相等关系可得方程

[510(14%)(400x)](110%)m(510400)m

解 设该产品每件的成本价应降低x元,降价前可销售该产品m件,依题意,得[510(14%)(400x)](110%)m(510400)m

解方程,得x10.4

答:该产品每件的成本价应降低10.4元.

说明:这里的m也可以不设,以一件为例去研究这一问题,就可直接列出方程:[510(14%)(400x)](110%)510400

例3 分析:根据“利用=销售价-进货价,利润率=利润÷进货价×100%”,假设商品的进价为a元,则商品的售价为(a10%a)元时,可获利10%.

解:设商品的进价为a元. 则a(110%)110080%

a800

答:此商品的进价是800元.

说明:打折销售是我们身边的数学事实,每个人都应了解它,关键是掌握“进货价”“销售价”“利润”等名词术语的意义,理解有关数量关系.

例4 解 设该商品的进价为m元,按进价的x%标价可满足要求.

根据题意,得0.8mx%m20%.m解得x150.

答:按进价的150%(即1.5倍)标价,然后再8折销售,获利率为20%. 说明:解应用题中的“打折销售”问题,首先要熟悉“进价”、“标价”、“售价”、“打折”、“利润”、“利润率”这些商业名词的含义,另外还要清楚反映进行、标价、售价、打折、利润、利润率之间关系的公式才能准确的列出方程.

(1)在我们现实生活中,购买商品和销售商品中,经常会遇到进价、标价、售价、打折、利润、利润率等概念.

(2)基本关系式:①利润=售价—进价 ②售价=标价×折数 ③利润率=

利润.由进价①②可得出④利润=标价×折数-进价.由③④可得出⑤利润率=

标价折数-进价.

9.七年级一元一次方程教学实录及评析 篇九

知识点1:方程的概念

含有未知数的等式叫做方程.归纳整理:方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).知识点2:一元一次方程

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程.归纳整理:一元一次方程的标准形式是ax+b=0(a≠0),其中x是未知数,a,b是已知数.一元一次方程的最简形式是ax±b=0(a≠0),其中x是未知数,a,b是已知数.判断一个方程是否是一元一次方程应看它的最终形式,而不能看原始形式.知识点3:列方程

列方程的一般步骤:(1)设未知数;(2)分析题意,找出相等关系;(3)把相等关系的左、右两边的量用含有未知数的式子表示出来.知识点4:方程的解与解方程

使方程左、右两边的值相等的未知数的值,叫做方程的解.解方程就是求出使方程中等号左右两边相等的未知数的值的过程.归纳整理:(1)方程的解与解方程的区别:方程的解指的是一个结果,是一个数值,是一个能够使方程左右两边相等的未知数的值;解方程指的是一种过程,就是通过某种变换后,计算得出方程中未知数的值.(2)要检验某个值是不是方程的解,常用的方法是用这个值代替未知数代入方程,看等号左右两边的值是否相等,相等则是方程的解,不相等则不是方程的解.考点1:方程与等式、整式的区别与联系

【例1】 下列各式中哪些是整式?哪些是等式?哪些是方程?(1)3x-2x-8;(2)7-3=4;(3)4x-1=2x+6;(4)x+1≥0;(5)|x|+1=2;(6)2x+3y=4;(7)x=7.解:整式:(1);等式:(2)(3)(5)(6)(7);方程:(3)(5)(6)(7).点拨:整式、等式和方程的区别:整式中不含等号、不等号,只含有运算符号、括号;等式中必定有等号;方程中不但含有等号,而且含有未知数.考点2:判断方程是否为一元一次方程 22【例2】 下列哪些是一元一次方程?(1)x-y=6;(2)2x+5>8;(3)3x-4;(4)x+2x+1=16;(5)x=1;(6)7-1=6;(7)6x+2=8;(8)解:(5)(7)是一元一次方程.点拨:根据一元一次方程的定义解答,一元一次方程必须满足:①未知数只有一个;②未知数的次数都是1.(1)中含有两个未知数;(2)不是等式;(3)不是等式;(4)中x的最高次数是2;(6)中不含未知数;(8)中分母含有未知数.考点3:方程的解

