二次函数单元测试

2024-11-29

二次函数单元测试(共11篇)(共11篇)

1.二次函数单元测试 篇一

初中数学二次函数测试题

一、填空题(每空3分,共42分)

1.已知函数y=(k2-k)x2+kx+1,当k满足 时,y是以x为自变量的一次函数;当k满足 时,y是以x为自变量的二次函数。

2.已知函数y=ax2的图象经过点P(3,-9),则此函数的解析式是它的开口方向是 ,它有最 值。当x0时,y随x的增大而 。

3.抛物线y=3-2x-x2的开口 ,顶点坐标是 ,对称轴是 ,它与x轴的交点坐标是 ,它与y轴的交点坐标是 。

4.二次函数y=mx2-3x+2m-m2的图象经过原点,则m 。

5.把函数y=3x2的图象向左平移2个单位,得到函数y= 的图象;再向下平移4个单位得到函数y= 的图象。

二、选择题(每小题4分,共28分)

6.抛物线y=-x2-2x+3的顶点坐标是( )

A.(1,4) B.(1,-4) C.(-1,4) D.(-1,-4)

7.如果二次函数y=x2-10x+c的顶点在x轴上,那么c的值为( )

A.0 B.10 C.25 D.-25

8.1月份的产量为a,月平均增长率为x,第一季度产量y与x的函数关系是( )

A.y=a(1+x)2 B.y=a(1+x)+a(1+x)2 C.a+(1+x)2 D.y=a(2+x)+a(1+x)2

9.二次函数y=-2(x+1)2+2的大致图象是( )

A B C D

10.已知函数 ,当函数值随x的增大而减小时,则x 的取值范围是( )

A.x B.x C.x D.-2

11.a0,则在同一平面直角坐标系内,一次函数y=a(x-1)和二次函数y=a(x2-1)的`图象只可能是图中的( )

A B C D

12.二次函数y=x2+ax+b中。若a+b=0 ,则它的图象必经过点( )

A.(-1,1) B.(1,-1) C.(1,1) D.(-1,-1)

三、解答题(每小题15分,共30分)

13.已知二次函数

(1)把已知函数化成 的形式;

(2)指出图象的对称轴和顶点坐标;

(3)画出函数的图象.

14.已知雅美服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装共80套,已知做一套M型号的时装需用A种布料0.6m,B种布料0.9m,可获利润45元;做一套N型号的时装需用A种布料1.6m,B种布料0.4m,可获利润50元;若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元.

(1)求y(元)与x(套)的函数关系式,并求出自变量x的取值范围;

(2)雅美服装厂在生产这批时装中,当N型号的时装为多少套时,所获得的利润最大?最大利润是多少?

2.二次函数单元测试 篇二

1. 函数f(x)=x2-log12x的零点个数为______.

2. 我们将一系列值域相同的函数称为“同值函数”.已知f(x)=x2-2x+2,x∈[-1,2],试写出f(x)的一个“同值函数”______.

3. 已知f(x)=ax7+x5-bx+2,且f(-5)=17,则f(5)=________.

4. 定义两种运算:ab=a2-b2,ab=(a-b)2,则函数f(x)=2x(x2)-2的奇偶性为______.5. 已知点A(3,3),B(-1,5),直线y=ax+1与线段AB有公共点,则实数a的取值范围是______.6. 据有关资料统计,通过环境整治,某湖泊污染区域S(km2)与时间t(年)可近似看作指数函数关系.已知近2年污染区域由0.16km2降至0.04km2,则污染区域降至0.01km2还需要______年.

7. 二次函数f(x)=ax2+bx+c(x∈R)的部分对应值如下表:

x-3-2-101234

f(x)6m-4-6-6-4n6

不求a,b,c的值,可以判断方程ax2+bx+c=0的两根所在的区间是______.

