三位数除以两位数公开课教案(11篇)
1.三位数除以两位数公开课教案 篇一
三位数除以两位数(教案)
冯松林
【教学目标】
1大的调商方法,能比较熟练地进行试商。
2力。
【教具学具准备】
多媒体课件,视频展示台。
【教学过程】
一、复习引入
握试商小了要改
养学生的探究能
教师出示以下题目:20×()< 83 30×()< 158 40×()< 250 20×()< 98 学生独立完成,再抽学生在视频展示台上展示计算过程并说算法,主要介绍三位数除以两位数的笔算方法。
教师:今天我们就在学习了这些知识的基础上继续学习三位数除以两位数的除法。
板书课题。
二、进行新课
多媒体课件出示情境图。学生观察,分析题意。
教师:要求四年级一班平均借书多少本用什么方法计算?该怎样列式?学生列出算式272÷34,并说一说这样列式的理由是要求272里面包含有多少个34。
教师:会计算850÷17吗?
学生:这是三位数除以两位数的除法,我们已经会计算了。
教师:请大家借助前面的方法试着算一算,在计算中看看你会遇到什么新问题?
学生独立尝试计算,教师巡视并给予适当的指导。
教师:计算中你遇到了什么新问题?
学生1:我计算时遇到的问题是:在计算 的试商方法,把34看作30,因为272里面包含了9个30,所以试商9,用9乘34得到306,发现不够减,所以发现商9大了。
教师:商大了,该怎么解决?
学生:改商8。
教师随学生的回答板书
教师:同样是试商,为什么这里会出现商小了的情况呢?
指导学生讨论后理解:因为把除数34看作30来试商,这样把除数看小了,因此在用9乘34而不是乘30时,出现商大了的情况。
教师:还有问题吗?
学生2:我遇到的就是接下来怎么计算的问题,十位上商5以后,余数为0,这时应该怎么办?
教师:谁能解决这个问题?
引导学生思考后知道:当个位不够商1时,在个位上要写0来占位。
教师:个位不写这个0行吗?学生:不行。如果不写0占位,它的商就不是5个十了。
教师板书
教师:怎样写答语呢?
教师:你认为今天的计算和前面学习的三位数除以两位数的计算有什么不同?
学生讨论后回答:我们在这道题计算中出现了“试商中商小了怎么办?”和“当个位上不够商1了怎么办?”这些新的问题。
教师:同学们是怎样解决这些问题的?
引导学生总结:试商时如果商小了,要把商改大;当个位上的数除以除数不够商1时,要在商的个位上写0占位。
教师:下面请大家在练习二十的
三、巩固练习课堂活动。
学生独立思考后组织小组讨论,再集体交流。
学生汇报主要注意以下几个方面:(1)判断这些计算是否正确?(2)如果错了,错在哪里?(3)应该怎样改正错误?
教师:你认为计算三位数除以两位数的除法最需要注意什么?
引导学生总结:一是要思考从哪一位商起;二是要关注试商和调商的过程;三是注意个位不够商1时,要写0占位。
四、课堂总结(略)
2.三位数除以两位数公开课教案 篇二
三位数除以两位数的除法是教学的一个难点,而三位数除以两位数(四舍五入)试商、调商是学生在学习了三位数除以整十数以后进行教学的,着重让学生学会用“四舍五入”的方法把除数看作是与它想接近的整十数去试商,发现问题后再进行调商。从而掌握除数是两位数的除法!
在这个教学过程中,学生对于“四舍五入”的方法基本能掌握,但是到了具体的试商时,基础差的学生不能很好的确定商是多少,花费了很多时间去试。特别有不少学生犯这样的错误,把除数看成整十数了,结果在具体的竖式计算时,直接把商和整十数相乘了。在课堂上发现了这个问题,已经明白告诉学生只是把除数看作整十数去试商,实际上除数是不变的,一定要用除数去和商相乘。前几课,学生已经掌握了四舍五入法试商的方法,而且商要进行调整,学生已经习惯了在竖式上直接试商,然而学生试商后会发现商大了或者小了,这时候就要进行调商了,调商的关键主要看什么呢?是余数。计算教学只有理解了算理,学生才能掌握计算方法,提高计算的正确率,才能运用计算去解决生活中的实际问题。
从课堂效果和作业情况反映出来的问题主要有以下几个方面:
1、确定商的位置;当练习中同时出现商可能是两位数也有可能是一位数时;有些学生的错误率就比较高,有的明明被除数的十位不够商,却还要去商;遇到不够商1要商0时,学生容易把0遗漏;有些学生把除数看作一位数,把末尾的0忽略不看,直接用一位数除法计算了。
2、在乘的过程中经常把商和看作整十数相乘。
3、在试商的过程中不知道商几,有的学生有用1~9各数分别去与除数相乘,很是浪费时间。
4、竖式中两位数乘一位数的口算特别是有进位的不熟练,退位减法正确率较低。
5、学生做题目时,余数容易忘写,横式答案抄错。
针对以上种种情况,在练习课中,我让学生应用“四舍五入”法和口算方法试商,还有针对性的帮助学生提高灵活的试商的方法。如:556÷72、816÷48,首先让学生确定商是几位数,初商在哪位,然后让学生讨论:被除数、除数有什么特点,该怎样试商?也可以借鉴以下几种方法.一是同头商九法;如452÷47这道题,因为除数和被除数的首位相同,而被除数的前两位接近除数的一半,所以直接商9。二是折半商五法;如:136÷26这道题,因为被除数的前两位接近除数的一半,所以直接商5,这两种方法相对比较简便。试商完成后把除数上面的整十数划掉,再把商和除数相乘。避免把商和整十数直接相乘。加强口算练习,培养学生及时检查、验算的习惯。
每位教师在课堂上都有自己独特的教学方法,而我在平时的教学是这样组织课堂教学的。首先;把试商除法知识进行分类,组织学生对知识点进行分析、比较、讨论,自主探究,发现规律,对所学知识有一个感性认识。再则;在讲每一类的除法时,要让学生先能熟练的进行除法计算,让学生自觉地发现总结出每一类除法的试商次数及调商出现的情况。然后;再汇总每节课所学知识,专一对比两种试商的情况,把知识内化,这样学生试商起来会快些。我还认为,计算题,要想让学生的能力达到熟练的程度,方法就是“熟能生巧”,没有别的窍门。还有,除法题,要比乘法难,但乘法的确是除法的基础。所以,在学除法前,一定要让学生把乘法学好,坚持口算铺垫,笔算巩固的原则。要说最前面的基础,就是乘法口诀了。学生计算能力的培养,是一个长期的训练过程,需要我们数学教师不懈努力,所以我们要认真对待每一节练习课。