【例3】在方程:①3y-4=1;②=;③5y-1=2;④3(x+1)=2(2x+1)中,解为1的方程是().A.①②

B.①③

C.②④

10.七年级一元一次方程教学实录及评析 篇十

以下是查字典数学网为您推荐的 七年级数学一元一次方程及其解法复习教案,希望本篇文章对您学习有所帮助。

七年级数学一元一次方程及其解法复习教案

【学习者分析】:

本班学生在一个星期前已经学习了等式的性质、一元一次方程的概念、一元一次方程的解以及一元一次方程的解法,在学习过程中大部分同学能掌握上述知识,但学生不会自主复习知识,因此很容易遗忘,需复习巩固。

【教学目标】:

一、情感态度与价值观

1、在复习一元一次方程的过程中,体会学习方程的意义在于解决实际问题。

2、在查漏补缺的过程中培养学生自我发现、自我归纳、善于分析、勇于探索的能力,循序渐进,激发学生求知欲,增强学生自信心,体会分类的数学思想。

二、过程与方法

1、以点拨精讲精练的模式,完善知识的结构。

2、尽力引导学生进行分析、归纳总结。

三、知识与技能

1、会运用等式的性质解一元一次方程,并检验一个数是不是某个一元一次方程的解,在解方程时会对求出的解进行检验,养成良好的学习习惯,并加深对方程解的认识。

2、会一元一次方程的简单应用。

【教学重点、难点】:

重点:一元一次方程的解和解一元一次方程 难点:能够熟练准确地解一元一次方程和它的应用

【教学过程】:

教学活动1:

一、复习知识点:等式的性质、一元一次方程的概念以及一元一次方程的解

(1)基础练习,回顾知识点:

1、巳知a=b,下列四个式子中,不正确的是()

A.2a=2b B.-2a=-2b C.a+2=b-2 D.a-2=b-2

2、下列四个方程中,一元一次方程是()

A、B、C、D、3、下列方程中,以4为解的方程是()

A.B.C.D.(2)学生归纳,电脑呈现知识点

教学活动2:

一、复习知识点:一元一次方程的解法

(1)练习回顾一元一次方程的解法步骤

1.下列方程变形正确的是()

A.由.B.由.C.由.D.由.2、解方程:(用实物投影学生的错解)

3、归纳解一元一次方程的一般步骤是:

①______;②________;③________;④_________;⑤_______

4、解一元一次方程时应注意哪些事项?(提问学生,用电脑显示)

教学活动3:见练习卷

教学活动4:

小结:

1、呈现知识结构:

2、解一元一次方程的一般步骤以及注意事项

变形名称 注意事项

去分母 防止漏乘(尤其整数项),注意分子要添括号

去括号 注意变号,防止漏乘

移项 移项要变号

合并同类项 计算要仔细,不要出差错

系数化成1 计算要仔细,分子分母不要颠倒

一、巩固练习:

题组一:

(1)已知下列式子:(A)x+1=3(B)x-2y=3(C)x(x+1)=2(D)(E)

(F)3x+3其中是一元一次方程的有(填序号)

(2)如果关于 的方程 是一元一次方程,那么。

(3)写一个以 为根的一元一次方程是。(4)已知方程 的解是 ,则。

题组二:解下列方程:

(1)(2)题组三:(方程的简单应用)

(1)若。

(2)若 是同类项,则2m-3n=。

(3)代数式x+6与3(x+2)的值互为相反数,则x的值为

(4)若 与 互为倒数,则x=。

二、拓展训练:

1、解关于 的方程:

2、解绝对值方程:

课外作业: 姓名: 学号 班别

1、下列各式中属于一元一次方程的是()

A.B.C.D.。

2、下列方程变形中,正确的是()

3、方程2x-4=x+2的解是()A.6 B.8 C.10 D.-2

4、研究下面解方程 的过程

去分母,得 ①

移项,得 ②

合并同类项,得 ③

将未知数的系数化为1,得 ④

对于上面的过程,你认为()

A.完全正确 B.变形错误的是① C.变形错误的是② D.变形错误的是③

5、检验下列方程后面大括号内所列各数是否为相应方程的解(1),{,}

6、若 是方程 的解,则.7、写一个一元一次方程,使它的解为 :.8、已知方程4x+2m=3x+1和方程3x+2m=6x+1的解相同,则m=。

9、若 和 互为相反数,则y=_______。.10、若 与 是同类项,则 的值是。

11、解方程

(1)(2)(3)

上一篇:足球梦作文下一篇:识字教学运用恰当的教学方法