8. 定义在(-∞,+∞)上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,下面是关于f(x)的判断:① f(x)是周期函数;② f(x)的图象关于直线x=1对称;③ f(x)在[0,1]上是增函数;④ f(2)=f(0).其中正确的判断是______.(把你认为正确的都填上)

9. 将下面四个函数图象分别与下面四个现实情境相匹配.

情境A:一份30分钟前从冰箱里取出来,然后被放到微波炉里加热,最后放到餐桌上的食物的温度(将0时刻确定为食物从冰箱里被取出来的那一刻);

①②

③④

情境B:一个1970年生产的留声机从它刚开始的售价到现在的价值(它被一个爱好者收藏,并且被保存得很好);

情境C:从你刚开始放水洗澡,到你洗完后把它排掉这段时间浴缸里水的高度;

情境D:根据乘客人数,每辆公交车一趟营运的利润.

其中情境A、B、C、D分别对应的图象是______.

10. 已知函数f(x)=log3x+2(x∈[1,9]),则函数y=[f(x)]2+f(x2)的值域是______.

11. 若[x]表示不超过x的最大整数,如[e]=2,[-2.27]=-3,则对于函数f(x)=x-[x],有下列命题:① 函数y=f(x)的定义域为R,值域为[0,1];② 函数y=f(x)为偶函数;③ 函数y=f(x)在R上是增函数;④ 函数y=f(x)是周期函数;⑤ 方程f(x)=12有无数解.其中正确的命题序号为______.

二、 解答题

12. 据预测,某旅游景区游客人数在500至1 300人之间,游客人数x(人)与游客的消费总额y(元)之间近似地满足关系:y=-x2+2 400x-1 000 000.

(1) 当该景区游客消费总额不低于400 000元时,求景区游客人数的范围;

(2) 当景区游客的人数为多少人时,游客的人均消费最高?并求游客的人均最高消费额.

13. 某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元,可全部租出;当每辆车的月租金增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.

(1) 当每辆车的月租金定为3 600元时,能租出多少辆车?

(2) 当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大收益是多少?

14. 已知函数f(x)=x2ax+b(a,b为常数),且方程f(x)-x+12=0有两个实根x1=3,x2=4.

(1) 求函数f(x)的解析式;

(2) 若当x∈(-3,2)时,有不等式f(x)+x<2x3-k6-3x恒成立,求k的取值范围.

15. 如右图,用长为16米的篱笆,借助墙角围成一个矩形ABCD,在P处有一棵树与两墙的距离分别为a米(0<a<12)和4米.若此树不能被圈在矩形外,求矩形ABCD面积的最大值M.

16. 设a,b∈R且a≠2,定义在区间(-b,b)内的函数f(x)=lg1+ax1+2x是奇函数.

(1) 求b的取值范围;

(2) 讨论函数f(x)的单调性.

3.二次函数单元测试 篇三

二次函数

单元检测试题

(满分120分;时间:90分钟)

一、选择题

(本题共计

小题,每题

分,共计27分,)

1.已知函数y=(m+3)x2+4是二次函数,则m的取值范围为()

A.m>-3

B.m<-3

C.m≠-3

D.任意实数

2.抛物线y=-13x2+3x-2与y=ax2的形状相同,而开口方向相反,则a=()

A.-13

B.3

C.-3

D.13

3.在二次函数①y=-3x2,②y=13x2,③y=43x2中,它们的图象在同一坐标系中,开口大小的顺序用序号来表示应是()

A.②>③>①

B.②>①>③

C.③>①>②

D.③>②>①

4.在平面直角坐标系中,二次函数y=a(x-h)2(a≠0)的图象可能是()

A.B.C.D.5.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()

A.抛物线开口向上

B.抛物线的对称轴是x=1

C.当x=1时,y的最大值为4

D.抛物线与x轴的交点为(-1, 0),(3, 0)

6.二次函数y=3(x-2)2-5与y轴交点坐标为()

A.(0, 2)

B.(0,-5)

C.(0, 7)

D.(0, 3)