3.三位数除以两位数公开课教案 篇三
教学内容:教材第11页8-15题。教学目标: ⒈使学生进一步巩固除数是整十数的除法口算和笔算方法,帮助学生形成必要的计算技能,进一步提高解决简单实际问题的能力。
⒉使学生能过练习,感受到数学与生活的密切联系,锻炼数学思维,提高综合运用知识解决问题的能力。
⒊在教学中充分发挥小组合作学习的优势,提高学生自学的能力。教学重点: 学生进一步巩固除数是整十数的除法口算和笔算方法。教学难点:提高综合运用知识解决问题的能力。教学准备:小黑板 教学过程:
一、复习引入。(小黑板出示)1.计算下面各题。
360÷30= 310÷30= 421÷40= 720÷60= 340÷20= 523÷50= 学生独立完成,指名上黑板板演,并说一说计算过程。
二、基本练习、查漏补缺。1.口算下面各题。(练习二第10题)
要求学生一组一组完成,完成后让学生说一说上下两道题的联系。2.练习二的第11题。
⑴出示第11题,请学生读一读题目要求。
⑵学生独立思考估计一下每题的商,指名回答。⑶学生独立完成,指名板演,老师巡视指导。⑷集体订正时,选择其中两题说说笔算过程。⑸说说怎样笔算除数是整十数的除法。
三、综合应用,巩固提高。⒈练习二第12题。
先让学生说清楚每道算式的运算顺序,再独立完成。指名四位同学进行板演,最后集体订正。2.练习二第14题。学生独立审题。提问:卡车要运走哪些水果?解答这道题时要先求出什么?再算什么? 学生独立解答,教师巡视指导。(注意学生列综合算式时的运算顺序)3.练习二第13题。
(1)学生独立计算,完成表格填写。
(2)引导学生仔细观察这张表,看看自己有什么发现,将自己的观点在四人小组内交流一下。
(3)组织全班交流,教师可适时点拨,使学生初点体会除法算式中的“商不变的规律”。
四、课堂小结。
通过这些练习,你有什么收获?
五、作业布置
4.三位数除以两位数公开课教案 篇四
教学目标 掌握两位数除法的计算方法,准确的进行计算;会笔算三位数除以两位数(接近整十数)商一位数的除法。
克服学习中的困难,增强学习数学的自信心。
教学重﹑难点
运用“四舍五入”法进行试商。
教学设计思路
这节课与上节课内容的不同点是:除数是两位数,计算时要把两位数看作整十数来计算。教材选择了学生非常熟悉的三种休闲鞋及各自的单价。设计了两个活动。活动一:通过计算“2号鞋的单价是1号鞋的几倍?”列出算式69÷23,让学生学习两位数除以两位数,除数接近整十数,商一位数的除法。先让学生估算,再用竖式计算,利用估算的经验,使学生了解“除数23接近20,可以把它看作20来试商”。活动二:通过解决“买一双3号鞋的钱能买几双2号鞋?”的问题,计算150÷69,学习三位数除以两位数除数接近整十数商一位数的笔算方法。
学生活动与教师指导 意图说明
一、谈话导入
师生谈话,引出鞋价问题,呈现情景图,让学生了解图中的信息。
二、自主探索
1、提出帮小明妈妈估算是多少倍的问题。鼓励学生独立思考,用自己的方法估计。
2、交流学生的解决方法。重点使学生了解23接近20,可以把23看做20来试商。
3、用竖式计算
重点使学生理解除数23接近20,把它看做20计算比较方便。同时要提醒学生注意商3的书写位置。
三、尝试应用
(出示试一试)
让学生独立完成,然后进行交流,集体订正。
五、综合应用
第1、2题,是实际应用题。
第3题,按题目要求,先让学生说一说把除数看做几十来试商,然后再让学生独立完成。老师重点检查学生竖式的书写情况。
第4题,学生独立完成。
问题讨论:
这是学生身边的数学问题,要让学生进行充分的讨论,给学生尽量多的交流机会。
六、小结。 从生活情景引入,能使学生体验到生活与数学的密切联系,感受了生活处处有数学,增强学习和应用数学的信心,激发求知欲,培养学习兴趣,调动学习积极性。
让学生观察情境图并交流发现的数学信息,培养学生用数学的眼光观察事物的意识和能力。
让学生自主解答就是要考察学生估算时的想法和算法。鼓励思维的多样性,这样有利于培养学生思维的创造性。学生自主交流,自主探索,体现了学习的自主性;提高了学生的学习兴趣。学生自主探索解题方法,通过自主探索使新知在头脑中留下深刻的印象。
拓展练习
1.先计算在验算
78÷23=152÷36=227÷32=328÷82=
2.()最大能填几?
78×()<77451()<32646×()<280
64×()<32739×()<36138×()<245
板书设计
笔算除法
5.三位数除以两位数公开课教案 篇五
备课时间:月日授课时间:月日
教学内容:三位数除以两位数(用四舍调商)(一)
教科书第8页例题,第9页“想想做做”的第1~4题。
教学目的:1.让学生在掌握“四舍”法试商的基础上,学会调商的方法,能运用这种方法进行三位数除以两位数商是一位数的计算。
2.让学生在试商的调商的过程中,养成主动探索、互动合作的良好学习习惯,培养克服困难的意志。
3.让学生在操作、讨论、交流过程中,学会与人合作。
课时安排:本节共2课时,本课是第1课时
课型:新授
教具准备:
教学过程:
一、复习铺垫。
指名板演,其他学生同时练习
183÷61258÷43
订正时让学生说说计算的过程,重点强调把除数看做多少试商。
二、探究新知:
1、创设情境,谈话导入。
同学们通过前面知识的学习已经初步学习了除数是两位数的除法,你能运用学过的知识帮助四年级一班的同学解决一个实际的问题吗?
