硅酸盐水泥工艺学教案(8篇)
1.硅酸盐水泥工艺学教案 篇一
第一章 建筑材料与环境质量
第一节 概
论
建筑材料工业是重要的基础材料工业和原材料工业,是振兴我国国民经济发展的支柱产业之一。建材产品包括建筑材料及制品、非金属矿及其深加工产品、无机非金属新材料3大类,广泛应用于建筑、军工、环保、高新技术产业和人民生活等领域。材料产业支撑着人类社会的发展,为人类带来了便利和舒适。但同时在材料的生产、处理、循环、消耗、使用、回收和废弃的过程中也带来了沉重的环境负担。特别是良莠不齐的建筑材料、装饰装修材料的不断涌现,以及越来越多的现代化办公设备和家用电器进驻室内,使得室内成分更加复杂,室内甲醛、苯系物、氨气、臭氧和氡气等污染物浓度水平远远高于室外,由此引起“病态建筑综合症”的患者越来越多。由于室内空气污染的危害性及普遍性,有专家认为继“煤烟型污染”和“光化学烟雾型污染”之后,人们已经进人以“室内空气污染”为标志的第三污染时期。我国建筑材料工业要走可持续发展之路,必须改变以浪费资源和牺牲环境为代价的发展方式,向提高质量、节能、节水、利废和环保的方向发展,对建材行业生产污染物的排放加以严格限制;对装饰装修材料有害物质进行限量;对建筑室内污染进行控制等,降低室内污染,大力发展绿色建材。
人的居住环境是由建筑材料所围成的与外环境隔开的微小环境,居室内空气的污染物,除人体排出的C02和有机氨基酸等外,还有化学物质、细菌等生物物质、放射性物质。另外,还有穿墙而过的电磁波辐射等。建筑材料特别是装饰装修材料对室内空气质量有很大的影响。有害成分不仅在施工过程中快速散发,更重要的是在长期使用过程中缓慢地散发。国外早在20世纪60年代末期就出现了关于室内空气质量问题的报道。20世纪80年代开始,美国、日本、加拿大和欧洲各国的报纸杂志上频繁出现SBS、BRI和MCS 3个英文缩写,分别代表室内空气污染引发的3种疾病名称,即病态建筑综合症(Sick Building Syndrome,SBS)、建筑相关疾病(Building—related illness,BRl)和化学物质过敏症(Multiple Chemical Sensiivity,MCS),所以室内空气质量问题越来越为公众所关注。
第二节 室内环境质量
人类为了生长、发育和维持生命活动需要不停地与外界环境进行物质交换,一个健康成年人一天需从外界摄取1~2kg食物、2—3L水和12—15m^3空气。可见,空气质量对于人体健康的意义是十分重要的。清新的空气使人精神爽快,身心舒畅,不易疲倦,工作效率提高。而不洁的空气不但危害人体健康,还引起生态系统的破坏和财产损失等。在过去30多年中,我国在防止大气环境质量恶化,改善大气环境质量方面投人了大量的人力
第1页
和物力。其着眼点主要是降低固定污染源和流动污染源向大气排放污染物,降低大气环境的污染物浓度,满足环境空气质量标准。毋庸置疑,这对于保障人体健康起到了积极的作用。然而,由于建筑材料的围隔作用,使得室内空气有别于室外,特别是随着节能、温度和湿度舒适要求的提高,建筑物密闭程度不断增大。相应地,室内与室外空气交换量减小,室内、外的环境差异也更加明显。
室内环境是指采用天然材料或人工材料围隔而成的小空间,是与外界大环境相对分隔而成的小环境。人的—生有70%一90%的时间是在室内度过的,因此,在一定意义上,室内环境对人们的生活和工作质量,以及公众的身体健康影响远远超过室外环境。
一、室内空气质量及控制规范
室内空气质量是指室内空气与人体健康有关的物理、化学及微生物指标。室内空气应无毒、无害、无臭、无味,各种污染物浓度不应超过表1—1和表1—2所规定的限值。
(1)中华人民共和回国家质量监督检验检疫总局、中华人民共和国建设部2001年11月联合发布的国家标准《GB 50325--2001民用建筑工程室内环境污染控制规范》的控制指标见表1—1,2002年1月1日实施。
(2)国家质量监督检验检疫总局、国家环保总局、卫生部制定的国家标准《GB/T18883--2002室内空气质量标准》的控制指标见表1—2。2002年11月19日发布,2003年3月1日实施。
第2页
<<上一章 下一章>>
工成网
第二章水 泥
第一节 水泥的定义及发展概况
一、水泥的定义及分类
凡是和水成浆后,既能在空气中硬化,又能在水中硬化的胶凝材料,通称为水泥。世界各国如美国、英国、法国、前苏联等国家均根据本国的实际制订了各自与水泥有关的定义、名词术语、分类等标准。在我国的国家标准(GB/T 4131—1997)中对水泥的定义是:“加水拌和成塑性浆体.能胶结砂、石等适当材料,并能在空气中和水硬化的粉状水硬性胶凝材料。”
水泥的种类很多,为厂便于命名,水泥按用途和性能分为3大类。
(1)通用水泥。指在一般土木建筑工程中通常采用的水泥,以水泥的主要水硬性矿物名称冠以混合材料名称或其他适当名称命名。如普通硅酸盐水泥、硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥、复合硅酸盐水泥、石灰石硅酸盐水泥等。
(2)专用水泥。具有专门用途的水泥,以其专门用途命名,并可冠以不同型号。如G级油井水泥,12.5砌筑水泥,425道路硅酸盐水泥等。
(3)特性水泥。指某种性能比较突出的水泥,以水泥的主要水硬性矿物名称冠以水泥的主要特性命名,并可冠以不同型号或混合材料名称。如白色硅酸盐水泥、低热矿渣硅酸盐水泥、膨胀硫铝酸盐水泥等。
由上述可知,水泥的命名主要是以水泥的主要水硬性矿物、混合材料、用途和主要特性进行的。如按主要水硬性物质命名时可分为硅酸盐水泥、铝酸盐水泥、硫铝酸盐水泥、铁铝酸盐水泥、氟铝酸盐水泥;按主要特性分时,又可分为水化热、抗硫酸盐腐蚀性、膨胀性、耐高温性等水泥。
目前世界上用途最广、使用量最大的以硅酸盐矿物为主要水硬性矿物的水泥,其他水泥品种都是在硅酸盐水泥基础上发展起来的。
二、水泥的发展历史
从遗存至今的山代建筑物,即埃及的金字塔来看,水泥距今至少有5 000余年的历史。当时的水泥,采用的是牛石灰和煅烧石膏。
1756年,英国的约翰·司梅顿(J.Smeaton)发现用煅烧粘土质含量高的石灰石可以制得优质的水硬性石灰,并将其用于建造爱迭斯顿(Eddystone)灯塔。1796年,英国的约瑟夫·派克(Joseph Parker)用同样方法制成了罗马水泥。1824年,英国的J·阿斯普丁
第32页
(Joseph Aspdin)发明了一种把石灰石和粘土混合后加以煅烧来制造水泥的方法,并获得了专利权。由于这种水泥同英国波特兰(Portland)岛产的石材颜色一致,因此被称为波特兰水泥。此后,欧洲各地寸;断对水泥进行改进,德国于1856年建起了水泥厂,并普及到美国。
我国于1876年在河北唐山成立了启新洋灰公司,以后相继成立了大连、上海、中国、广州等水泥厂。中国的水泥工业真正的发展是在解放后,尤其是在我国实施改革开放政策以来,受宏观经济持续快速增长影响以及全社会固定资产投资的拉动,从20世纪80年代起,水泥产量年平均增速高于同期国民经济发展速度。20世纪80年代为10.2%,90年代为10.63%,进入21世纪后产量增长速度年平均增速为10.86%。我国水泥产量从1985年起已连续19年居世界第一位,2004年水泥产量达93 400万吨、三、水泥在我国国民经济中的作用及存在的主要问题
水泥是建筑工业的基本材料之一,是基本建设中最重要的建筑材料。它不仅大量应用于工业和民用建筑,还广泛应用于公路、桥梁、铁路、水利和国防等工程,并用于生产各种类型的混凝土及混凝土制品。
作为胶凝材料,除水硬性外,水泥还有许多优点。水泥浆有很好的可塑性,与砂、石拌和后仍能使混合物具有必要的和易性,可浇筑成各种形状尺寸的构件,以满足设计上的不同要求;适应性强,可用于海上、地下、深水或者严寒、干热的地区,以及耐侵蚀、防辐射核电站等特殊要求的工程;硬化后可以获得较高强度,并且通过改变水泥的组成,可以适当调节其性能,满足某些工程的不同需要;还可以与纤维或者聚合物等多种无机、有机材料匹配,制成各种水泥基复合材料,有效发挥材料潜力;与普通钢铁相比,水泥制品不会生锈,也没有木材这类材料易于腐朽的缺点,更不会有塑料年久老化的问题,耐久性好,维修工作量小,等等。因此,水泥不但大量应用于工业与民用建筑,还广泛应用于交通、城市建设、农林、水利以及海港等工程,制成各种形式的混凝土、钢筋混凝土的构件和构筑物。而水泥管、水泥船等各种水泥制品在代钢、代木方面,也越来越显示出技术经济上的优越性。同时,也正是由于钢筋混凝土、预应力钢筋混凝土和钢结构材料的混合使用,才使高层、超高层、大跨度等各种特殊功能的建筑物、构筑物的出现有了可能。此外,如宇航工业、核工业以及其他新型工业的建设,也需要各种尤机非金属材料,其中最为基本的则都是以水泥基为主的新型复合材料。
因此,水泥工业的发展对保证同家建设计划的顺利进行,人民生活水平的提高具有十分重要的意义。而且,其他领域的新技术,也必然会渗透到水泥工业中来,传统的水泥工业势必随着科学技术的迅猛发展而带来新的工艺变革和品种演变,应用领域必将有新的开拓,从而使其在国民经济中起到更为重要的作用。
我国水泥尽管产量居世界第一,却是处于一种“大而不强”的尴尬处境。其主要问题突出表现在:(a)企业数量多,平均规模小,且生产工艺落后,这是我国水泥工业产业结构最严重的问题;(b)技术装备总体水平仍然十分落后;(c)产品结构上主要是优质水泥少。低强度等级水泥仍是我国水泥产品中的主导产品。
第33页
第三章 水泥制品
第一节 概
述
水泥制品是以水泥为基材经过深加工制成的工业产品。由于它具有优良的物理、力学性能,能按设计要求制成所要求的形状,能耗少,耐腐蚀,使用寿命长,维修费用少,而且具有节省金属和木材等独特的优点,因而在我国城乡、工矿企业、农田水利以及能源交通、通讯等工程建设中取得极为广泛的使用,取得了显著的经济效益。
水泥制品工业是建筑材料工业的一部分。解放后,随着我国国民经济的发展和人民生活水平的逐渐提高,对水泥制品的需求量日益增多,水泥制品工业逐步发展起来,它大体经历了4个阶段:
第一阶段是钢筋混凝土制品发展时期。我国20世纪50年代研制并生产了石棉水泥管、石棉水泥瓦、混凝土和钢筋混凝土排水管、钢筋混凝土电杆、钢筋混凝土轨枕、钢丝网水泥船等。
第二阶段是预应力混凝土制品发展时期。我国20世纪60年代研制成功并批量生产承插式三阶段预应力混凝土管、一阶段预应力混凝土管、自应力混凝土管、预应力混凝土电杆、预应力混凝土矿井架、预应力混凝土轨枕、预应力混凝土管桩(Pc桩)等。
第三阶段是推广应用时期。进入20世纪70年代,国家极力重视推广使用水泥制品工作,尤其是扶持水泥压力管的生产和发展,使水泥压力管从此进入了一个新的发展时期。