7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②2a+b=0;③若m为任意实数,则a+b>am2+bm;④a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中,正确结论的个数为()

A.1

B.2

C.3

D.4

8.已知二次函数y=-x2-bx+1(-5

A.先往右上方移动,再往右平移

B.先往左下方移动,再往左平移

C.先往右上方移动,再往右下方移动

D.先往左下方移动,再往左上方移动

9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=-1,与x轴的交点为(x1, 0)、(x2, 0),其中00;②-3-c3.其中,正确结论的个数为()

A.2

B.3

C.4

D.5

二、填空题

(本题共计

小题,每题

分,共计24分,)

10.将抛物线y=-2(x-1)2向右平移5个单位后,所得抛物线对应的函数解析式为________.

11.已知二次函数y=-x2+ax-4的图象最高点在x轴上,则该函数关系式为________.

12.已知抛物线的顶点为(-1,-3),与y轴的交点为(0,-5),则此抛物线的解析式是________.

13.抛物线y=ax2+bx+c的顶点是A(2, 1),经过点B(1, 0),则函数关系式是________.

14.用配方法将二次函数y=x2-6x+11化为y=a(x-h)2+k的形式,其结果为________.

15.已知等边三角形的边长为x(cm),则此三角形的面积S(cm2)关于x的函数关系式是________.

16.已知方程3x2-5x+m=0的两个实数根分别为x1、x2,且分别满足-2

17.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=-0.2x2+1.5x-2,则最佳加工时间为________min.

三、解答题

(本题共计

小题,共计69分,)

18.若一次函数

y=(k+1)x+k的图象过第一、三、四象限,判断二次函数

y=kx2-kx+k有最大值还是最小值,并求出其最值.19.抛物线y=x2-4x+m与y轴的交点坐标是(0, 3).

(1)求m的值.

(2)在直角坐标系中画出这条抛物线.

(3)求这条抛物线与x轴交点坐标,并指出当x取什么值时,y随x的增大而减小?

20.如图,为美化环境,某校计划在一块长为60m,宽40m的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为xm,花圃的面积为S,(1)求S与x之间的函数关系,并写出自变量x的取值范围;

(2)如果通道所占面积是整个长方形空地面积的,求此时通道的宽.

21.在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a≠0),与x轴交于A、B两点(点A在点B的左侧).

(1)求点A和点B的坐标;

(2)若点P(m, n)是抛物线上的一点,过点P作x轴的垂线,垂足为点D.

①在a>0的条件下,当-2≤m≤2时,n的取值范围是-4≤n≤5,求抛物线的表达式;

②若D点坐标(4, 0),当PD>AD时,求a的取值范围.

22.二次函数y=ax2+bx+2的图象交x轴于点A-1,0,点B4,0两点,交y轴于点C,动点M从A点出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动时间为t秒.

(1)求二次函数y=ax2+bx+2的表达式;

4.二次函数单元测试 篇四

一、教学目标

1.掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值. 2.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.

二、课时安排 1课时

三、教学重点

掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.

四、教学难点

运用二次函数的知识解决实际问题.

五、教学过程

(一)导入新课

引导学生把握二次函数的最值求法:(1)最大值:(2)最小值:

(二)讲授新课 活动1:小组合作

如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.(1)设矩形的一边AB=xm,那么AD边的长度如何表示?

(2)设矩形的面积为ym,当x取何值时,y的值最大?最大值是多少?

2解:1设ADbm,易得b3x30.4 332yxbx(x30)x230x4432x20300.4b4acb2或用公式:当x20时,y最大值300.2a4a活动2:探究归纳

先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲

例题:某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?

解:由4y7xx15.得y157xx.4x2157xxx2

窗户面积S2xy2x()2427157152x2x (x)22214225

.56b154acb2225 当x1.07时,s最大值4.02.2a144a56即当x≈1.07m时,窗户通过的光线最多.此时窗户的面积为4.02m.(四)归纳小结

“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.(五)随堂检测

1.(包头·中考)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm.