出示例题的挂图。
让学生说说图中的信息。指名列式,教师板书。
272÷34=
2、合作交流,探究新知。
(1)谈话,同桌互相说一说你准备把除数看作多少来试商,估计应该商几?指名回答。
(2)让学生尝试在本子上列出竖式解答,指名板演。教师巡视。
(3)针对商9以后,初商与除数相乘的积大于被除数,结合情境进行讨论:
每个人分9本,应该有多少本书?(306本)
一共借了多少本书?(272本)
够分吗?应该怎么办?
(4)谈话:同学们的计算说明了试商9过大,第一次试商没能成功,需要调商。下面请同学们自己调商,完成计算。算好后组内交流。
(5)指名完整叙述试商、调商的过程。
三、组织练习
1.做“想想做做”第1题。
(1)指名读题,说出题目要求。
(2)提问:这四道题是用什么办法试商的,出现了什么情况?为什么会出现这种情况?
(3)把准确的商说给同桌听。
(4)谈话:你们调整过的商对不对呢,还要算一算,请大家直接用准确的商列出除法竖式。
(5)同桌互相检查。
谈话:今后计算除法时第一次试出的商可以先不写出来,口算一下是否合适,如不合适再作调整,把调整后的商写出来,再计算。
2.做“想想做做”第2题。
(1)各自审查课本上的算式,找出错在哪里,说给同桌听。
(2)在班内交流。
(3)独立改正错题,指名板演。
(4)集体订正反馈。
3.做“想想做做”第3题第一栏的2道题。
四、课堂作业
“想想做做”第3题的其余4小题,第4题。
五、课堂总结
提问:我们今天学习了什么?与以前学过的两位数除法比较有什么不同?我们在试商的过程中应注意什么?
总第课时
备课时间:月日授课时间:月日
教学内容:三位数除以两位数(用四舍调商)(二)
教科书第8页,第9页“想想做做”第1~4题。
教学目的:1.让学生经历用四舍法试商发现初商过大需要调商的探索过程,会用这种方法计算三位数除以两位数商是一位数的除法。
2.让学生初步感受用试验、调整的办法解决问题的策
3.培养学生认真计算的习惯,培养克服困难的意志。
教学重点:引导学生自主探索用整十数除的口算和笔算方法。
课时安排:本节共2课时,本课是第2课时
课型:新授
教具准备:
教学过程:
一、教学例题
1.根据题目收集信息,列出算式。
出示第8页例题的情境图,提问:从这幅图中你知道了哪些信息?要求我们解决什么问题?
根据已知的信息和要解决的问题你能列出算式吗?
学生回答后板书算式272÷34
2.计算272÷34。
提问:计算272÷34这个算式,我们可以怎样来试商?商几?(学生根据上节课的经验会把34看成与它接近的整十数30来试商,商9)
谈话:请你们继续计算。
学生计算时会发现商9以后,9与34相乘的积超过了被除数。
组织学生讨论:你们在计算中发现了什么问题?这说明我们第一次试用的商也就是初商合适吗?是大啦还是小啦?为什么会初商过大?可以怎么办?
学生讨论后教师讲述:我们知道在被除数一定的情况下,除数越小,商越大,由于我们试商时把34看成30,所以造成初商过大,就需要把商调小。
请你们调整商后把结果计算出来。学生各自计算,指名板演。
谈话:这题的商你们是怎样找到的?计算了几次?以后遇到类似的题目怎样计算?(可以先用铅笔算,发现商不合适,擦掉后另算;也可以把初商记在心里,口算一下,看初商是否合适,如果不合适,调整好再写出商进行计算)
二、组织练习
1.做“想想做做”第1题。
(1)提问:这四道题试商出现了什么情况?你是怎么知道的?
(2)指名说出各题准确的商。
(3)重新列竖式计算,算后同桌互相订正。
2.做“想想做做”第2题。
(1)各自读题,找出错在哪里,指名向全班同学汇报。
(2)各自计算,指名板演,共同订正。
3.做“想想做做”第3题第1行的3道题。
三、课堂作业
做“想想做做”第3题第2行3道题,第4题。
四、全课总结.
提问:本节课所学的计算与以往学习的计算有什么不同?你在计算这种题目时积累了什么经验?
总第课时
备课时间:月日授课时间:月日
教学内容:三位数除以两位数(用五入调商)(二)
教科书第9~10页例题,第10页“想想做做”第1~4题。
教学目的:1、让学生经历用五入法试商发现初商过小需要调商的探索过程,理解五入调商的算理,掌握算法,会用来计算三位数除以两位数商是一位数的除法,并能运用这种计算解决简单的现实问题。
2.让学生通过调商方法的比较加深对除法计算中试商、调商的认识,进一步感受除法计算中对商进行试验调整的策略。
3.进一步发展学生的数学思考,培养学生耐心、细致进行计算的习惯和克服困难的意志。
课时安排:本节共课时,本课是第课时
课型:新授
教具准备:
教学过程:
一、复习铺垫
指名板演272÷34,其他学生同时计算。
让板演的学生说说自己的思考过程。教师相机板书:初商过大,需要调小。
谈话:这道题是我们上节课学习的例题,今天我们继续掣三位数除以两位数。(板书课题:三位数除以两位数)
二、教学新课
1.教学例题。
(1)呈现情境图。
学生口答算式后,教师板书:252÷36
(2)让学生尝试列竖式计算。
也可能有的学生已经调商,列成算式:
(3)让列成第一种算式的学生说一说自己是怎样试商的。(教师在除数上面用色笔板书:40)
谈话:他是把36看成与它接近的整十数40来试商的,这是我们在前几天学过的。那么这样计算的结果有没有问题呢?如果有问题,造成问题的原因是什么?请你们在四人小组内讨论。
(4)小组代表汇报讨论意见。
教师相机强调:余数等于除数,说明初商过小。(板书:初商过小)在被除数不变的情况下,除数越大,商越小,由于试商时把36看成40,所以造成初商过小。
(5)提问:你们发现了初商过小,下一步该怎么办?(学生回答后板书:需要调大)
(6)让学生自己调商并完成计算和验算。(对已经调商计算的学生给予表扬,要求他们验算)
(7)阅读课本第8页至第9页的例题,把缺少的部分补写出来。
2.对两道例题进行比较。
(1)谈话:昨天我们学习的例题是计算272÷34,刚才大家又算了一遍,今天学习的例题是252÷36,你能比较一下这两道例题在试商过程中有什么相同的地方有什么不同的地方吗?请思考后举手回答。
教师在学生回答后强调:两道例题都是用把除数看成整十数的方法试商,第一次试商后都没有成功,都需要对商再作调整,这是相同点。不同的是第一道例题由于把除数看成了比它小的整十数,造成初商过大,需要调小;第二道例题恰恰相反,由于把除数看成了比它大的整十数,造成了初商过小,需要调大。
(2)提问:现在你对“试商”这个词有什么新的认识?你还有什么想法?