第四阶段是大发展时期。20世纪80年代至今是水泥制品工业大发展时期,不仅大量生产各种钢筋混凝土制品和预应力混凝土制品,而且在改革开放方针指导下,积极从国外引进了先进的制管、制桩、制瓦、制板等工艺技术和装备,与此同时,也加大了国内自主开发的力度,井取得了显著成效,多种水泥制品生产装备实现了国产化。
随着行业的技术进步和创新,一些新产品——预应力高强混凝土管桩(简称PHc桩)、预应力钢筒混凝土管(简称咒cP管)、彩色水泥瓦、新型纤维水泥制品等得到迅速发展;一些传统的水泥制品,如钢筋混凝土排水管、预应力混凝土管、预应力混凝土电杆等也得到了改进和发展;一些高技术含量的水泥制品也得到了开发,如用于地铁盾构施丁的钢筋混凝上管片、接收处理核电站处理中低放射性固体废物的核废料混凝土桶。总体来说,水泥制品的品种在不断增多,质量及技术含量也在不断提高。
本章将有代表性地对部分水泥制品产品,如管桩、排水管、电杆、输水管、路面砖和管片作有关生产、工艺技术要求、产品性能及应用等方面的介绍。
第二节 先张法预应力混凝土管桩
先张法预应力混凝土管桩是重要的桩基预制构件,产品适应面广,广泛应用于工业与
第52页
民用建筑、铁路、公路、桥梁、码头、港口等工程建设中。
本节主要介绍按《GBl3476—1999先张法预应力混凝土管桩》生产的预应力混凝土管桩(代号PC)和预应力高强混凝土管桩(代号PHC)。
一、产品分类
管桩产品按混凝土强度等级分为预应力混凝土管桩(代号PC)和预应力高强混凝土管桩(代号PHC)。PC桩混凝土强度等级不得低于C60级,PHC桩混凝土强度等级不得低于C80级。
管桩按外径分为300,350,400,450,500,550,600,800,1 000(mm)等规格,长度7~15m,其基本形状见图3—1。
按管桩抗弯性能的大小(或管桩混凝土有效预压应力大小)分为A型、AB型、D型和C型。以外径400mm的PHC桩为例,其基本尺寸及各型号抗弯性能情况见表3—1。
第四章 混凝土外加剂
第一节 概
述
混凝土外加剂(Concrete Additives)是现代混凝土不可缺少的组分之——,是混凝土改性的一种重要方法和技术。掺少量外加剂可以改善新拌混凝土的工作性能,提高硬化混凝土的物理力学性能和耐久性。同时,外加剂的研究和应用又促进厂混凝土生产和施工工艺的改进,以及新型混凝土产品的发展。20世纪90年代出现的高性能混凝土(High Per-formance Concrete,以下简称HPC),就是新型复合超塑化剂与混凝土材料科学相结合的成功范例。许多国家将HPC作为跨世纪的新材料,投人大量人力物力进行研究和开发,部分国家已开始用于一些重要工程。
近代混凝土外加剂的发展有60多年的历史。20世纪30年代初,美国、英国、日本等已经在公路、隧道、地下工程中使用防冻剂、引气剂、塑化剂和防水剂。早期使用的外加剂主要是氯化钙、氯化钠、松香酸钠、木质素磺酸盐和硬脂酸皂等化学物质。20世纪60年代,混凝土外加剂得到较快发展。1962年,日本的服部建一等将萘磺酸甲醛高缩合物(聚合度n≈10核体)用于混凝土分散剂,在1964年巳作为商品销售(闩本花王石碱公司)。几乎与此同时,1963年,联邦德国研制成功三聚氰胺磺酸盐甲醛缩聚物。同时出现的还有多环芳烃磺酸盐甲醛缩合物。由于这3种外加剂对水泥有强的分散作用,减水率高达20%~30%.而不同于普通的塑化——减水剂,当时称为高效减水剂或超塑化剂,此名称一直沿用到现在。高效减水剂的问世,是继钢筋混凝土、预应力钢筋混凝土之后,在混凝土改性上的第三次突破。
在20世纪70~80年代,针对高强混凝土存在的问题(抗冻性、体积稳定性等)以及流态混凝土存在的问题(如坍落度损失解决办法、泌水与离析、耐久性等),许多国家(包括我国)进行了大量基础研究,同时在应用技术方面也进行了大量的工作,并积累了实际工程应用的经验。事物的发展总是从量变到质变,当高强混凝土和流态混凝土的规律研究清楚之后必然产生质的飞跃。20世纪90年代初由美国首先提出高性能混凝土HPC的新概念,其基本内容是研究和开发具有早强、高强、工作性好和耐久性好的混凝土。同时,美国、加拿大、日本、英国、法国等相继制定了研究和开发HPC的计划,并认为HPC将成为跨世纪的新材料。毫不夸张地说,如果把高效减水剂看成是混凝土改性的第三次突破,那么HPC则是传统混凝土迈向现代化的重大变革。随着建筑向高层化、大型化的发展,HPC的应用将成为混凝土应用的主流。
我国从20世纪50年代初开始使用混凝土外加剂,主要品种有松香热聚物和松香皂类的引气剂、纸浆废液(木质素磺酸钙)塑化剂、防冻剂(以氯盐为主)等,主要用于水工、港工混凝土工程以及建筑工程冬季施工。从20世纪60年代,我国外加剂的研究和应
第109页
用几乎处于停顿,只有速凝剂和糖钙研制成功并通过了有关技术鉴定。进入20世纪70年代,由原建材部建筑材料科学研究院、清华大学等单位率先研制萘系和三聚氰胺系高效减水剂。此后,许多科研单位相继从事高效减水剂的研究和应用。20世纪70~80年代初的10年间,是我国研制高效减水剂高潮时期,国外典型3类高效减水剂,即萘系、多环芳烃和三聚氰胺都研制成功并投人生产,相继通过技术鉴定的产品达10多种。这时,高效减水剂与日本的差距只相差10年,而早于前苏联5年。由于没有实行商品化,产品的标准化、系列化,应用技术落后等原因,外加剂的推广应用较慢。进入20世纪80年代,改革开放,经济发展,推动了混凝土外加剂向产业化和商品化发展。同时,制定了外加剂的国家标准和各外加剂建材行业标准,促进了外加剂的推广使用。20世纪80年代是我国外加剂迅速发展的时期,外加剂的应用占混凝土总量约10%。随着建筑向高层化发展,以及混凝土生产向集中搅拌的商品混凝土发展,在我国的大城市(如北京、上海、天津、广州等)、沿海开放地区,外加剂使用率在80%以上,与发达国家相差不大,但从全国利用外加剂的平均水平来看,外加剂的应用还有待进一步发展。
第二节 混凝土外加剂分类及使用
一、混凝土外加剂的定义和分类
混凝土外加剂的定义:根据国家标准《GB8075--1987混凝土外加剂分类、命名与定义》,混凝土外加剂是在拌制混凝土过程中掺人,用以改善混凝土性能的物质,掺量不大于水泥质量的5%(特殊情况除外)。
混凝土外加剂按其主要功能可分为4类。
(1)改善混凝土拌和物流变性能的外加剂,包括各种减水剂、引气剂和泵送剂等。
(2)调节混凝土凝结时间、硬化性能的外加剂,包括缓凝剂、早强剂和速凝剂等。
(3)改善混凝土耐久性的外加剂,包括引气剂、防水剂和阻锈剂。
(4)改善混凝土其他性能的外加剂,包括加气剂、膨胀剂、防冻剂、着色剂和泵送剂等。
具体到每种外加剂的名称和定义参见国家标准GB8075--1987。
二、主要品种适用范围
(一)普通减水剂及高效减水刑
1.普通减水剂种类
木质素磺酸盐类:木质素磺酸钙、木质素磺酸钠、木质素磺酸镁及丹宁等。
2.高效减水剂
(1)多环芳香族磺酸盐类:萘和萘的同系磺化物与甲醛缩合的盐类、氨基磺酸盐等。
(2)水溶性树脂磺酸盐类:磺化三聚氰胺树脂、磺化古码龙树脂等。
(3)脂肪族类:聚羧酸盐类、聚丙烯酸盐类、脂肪族羟甲基磺酸盐高缩聚物等。
(4)其他:改性木质素磺酸钙、改性丹宁等。
第110页
<<上一章 下一章>>
第五章 建筑防水材料
第一节 概
述
一、建筑防水工程的分类
建筑工程的防水,足建筑产品使用功能中一项很重要的内容,关系到人们居住的环境和卫生条件、建筑物的寿命等,因此,历来是大家非常关心的课题。
建筑工程的防水技术按其构造做法可分为两大类,即结构构件自身防水和采用不同材料的防水层防水。结构构件自防水,主要是依靠建筑物构件(如底板、墙体、楼顶板等)材料自身的密实性及某些构造措施,如坡度、伸缩缝等,也包括辅以嵌缝油膏、埋设止水环(带)等,起到结构构件能自身防水的作用;采用不同材料的防水层做法,则是在建筑构件的迎水面或背水面以及接缝处,另外附加防水材料做成的防水层,以达到建筑物防水的目的。这种做法又可分为刚性材料防水,如涂抹防水砂浆、浇筑掺有外加剂的细石混凝土或预应力混凝土等;另一种则是柔性材料防水,如铺设各种防水卷材、涂布各种防水涂料等。
结构构件白防水和刚性材料防水层防水均属于刚性防水,各种卷材防水、涂料防水均属于柔性防水。
按建筑工程不同的部位,又可分为屋面防水、地下防水、室内厕浴间楼地面防水以及水池、水塔等构筑物防水等。
二、建筑工程防水质量要求
建筑工程防水质量的好坏,与设计、材料、施工有着密切关系。
防水工程的质量,在很大程度上取决于防水材料的性能和质量。因此,各种不同的防水做法,首先要求其材料应具有不同程度的防水功能。主要应具有以下一些特性:
(1)耐候性。对光、热、臭氧等有一定的耐受能力。
(2)抗渗透、耐化学腐蚀性。具有抗水渗透和耐酸、碱性能。
(3)具有对温度、外力的适应性。即要求防水材料的拉伸强度要高,拉断延伸率要大,能承受温差变化以及各种外力和基层伸缩、开裂引起的变形。
(4)具有整体性。要求防水层的粘结强度要高,既能保持自身牢固的粘结,又能与基层粘结牢固,且在外力作用下,有较高的剥离强度,形成稳固的不透水整体。
上述几点,对于不同部位的防水工程则各有侧重。屋面工程防水,尤其是没有保温层的外露防水层,长期经受风吹、刚西、雨淋、雪冻等侵袭以及基层结构的变形,因此对防水材料的耐候性、耐温度、耐外力的性能更为重要;地下上程的防水,由于水压较大以及
第150页
地下结构可能产生的变形等,故特别要求能形成整体不透水膜,具有较好的整体抗渗能力;对于室内厕浴间楼(地)面防水,则应能适应基层形状的变化以及管道设备的敷设,能确保其防水效果。
施工质量的好坏,对防水工程质量有着及其重要的影响,如摹层处理不妥、材料(特别是粘结材料)选用才;当,排水门、女儿墙压顶处等细部处理不好以及施工过程中对成品保护注意不够等,都是造成渗漏的重要原因。
除了上述材料和施工问题外,设汁不周也是造成渗漏的原因之一,如屋面坡度过小,排水不畅;排水口、板缝、管道设备根部、檐口等部位的防水构造做法欠妥,均可造成积水、渗漏现象。
因此,要求设计、施工应严格执行有关规范、规程标准规定,以确保防水工程的质量。
三、我国建筑防水的现状
我国幅员广阔,气候变化幅度较大,因此各地的建筑防水做法不尽相同。北方气候干燥,四季温差变化较大,由于使用刚性材料防水干缩变形较大,易开裂,故长期以来多采用柔性防水。其传统做法是以沥青基防水卷材的二毡三油、三毡四油做法为主。南方多雨高温,冬期气温比北方高,为此采用柔性防水。因材料性能问题,易于产生流淌起鼓,故多采用结构构件自防水和刚性材料防水层。