2.(芜湖·中考)用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.

23.(潍坊·中考)学校计划用地面砖铺设教学楼前的矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都是小正方形的边长,阴影部分铺设绿色地面砖,其余部分铺设白色地面砖.

(1)要使铺设白色地面砖的面积为5 200平方米,那么矩形广场四角的小正方形的边长为多少米?

(2)如图铺设白色地面砖的费用为每平方米30元,铺设绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺设广场地面的总费用最少?最少费用是多少?

4.(南通·中考)如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE,作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y.

(1)求y关于x的函数关系式.(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y 12,要使△DEF为等腰三角形,m的值应为多少? m

5.(河源·中考)如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x,面积为y.

(1)求y与x的函数关系式,并求出自变量x的取值范围.(2)生物园的面积能否达到210平方米?说明理由.

【答案】 1.12.5 2.根据题意可得:等腰三角形的直角边为2xm矩形的一边长是2xm,其邻边长为20422x21022x,

1所以该金属框围成的面积S2x1022x2x2x

2 10当x30202时,金属框围成的图形面积最大.322此时矩形的一边长为2x60402m,另一边长为10221032210210m.

S最大3002002m2.3.解;(1)设矩形广场四角的小正方形的边长为x米,根据题意 得:4x+(100-2x)(80-2x)=5 200,整理得x-45x+350=0,解得x1=35,x2=10,经检验x1=35,x2=10均适合题意,所以,要使铺设白色地面砖的面积为5 200平方米,则矩形广场四角的小正方形的边长为35米或者10米.(2)设铺设矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,则

y=30[4x+(100-2x)(80-2x)]+20[2x(100-2x)+2x(80-2x)] 即y=80x-3 600x+240 000,配方得 y=80(x-22.5)+199 500,当x=22.5时,y的值最小,最小值为199 500,所以当矩形广场四角的小正方形的边长为22.5米时,铺设矩形广场地面的总费用最少,最少费用为199 500元. 4.⑴在矩形ABCD中,∠B=∠C=90°,∴在Rt△BFE中,∠1+∠BFE=90°,又∵EF⊥DE,∴∠1+∠2=90°,∴∠2=∠BFE,∴Rt△BFE∽Rt△CED,22222∴BFBEy8x, ∴ CECDxm8xx2即y

m

8xx212,化成顶点式: yx42 ⑵当m=8时,y888xx12(3)由y,及y得关于x的方程: mmx28x120,得x12,x26

∵△DEF中∠FED是直角,∴要使△DEF是等腰三角形,则只能是EF=ED,此时,Rt△BFE≌Rt△CED,∴当EC=2时,m=CD=BE=6;当EC=6时,m=CD=BE=2.即△DEF为等腰三角形,m的值应为6或2.5.解:(1)依题意得:y=(40-2x)x. ∴y=-2x+40x.

x的取值范围是0< x <20.

(2)当y=210时,由(1)可得,-2x+40x=210. 即x-20x+105=0.

∵ a=1,b=-20,c=105,∴(20)2411050,∴此方程无实数根,即生物园的面积不能达到210平方米. 六.板书设计

2.4.1二次函数的应用 2

2探究: 例题:

“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.七、作业布置 课本P47练习练习册相关练习

5.二次函数反思 篇五

二次函数反思贾翠颖

二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式和它的定义域.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.、给学生提供丰富的实例,让学生体会数学来源于生活,并为生活所用.学习二次函数的知识,可以解决许多实际问题,真正体会学习数学的意义,产生用数学意识.调动学生积极主动参与到数学活动中,同时让学生感到求函数的最值在本章中处于非常重要的地位.在教学中我注重从身边的实例入手,让学生充分认识数学与生活的联系,增强学习数学的兴趣,达到愿学想学的愿望。

6.二次函数利润问题 篇六

(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)

(2)商场要想在这种冰箱销售中每天盈利4800元,又要使百姓得到实惠,每台冰箱应降价多少元?