谈话:试商,顾名思义是用试验的办法找商,我们采用的是把除数看成整十数的办法找商,这样找到的商有时正好,一次试验成功,有时不合适,一次不能成功,就需要对找到的商加以调整,这种调整一般一次可以完成,有时还要调整两次。看来做三位数除以两位数的除法,是件比较复杂的工作,往往需要试验、调整,这种试验、调整的办法也是人们解决复杂问题常用的办法。不过,请大家注意,我们这里采用的试商调商是在把除数看成整十数的情况下使用的,有没有其他试商的办法呢?有的,你们可以课后阅读课本第15页的“你知道吗”或其他资料,以丰富自己的试商方法。
二、组织练习
1. 做“想想做做”第l题。
(1)提问:认真审查这4道算式,看一看计算中出现了什么情况,你能说出准确的商吗?
(2)说给同桌听,然后指名汇报。
2.做“想想做做”第2题。
(1)谈话:认真看算式,找出错在哪里,说给同桌听。
(2)各自改正,另列算式计算,指定二人板演。
(3)全班共同订正。
3.做“想想做做”第3题的第一行3道题。
(1)学生独立做题。
(2)展示部分学生的做题结果,全班共同检查。
(3)统计做错的人数,展示做错的算式,让做题人自己找错误原因,如找不到再请他人帮助。
4.课堂作业。
“想想做做”第3题的其他3道题,第4题。
四、课堂总结
提问:这节课你学习的新的计算方法是什么?到现在为止,你认为做三位数除以两位数的除法计算,一般怎样试商?试商后会出现哪些情况?在具体运算中,你是怎样确定商的?
总第课时
备课时间:月日授课时间:月日
教学内容:射线、直线和角,教科书第16~17页。
教学目的:1.让学生经历画图、观察和交流等活动,认识射线、直线及相互间的联系,能区分线段、射线和直线;了解两点确定一条直线,体会两点间所有连线中线段最短,知道两点间的距离。
2.让学生加深对角的认识,并结合角的图形认识表示角的符号知道角的记法和相应的读法。
3.让学生能积极地参与学习活动,发展空间观念,并获得成功的体验。
课时安排:本节共1课时,本课是第1课时
课型:新授
教具准备:
教学过程:
一、认识射线和直线
1.认识射线。
(根据学生回答)(板书:射线)你会画射线吗?
学生动手试着画一画,再集体交流。
讲述:把线段的一端无限延长,就得到一条射线。(教师在黑板上先画一条线段,再将一端端点擦除将其延长。板书:)
让学生通过想像体会无限延长。
提问:请你和同桌说说什么是射线?
2.认识直线。
讲述:把线段的两端都无限延长,就得到一条直线。(板书:直线)
提问:你会画直线吗?
学生自己画一画,然后交流在画的过程中是怎样体验无限延长的。(教师随机板书:)
3.比较。
提问:射线、直线和线段相比,有什么不同点?有什么相同点?
小组讨论射线、直线和线段的异同点后集体交流。完成板书
相同点不同点
线段直有两个端点有限长
射线有一个端点无限长
直线没有端点无限长
4.两点确定一条直线。
提问:刚才我们认识了线段、射线和直线,经过一点能画几直线呢?
教师解释经过的含义,学生动手画一画后集体交流。
结论:经过一点可以画出无数条直线。
提问:那么经过两点能画几条直线?
学生动手画一画后集体交流。
结论:经过两点只能画出一条直线。
指出:生活中常常应用两点确定一条直线的知识。
学生自由交流,教师随机指导。
5、认识两点间的距离。
出示图
谈话:这里画了连结A、B两点的三条线,哪一条最短?
学生思考判断,指名交流。
提问:你还能想像出连结A、B两点的其他线吗?那些线与线段AB相比,长度怎样?
讲述:两点间的所有连线中线段最短,连结两点的线段的长叫做这两点间的距离。
学生测量A、B两点间的距离后交流。
二、进一步认识角
1.角的组成。
提问:你会从一个点起画两条射线吗?画一画,看看画成的是什么图形?
学生独立画一画后交流。(板书:角)
谈话:从一点起画两条射线,可以组成一个角。请两位同学到黑板上各画一个角,并指出角的顶点和两条边。你能根据自己的体会说说角是怎样的图形吗?
学生体会角的两边无限延长。
谈话:我们认识角,不光要看到它的顶点和两条边,还要看到两条边夹的这些部分,所以画角时还应把这些部分表示出来。(在学生画的两个角内画弧)
2.角的记法和读法。
指出:角通常用符号“∠”来表示。如××画的这个角可以记作“∠1”(板书),读作“角一”。那么谁会表示另一位同学画的角?(记作∠2)你会读吗?
谈话:角除了可以记作∠1、∠2外,还可以记作∠a、么b。将自己所画的角标一标,再读一读。
三、巩固练习
1.完成“想想做做”第1题。
提问:下面的图形,哪些是线段,哪些是射线,哪些是直线?说说你是怎样想的?
学生判断,再指名交流想法。
2.完成“想想做做”第2题。
谈话:在纸上任意点两个点,画图表示两点间的距离,再量出长度。
学生作图度量后,同桌互相检查。
3.完成“想想做做”第3题。
提问:从一点起画两条射线组成一个角。如果从这一点起再画一条射线,组成了几个角?
学生读题,理解题意后指一指有几个角,并指出各个角的两条边。
提问:如果再画一条射线共组成几个角?