通过大量的工程实践说明,以上仅有的几种建筑防水材料和做法,从材料性能、防水效果、耐用年限等方面来看,均远远不能满足城乡建设的发展需要。刚性材料防水,虽然造价较低,但由于施工质量难以控制,材料的延伸率低,很难适应气温的变化和基层的变形,易于开裂,故很难在较长时间内保持不透水整体。沥青基卷材防水,虽已形成世界范围建筑防水工程的传统做法,但其温度适应性和耐老化性能均较差,拉伸强度和延伸率较低,尤其是用于室外暴露部位,高温易起鼓流淌,老化开裂;低温时易冷脆皱裂、变形折断,使用年限较短。另外,由于采用多层构造做法,厚度较大,对于基层形状复杂的部位,施工麻烦,质量难以保证,维修管理也比较困难。正因为以上问题,目前在建筑防水工程中,普遍存在屋面、地下室、楼层厕浴间和外墙板板缝的“四漏”现象。为此,1986年城乡建设环境保护部在制定的《建筑技术政策》中明确指出:要“改善沥青防水材料与防水涂料质量,发展中、高档防水卷材、涂料以及防水嵌缝密封材料,‘七五’期间重点开发防水、防火和保温隔热材料新品种,全面开展应用技术的研究开发工作,建立与制定产品系列、标准与应用规程,后10年普遍达到国际20世纪70~80年代水平”。所以,研究和开发新型防水材料及施工技术,提高建筑工程的防水质量,已成为中国建筑界防水工程一项十分繁重、光荣的任务。
四、新型建筑防水材料的开发和应用
近年来,在北京、上海、湖南、河北、四川等地的教学、科研、生产、施工单位,积极研究、开发和应用了一批新型建筑防水材料及其相应的应用技术,取得了明显的技术经济效果。这些材料虽然档次、价格不一,但一般均具有耐候性好、抗拉强度高、延伸率大、使用温度范围广、可以冷施工、减少环境污染等特点,受到了设计、施工和使用单位
第151页
<<上一章 下一章>>
第六章 新型墙体材料
第一节 发展新型墙体材料的目的和意义
我国是一个人多地少,自然资源十分紧缺的国家,占全世界7%的土地,却要养活占世界22%的人口,我国国土有960万km^2,但可耕地面积只有9.9x10^7hm^2(14.9亿亩),人均占地693.25m^2(1.19亩),只占世界人均占地的1/4,在全世界26个人口5 000万以上的国家中,人均占地仅高于日本和孟加拉,排名24位。受多种因素的破坏和影响,近年来,我国耕地面积还以每年1%的速度递减。不仅如此,由于几千年来的传统习惯,粘土实心砖(红砖)的生产还要毁掉大量的耕地和农田,按目前全国5 000亿块标砖的产量规模计算,每年毁田近6.6x10^3hm^2(10万亩),大量砖厂占用和抛荒耕地近40hm^2(600多万亩)。除此之外,我国的能源也十分紧张,长期存在总需求大于总供给的矛盾日趋加剧,每年都要进口大量的燃料、燃油,在取土毁田的同时,烧砖的能耗每年超过5 000万吨标煤,再加上建筑采暖、降温超1亿吨标煤的能耗,两项合计占全国能源消耗总量的27%以上。建筑用能耗如此之高,与发达国家相比,有很大的差距,其主要表现是建筑保温状况的差距,以现有的粘土实心砖墙的模式,外墙的单位能耗是发达国家的4~5倍,其他的如屋顶单位能耗是发达国家的2.5~5.5倍,外窗为1.5—2.2倍,门窗气密性为3—6倍。因此,保护耕地、节约能源就成为发展新型墙体材料的主要目的和意义
限制淘汰粘土实心砖的生产和应用,并不是说粘土实心砖不好,不然也不会有几千年的生产及应用历史,要限制它、淘汰它,主要是从资源、能源角度,从环境角度、从贯彻可持续发展战略角度来考虑。
第二节 新型墙体材料的分类及主要品种
新型墙体材料的定义:新型墙体材料是指除粘土实心砖以外的具有节土、节能、利废、有较好物理力学性能的墙体材料。新型墙体材料目前的品种有近20种之多,按通常的分类方法,可分为板、块、砖3大类。板可分为条板与薄板,块可分为空心和实心,砖有实心砖和空心砖。
目前,在广东地区常用品种有:水泥(轻集料)条板、加气砼砌块、砼(轻集料)小型空心砌块、灰砂砖、粘土空心砖等。各种新型墙体材料中,“板”通常以“m^2”作为
第185页
单位;“块”以“m^3”作为单位;“砖”以“标砖(块)”作为单位(即沿用标准实心砖的尺寸作为一标准块)。
第三节 主要新型墙体材料的产品及性能
一、GRC轻质多孔条板
(一)生产工艺
GRC轻质多孔条板是以耐碱玻璃纤维为增强材料,以硫铝酸盐水泥轻质砂浆为基材制成的多孔型条板。
生产过程原材料主要有低碱度水泥、粉煤灰、集料、耐碱玻纤等。
主要生产工艺过程有铺网抹浆成型、挤压成型、喷射成型等。
第186页
<<上一章 下一章>>
第七章平板玻璃
第一节平板玻璃概述
玻璃是熔融、冷却、固化的非结晶无机物,能够用多种成型方法制成不同形状的玻璃制品,可以通过改变玻璃化学成分来改进玻璃的性质,以满足不同的使用要求。用于制造玻璃的原料非常丰富,价格低廉,因此,玻璃在人们的生活中获得了广泛的应用,主要用于日用玻璃、窗玻璃、化学仪器玻璃、光学玻璃等方面。
平板玻璃具有优良的透光、隔音、隔热等性能,能够通过各种方法进行加工,制造成用于建筑物、车辆的安全玻璃。随着加工手段的多样化,建筑玻璃被赋予了更多功能;如防火、防盗、防冲击、电磁屏蔽、图案装饰等新的功能。
一、玻璃的成分
(一)玻璃的成分
可以形成玻璃的元素几乎包括了除稀有气体以外的所有元素,在玻璃体中大部分元素主要以氧化物的形式存在。玻璃是由酸性氧化物(SiO2、B2O3、P2O5等)、碱性氧化物(K2O、Na2O等)、碱土金属和二价金属氧化物(CaO、MgO、BaO等)、中性氧化物(A12O3、TiO、ZnO等)组合成的。
普通平板玻璃属于钠—钙—硅酸盐玻璃,玻璃成分主要有二氧化硅、氧化钠、氧化钙、氧化铝等。
(二)玻璃的原料
平板玻璃原料由主要原料和辅助原料配比而成。其主要原料是引入玻璃主要成分的硅砂(SiO2)、长石(A12O3)、石灰石(CaO)、白云石(MgO)、纯碱(Na2O)、碎玻璃等;辅助原料主要用于促进玻璃的熔化、澄清以及着色,如芒硝(澄清剂)、碳粉(还原剂)、着色剂等。硅质原料是生产平板玻璃的主要原料。硅质原料质量的好坏,直接关系到平板玻璃的质量。玻璃成品的缺陷,如气泡、可见光透射率低、砂粒、条纹等在很大程度上是由原料和原料制备中的弊病造成的。玻璃行业都已清楚地认识到:原料质量低劣,即使采用了先进的浮法成型工艺,也难以生产出优质浮法玻璃。此外,原料质量的好坏,对于熔化率和窑龄都有直接影响。因此,在选取玻璃原料时要考虑原料对玻璃制品质量、第212页
成品率和成本方面的影响,对原料的要求是:
(1)化学成分和水分稳定:在大批量生产平板玻璃时,要求玻璃的物理化学性质稳定,因此玻璃成分中各组分的波动范围要尽可能小。原料中的水分含量对原料称重、混合、熔化以及玻璃成分的稳定都有影响。
(2)原料中的杂质和颗粒度必须符合要求:硅质原料中的各种杂质对玻璃特性有很大影响,特别是铁的含量,它直接决定着玻璃的透明度和色泽。我国硅质原料昔遍含三氧化二铁偏高,国外水平为0.02%~0.05%,而我国一般在0.1%~0.2%,致使玻璃颜色深,可见光透射率偏低。
原料粒度直径大小对玻璃的熔化质量有影响。颗粒度大会使熔化困难,容易出现夹渣和结石。颗粒过细的原料容易飞扬、结块,使配合料不均匀,熔化时细砂反应快,会在制品中形成小气泡,影响玻璃液的澄清。最合适的原料颗粒直径在0.15~0.8mm,其中0.25~0.5mm的颗粒不应少于90%。我国的原料中仍含有大量0.8以上的大粗颗粒和0.1mm以下的超细粉,有的砂岩的超细粉高达20%左右。
(3)原料对耐火材料的侵蚀性要小:采用对耐火材料的侵蚀性小的原料,可以延长熔窑寿命,减少维修成本。
(4)原料要易于加工:海砂不需要破碎、煅烧,只需要进行筛分和精选工序。
(三)玻璃中各种氧化物的作用
玻璃的折射率、密度、热膨胀系数随二价金属离子的半径增大而上升,常用的二价金属氧化物的作用简述如下:
(1)氧化钙(cao):氧化钙与二氧化硅不能形成玻璃,但加入碱金属氧化物时便能形成均匀的玻璃。钙离子不参与形成玻璃网络结构,属于网络体外离子,钙离子可以降低玻璃高温时的粘度。玻璃中氧化钙含量过多,会使玻璃料性变短,脆性增大,这与Ga2‘对玻璃结构的积聚作用有关。
(2)氧化镁(MgO):氧化镁在玻璃体中存在着两种配位状态,但大多数是位于八面体中,属网络外体,只有当碱金属氧化物含量过高,而不存在A1203、B:o,等氧化物时,Mg2+才进入网络结构。在钠—钙—硅酸盐玻璃中以MgO取代CaO,将使玻璃结构变疏松,导致玻璃密度、硬度降低。
(3)氧化铝(A12O3):氧化铝是形成玻璃网络结构的重要物质,它能使玻璃结构变得紧密,可以改善玻璃的一系列性能,但它对于玻璃的电学性质有不良作用。
(4)氧化硼(B2O3):氧化硼是实用玻璃的重要组分之一,它既能改善玻璃的一系列性能,又有良好的助熔性。在高温熔制条件下,以硼氧三角体存在,这是氧化硼降低玻璃高温粘度的主要原因,但低温时,有形成四面体的趋势,使玻璃结构趋紧,所以又能提高玻璃的低温粘度。
(5)碱金属氧化物(Li2O、Na2O、K2O):碱金属氧化物加入熔融石英玻璃中,促使硅氧四面体连接断裂,出现非桥氧,使玻璃结构疏松、减弱,导致玻璃一系列性能变坏,如热膨胀系数上升,电导和介电损耗,弹性模量、硬度、化学稳定性和粘度下降等。
二、玻璃的特性和热历史
(一)玻璃的特性
玻璃是一种非晶态固体材料,是由熔融体过冷却而得到的,熔融的液体在冷却过程中
第213页
<<上一章 下一章>>
第八章 建筑涂料
涂料是指涂敷于物体表面,能与物体表面很好地粘接在一起,并能形成连续性涂膜,从而对物体起到装饰、保护作用,或使物体具有某种特殊功能的材料。
由于涂料最早是以天然植物油脂和天然树脂,如亚麻子油、桐油、松香、生漆等为主要原料,因而涂料在过去被称为油漆。这一期间是涂料工业发展的初级阶段,产品品种少,性能差。
涂料工业的真正发展时期不足100年,特别是20世纪50年代开始,石油化学工业的迅速发展,为涂料工业的发展提供了良好的物质基础,赋子了涂料新的内涵和功能。同时,随着建筑工业水平的不断提高,人们对建筑涂料提出了更高的要求。随着各种新型合成树脂和助剂体系的出现和发展,研究开发手段的进步,施工技术的更新,使建筑涂料的新品种不断涌现。目前,建筑涂料已经自成体系,形成一门独立的工业技术,并成为建筑工业领域的一种基本材料。
第一节 建筑涂料的功能
与其他饰面材料相比,建筑涂料具有色彩鲜艳、质感丰富、性能全面、施工方便、价廉物美等特点,为此在建筑饰面材料中越来越受到人们的青睐。建筑涂料的主要功能是装饰功能。此外,还具有保护功能和其他特殊的功能,简述如下。
一、装饰功能
建筑涂料的主要功能之一是装饰建筑物,遮盖建筑物表面的各种缺陷,通过美化来提高建筑物的外观价值。这种功能的要素包括平面的色彩、色彩图案和光泽方面的构思设计和立体的花纹构思设计两个方面。室外涂装和室内涂装的装饰功能要素的内容基本相同,但要求的标准不一样。一般来说,室外涂装要求富有立体感的花纹或高光泽;与此相反,室内涂装则要求柔和的色彩和比较平伏的花纹,避免高光泽。
涂装后的建筑物不但色彩丰富,还可具有不同的光泽和平滑度。再加上各种立体图案和标志,和周围环境协调配合,会使人在视觉上产生美观、舒畅之感。室内若采用内墙涂料及地面涂料装饰后,可使居住在室内的人们产生愉悦感。若在涂料中掺加粗、细骨料,或采用拉毛、喷涂和滚花等方法进行施工,可以获得各种纹理、图案及质感的涂层,使建筑物产生特殊的艺术效果,从而达到美化环境、装饰建筑的目的。