(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

解:(1)根据题意,得y=(2400-2000-x)(8+4×),即;

(2)由题意,得

整理,得x2-300x+20000=0,解这个方程,得x1=100,x2=200,要使百姓得到实惠,取x=200,所以,每台冰箱应降价200元;

(3)对于 当时,y最大值=(2400-2000-150)(8+4×)=250×20=5000,所以,每台冰箱的售价降价150元时,商场的利润最高,最高利润是5000元。

2、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.

(1)求y与x的函数关系式并直接写出自变量x的取值范围;

(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?

解:(1)y=(210-10x)(50+x-40)=-10x2+110x+2100(0≤x≤15且x为整数);

(2)配方法,有y=-10(x-5.5)2+2402.5∵a=-10<0

∴当x=5.5时,y有最大值2402.5

∵0≤x≤15,且x为整数

当x=5时,50+x=55,y=2400

当x=6时,50+x=56,y=2400

∴当售价定为每件55或56元时,每个月的利润最大,最大的月利润是2400元;

(3)当y=2200时,-l0x2+110x+2100=2200

解得x1=1,x2=10。

∴当x=1时,50+x=5

1当x=10时,50+x=60

∴当售价定为每件51或60元时,每个月的利润恰为2200元

当51元≤售价≤60元且为整数时,每个月的利润不低于2200元(或当售价为51,52,53,54,55,56,57,58,59或60元时,每个月的利润不低于2200元)。

3、某商场购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售

经验,售价每提高1元,销售量相应减少10个;

(1)假设销售单价提高x元,那么销售每个篮球所获得的利润是元;这种篮球每月的销售量是______________________个;(用含x的代数式表示)(4分)

(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大利润,此时篮球的售价应定为多少元?(8分)

解:(1).(10+x)(500-10x)

(2).500-10x

(3).由(10+x)(500-10x)=-10x2+400x+5000=-10(x-20)2+9000得最大利润9000

此时售价604、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上

涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.

(1)求y与x的函数关系式并直接写出自变量x的取值范围;

(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?

(1)y=(210-10x)(50+x-40)=-10x^2+110x+2100=-10(x-5.5)^2+2402.5(0≤x≤15)

(2)∵X为正整数∴最大利润代入X=5(或者6),y=2400

(3)根据题意,得(210-10x)(10+x)=2200.

整理,得x2-11x+10=0,解这个方程,得x1=1,x2=10

∴当x=1时,50+x=51,当x=10时,50+x=60.

7.二次函数复习教案 篇七

18课时 二次函数(二)

1.理解二次函数与一元二次方程之间的关系;

2.结合方程根的性质、一元二次方程根的判别式,判定抛物线与x轴的交点情况; 3.会利用韦达定理解决有关二次函数的问题。4.会利用二次函数的图象及性质解决有关几何问题。教学重点 二次函数性质的综合运用 教学难点 二次函数性质的综合运用 教法 讲练结合 教学过程

一、知识梳理: 1.二次函数与一元二次方程的关系:

(1)一元二次方程ax2+bx+c=0就是二次函数y=ax2+bx+c当函数值y为0时的情况.

(2)二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数y=ax+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.(3)①当二次函数y=ax2+bx+c的图象与 x轴有两个交点时,则一元二次方程ax2+bx+c=0有两个不相等的实数根,△>0;

②当二次函数y=ax2+bx+c的图象与x轴有一个交点时,则一元二次方程ax2+bx+c=0有两个相等的实数根,△=0;

③当二次函数y=ax2+ bx+c的图象与 x轴没有交点时,则一元二次方程ax2+bx+c=0没有实数根,△<0.2.二次函数的应用:

(1)二次函数常用来解决优化问题,这类问题实际上就是求函数最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;

二、经典考题剖析: 例题1.已知二次函数y=x2-6x+8,求:(1)抛物线与x轴和y轴相交的交点坐标;(2)抛物线的顶点坐标;

(3)画出此抛物线图象,利用图象回答下列问题:

①方程x2-6x+8=0的解是什么?