学生思考,指名回答。
四、全课总结
提问:今天这一节课我们学到了哪些知识,有什么收获和体会?先互相说一说,再告诉大家。(根据学生回答,板书课题)
总第课时
备课时间:月日授课时间:月日
教学内容:角的度量,教科书第18~19页。
教学目的:1.让学生通过操作、交流等活动,激发认识角的测量工具和计量单位的愿望,进而认识量角器和角的计量单位,学会用量角器量指定的角。
2.让学生初步感受三角形的内角和是180°,知道角的大小与边的长短无关。
3.培养学生的观察、比较能力以及动手操作能力,使其积极地参与学习活动,获得愉快的情感体验。
课时安排:本节共2课时,本课是第1课时
课型:新授
教具准备:
教学过程:
一、设疑导入。激发兴趣
1.出示一个120°的角,与同桌说说你对它的了解。
2.引思:你知道这个角有多大吗?
引导操作:你能用三角尺上的角量出这个角有多大吗?
3.尝试测量:学生用自己的三角尺上的角量自己练习纸上120°的角。
4.反馈交流:你是怎样量的?结果怎样?
学生边操作边交流各种不同的量法和结果。
5.设疑:为什么这几位同学量得的结果不同呢?由此,你想到了什么?
谈话:为了准确测量出角的大小,要有统一的计量单位和度量工具。今天,我们就一起来学习角的度量。(板书课题:角的度量)
你知道度量角的工具是什么吗?(量角器)
三、主动探索,掌握量角的方法
1.组织探究。
出示书上量角的图示,谈话:你能照样子用量角器量出课本上的那个角的度数吗?与同桌商量一下量角的方法。
2.汇报交流。
学生尝试操作后交流:你是怎样量角的?
教师随机引导学生看图理解:量角的时候量角器的中心对着角的顶点,量角器的一条0刻度线对着角的一条边,看角的另外一条边对着刻度几,这个角就是几度。
3.巩固操作。
(1)学生量练习纸上的∠1(60度的角),并在小组中说一说是怎样量的。
指名汇报。
(2)学生量练习纸上的∠2(120度的角),并指名上台操作演示。
提问:谁给大家提醒一下,量角的时候要注意些什么?
强调:中心对顶点,零线对一边,再看另一边。即“两重一看”。
(3)完成“想想做做”第1题。
学生自主测量后相互校正,针对出现的错误,强调“两重一看”的重要性。
四、回顾总结,拓展延伸
1.谈话:通过今天的学习,你有哪些收获?
其实关于角的知识还有许多,只要你做个有心人,一定会有新的发现。
2.完成“想想做做”第2题。
(1)学生量角后填空。
(2)提问:每块三角尺上的三个内角的度数和是多少?(180度)由此,你又想到了什么?
提出假设:是否所有的三角形中三个内角的度数和都是180度。--这个问题有兴趣的同学可以课后去研究研究。
3.完成“想想做做”第3题。
(1)猜一猜:三个角的大小一样吗?
(2)量一量:三个角各是几度?
(3)说一说:你发现了什么?(角的大小与边的长短无关,与两条边叉开的大小有关)你能讲一讲角的两边的长短与角的大小无关的道理吗?
4.布置作业。
画几个三角形,量出每个角的度数,算一算三个角的和是多少?
总第课时
备课时间:月日授课时间:月日
教学内容:角的度量
教学目的:1、通过练习,使学生进一步掌握测量角的大小的基本方法以及量角器的使用。
2、让学生在动手操作中,建立学好数学的信心,体验到成功的喜悦。
教学重点:测量方法的掌握
课时安排:本节共课时,本课是第课时
课型:练习
教具准备:
教学过程:
一、谈话导入
同学们在昨天的学习中,学会了用量角器来测量角的大小,谁来说说你是怎样用量角器来测量角的大小的?
二、出示“想想做做”的第4题。
同学们仔细观察,完成练习
问:看刻度要注意什么?你是如何看的?
指名学生分别说说三个角的度数。
三、出示“想想做做”的第5题。
学生观察,问:“这一题的阴影部分其实是什么?
指出:阴影部分就是我们放置量角器的位置,指名三个人板演,其余学生做在练习本上。
四、出示“想想做做”的第6题
学生仔细观察,找出错误。
针对学生提出的错误,强调正确的测量的方法
五、出示“想想做做”的第8题
学习测量完后填写完成表格
集体订正
小结
通过今天的学习,你对那些知识更加熟悉了?
六、作业:
“想想做做“的第7题。
总第课时
备课时间:月日授课时间:月日
教学内容:角的分类和画法,教科书第22~23页。
教学目的:1.让学生掌握角的分类,加深对锐角、直角、钝角的认识,认识平角和周角,知道锐角、直角、钝角、平角、周角的大小关系,掌握用量角器画角的方法,会用量角器画指定度数的角。
2.培养学生的实际操作能力,发展空间观念。
课时安排:本节共2课时,本课是第2课时
课型:新授
教具准备:
教学过程:
一、导入
谈话:今天,我们继续认识角。(板书:角)请大家拿出活动角转成一个自己喜欢的角。
学生操作。
二、展开
1.学习角的分类。
(1)进一步认识锐角、直角、钝角。
提问:你转成的是什么角?你是怎样判断的?
根据学生的发言,出示:
提问:你能估计一下转成的锐角、钝角是多少度吗?
结合学生的汇报,教师引导学生讨论:关于锐角、钝角的度数,你能说出它们的大小范围吗?
出示:
(2)认识平角、周角。
教师转动活动角形成一个平角。
提问:你能描述这种角吗?
学生发言后教师指出:这种角,两边在一条直线上,看起来“平平的”,我们叫它平角。
谈话:平角是多少度?你是怎么知道的?学生回答后教师让学生用量角器量一量。
出示:
提问:你能指出图中平角的顶点和两条边吗?平角的大小指的是哪一部分?只画一条直线说它是平角行吗?再点上顶点说它是平角行吗?
教师和学生一起转动活动角形成一个周角。
讲述:像这样,一条边旋转一周所成的角,叫做周角。你知道周角是多少度吗?你是怎么知道的?
出示:
提问:画周角只画一条射线行吗?
(3)探讨直角、平角、周角之间的关系。
提问:你能说一说直角、平角、周角有什么关系吗?你是怎样想的?
学生汇报后板书:1平角=2直角
1周角=2平角=4直角
2.学习画角。
(1)画60°的角。
谈话:我们已经认识了5种角,现在你能自己画出一个角吗?在纸上试着画一个60°的角吧。
学生画角,教师巡视了解情况,组织学生在全班交流各自的圆法。
学生汇报用三角尺中的60°角来画时,教师给予肯定:用三角尺上的角可以画一些特殊度数的角,你能说出用三角尺上的角还可以画多少度的角吗?