二、保护功能
建筑涂料对建筑物进行施工后,能保护建筑物不受环境影响的功能称为保护功能。
建筑物曝露在大气中,受到阳光、雨水、冷热和各种介质的作用,表面会发生风化、第345页
腐蚀、剥落等破坏现象。建筑涂料通过刷涂、滚涂或喷涂等施工方法,涂敷在建筑物的表面上,形成连续的薄膜,产生抵抗气候影响、化学侵蚀以及污染等功能,阻止或延迟这些破坏现象的发生和发展,起到保护建筑物、延长其使用寿命的作用。
三、特种功能
建筑涂料除了固有的装饰和一般性保护功能以外,近年来世界各国都十分重视研究特种功能的建筑涂料,这类涂料又称为功能性建筑涂料。例如,防水涂料、防火涂料、防霉涂料、杀虫涂料、吸声或隔声涂料、隔热/保温涂料、防辐射涂料、防结露涂料、伪装涂料等等。在工业建筑、道路设施等构筑物上,涂料还可起到标志作用、色彩调节作用、美化环境作用和调节人们心理状况的作用。
第二节 建筑涂料的分类、品种和用途
涂料的品种很多,其分类的方法各不相同。1992年修订的国家标准《GB2705--1992涂料产品的分类、命名和型号》规定厂涂料的分类,其中也包括建筑涂料的分类。但该标准在1992年之前的版本的涂料分类中并不包括建筑涂料,因而建筑涂料多年来也形成了自己的习惯分类方法。
一、建筑涂料的分类
(1)按建筑物的使用部位分类:建筑涂料按其在建筑物的不同部位使用町分为外墙涂料、内墙涂料、地面涂料、顶棚涂料、屋面涂料、地下结构涂料等。
(2)按涂料的状态分类:建筑涂料按其性状可分为溶剂型涂料(如溶剂型聚丙烯酸酯涂料)、水溶性涂料(如聚乙烯醇内墙涂料)、乳液型涂料(如聚丙烯酸酯乳液涂料)和粉末涂料等。
(3)按特殊性能或使用功能分类:建筑涂料按其特殊性能或使用功能可分为防火涂料、防水涂料、防霉涂料、杀虫涂料、隔热涂料、隔声涂料等。
(4)按主要成膜物质性质分类:建筑涂料按其主要成膜物质性质可分为有机系涂料(如聚丙烯酸酯外墙涂料)、无机系涂料(如硅酸钾水玻璃外墙涂料)、有机—无机复合系涂料(如硅溶胶—苯丙复合外墙涂料)等。
(5)按涂膜状态分类:建筑涂料按涂膜状态可分为薄质涂层涂料(如苯丙乳液涂料)、厚质涂层涂料(如乙丙厚质型外墙涂料)、砂壁状涂层涂料(如苯丙彩砂外墙涂料)、彩色复层凹凸花纹外墙涂料等。
二、建筑涂料的品种和用途
下面按涂料的使用部位分别介绍外墙涂料、内墙涂料、地面涂料和一些特种建筑涂料。
(一)外墙涂料
外墙涂料的主要功能是装饰和保护建筑物的外墙面,使建筑物外貌整洁美观,从而达到美化城市环境的目的。同时还能够起到保扩建筑物外墙,延长其使用寿命的作用。为了
第346页 <<上一章 下一章>>
第九章 建筑塑料
当今世界经济发展的三大工业支柱是材料、能源和信息。没有材料工业的发展就没有现代技术的发展。每—种新材料的问世,不仅会引起生产方式的变革,而且会推动社会的进步和人类文明的提升。在材料工业中,塑料材料的品种最多,发展速度最快。塑料,对人们来说已经并不陌生,它的应用范围尤所不及。塑料与我们的生活息息相关,并使我们的生活丰富多彩。建筑塑料研制工作在20世纪50年代末期已开始,并少量生产和应用。到20世纪70年代末期,化学建材开始快速发展。我国是资源短缺的国家,发展绿色建筑塑料具有特定的经济和社会意义。近年来,国内绿色建筑塑料得到很大发展,显示出良好的发展势头。专家指出,无毒、无害、无污染的塑料建材,将成为本世纪市场需求的热点。有关统计数据显示,全球每年建筑工业消耗塑料在1 000多万t以上,占全球塑料总产量的25%,在应用塑料中位居首位。目前,塑料已与水泥、钢铁、木材统称为四大建筑材料。
塑料建材主要包括塑料管、塑料门窗、装饰装修材料等。塑料建材在建筑工程;市政工程、村镇建设以及工业建设中用途十分广泛。塑料建材不仅能大量代钢代木,替代传统建材,而且还具有节能节材,保护生态,改善居住环境,提高建筑功能与质量、施工便捷等优越性。塑料建材的节能效益十分突出,其节能效益表现在节约生产能耗和使用能耗两个方面。以生产能耗计算,建筑塑料制品仅为钢材、铝材生产能耗的25%和12.5%,硬质PVC塑料生产能耗仅为铸铁管和钢管的30%~50%,塑料水管比金属管降低输水能耗50%左右。
建筑业是国民经济的支柱产业。今后我国建筑业将会有更大的发展,为建筑塑料的应用提供了广阔的市场空间,促进建筑塑料的飞速发展,产生显著的经济效益、社会效益和环境效益。
第一节 建筑塑料的主要原材料
生产建筑塑料的原材料种类很多,下面主要介绍在我国用量较大的5种超料原材料的性能、特点及技术质量要求。
一、聚氯乙烯(PVC)树脂
聚氯乙烯(PVC)是我国发展较早、产量最大的塑料品种之一。20世纪80—90年代,PVC产量约占全国合成树脂的一半。近些年来,它的产量不及聚乙烯和聚丙烯,居于第三位,但年产量仍然在增长。PVC在世界上的产量,过去排行第——位,后来次于聚乙烯,近几年来居于第三位。PVC原料易得,价格低廉,成型性能良好,是应用最广泛的树脂之一。PVC呵以不添加增塑剂制成硬质制品(PVC--U),也可以增加相当的增塑
第379页
剂制成软质制品。PVC自20世纪30年代工业化生产以来,在热塑性通用塑料中一直占有很重要的地位。迄今其势未衰,作为主要塑料品种仍处于不断发展之中。聚氯乙烯是一种无味的白色粉末,密度为1.35~1.46 s/cm^3(20t)。聚氯乙烯为线型分子结构,沿其主链存在着许多极性键,从而使大分子间的结合力增强,所以,聚氯乙烯的机械性能和耐化学腐蚀性能优良。但聚氯乙烯性脆,同时其耐热性较差,当树脂被加热至100~C以上时,就开始分解出+HCI。因具熔融温度高于分解温度,若不加入适宜的多种添加剂,则成型困难。又因为聚氯乙烯中含有大量的一瓤基团,故其阻燃性较好。
二、聚乙烯(PE)
由乙烯进行加聚而成的高分子化合物即为聚乙烯。聚乙烯(PE)是合成树脂中结构最简单的一种。根据聚合条件的不同,实际相对分子质量可从1万至几百万不等。它原料来源丰富,价格较低,具有优异的化学稳定性和电绝缘性,易于成型加工,并且品种较多,可满足不同的性能要求。因而,它从问世以来发展迅速,是目前产量最大的树脂品种,用途极为广泛。
聚乙烯的熔融粘度低,流动性能好,毋须加入增塑剂等助剂就有很好的成型加工性能,容易形成大规模生产,一般的加工机械设备都能成型加工。通过技术引进,我国已经能大量地稳定地生产各种压力法、各种性能用途的聚乙烯树脂,总产量在近几年跃居国内合成树脂榜首。
聚乙烯是白色半透明粉末或小颗粒,无臭,无毒,可燃,触感似蜡。它具有良好的机械性能,耐溶剂性极佳,仅在高温下,才能被某些溶剂缓慢侵蚀。聚乙烯的脆化点为-110~-60℃,故其耐低温性质比聚氯乙烯好,低温脆性小。聚乙烯可制作卫生、食品、上下水管道等塑料制品。聚乙烯耐热性差,易受热软化,故一般应在100℃以下使用。又因聚乙烯极易燃烧,容易造成火灾,导致火焰快速蔓延,故在使用聚乙烯及相应塑料制品时应予以特别的注意。
三、聚丙烯(PP)
聚丙烯(PP)是常用热塑性塑料中的后起之秀。自1957年在意大利首次实现工业化生产以来,在世界范围内,聚丙烯的生产得到了长足发展。1960年世界产量仅为6万t,到了1985年已超过800万t,1997年后就已跃居世界5大塑料的第二位,其发展速度一直居于各种塑料之首,是热塑性塑料中发展最快的一种。
我国生产聚丙烯始于20世纪60年代,以引进国外先进生产技术和装置为主,同时,由我国自行开发的液相本体聚合法也得到了广泛的应用,工艺渐趋完善,产品质量不断提高。我国聚丙烯1997年总产量超过1 800万t,居国内5大塑料树脂产量的第二位。
PP发展速度较快的原因主要在于丙烯来源丰富,价格低廉,合成工艺较简单。合成的PP树脂具有较好的综合性能,用途广泛。与PE相比,PP不但有较高的拉伸强度、刚度、硬度、耐应力开裂性、透明性和耐热性,而且有突出的延伸性和抗弯曲疲劳性,成型加工性能也极为优良。
聚丙烯的密度较小,为0.90s/cm^3。聚丙烯可分为等规、间规和尤规三种。规整度愈高,则机械性能愈好,但脆性有所增大,常用的为正规聚丙烯。聚丙烯的抗拉强度较高、第380页
<<上一章 下一章>>
第十章 新型建筑装饰装修材料
第一节 建筑装饰装修材料概述
有建筑就有建筑的装饰装修,从早期的用石灰粉刷墙壁,用油漆涂刷柱子,至当今的新型高档次装饰装修,历经了几十年的发展。近20年来,我国研制、开发了一大批新型建筑装饰装修材料,从国外引进了2000多项建筑装饰装修材料生产技术和设备,目前总的品种已达5000种之多,形成了中高低档基本配套、品种门类比较齐全的工业体系。无论在性能上、质量上还是数量上,已能满足国内各层次的消费需求。建筑业的蓬勃发展,人民生活水平的不断提高,有力地带动了建筑装饰装修材料业的发展,反过来,也为建筑装饰业提供更多更好、更适用的装饰装修材料。
建筑装饰装修材料虽然是建筑材料大家庭中的一成员,但它的主要属性是装饰功能或美学功能,人们更多的是从质感、观感、健康等方面来认识。与其他建筑材料如防水材料、保温材料、管道材料、结构材料等的物理力学性能属性有着明显的区别,这种区别和差异是很重要的,影响到对材料的评价、组织、使用以至经营方式等方面的问题。比如装饰装修效果是比较抽象和理念性的东西,一般难以用数量表示,可比性较弱,并且与评价者的个体、时代、文化等有关,而物理力学功能则有严格的量化表述,可比性很明显。还有一点,装饰装修材料的好、坏、优、劣,同样的人在不同的时期可以有完全不同的看法和认定,即使是一种被认为很美的东西,用久了也会觉得不美,一些并不是很美的东西,由于有一定的奇特性,也会胜于看起来比它美的东西,装饰材料的生命力就在于它的多样性。
装饰材料的另一重要问题是配套化问题,配套通常有大配套与小配套。大配套是指建筑物不同部位所要求的不同装饰材料之间,各种不同档次、不同材质的装饰材料与辅助材料之间的配套。小配套是指主要装饰材料与辅助材料及工器具之间的配套。大配套是为了全面地实现设计师的构想,完整地实现整个建筑物的装饰;小配套则是为了有利于合理地用好某一装饰材料。
第二节 新型装饰装修材料的主要品种及性能
由于装饰装修材料的品种繁多,而且各种材料都逐步向多功能、多用途方面发展,很难按十分明晰的分类方法进行分类,如按材料的使用场所(地)分可分为三大类,即天花(吊顶)材料、地面材料、墙面(柱)材料。
第405页
一、地面材料
目前地面材料最常用的有陶瓷材料、天然石材,部分木(制)地板及其他地面材料。
(一)陶瓷材料