②x取什么值时,函数值大于0?

③x取什么值时,函数值小于0?

解:(1)由题意,得x2-6x+8=0.则(x-2)(x-4)= 0,x1=2,x2=4.∴与x轴交点为(2,0)和(4,0);当x=0时,y=8.∴抛物线与y轴交点为(0,8);(2)抛物线解析式可化为y=x2-6x+8=(x-3)2-1;

∴抛物线的顶点坐标为(3,-1)

(3)如图所示.①由图象知,x2-6x+8=0的解为x1=2,x2=4.

②当x<2或x>4时,函数值大于0;③当2<x<4时,函数值小于0. 例题

2、已知二次函数yx2(m2)xm1,(1)试说明:不论m取任何实数,这个二次函数的图象必与x轴有两个交点;(2)m为何值时,这两个交点都在原点的左侧?

分析:(1)要说明不论m取任何实数,二次函数yx2(m2)xm1的图象必与x轴有两个交点,只要说明方程x2(m2)xm10有两个不相等的实数根,即△>0.

(2)两个交点都在原点的左侧,也就是方程x2(m2)xm10有两个负实数根,因而必须符合条件①△>0,②x1x20,③x1x20.综合以上条件,可求得m的值的范围.

三、合作交流:

1、若二次函数y=-x+2x+k的部分图象如图所示,关于x的一元二次方程-x+2x+k=0的一个解x1 = 3,则另一个解x2 = _____。

2、抛物线y=kx-7x-7的图象与x轴有交点,则k的取值范围是。

四、中考压轴题赏析:(分组合作)

已知:二次函数yx2(m1)xm的图象交x轴于A(x1,0)、B(x2,0)两点,2交y轴正半轴于点C,且x12x210。2(1)求此二次函数的解析式;

5)的直线与抛物线交于点M、N,与x轴交于点E,2使得点M、N关于点E对称?若存在,求直线MN的解析式;若不存在,说明理由。(2)是否存在过点D(0,-解:(1)∵x1+x2=10,∴(x1+x2)-2x1x2=10,根据根与系数的关系得:x1+x2=m+1, x1x2=m 222∴(m+1)2-2m=10,∴m=3,m=-3,又∵点C在y轴的正半轴上,∴m = 3,∴所求抛物线的解析式为:y=x-4x+3;(2)假设过点D(0,-5)的直线与抛物线交于M(xM,yM)、N(xN,yN)两22点,与x轴交于点E,使得M、N两点关于点E对称.

5设直线MN的解析式:y=kx-,2则有:yM+yN=0,(6分)由 得x-4x+3=kx-,并同类项得x2-(k+4)x+11=0,2移项后

合52∴xM+xN=k+4.

∴52yM+yN=kxM-+kxN-=k(xM+xN)-5=0,即k(k+4)-5=0,∴k=1或k=-5.

当k=-5时,方程x-(k+4)x+11=0的判别式△<0,直线MN与抛物线无交点,2522∴k = 1,3

∴直线MN的解析式为y=x-5,2∴此时直线过一、三、四象限,与抛物线有交点;

∴存在过点D(0,-5)的直线与抛物线交于M,N两点,与x轴交于点E.使得

2M、N两点关于点E对称.

点评:此题巧妙利用了一元二次方程根与系数的关系.在(2)中,将直线与抛物线的交点问题转化为根与系数的关系来解答,考查了同学们的整体思维能力.

五、反思与提高:

1、本节课主要复习了哪些知识,你印象最深的是什么?

2、通过本节课的函数学习,你认为自己还有哪些地方是需要提高的?