学生汇报用量角器画角时,教师指出:一般画角,我们都要用量角器,并请学生到黑板上演示用量角器画角。
在小组里说一说:怎样用量角器画角?
全班学生一起用量角器画60°的角,边操作边小结:确定顶点和一条边一“两重合”(量角器的中心与角的顶点重合,量角器的0刻度线与已画的角的一条边重合)一找刻度(找角的另一条边所对的刻度)、描点一连线。
(2)完成“试一试”。
学生用量角器独立画角,教师个别指导。同桌之间用量角器量一量检查所画的角。
全班交流:用量角器画角,你认为要注意什么?
三、练习
1.完成“想想做做”第1题。
(1)指名回答题中的角各是什么角。
(2)提问:你能把这几种角按从小到大的顺序排一排吗?
2.完成“想想做做”第2题。
屏幕出示两把扇子图。提问:图中的角各是什么角?你能在生活中找到这样的角吗?
四、总结
提问:这节课学习了什么?
揭题并板书:角的分类和画法
6.三位数除以两位数公开课教案 篇六
《三位数除以两位数》数学教学反思1
虽然二年级的时候学习过《两位数除以一位数》,但是对于三年级的《三位数除以一位数》这一单元的学习,学生学习起来仍然很吃力。可以用一句话来概括“教师教得痛苦,学生学得痛苦”。
从课堂效果和作业情况反映出来的问题主要有这样几个方面:
1、商的位置的确定:当练习中同时出现商可能是两位数也有可能是三位数时,有些学生的错误率就比较高,有的明明被除数的百位不够商,却还要去商;有的确定十位商后,余数与个位合起来除,学生不知道商几。
2、在试商的过程中不知道商几。
3、在乘的过程中经常把商和想出来的整十数相乘。
4、学生第一次除后,减法不彻底(连续退位减法不熟练),导致后面计算出错。
5、学生做题目时,余数忘写,横式答案抄错。
学生出现这些问题,主要是因为教师过高估计学生的已有知识,为了节约时间,来创设有利于学生自主探究的学习情境,而抛弃了复习旧知。没有对旧的唤醒,学习效果不理想,只能课内损失课外补。而其课堂计算训练的量不够,课堂上因一些情境让计算时间流失。部分学生基础不好,速度慢;部分学生注意力不够集中。没有参与探究活动中。
针对这些情况,我采取了以下几个措施:
1、及时复习“两位数除以一位数除法笔算,并将计算方法与“三位数除以一位数(商是两位数的除法笔算)相联系,使学生体会到“商是两位数”就需要试商两次,就需要经历两次估商的过程。
2、教给同学们除法竖式的口诀:一想(把除数四舍五入想成整十数),二商,三乘(和原来的除数相乘),四减(注意连续退位)。
3、做好批改记录,针对个别学生遇到困难或疑惑的地方给予一对一指导和帮助。
4、通过教材中的题组对比让学生明确商的位置取决于被除数的大小。
5、汇集学生错误,全班会诊“找错”。通过反例让学生寻找错误,在改正错误的过程中建立正确的思考方法,形成计算策略。
《三位数除以两位数》数学教学反思2
《三位数除以两位数的口算除法》数学教学反思
本节课的设计理念是;引导学生自主迁移,建构知识网络;我是通过两个方面来体现这一设计理念的。
一、情境的作用,算用结合。
解决学校总务处遇到的问题引出了一组除法口算算式,四个问题都用除法解决让学生自然地进行了除法意义的迁移:四道算式由浅入深,即对学生原有的知识基础进行了回忆,又使学生自主地对口算方法进行迁移:不管是简单的还是复杂的除法口算,都可以想乘算除,当然,口算算理的理解毕竟是抽象的,为使学生切实掌握,我们巧妙地对“情境”进行了再利用:数学味很浓,生活味兼顾;
二、题组的运用,形成网络。
本节课设计了五个相关联的题组,分别达到探究口算、估算算理、巩固算法和拓展提升的目的。口算层层深入,估算横向联系,归根结底,都可以转化成表内乘除法计算;课中,好多学生看到题组发出了会心的微笑,他们是体验到了数学的魅力呀!还有什么比这更让老师舒心呢?
当然,课堂教学是一门遗憾的艺术,每一次的磨课,有太多欣喜,也总留下些许遗憾。估算教学是否需要在本课如此浓墨重彩,口算方法是否需要化归到乘法口诀,教师的课堂语言如何更有效地激发学生的学习热情等等还需要我们继续磨下去。
《三位数除以两位数》数学教学反思3
在前两节课的基础上,今天我教学《三位数除以两位数的笔算》本节课是在学生掌握了除数是整十数的笔算方法的基础上学习的。
本课内容的教学知识目标是通过具体情境让学生在独立探索的过程中经历三位数除以两位数试商的`方法,会用“四舍五入”法进行试商。
在教学新课时,我通过课本主题图创设情境,激发学生兴趣,引出了数学问题,并引导学生列出算式。下面就是如何引导学生主动的试商问题了。我利用沈重予老师对我的提示,将试商的教学和方法分五步进行:第一步,让学生按教材提示尝试计算192÷32,初步体会试商方法。例题在列出算式后,告诉学生“32接近30,把32看作30来试商”。并在竖式中除数的上面写出“30”,然后让学生独立完成192÷32的计算。在这一步的教学中要注意两点:
(1)把除数32看成30试商的意思是,把192÷30的商作为192÷32的商进行计算;
(2)商“6”必须和除数32相乘,不能和30相乘。第二步,让学生通过验算证实这样的试商方法是合理的、可行的。第三步是“试一试”,让学生独立计算192÷39,被除数192不变,除数从32变成39,引导学生主动地把39看成40试商,再次经历把除数看成最接近的整十数试商的过程,体会试商方法。第四步,让学生回顾例题和“试一试”的试商,初步总结“除数是两位数的除法可以怎样试商”。第五步,在“想想做做”里安排说试商方法的练习,促进方法的内化。
在教学中,我只通过一部分必要的点拨和提出一些挑战性的问题,没有更多的说教,反而学生在我讲的每一步时,都自信地说:“我们自己能行!”虽然,在课堂作业仍出现类似“商6跟30相乘”的现象,我认为这对小部分孩子来说需要一个过程,他们会通过晚上的练习及明天的练习课,证明他们也能行!