建筑陶瓷的分类和命名一直都不是很明晰,规范性分类通常按材质(吸水率)来分,习惯叫法通常却按使用场所来叫,如陶瓷地砖、内墙砖、外墙砖、广场砖。外墙砖和广场砖相对较单一,品种变化不多,比较容易区分和判别。如外墙砖通常有无釉和有釉两类,有釉的通常有瓷质外墙砖、彩釉马赛克;无釉的通常有仿花岗石外墙砖。内墙砖通常是指釉面内墙砖。而地砖产品名称通常很多,一般人很容易被五花八门的名称给混淆。原则上说,地砖产品也只分为两种,一种是有釉面的,一种是无釉的。无釉的又分为普通型及抛光型。有釉地砖早期叫彩釉砖,后来企业根据釉面材质情况,又多了很多的命名,如“水晶砖”、“仿古砖”等。抛光砖产品通常根据其工艺及成型方法,如渗花、大颗粒、二次布料等的不同而产生很多的名称,如玻化石、瓷质砖、云石宝、云影石、雪花白…”.名称和叫法十分混乱,外行人除看图案外根本分不清其内在的材质情况。从1999年开始,我国采用了国际上通常的分类方法,不管砖是什么名称、什么用途和什么工艺方法生产,建筑陶瓷砖一律按吸水率的大小来区分,吸水率的高低是陶瓷材质的重要指标。吸水率按5个层次来分,第一类是吸水率E≤0.5%的瓷质砖,多数抛光砖属此类;第二类是0.5% 陶瓷砖的主要特点就是强度高、坚硬、耐磨、耐火、不易腐蚀、不会腐朽霉变等。 陶瓷砖性能指标如下: 按《GB/T4100.1--1999干压陶瓷砖第1部分:瓷质砖(吸水率E≤0.5%)》要求,表面质量: 优等品——至少有95%的砖距0,8m远处垂直观察表面无缺陷; 合格品——至少有95%的砖距1tn远处垂直观察表面无缺陷。 (1)吸水率:陶瓷砖的吸水率平均值不大于0.5%,单个值不大于0,6%。 (2)破坏强度:厚度57.5mm,破坏强度平均值不小于1 300N;厚度<7.5mm,破坏强度平均值不小于700N。 (3)断裂模数(不适用于破坏强度≥3 000N的砖):陶瓷砖断裂模数平均值不小于35MPa,单个值不小于32MPa。 (4)抗热震性:经10次抗热震试验不出现炸裂或裂纹。 (5)抗釉裂性:有釉陶瓷砖经抗釉裂性试验后,釉面应无裂纹或剥落。 第406页 <<上一章 下一章>> 1 案例一煤磨取风管改造 1.1 改造前运行状况 (1)某公司现有两条天津院设计的5000t/d熟料生产线,一线煤磨取风口原设计一个沉降室,在沉降室取风口通过悬挂链条减少飞砂入磨,从而减少原煤贫化。但在实际运行过程中,链条本身间隙过大,收尘效果有限,同时,由于入磨温度基本在300℃左右,链条极易烧损,降低了收尘效果。 (2)大量飞砂入磨后,对转子秤,输送管道,燃烧器造成磨损,影响转子秤计量精度和稳定性。(3)飞砂的掺入加剧煤粉贫化,影响出磨煤粉质量,煤粉重新入窑进行二次煅烧,导致熟料烧成热耗上升;高温飞砂也影响到煤磨安全运行。 1.2 技改目的 (1)减轻煤粉贫化,降低入窑煤粉灰分; (2)减少飞砂对煤粉质量影响和煤磨取风管内壁的磨损,提高窑系统运行稳定性; (3)减少煤粉对燃烧器管道的磨损,延长燃烧器使用周期; (4)保障煤磨安全运行。 1.3 改造方案 (1)在现有风管正下方,距离窑头平台边缘3500mm的位置作为中心,搭建如图1所示的旋风筒支架,两根主支撑钢架间距均为2000mm,高度为7500mm,顶部用工字钢连接加固,支撑旋风筒;在窑头平台上如图所示位置用两根工字钢与旋风筒支架搭接用于加固并可做检修通道; (2)在现有风管图示位置上开一个直径为1250mm的接口,将新增加风管直接焊接在接口上,新增风管下端焊接在旋风筒上,并在要求的位置上焊接好膨胀节;在现有的沉降室如图所示位置上开一个直径为1250mm的接口,将新增风管直接焊接在接口上,另一端焊接在如图2所示的旋风筒侧面位置上,并在要求的位置将膨胀节安装好; (3)旋风筒及风管安装完毕后,按图3所示位置做好回灰灰斗、下料分隔轮及安装好回灰风管; 1.4 技改效果 1.4.1 主要技术指标对比(见表1) 1.4.2 技改效果分析 从表1统计数据可以看出,技改后对发电影响不大,煤磨入窑煤粉灰分较技改前在一、二线使用同样煤质情况下灰分差值减小了1.23%,实际运行情况与预期效果相符。本次技改虽达到了预期目的,但也存在一些需要继续优化的地方,例如旋风筒尺寸偏小,导致系统阻力增大,在煤质偏差的情况下,出磨温度难以保障,不得不依靠发电让风,一定程度上影响发电负荷;下料管采用自制翻板阀,没有采用回转阀,下料不均匀,斜拉链地坑下料点存在跑灰现象;下料溜管没有改为阶梯式,容易磨通,在日后检修中需要进一步改进。 2 案例二窑尾烟室技改 某公司熟料生产线在生产运行中存在预热器塌料频繁、熟料结粒偏细等实际问题,为稳定系统工况,优化技术指标,公司利用市场淡季熟料库位高停窑检修机会,对系统关键部位进行了技改,并取得良好效果。 2.1 主要技改方案 对窑尾拱圈进行扩大(见图4)。 通过对现场数据测量以及原始图纸尺寸进行对比,拱圈与斜坡垂直距离为1.95m,即算出通风面积约3.79m2 (在没有结皮与物料通过的情况下),烟室缩口通风截面积为4m2 (没有结皮的情况下)判断出此处通风面积偏小,对窑内煅烧限定了燃烧空间,通过对拱圈浇注料进行技改(拱圈与斜坡垂直距离技改为2.25m),算出通风面积为4.5m2,增大0.71m2。窑内通风量变大,氧含量提高,为窑内煅烧创造有利条件。 22技改前后参数对比 (1)预热器各项指标对比(见表2) (2)回转窑各项指标对比(见表3) 23技改前后效果分析 技改前:运行中预热器频繁出现塌料现象,熟料结粒偏细,质量合格率较低,三次风闸板开度净空高度不能超过40cm,窑头负压不易控制且飞砂料较多,系统阻力偏大,高温风机电流平均在230A,余热发电量偏低,仅为17.6万度/天。 技改后:拱圈扩大后增大了窑内通风,降低了窑内风速,从而使得窑内火焰顺畅,为熟料煅烧创造了有利条件,熟料结粒较技改前有较大改善。技改后预热器系统基本无塌料现象,系统阻力下降,高温风机电流由230A,降至200A,下降30A,工序电耗下降2.0kWh/t,实物煤耗下降5kg/t,吨熟料发电量上升了9kWh/t,达到了降本增效的目的。 3 案例三水泥磨100%原状脱硫石膏粉使用技改 为降低配料成本,提高产品市场竞争力,我公司大量使用原状脱硫石膏粉代替脱硫石膏球。由于原状脱硫石膏粉水分较大,物料流动性较差,2#工艺线大量使用原状脱硫石膏粉后,各皮带下料管频繁堵塞,必须安排专人在下料过程中定期清理才能保证下料正常,不但影响正常的生产运行,而且增加了员工劳动强度。为提高原状脱硫石膏粉使用比例,公司在充分论证的基础上,对输送皮带实施了技改。 3.1 技改前状况 9#皮带位于1#石灰石原料仓旁边,通过衔接8#皮带和10#皮带输送2#工艺线原料。上游8#皮带头部下料管直通9#皮带尾部,由一个三通阀控制分别输送1#石灰石原料和2#工艺线原料。下游9#皮带下料口再经一个三通阀通过10#皮带进入2#工艺线石膏仓,原料在经过两个三通阀翻板时频繁发生物料堵塞情况,被迫大幅度降低脱硫石膏粉掺入比例以减轻堵塞情况,并且存在因翻板动作不到位而造成漏料风险。技改前工艺流程见图5,9#皮带状况见图6。 3.2 技改方案 通过将10#皮带移位调整三通阀位置,9#皮带抬高改成双向皮带,皮带一端下料口直接入1#石灰石原料仓,将8#皮带下料管三通阀改成直通下料管工业流程见图7,现场图见图8。 3.3 技改效果 技改以后下料管未发生堵料情况,且不需安排专人进行清理下料管,不但有效降低了员工劳动强度,而且规避了漏料质量风险。在保证2#工艺线正常运转前提下脱硫石膏粉使用比例能达到100%,降低了配料成本,仅此一项每年就能节约生产成本约61万元左右。 在技改后因为石膏粉的大量使用,2#工艺线物料整体水分较以前大幅度增加,通过将一台闲置收尘器移装到2#工艺线边料斗提头部位置(见图9),在处理边料斗提、辊压机小仓、11#和12#皮带扬尘的同时,也收排了物料输送过程中所生产的水气,降低了物料入磨水分,稳定了磨机工况。 4 案例四PH锅炉回灰系统增加水冷装置改造 某公司PH锅炉回灰系统温度过高,在180℃~200℃左右,导致1401入库斗提、1428入窑斗提胶带老化,斗提运行存在较大安全隐患见图11。 4.1 技改方案 将回灰拉链机底板全部更换为水冷式底板,铺设供水管道:利用电焊机焊接拉链机壳体法兰连接处(满焊),焊接完后检查是否存在漏洞,制作及焊接加长加宽壳体箱体,给整个箱体通冷却水管,在水管中间加连管道泵增大循环水流量,把进水管、回水管接在增湿塔水箱中,利用水箱促使冷热水循环使用(见图12)。 4.2 技改注意事项 (1)焊接拉链机壳体时检查是否满焊; (2)对所有焊接管道、箱体用循环水进行清洗,必须保证畅通无阻塞; (3)在回装过程中注意拉链机内部是否有水进入,作业完后清洁卫生。 4.3 技改效果评价 技改前PH锅炉回灰系统温度在180℃~200℃左右,对设备运行存在较大隐患,且回灰入库时进入入库斗提,温度偏高加快了斗提胶带老化速度。改水冷后回灰温度明显下降、由180℃~200℃降至120℃~140℃,解决了设备运行隐患,确保了设备安全运转。 摘要:列举了该公司几个工艺技改案例,如煤磨取风管改造、窑尾烟室改造、PH锅炉回灰系统增加水冷装置改造、水泥磨100%原状脱硫石膏粉输送系统技改,均取得明显效果。 摘 要:在两种不同搅拌工艺(普通法和水泥砂浆法)下,分别对C20、C30、C40三种普通水泥混凝土的和易性、抗压、抗折强度、耐磨性及抗渗性进行试验测试,并对其结果进行分析研究,经对比分析,水泥砂浆法搅拌工艺主要可通过提高水泥石与集料粘结力及改变内部孔隙分布,提高混凝土的力学强度及耐久性。 关键词:搅拌工艺;水泥砂浆法;普通水泥混凝土;强度;耐久性 中图分类号:TU642 文献标识码:A 文章编号:1006-8937(2016)33-0187-02 Abstract:In two different mixing process (general method and cement mortar method), respectively workability, compressive strength, flexural strength, wear resistance, permeability resistanceof ordinary cement concrete(C20,C30,C40) were tested respectively, and the results were analyzed and studied, by comparative analysis, cement mortar method can improve mechanical property and durability of the concrete through improving the bond strength between cement and aggregate,and changing distribution of the internal pore. Key words:mixing process;cement mortar method; ordinary cement concrete; strength; durability 1 概 述 水泥混凝土土木工程中应用最为广泛的材料,如何提高其使用性能,一直备受国内外专家关注。