六、备考训练:

8.二次函数教学反思 篇八

标签:

教学反思:

今天,领着学生复习了二次函数的知识。本节知识是中考考点之一,往往与其他知识综合在一起作为中考压轴题,因此要求学生重点掌握的有以下几个内容:

1、二次函数图像的性质。

2、二次函数的实际应用。

在复习与练习的过程中,我发现学生存在着这样几个问题。

1、某些记忆性的知识没记住。

2、学生稍遇到点难题就失去做下去的信心。题目较长时就不愿意仔细读,从而失去读下去的勇气

3、学生的识图能力、读题能力与分析问题解决问题的能力较弱。

4、解题过程写得不全面,丢三落四的现象严重。

针对上述问题,需要采取的措施与方法是:

1、根据实际情况,对于中考升学有希望的学生利用课余时间做好他们的思

想工作。并对他们进行面对面的单独辅导,增强他们的自信心,以此来提高他们的数学成绩。

2、结合自己的学习经验对他们进行学法指导和解题技巧的指导。

3、根据不同的学生情况,搜集典型题让他们单独做,并给予及时的辅导与

矫正。

4、与其它任课教师联手一起想对策,指导学生读题的方法与分析问题,解

决问题的方法。

5、无论是做练习还是考试之前,都告诉学生要认真仔细的读题,从图形中

9.二次函数听课反思 篇九

雷梦瑶

执教老师:马娟

现对马老师执教的《一次函数》谈谈自已的感想。

整节课的学习,马老师准备的充分,清楚知道学生应该理解什么,掌握什么,学会什么。整堂课下来,马老师始终是学生学习活动的组织者、指导者和合作者,而学生是一个发现者、探索者,充分有效的发挥他们的学习主体作用。张老师是让学生“体会知识”,而不是“教学生知识”,学生成了学习的主人,突出学生的主体地位。“例1 请研究函数y=x2-5x+6的图象与性质,尽可能写出结论。”

让学生自己去体会二次函数的有关性质,这样的做法可以让学生自己积极的思考,使学生的思维变的更积极,更主动。体现出马老师知道在教学过程中着重发展学生的自主性、独立性和创造性,知道教师的教是为学生的学服务的。所以说从张老师这点的想法、做法上看是成功的。

1、整体感觉是学习过程逻辑清晰,小组分工明确,学生主体地位体现充分,学生配合好,课堂气氛活跃;

2、学生充分小老师角色非常到位,有讲有问,学生回答积极配合;

3、教师穿插点评、补充、总结、讲解,少好精;

4、整个教学过程分为四部分:基本知识、知识应用、扩展部分、总结部分。前后紧密相连,由易而难,步步推进;

10.《二次函数》教学反思 篇十

二次函数应用题型一般情况下,解题思路不外乎建立平面直角坐标系,标出图象上的点的坐标,求图象解析式,利用图象解析式及性质,来解决最优化等实际问题。一开始我引导学生回忆二次函数的三种不同形式的解析式,即一般式、顶点式、交点式,并说出它们各自的性质如抛物线的开口方向,对称轴,顶点坐标,最大最小值,函数在对称轴两侧的增减性。结合教材教学内容,呈现习题27.2第5题,让学生分小组去试验探索解决问题。各小组很快就得出三个特殊点的坐标(0,0)(5,4)(10,0),并求出了抛物线的解析式,当然速度有快有慢,第二问,就是求当x=6时y的值,不少学生纷纷举手示意完成,我很高兴,也没细究每个同学的情况。继续按照预定方案,组织学生活动,开始对一道试题进行探究。

如图,有一个横截面为抛物线的桥洞,桥洞地面宽为8米,桥洞最高处距地面6米。现有一辆卡车,装载集装箱,箱宽3米,车与箱共高4.5米,请您计算一下,车辆能否通过桥洞。