《三位数除以两位数》数学教学反思4
四年级上学期开学第一章学的是《三位数除以两位数》,虽然三年级的时候学习过,但是对于四年级的《三位数除以两位数》这一单元的学习,学生学习起来仍然很困难。可以用一句话来概括“教师教得吃力,学生学得痛苦”。
第一个课时讲的是三位数除以整十数,这个难度不是很大,也教会了学生正确判断商是几位数,但在后面的学习内容中教学“试商和调商”时,学生就感觉有些无处下手。一道计算题,全班的差距很大,做的快的与做的慢的能差好几分钟。计算历来是学生的难点,既枯燥又容易出错的题目。怎样在孩子初学时掌握一些技巧?
一、每节课前5分钟说口算练习题(10题左右),提高学生口算能力。口算是计算中的基础,通过口算熟练掌握乘法口诀,退位减及乘法进位。
二、除法的竖式计算相对来说比较抽象,为避免学生产生对抗情绪,在练习时也采取多种形式,如请学生上黑板板演(每个小组派1—2名代表)进行比赛,给学生展示的机会,然后优生批阅。
3、加强估算练习,估算练习所给算式的商是几位数,商的最高位可能是几。这样练习所用时间不多,但对学生的计算有很大帮助,可以提高学生的估计能力以及数学思考能力。
7.三位数除以两位数的笔算教学设计 篇七
四年级(1)班
【教学要求】
⒈ 使学生进一步掌握“四舍五入”的试商方法,能够用这种试商方法正确计算用三位数除以两位数的笔算除法。
⒉ 进一步增强学生的估算意识。提高学生的估算能力。、⒊ 提高学生的计算能力及归纳概括能力。
⒋ 在解决问题的过程中体会数学和现实生活的密切联系。(教学设计):
本节课的教学内容是复习“三位数除以两位数”的除法,目的使学生通过口算、估算、笔算,进一步掌握“四舍五入”的试商方法,知道四舍试商有时初商偏大,要调商小1;五入试商有时初商偏小,要调商大1。能够用这种试商方法正确计算用三位数除以两位数的笔算除法,通过练习进一步增强学生的估算意识,提高学生的计算能力。并接触到一些新的计算经验,向学生介绍“同头无除商八、九”和“除数折半商四、五”的试商技巧,让学生通过亲自尝试应用,产生对探究试商方法和灵活试商的兴趣。【教学过程】
一、口算练习:
1、320÷40 450÷90 560÷10 14×7 4×24 32÷2 96÷8 85÷5 36÷12 70÷35 指名说说口算的方法:你是怎样算的?
2、口答:下面的括号里最大能填几?
20×()<83 32×()<160 37×()<256 40×()<250 25×()<98 43×()<200
二、笔算练习:
1、复习题第2题:
(1)出示第一组:147÷20 312÷50 720÷70 谁能很快说出商是几?
(2)出示第二组: 147÷21 312÷53 720÷72 147÷29 312 ÷58 720÷68 谁来估计一下它商的大约是多少? 请同学们算一算这六题,指名板演。
集体订正,提问:仔细观察这几题,找一找它们有什么相同的地方?有什么不同的地方?(3)想一想,什么情况下我们需要“调商”?
小结并板书:试商 ——四舍:初商偏大,要调商小1;
——五入: 初商偏小,要调商大1。
2、刚刚我们回忆了用三位数去除两位数的除法的过程,讲述了试商和调商的方法,接下来我们看下一题。
(1.)先说出商的最高位在哪一位,估计可能是几? 511÷25 576÷18 208÷68 228÷76 462÷34 414÷23
(2.)追问:说说你这样估商的理由是什么?
想一想:计算后的商与估算的商会有不同吗?为什么?
三、思维拓展:
1、导入:听说过“同头无除商八、九”与“除数折半商四、五”吗?为了提高计算能力,这是古代劳动人民逐步总结出来的除法试商的经验。
2、打开书第15页阅读:你知道吗?(1)学生自学。
(2)全班交流,教师结合实例讲解。
例题:239÷26 330÷68(3)你能应用刚才学习的试商方法计算下面的题目吗? 532÷55 215÷ 24 252 ÷48 365 ÷7
4四、课堂总结:
8.三位数除以两位数公开课教案 篇八
教学目标:
1.以历探索两位数除以一位数(首位不能整除)笔算方法的过程,能正确地笔算两位数除以一位数。
2.培养学生初步的分析、概括的思维能力。
教学重点:两位数除以一位数的竖式计算过程(方法)
教学难点:两位数除以一位数的竖式计算过程的理解。
教学准备:挂图、小黑板、小棒
教学过程:
一、复习
口算下面各题。
二、导入
我们知道,笔算两位数除以一位数的除法时,应先从被除数的最高位除起,除到被除数的哪一位,就把商写在那一位的上面。今天,我们继续学习两位数除以一位数。(板书课题)
三、教学例题
1.出示挂图。
⑴学生看图
⑵问:①从图中你可以知道些什么?要求什么?
②要求“每班能分到多少个”该怎样列式?(板书52÷2)
③52÷2=?你会用竖式计算吗?(学生尝试,让一生板演)
计算的过程有没有什么发现?十位上的5除以2不能除尽,那么这题到底怎样来计算,结果是多少呢?请同学们以小组为单位,用小棒代替羽毛球来分一分。(一捆小棒代替一筒羽毛球)
⑶学生动手操作。
汇报操作结果:你是怎样分的?最后每个班分得几个羽毛球?
⑷教师根据生的汇报再次演示分法:
①先把5捆平均成2份,每份2捆,剩下1捆,再把1捆拆开,变成十根再与剩下的2根合起来就是12根,平均分成2份,每份6根,最后得到26根。
②先把剩下1捆拆开先分,再分2根
③全部拆开分
⑸问:请同学们比较一下,第①②种分法有什么相同的地方?
⑹这两种分法都是先把整捆的分,多下来的捆拆开来分。
⑺谁能再来完整地说说刚才我们是怎样分小棒的?