目前提高混凝土使用性能的方法主要有提高原材料质量、优化配合比、加外加剂、改变搅拌施工工艺等,前三种方法在改善混凝土使用性能的同时也伴随有工程造价或难易程度提高缺点,相对前三种方法,最后一种通过改变搅拌施工工艺的方法,更简单易行、经济适用。受日本SEC混凝土技术的启发,我国一些研究人员先后提出了水泥净浆法、水泥裹石法、水泥裹砂及水泥砂浆法四种主要的二次投料搅拌施工工艺[1]。这四种方法目的都是在提高混凝土力学性能及耐久性的同时能节约水泥的目的,由于相比之下,水泥砂浆法施工工艺更简单一些,故本论文仅分析研究该方法对混凝土使用性能的影响。 2 原材料及试验方案设计 2.1 原材料 水泥选用西安蓝田尧柏水泥厂生产的尧柏42.5(R)硅酸盐水泥,水采用符合《公路水泥混凝土施工规范》要求的自来水;砂选用渭河水洗砂,表观密度2 680 kg/m3,自然堆积密度 1 410 kg/m3,含泥量0.7%,细度模数为2.7;碎石采用陕西渭南产的人工轧制碎石,其中粒径0.5~1 cm占碎石总重量35%,粒径1~2 cm占65%,级配良好。 2.2 试验方案设计 本文选用普通法和水泥砂浆法两种搅拌方法对水泥混凝土进行搅拌。普通法是指先将水泥、砂及碎石搅拌均匀,再加水搅拌180 s,形成新拌混凝土的搅拌工艺[2];水泥砂浆法是指先将水泥、砂搅拌30 s,使其成为水泥砂,再在水泥砂中加水搅拌60 s,使其成为水泥砂浆,最终向水泥砂浆中加入碎石拌制90 s,形成新拌混凝土的搅拌工艺。 在以上两种不同搅拌工艺下,分别对强度等级为C20(mc:ms:mg:mw=1:2.15:3.79:0.63)、C30(1:2.15:3.79:0.63)、C40(1:1.18:2.67:0.42)的三种普通水泥混凝土进行性能试验测试。 3 试验测试与结果分析 3.1 新拌混凝土拌合物和易性 在普通法和水泥砂浆法两种不同搅拌工艺下,按表3中配合比拌制混凝土,测定其坍落度,见表1,观测粘聚性、保水性均满足要求。 由表1可看出,在相同强度等级、相同配比,同测试条件下,相比普通法,水泥砂浆法可提高混凝土的坍落度,改善其和易性,改善程度随水灰比的提高而增大。 3.2 混凝土力学性能与耐久性 按照文献[2]分别测试两种不同搅拌工艺下,硬化后混凝土抗折、抗压强度、耐磨性及抗渗性,试验结果,见表2。 表2中试验结果表明,相对普通法搅拌工艺,水泥砂浆法搅拌工艺,可使混凝土7 d、28 d抗折及抗压强度均会有所提高,其中7 d抗压强度提高8.2%~11.1%,抗折强度提高10.5%~14.1%,28 d抗压强度提高9.5%~14.8%,抗折强度提高10.9%~13.7%,总体来看,抗折强度提高幅度比抗压强度稍大,28 d抗折、抗压强度提高幅度较7 d大,强度等级越低提高幅度越大,由此可推断,该搅拌工艺对改善混凝土抗折强度更有利,且强度提高幅度会随混凝土龄期增长及强度等级的提高而增大。见表3。 由表3可看出,水泥砂浆法搅拌工艺可提高混凝土耐磨性、抗渗性,磨损量降低幅度0.1%~4.2%,渗水量降低幅度24.5%~34.3%,综合来说,对混凝土耐磨性改善不大,但对抗渗性改善显著,混凝土强度等级变化对耐磨性、抗渗性影响无规律可循。 3.3 水泥砂浆搅拌工艺改善混凝土性能机理分析 水泥混凝土是由水泥、砂、石、水及内部的空气等组成复合性建筑材料,各组成之间有可能产生物理化学变化,最终影响着混凝土的使用性能[3]。 3.3.1 改善水泥石与集料的粘结力 当水泥开始水化时,最先形成絮凝结构,普通搅拌工艺,一方面使水泥絮凝结构解体,使其分散度提高,但同时另一方面,在粗集料运行的背面,絮凝结构是很少受到影响的,故此分散度差,影响水泥石与集料的粘结力,是强度的薄弱环节[4]。 相对于普通搅拌工艺,水泥砂浆法搅拌工艺,由于将水泥、水、砂拌制成水泥砂浆,砂被水泥浆包裹,完全破坏了絮凝结构,分散度提高,使其内部水泥可进一步水化,水化程度增大,速度加快,当再干燥状态的碎石加入砂浆中继续搅拌后,碎石表面可吸附部分水泥砂浆中的自由水分,最终可在其表面形成一层低水灰比的水泥浆壳,进而增强了水泥石与碎石之间的黏结力,混凝土强度提高,力学性能得以改善[5]。 3.3.2 改变混凝土中的孔隙分布 普通搅拌工艺,由于干燥的集料吸水性较强,在砂、石材料表面吸附有较厚的水膜,石子表面形成一个高水灰比的净浆壳,水泥石粘结强度低,硬化后,失水收缩造成内部孔隙、裂纹数量增多;同时,混凝土在浇筑初期初凝状态下,比重大的砂石材料下沉,比重较小的水分和气泡上浮,向上迁移过程中,遇到粗糙碎石的阻碍,有部分水分和气泡将聚集在其周围,促使混凝土硬化后,在粗骨料界面处形成大孔隙;正是由于以上两方面原因,混凝土整体性、均匀性遭到破坏[6]。 水泥砂浆法搅拌工艺,在石子表面形成低水灰比净浆壳,不仅可加强水泥石与集料的界面强度,而且起到阻碍自由水分向石子表面集中的屏障,消除了水分和气泡向石子表面不断聚集现象,避免了混凝土的分层现象,减少了水泥石与集料界面的裂缝和孔径尺寸,混凝土的密实度、强度、抗渗性等得到了很好改善[6]。 4 结 语 本文在两种不同搅拌工艺下,通过对三种不同强度等级混凝土的抗压、抗折强度、耐磨性及抗渗性进行测试,可得出如下结论: ①水泥砂浆搅拌工艺可增强水泥石与集料的界面黏结强度,进而提高混凝土的强度,改善其力学性能,相对于普通法,平均提高幅度,抗压强度提高10.9%,抗折强度提高12%,对提高抗折强度更有利,且随强度等级及龄期的增加而增加。 ②水泥砂浆搅拌工艺通过改变孔隙分布,提高混凝土密实度、抗渗性及耐磨性等,相对于普通法,平均降低幅度,单位面积磨损量降低1.9%,渗水量降低30.2%,对混凝土抗渗性改善更大一些。 参考文献: [1] 吴明杰,任兆林. SEC混凝土技术及其应用[J].交通科技与经济,2000 (04). [2] JTG_E30-2005,公路工程水泥及水泥混凝土试验规程[S]. [3] 王长青,肖建庄,孙振平.现浇再生混凝土框架模型结构地震损伤评估 [J].同济大学学报(自然科学版),2015,(02). [4] 秦昉.水泥混凝土投料搅拌工艺及其影响试验研究[D].西安:长安大 学,2013. [5] 马骉,张文静,秦昉,等.投料搅拌工艺对嵌锁密实水泥混凝土性能的影 响分析[J].武汉理工大学学报(交通科学与工程版),2015(02). 关键词混凝土路面施工工艺 混凝土 中图分类号: TU37 文献标识码:A 文章编号: 路面工程属于道路工程中所用原材料种类较多、工序多而复杂,并且对外界环境温度比较敏感的结构,所以路面原材料的选择、级配及组成设计、试验检测水平、施工工序、工艺水平、设备与技术水平及施工环境等,都直接影响路面工程的质量。水泥混凝土路面具有强度高,稳定性好、耐久性好、使用寿命长、日常养护费用少,且有利于夜间行车等优点。因而要保证水泥混凝土路面具有良好的使用性能,不仅要精心设计,还要精心施工,在施工环节上狠抓施工质量。本文就小型机具摊铺普通水泥混凝土路面施工工艺及方法做以浅述。原材料的选择 1.1水泥:进场应有产品合格证及化验单,不合格的水泥产品坚决杜绝进场。水泥进场后,应堆放整齐,不同标号水泥应分别堆放并标识,不得混合堆放。在运输及保管过程中,应注意防水、防潮,结块水泥不得使用。 1.2砂:应采用符合规定级配、细度模数在2.5以上的中粗砂,且要求坚韧耐磨、清洁、有害杂质含量低。 1.3碎石:应选用质地坚硬耐磨、表面粗糙而有棱角、级配符合规范要求、洁净且有害杂质含量少,碎石的粒形以接近正立方体为佳。 1.4水:饮用水可直接使用。 1.5外加剂:在必要情况下选用外加剂以提高强度及耐久性。 施工准备 2.1选择合适的拌和场地,要求运送混合料的运距尽量短,水、电等方便,有足够面积的场地,能合理布置拌和机和砂、石堆放点,并能搭建水泥库房等。 2.2进行原材料试验和混凝土配合比设计。 2.3混凝土摊铺前,对基层进行整修,检测基层的各项指标均须符合要求方可施工,如有不合格之处应予以整修、补强等。混凝土摊铺前,基层表面应洒水润湿,以免混凝土底部水分被干燥基层吸去。路面施工 3.1测量放样 根据设计图纸放出路线中心线及路面边线; 在路线两旁布设临时水准点,以便施工时就近对路面进行标高复核。混凝土摊铺过程中,要做到勤测、勤校、及时纠偏。 3.2支立模板 在处理好的基层上,清扫杂物及浮土,然后再支立模板,模板高度与混凝土板厚度一致。 模板按预定位置安放在基层上,两侧用铁钎打入基层以固定位置,模板顶面用水准仪核查其标高,严格控制模板标高和平面位置。 支立好的模板要与基层紧贴,并且牢固,经得起振动梁的振动而不走样。 支立好模板后,应再检查一次模板高度和板间宽度是否正确。为便于拆模,立好的模板在浇捣混凝土之前,其内侧应涂隔离剂或铺上一层农用塑料薄膜。 3.3混凝土混合料的制备 拌制混凝土时要准确掌握配合比,进入拌和机的砂、石料及散装水泥须准确过秤,特别要严格控制用水量,每天拌制前,要根据天气变化情况,测量砂、石材料的含水量,调整拌制时的实际用水量。混凝土每盘的搅拌时间应根据搅拌机的性能和拌和物的和易性确定,时间不宜过长也不宜太短。 4混合料运输 混凝土运输用手推车、翻斗车或自卸汽车,运距较远时,宜采用搅拌运输车运输。运送时,车厢底板及四周应密封,以免漏浆,并应防止离析。混凝土出料及铺筑时的卸料高度不应大于1.5米,每天工作结束后,各种施工车辆要及时用水冲洗干净。 5摊铺混凝土 运至浇筑现场的混合料,一般直接倒向安装好侧模的路槽内,并用人工找补均匀,有明显离析时应重新拌匀。摊铺时应用大铁钯子把混合料钯散,然后用铲子、刮子把料钯散、铺平,在模板附近,需用方铲用扣铲法撒铺混合料并插入捣几次,使砂浆捣出,以免发生空洞蜂窝现象。 施工间歇时间不得过长,一般不应超过1小时,因故停工在1小时以内,可将已捣实的混凝土表面用麻袋覆盖,恢复工作时将此混凝土耙松,再继续铺筑; 如停工1小时以上时,应作施工缝处理。 6混凝土震捣 对于厚度不大于22cm的混凝土板,靠边角先用插入式震捣棒震捣,再用功率不小于2.2Kw的平板震捣器纵横交错全面震捣,且震捣时应重叠10~20cm,然后用振动梁震捣拖平,有钢筋的部位,震捣时防止钢筋变位。 震捣器在第一位置震捣的持续时间应以拌和物停止下沉、不再冒气泡并泛出水泥砂浆为止,不宜过振,也不宜少振。 震捣时应辅以人工找平,并应及时检查模板,如有下沉、变形或松动应及时纠正。对混凝土拌合物整平时,填补板面选用碎(砾)石较细的混凝土拌和物,严禁用纯砂浆。没有路拱时,应使用路拱成型板整平。