对于这个问题,不少学生表情凝重,目光迷惘,思路不畅,不知从何处下手。我反复引导,几次提醒按例题的方法,从函数的图象上进行考虑,但就是没有人响应,探究几乎陷于停顿,让我大感意外,超乎我的想象。好在我尚能应付,便提问素有“小诸葛”之称的张文贺,你是怎样思考的?张文贺说,他也知道首先建立平面直角坐标系,但问题是不知道把坐标系原点建在哪里,更不知道卡车是如何穿过桥洞,是靠中间走,还是靠边通过?我一听,才恍然大悟。原来学生的认知和老师想象的不一样,加上生活经验较少,难怪学生会沉默不语。对于坐标系的建立方法,学生面对多种可能的选择,往往束手无策,根本原因就是老师不重视对学生思考水平的研究,导致以老师思维代替学生思维,造成学生思考与实践脱节。这就要求老师要从学生的实际出发,了解学生的学习状况,善于启发和引导,才能较好的达到教学目标。

本节课的设计初衷,原是让学生从具体的生活实践中,感知数学模型,达到从实际问题中抽象出数学模型,并用数学知识解决问题,同时让学生感知和体会一题多变的变式训练,增加对数学解题思想的认识。但在教学时,学生对一些常规知识的缺失突出的暴露出来。如利用三点坐标求二次函数解析式,学生解三元一次方程组感到困难等。

11.二次函数教案 篇十一

某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.

(1) 问题中有哪些变量?其中哪些是自变量?哪些因变量

(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?

(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式.

果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子,因此果园橙子的总产 量

y=(100+z)(6005x)=-5x2+100x+ 60000.

二、想一想

在上述问题中,种多少棵橙子树,可以使果园橙子的产量最多?

我们可以列表 表示橙子的总产量随橙子树的增加而变化情况.你能根据 表格中的数据作出猜测吗 ?自己试一试.

x/棵

y/个

三.做一做

银行的储蓄利率是随时间的变化而变化的。也就是说,利率是一个变量.在我国利率的调整是由中国人民银行根据国民经济发展的情况而决定的.设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利 息自动按一年定期储蓄转存. 如 果存款额是100元,那么请你写出两年后的本息和y(元)的表 达式(不考虑利息税).

四、二次函数的定义

一般地,形如y=ax2+bx+c(a,b,c是常数,a0)的函数叫做x的二次函数(quadratic function)

注意:定义中只要求二次项系数不为零,一次项系数、常数项可以为 零。

例如,y=一5x2+100x+60000和y=100x2+200x+100都是二次函数.我们以前学过的正方形面积A与边长a的关系A=a2, 圆面积s与半径r的 关系s=Try2等也都是二次函数的例子.

随堂练习

1.下列函数中(x,t是自变量),哪些是二次 函数?

y=- +3x.y= x-x+25,y=2 + 2x,s=1+t+5t

2.圆的半径是l㎝,假设半径增加x㎝时,圆的面积增加y㎝.

(1)写出y与x之间的关系表达式;

(2)当圆的半径分别增加lcm、㎝、2㎝时,圆的面积增加多少?

五、课时小结

1. 经历探索和表 示二次函数关系的过程,猜想并归纳二次函数的定义及一般形式。

2.用尝试求值的方法解决种多少棵橙子树,可以使果园橙子的总产量最多。

六、活动与探究

若 是二次函数,求m的值.

七、作业

习题2.1

1.物体从某一高度落下,已知下落的高度h(m)和下落的时间t(s)的关系是:h=4.9t , 填 表表示物体在前5s下落的高度:

t/s 1 2 3 4 5

h/m

⒉某工厂计划为一批长方体形状的产品涂上油漆,长方体的长和宽相等,高比长多0.5m。

(1)长方体的长和宽用x(m)表示,长方体需要涂漆的表面积S(㎡)如何表示?

(2) 如果涂漆每平方米所需要的费用是5元,油漆每个长方体所需要费用用y(元)表示,那么y的表达式是什么?

上一篇:端午节好句经典唯美下一篇:安全生产各项管理措施