用震捣梁震捣时,其两端应搁在两侧纵向模板上或搁在已浇好的水泥板上,作为控制路线标高的依据,震捣梁一般要在混凝土面上来回各震捣一次。 7接缝施工 7.1纵向施工缝 纵向施工缝需设置拉杆,模板上预留了圆孔以便穿过拉杆,先把拉杆长度对半大致稳住,混凝土浇筑震捣完后,校正拉杆位置。需要注意的是拉杆位置一定要安放准确。 7.2横向缩缝 横向缩缝采用切缝法,合适的切缝时间应控制在混凝土获得足够的强度而收缩应力未超出其强度的范围内时进行,它随混凝土的组成和性质、施工时的气候条件等因素而变化,施工人员须根据经验进行试切后决定。 7.3胀缝 先浇筑胀缝一侧混凝土,取走胀缝模板后,再浇另一侧混凝土,钢筋支架浇在混凝土内。压缝板条使用前应涂废机油或其它润滑油,在混凝土震捣后,先抽动一下,而后最迟在终凝前将压缝板条抽出,抽出时,用木板条压住两侧混凝土,然后轻轻抽出压缝板条,再用铁模板将两侧混凝土抹平整。 7.4横向施工缝 每日施工终了必须设置横向施工缝,其位置宜设在胀缝和缩缝处,设在胀缝处,其构造采用胀缝构造。 7.5填缝 一般在养护期满后要及时填封接缝,以防止泥砂等杂物进入缝内,填缝前须将缝内杂物清扫干净,并在干燥状态下进行,最好在浇灌填料前先用多孔柔性材料填塞缝底,然后再嵌灌填缝料。 8收水抹面及表面拉毛 水泥混凝土路面收水抹面及拉毛操作的好坏,可直接影响到平整度、粗糙度和抗磨性能,混凝土终凝前必须收水抹面。 抹面前,先清边整缝,清除粘浆,修实掉边、缺角。 抹面一般用小型电动磨面机,先装上圆盘进行粗光,再装上细抹叶片精光。操作时来回抹平,操作人员来回抹面重叠一部分。抹面机抹平后,有时再用拖光带横向轻轻拖拉几次。 抹面后,当用食指稍微加压按下能出现2mm左右深度的凹痕时,即为最佳拉毛时间,拉毛深度1~2mm。 拉毛时,拉纹器靠住模板,顺横坡方向进行,一次成型,这样拉毛纹理顺畅美观且利于排水。 9养护 当混凝土表面有相当硬度时,一般用手指轻压无痕迹,就可用湿草垫或湿麻袋覆盖,洒水养护时应注意水不能直接浇在混凝土表面上,当遇到大雨或大风时,要及时覆盖润湿草垫。每天用洒水车勤洒水养护,保持草垫或麻袋湿润。放行通车后,仍需洒水养护2~3天。 10拆模 当混凝土强度达到设计强度的25%以上时,放可进行模板拆除工作。一般拆模时间见下表 拆模时应仔细,先取下模板支撑、铁钎等,然后用扁头铁撬棍棒插入模板与混凝土之间,慢慢向外撬动,切勿损伤混凝土板边,并尽量保持完好,拆下的模板应及时清理保养并放平堆好,防止变形。 石灰石0粘土铜矿渣砂页岩3无烟煤石膏矿山破碎破碎机预均化堆场1254破碎机联合预均化堆场7喂料机原料配料站6砂页岩8煤仓石膏仓辊式磨系统SP余热锅炉余气(热源)水蒸汽烘干机粉磨机选粉机14910、11、121317煤磨水余热发电系统增湿塔降温余热锅炉余气(235℃)生料均化库(空压机)1518动态选粉机细粉SP余热锅炉余气(热源)粗粉空气输送斜槽16水SP余热锅炉水蒸汽动能生料喂料口窑尾废气(340℃)五级旋风预热器TSD型分解炉60%煤粉煤粉仓24破碎机旋风除尘器冷凝水回用电能发电机汽轮机水蒸汽干法回转窑旋风除尘器窑头废气(360℃)40%煤粉窑头废气(120℃)19AQC余热锅炉充气梁式篦冷机20粉煤灰水熟料库2122、2325石灰石混合材库矿渣混合材26水泥粉磨调配站2728图 例物流:气流: 29、30产尘点及除尘器编号:噪声点:固体废物:旋风除尘器:说明:设有除尘器的位置均产生固废,图中标注省略数字36石膏联合粉磨系统选粉机细粉粗粉31、32、3334、35、36水泥成品库40、41、42、4337、38、39水泥汽车散装机46、47汽车散装出厂汽车外运44、45回转式包装机袋装水泥成品库 图1 新型干法水泥生产工艺流程图 在水泥生产过程中,其能耗占水泥生产成本50%以上,而水泥粉磨系统占水泥生产总电耗30%以上。 水泥粉磨系统是指将水泥熟料、石膏及各类混合材粉磨成合适的粒径,形成一定的颗粒级配,提高水泥的水化性能和凝结度,整体提高水泥质量的系统。 当前,以辊压机或特殊结构的立磨作为预粉磨机并与球磨机组成的水泥粉磨系统,是当前的主要流行方式。 用粉磨效率高的立磨或辊压机代替球磨机的水泥终粉磨方式,在国外已有了一定的发展,以日本和德国研究较多。 因此,研究水泥粉磨系统装备及工艺流程对降低能耗,提高水泥企业效益具有十分重要的现实意义。 一、传统水泥粉磨系统与先进粉磨系统能耗分析 传统水泥粉磨系统与先进粉磨系统能耗对比如下。 传统水泥粉磨系统生产过程各电耗值如表1所示。 表1和表2数据显示,先进水泥生产和传统水泥生产过程相比较,熟料烧成和其他电耗量没有明显变化;原料粉磨,煤粉制备,水泥粉磨电耗都有明显下降,但是水泥粉磨系统耗电量仍为最大。 二、水泥粉磨系统装备及工艺流程 1.水泥立磨终粉磨。 立磨粉磨水泥动力消耗较低,粉磨时的水泥不需要辅助冷却,并且物料在磨内的停留时间短,能很快从一种品种转换成另一品种,不需要将磨内物料倒出,能在生产过程中迅速改变成品的颗粒组成。 其代表厂商:德国莱歇、天津院、北方重工、史密斯等。 配套5000t/d级生产线,16kWh/t,好的15kWh/t,台产>120t/h。 水泥立磨终粉磨工艺流程图如图1所示: 2.CKP预粉磨立磨。 能够最大限度地研磨水泥熟料,避免料饼体外循环的工艺过程,工艺布置简单,节能效果突出。 通常情况下,吨水泥熟料预粉磨配置功率≤7kWh/t,粉磨P·O42.5水泥综合电耗可控制在30~32kWh/t之间。 CKP磨采用机械卸料设计,能够避免笼式选粉机高风速、高浓度物料对耐磨材料的长期冲刷和磨损。 代表厂家:日本川崎。 CKP预粉磨立磨工艺流程图如图2所示: 3.辊压机水泥终粉磨系统。 具有显著的节电效益,而且后续维护维修简单、运行成本低。 对水分的适应能力较弱。 登封嵩基水泥:采用Φmm×1600mm,2×1800 kW辊压机,台时430~450t/h,电耗12kWh/t生料左右。 代表厂家:成都利君、成都光华科技。 辊压机水泥终粉磨系统图3所示: 4.联合粉磨系统。 主要有四种工艺方案,分别是辊压机+打散分级机+开流磨;辊压机+打散分级机+圈流磨;辊压机机+V型选粉机+开流磨;辊压机+V型选粉机+圈流磨系统。 打散分级机电耗较高,分选粒径可达3.0mm,部件有磨损较严重。 V型选粉机电耗较低,磨损小,分级效率较打散分级机高,适合分选0.5mm以下的物料,但要求辊压机规格大。 开流磨系统设备较少,设备装机功率较低,工艺布置简单,投资较少,操作管理简单、方便,系统运转率高,成品中含有粗颗粒,水泥成品温度较高,闭路磨系统水泥成品温度较低,成品比面积容易控制,稳定性好,台时产量比开路磨产量高10%~20%,出磨水泥温度较低,有利于水泥输送、包装、使用,产品细度调节方便,尤其对大型磨机生产高标号水泥有利,成品中无粗颗粒,适合生产高层喷浆水泥。 联合粉磨系统四种工艺方案工艺流程图如图4、5、6、7所示。 由图8可以看出,磨球(研磨体)消耗占研磨工序消耗比例的45%,选择适当的耐磨材料可以在一定程度上降低水泥生产成本。 磨球在磨机内承受由磨球、衬板及研磨物料所组成的三体磨料磨损,磨球的磨损不仅与其本身的`硬度有关,还与衬板及被磨物料的硬度有关。 低铬铸铁磨球:使用寿命比锻钢球、中锰球铁球高,具有较高的强度和韧性。 安全可靠的,制造成本合理。 高铬铸铁磨球:具有优良的抗磨能力,有良好的抗冲击疲劳能力可以降低球耗和电耗,提高产量和细度,高铬铸铁磨球价格较高。 笔者对高铬铸铁磨球和低铬铸铁磨球进行了比较,发现高铬铸铁磨球比低铬铸铁磨球的耐磨性高出了60%,但从价格方面看高铬铸铁磨球比低铬铸铁磨球价格高了一倍以上。 综合来讲,低铬铸铁磨球较为经济。 具体数据如表3所示。 三、结论 (1)对于熟料制备系统,辊压机终粉磨系统具有不可比拟的节能优势,但在辊压机的使用寿命和工艺布置上还需进一步优化,使其更具有技术优势和魅力。 (2)水泥立磨终粉磨方案集烘干、研磨、选粉于一体,工艺流程简单、建筑面积和占地面积小、设备数量少、允许进磨物料水分高、运转率高、粉磨效率高、操作维护简单、节电效果好、运行费用低、单机规模大等优势,其取代水泥球磨的趋势已十分明显。 但是,立磨出来的水泥颗粒形貌、级配不如球磨机的好,因此加强对新型粉磨系统的研究,对水泥行业的发展有重要意义。 (3)粉磨系统的提产降耗必须从整体优化和改善粉磨系统的工艺入手,入磨物料粒度降低以后,若对磨机分仓不合理及研磨体的级配不能及时调整优化,就不会达到预期的效果。 参 考 文 献 [1]覃芬爱.浅谈水泥粉磨系统节能工艺的发展[J].建材与装饰.(11):102~103 [2]水泥生产各阶段能耗调查.http://www.sngyw.com/blog/show.asp?newsid=1221 [3]韩仲琦.现代水泥粉磨技术的发展[J].山西建材.2000(3):8~13 [4]杜小卫.CKP立式磨与辊压机作预粉磨的对比分析[J].2012(1):19~25 [5]贾华平.辊压机生料终粉磨运用之调研分析[J].新世纪水泥导报.2012(2):4~9 1 施工前期的准备工作 在进行水泥砂浆地面的施工前要做好前期的准备工作。在准备工作方面要做好材料的准备以及施工机具的准备, 同时还要保证施工的作业条件。在施工材料的准备方面, 主要是要准备施工用的水泥和砂, 水泥的选择上要使用同一品种及标号的水泥, 禁止混用水泥。在砂的选择上, 要尽量使用中砂或者是粗砂, 而且砂的粒径要进行严格的控制, 同时还要保证砂的含泥量要做到符合施工的要求。在施工机具的准备方面要准备好搅拌机、手推车以及施工中所用的各种设备。在施工的作业条件方面, 要保证地面的垫层以及地面内的各种管线都已经铺设完毕, 需要穿过地面进行的竖管施工已经完成。在进行施工的时候还要保证建筑的门框已经安装好, 避免在施工中门框造成破坏。在进行施工前, 所有的准备工作都要准备好, 这是保证施工可以顺利进行的前提条件。 2 水泥砂浆地面的施工操作工艺 在进行水泥砂浆地面的施工中是有很多的施工工艺, 而且这些施工的工艺要按照流程来进行施工。在施工中, 首先要对施工的基层进行处理, 在施工中, 先要将施工的基础灰尘清理干净, 去除基层表面的油污, 同时要用清水对基层进行冲洗作业。然后进行标高和弹线的设置, 地面施工中, 要找到水平的标高, 这是为了保证施工中地面是平整的, 在量出地面的标高以后要在墙上进行弹线的标记。在施工中, 地面一定要保持一定的湿度, 这对于施工是非常有利的, 为了使地面保持一定的湿度可以对地面的基层进行洒水处理。然后根据墙面的水平标高线确定面层的抹灰厚度, 然后按拉好的水平线开始抹灰饼的作业, 达到地面面层的标高即可。然后进行砂浆的搅拌, 在进行搅拌的时候, 要将水泥和砂的比例按照一比二的比例进行搅拌, 为了控制加水量应该使用搅拌机进行搅拌, 在颜色一致以后即可。搅拌好以后就可以进行水泥砂浆面层的浇筑了, 在进行浇筑的时候, 为了使砂浆可以均匀铺设, 可以使用一定的工具进行高度的刮平。在刮平以后要进行铁抹子的第一遍压光, 这么做是为了使拌料与砂浆可以紧密的结合在一起。在第一遍压光以后可以进行第二遍, 这个时候面层的砂浆已经初步的凝固了, 在这个时候人踩在地面上会出现下陷的情况, 这个时候对地面进行压光, 可以是地面更加的平。在压光处理之后, 要对地面进行养护工作, 进行养护的工作, 要在压光工作完成后的二十四小时以后, 对地面进行洒水的养护保持地面的湿润。 3 水泥砂浆地面的质量标准 水泥砂浆的地面的施工要遵循一定的质量标准, 在施工中, 砂浆面层的厚度要符合设计的要求。在使用水泥的时候, 要保证使用的水泥是相同品种和规格, 这样可以保证水泥的强度。在水泥砂浆进行搅拌的时候要严格按照一定的比例进行搅拌。在施工中, 要保证地面面层同下层是紧密结合在一起的, 要做到没有裂纹和空鼓的情况出现。在检验面层和下一层结合面是否牢固的时候可以使用小锤轻击的方式进行检查。水泥砂浆的面层在表面坡度的设计上要符合设计的要求, 同时要做到表面不出现积水的情况。在检验的时候可以使用在表面泼水的方式进行检查。在面层施工以后, 要保证面层不出现裂纹, 没有脱皮的情况, 还要避免出现麻面或者起砂的缺陷。在进行检验的时候可以进行表面进行直接观察的检查方法。 4 水泥砂浆地面的成品保护 在地面操作过程中要注意对其它专业设备的保护, 例如埋在地面内的管线不得随意移位, 地漏内不得堵塞砂浆等。在面层做完之后, 养护期内要严禁进入。对已完工的地面上进行油漆、电气、暖卫专业工序时, 注意不要碰坏面层, 油漆、浆活不要污染面层。冬期施工的水泥砂浆地面操作环境不能低于零上五度, 一旦温度低于标准, 应采取必要的防寒保暖措施, 严格防止发生冻害, 尤其是早期受冻, 会使面层强度降低, 造成起砂、裂缝等质量事故。如果先做水泥砂浆地面, 后进行墙面抹灰时, 要特别注意对面层进行覆盖, 并严禁在面层上拌合砂浆和储存砂浆。 5 在施工中要注意的质量问题 出现空鼓和裂缝的情况, 这主要是由基层清理不彻底、不认真导致的, 在抹水泥砂浆之前必须将基层上的粘结物、灰尘、油污彻底处理干净, 并认真进行清洗湿润, 这是保证面层与基层结合牢固、防止空鼓裂缝的一道关键性工序, 如果不仔细认真清除, 使面层与基层之间形成一层隔离层, 致使上下结合不牢, 就会造成面层空鼓裂缝。涂刷水泥浆结合层不符合要求也会出现裂缝的情况, 在已处理洁净的基层上刷一遍水泥浆, 目的是要增强面层与基层的粘结力, 因此这是一项重要的工序, 涂刷水泥浆调度要适宜, 涂刷时要均匀不得漏刷, 面积不要过大, 砂浆铺多少刷多少。一般往往是先涂刷一大片, 而铺砂浆速度较慢, 已刷上去的水泥浆很快干燥, 这样不但不起粘结作用, 相反起到隔离作用。另外, 一定要用刷子涂刷已拌好的水泥浆, 不能采用干撒水泥面后, 再浇水用扫帚来回扫的办法, 由于浇水不匀, 水泥浆干稀不匀, 也影响面层与基层的粘结质量。在预制混凝土楼板上及首层暖气沟盖上做水泥砂浆面层也易产生空鼓、裂缝, 预制板的横、竖缝必须按结构设计要求用C20。细石混凝土填塞振捣、密实, 由于预制楼板安装完之后, 上表面标高不能完全平整一致, 高差较大, 铺设水泥砂浆时厚薄不均, 容易产生裂缝, 因此一般是采用细石混凝土面层。首层暖气沟盖板与地面混凝土垫层之间由于沉降不匀, 也易造成此处裂缝, 因此要采取防裂措施。 出现地面起砂的情况, 这可能是养护时间不够, 过早上人导致的, 水泥硬化初期, 在水中或潮湿环境中养护, 能使水泥颗粒充分水化, 提高水泥砂浆面层强度。如果在养护时间短强度很低的情况下, 过早上人使用, 就会对刚刚硬化的表面层造成损伤和破坏, 致使面层起砂、出现麻坑。因此, 水泥地面完工后, 养护工作的好坏对地面质量的影响很大, 必须要重视, 当面层抗压强度达5MPa时才能上人操作。使用过期、标号不够的水泥、水泥砂浆搅拌不均匀、操作过程中抹压遍数不够等, 都是造成起砂现象。有泄漏的房间倒泛水, 在铺设面层砂浆时先检查垫层的坡度是否符合要求。设有垫层的地面, 在铺设砂浆前抹灰饼和标筋时, 按设计要求抹好坡度。必须认真按前面所述的操作工艺要求, 用铁抹子抹压的遍数去操作, 最后在水泥终凝前用力抹压不得漏压, 直到将前遍的抹纹压平、压光为止。 6 结束语 现在, 建筑施工工程如雨后春笋一般, 在城市的各地都是非常多的, 在施工中, 施工的质量是非常重要的。为了保证施工的质量对工程的施工工艺要进行严格的控制。在建筑工程施工中, 地面的施工经常使用的施工方法是水泥砂浆的方法。在进行水泥砂浆的施工时, 一定要对施工的工艺严格的控制, 保证施工的质量。 参考文献 [1]刘淑华.水泥砂浆防水层技术探讨[J].黑龙江科技信息, 2011.[1]刘淑华.水泥砂浆防水层技术探讨[J].黑龙江科技信息, 2011. [2]李伟.砂浆保水性测试方法的研究[J].新型建筑材料, 2011.[2]李伟.砂浆保水性测试方法的研究[J].新型建筑材料, 2011. 水泥就是我们一般所用的那种材料,是一种经过细细研磨之后的材料,在其中加入一定量的水以后便可以成为一种浆体,无论在水中还是在空气中都可以硬化,并且可以把其他的一些材料紧密的结合在一起,形成更为坚固牢靠的结构。水泥的加工基本应属于重工业领域的范畴,属于化工产业,因此对水泥各方面的特性加以详细研究,对水泥中的各种规律加以利用,在实际施工中多家钻研,就可以增强水泥的性能,在使用过程中更加的得心应手,对于工程的建筑有重要的作用和意义。水泥的特性有很多,评价水泥质量好坏有大体公认的标准,主要考虑到的技术指标有,水泥的比重与容重,水泥的细度密度,凝结所用的时间,强度,体积的安定性以及水化热。对水泥的各方面进行技术的探讨,对技术要求进行反复的试验,才能提高水泥的实用性和稳定性。 一项工程的成功完成并不只是如期的交工,更重要的是保证在工程完成以后一定时期内工程的质量,水泥是建筑中应用较多的一种材料,为了保证整个工程的质量,我们就应该对水泥的各个特性做出检测,保证水泥高质量投入生产,所以我们应该将目光投入到水泥生产和应用中的各个环节,对水泥生产中的技术要求和质量的控制进行分析,对水泥进行严格的生产和配比、搅拌、碾压等技术,保证水泥的质量。我们从大面上分析了水泥的重要性以及特性的多样化,下面我们就来详细分析一下水泥稳定碎石基层施工工艺与质量控制中的各项注意要点。 1.原材料控制 1.1水泥 水泥作为稳定剂,其质量至关重要,进场过程中每批或者每500T检测一个样品,进行水泥强度、初凝时间、终凝时间、安定性和细度指标的检验。 1.2碎石 石料最大料径不得超过31.5mm,同时集料压碎值不得大于30%;石料颗粒中片状颗粒含量不超过15%,并不得掺有软质的破碎物或其他杂质;石料按粒径可分为小于0~5mm及5~31.5mm两级,工地试验室确定各级石料及砂的掺配比例。 2.施工前测量 测量放样是保证施工质量的关键,每个摊铺队配制一个测量组,以保证施工放样及时、平面位置及标高随时得到控制。放样时,首先是在已铺筑的底基层恢复中线,直线段每10m设一个桩,曲线段加密至5m一桩,并在两侧边缘外0.3~0.5m设指示桩,然后进行水平测量,在两侧指示桩上方根据设计标高及试验段确定的松铺厚度设置摊铺机水平传感导线,导线采用直径3mm钢丝,用紧线器强紧,张紧力不小于600N,架设长度不大于200m,并用白灰设置方向导线,应在每次摊铺前和摊铺过程中对导线和指导桩进行复核测量,确保施工的准确定。 3.配合比设计 基层配合比抗压强度不小于4Mpa,为控制各结构层的合成配合比,石料采用分级备料,拌合场生产时,可根据工地试验室配置的基层配合比设计情况,大致控制生产数量。 4.拌和 采用厂拌法施工,拌合站场地应宽阔,交通便利。碎石分类分仓堆放,并做好标示,在正式生产混合料之前,先调试好所用的设备,使混合料颗粒组成和含水量都达到规定的要求,原集料的颗粒组成发生变化时,则重新调试设备,拌和时应做到配料准确,拌和均匀。拌和含水量比最佳含水量大约多0.5%~1%,以补偿施工过程中水分蒸发的损失,并根据集料含水量的大小、气候及气温变化的实际情况(如早、中、晚不同)以及运输和运距情况及时调整加水量,确保施工时处于最佳含水量。 5.摊铺 基层采用摊铺机进行梯队摊铺,摊铺前对已铺筑的底基层适当洒水湿润。摊铺机摊铺时,通过传感器来控制高程,采取半幅全断面一次摊铺成型的方法,以减少接头并方便施工。摊铺时配置4个工人对松铺层边缘进行修整,并对摊铺机摊铺不到和摊铺不均匀的地方进行人工补料,确保基层的平整度。摊铺时采用2台摊铺机一前一后相隔5~10m同步向前吧混合料按松铺厚度、设计宽度和设计横坡均匀摊铺,一起进行碾压,以避免纵向接缝。摊铺过程中兼顾拌和机出料的速度,适当调整摊铺速度,尽量减少停机待料的情况。摊铺机应设专人消除集料离析等现象,铲除任何离析、太湿等不合格的混合料,并在碾压前采用合格的拌和料添补。 6.碾压 碾压遵循先轻后重、由低位到高位、由边到中的原则,碾压时应控制混合料的含水量处于最佳值。先用180型单钢轮压路机及时并连续在全宽范围内进行一遍出压(静压),碾压均与路中心线平行,直线段由边到中、超高段由内侧到外侧依次连续均匀进行碾压,相邻碾压轮迹重叠1/3轮宽,然后用220型重型振动压路机继续碾压,并检测压实度,直到全宽范围都均匀达到规范规定的压实度及消除轮迹。另外,当实际含水量接近最佳含水量时,压实度才有保证,当实际含水量大于最佳含水量,碾压时容易出现“弹簧”,当实际含水量小于最佳含水量时,压实度就会达不到要求。 7.养生 每一段碾压完成且自检压实度合格后,立即进行养生,不能延误。养生采用土工布覆盖养生,在覆盖前,先对自检合格的基层洒足量水养生,然后铺设土工布。土工布经济、实惠、成本低且保湿度高,覆盖不易小于7d,在这期间封闭交通,严禁车辆通行,覆盖薄膜时纵、横向压砂或废料,确保铺设到位,防止干燥或忽湿,及时洒水,确保整个养生期间基层表面始终保持潮湿状态。 8.质量控制要点 8.1只有质量合格的原材料才能进场使用,应检测石屑的液限和塑性指数,必须符合有关要求。 8.2施工过程中,当集料含水量的大小发生改变或出现气温变化等情况时应及时调整加水量,确保施工时混合料处于最佳含水量。混合料摊铺时尽量减少集料离析现象,上基层表面应保证粗糙,以便与下面层粘结。 8.3碾压及时到位,保证达到压实度。 8.4施工结束后,及时采用土工布覆盖并洒水养生。 9.结束语 【硅酸盐水泥工艺学教案】推荐阅读: 中科院上海硅酸盐研究所接收推免生公告10-112.硅酸盐水泥工艺学教案 篇二
3.硅酸盐水泥工艺学教案 篇三
4.硅酸盐水泥工艺学教案 篇四
5.新型干法水泥生产工艺流程图 篇五
6.水泥粉磨装备及工艺流程 篇六
7.简述水泥砂浆地面施工工艺 篇七
8.硅酸盐水泥工艺学教案 篇八