⑻同桌互相说一说,分一分。
2.教学笔算
⑴根据刚才摆小棒的过程,52÷2的笔算该怎样写呢?(板书 )谁来说说52÷2的笔算该怎样算呢?先算哪一位上的?
⑵十位上余下来的1表示什么意思?接下去该怎样除?
⑶请你接下去除。完成书上第7页上的例题。
⑷谁来告诉大家,刚才是怎样除的?(把关键的地方用红笔标出来)
追问:十位上剩下1以后怎样除的?
⑸检验:这道题 计算是不是正确呢?可以怎样检验?
⑹比一比:52÷2和口算题中的42÷2,在计算时有什么不同?(补充板书:首位不能整除)
3.练一练
⑴完成“想想做做”第一题的前2题。
①评讲:当十位上有余数时,接下去要怎样算?
②同桌互相校对。
⑵其他题独立完成
三、巩固练习
1.完成“想想做做”第3题。
⑴出示前2组题,让学生任选一组进行计算。
⑵出示后两组题,分组练习后让学生说说自己发现了什么?
2.做“想想做做”第6题
⑴先让学生然算。
⑵问:你是怎样想的?
通过计算来验证估算得对不对。
3.做“想想做做”第4题。
⑴让学生独立观察,理解图意。
⑵提问:不计算,你能说说哪种分法的组数多些?
⑶还可以每组几人来分?
4.完成“想想做做”
⑴你能根据图提出一些用除法计算的问题吗?
⑵同相互说一说,指名说,全班一起列式计算。
四、全课总结
今天这节课上,在摆摆、说说、算算中你有哪些收获?
五、课堂练习
9.三位数除以两位数公开课教案 篇九
【教学内容】
《义务教育教科书·数学》(青岛版)五年制三年级上册第六单元信息窗2。【教学目标】
1.结合具体情境,在解决问题的过程中,理解三位数除以一位数商是两位数的笔算算理,掌握计算方法。
2.通过动手操作,经历探究较简单的三位数除以一位数商是两位数的笔算过程,培养学生知识迁移和逻辑推理的能力。
3.在解决问题的过程中,培养学生细心思考,认真扎实的学习习惯。【教学重难点】
重点:理解三位数除以一位数商是两位数的笔算算理,掌握计算方法。难点:理解商的首位写在十位的道理。【教具学具准备】
多媒体课件,小棒,作业纸。【教学过程】
一、创设情境、提出问题 1.观察情境图,发现信息。
谈话:今天我们继续跟随小记者的采访,来到葡萄、大枣储运区,请看大屏幕,(课件出示情境图)你发现了哪些信息?
预设:
(1)我们村有4个葡萄园,去年产葡萄156吨。
(2)有395千克大枣,每箱装5千克。2.根据信息,提出问题。
谈话:根据信息你能提出什么问题? 预设:
(1)平均每个葡萄园产葡萄多少吨?(2)装395千克大枣需要多少个箱子?
【设计意图】承接上节课的情境继续跟随小记者来探究新的问题,激发学生的学习兴趣,引导学生分类整理信息、提出有价值的数学问题,从而激发学生的求知欲,感受数学与生活的联系。
二、自主探索,算法交流 1.列出算式,理解意义。
谈话:同学们,提出了很有探究价值的数学问题,今天我们就一起来研究这些问题。首先让我们来解决第一个问题“平均每个葡萄园产葡萄多少吨”,该怎样列式?
预设:156÷4。追问:为什么这样列式?
明确:因为要把156平均分成4份,求每份是多少,所以用除法算。2.自主探索,小组交流。(1)想一想,猜测商的位数。
谈话:想一想,“156÷4”的商可能是几位数?你是怎么想的? 学生可能回答:
商是两位数或者商是三位数。(2)提出要求,探究算法。
谈话:该怎样算出“156÷4”的商呢?你可以借助小棒摆一摆,说一说,也可以算一算,开始吧。
学生分组活动,组内相互交流自己的求商方法;教师巡视指导,了解学生的学习情况,搜集教学素材。
3.算法交流,理解算理。
谈话:谁来把小组的算法,展示给大家看?(1)借助直观,感受算理。学生到实物展台前,边摆边说。在学生说摆小棒的过程中,教师置疑: ① 你为什么把这1大捆小棒拆开? 预设:
因为1大捆小棒平均分成4份,不够分,所以把1大捆拆开换成10小捆。追问全班同学:
1个百不够平均分成4份,谁看明白了他是怎样做的?(学生回答)②把1大捆小棒拆开后,你接着分的是谁?
学生可能回答:接着分的是15捆小棒,把它平均分成4份,每份分得3捆小棒。明确:
1大捆拆成10小捆,与原来的5小捆合起来是15捆,再继续分。③还余下3小捆,你是怎么分的?
预设:余下的3小捆拆开是30个一,与6个一合起来,继续分。谈话:我们一起再回顾一下刚才分小棒的过程。(教师演示课件,学生边看边说分小棒的过程。)
(2)抽象算理,掌握算法。
谈话:谁还有不同的算法? 展示竖式,预设:
① ②
谈话:说说你是怎样想的? 学生说计算过程。
追问:3应该写在商的百位上,还是十位上?为什么? 学生发表自己的看法,充分交流。
小结:被除数百位上是1不够除,把1个百换成10个十与十位上的5个十合起来是15个十,除以4得3个十,所以3要写在十位上。
追问:余下的3个十怎么办? 预设:
余下的3个十与个位上的6个一合起来继续除。
小结:余下的3个十与个位上的6个一合起来是36个一,继续除以4,得9个一,所以在商的个位上写9。
4.观察比较,内化算理。谈话:回的两种方法,间有什么相方?
顾刚才它们之同的地
学生思考后回答。
谈话:通过摆小棒和竖式计算我们可以发现,被除数百位上的1不够除,就与十位上的5合起来继续除,得到3个十,把3写在商的十位上,所以“156÷4”的商是几位数?
学生回答:商是两位数。
【设计意图】在这一环节,教师的引导和学生的独立探索相结合,借助小棒和课件的直观演示,使数和形有机结合,化抽象为形象,使学生对竖式的每一步的理解,就不再仅仅是一种计算程序,而是活生生的直观再现。这样学生就充分体验了由抽象算理到直观算法的过度和演绎过程,进而达到对算理的深刻理解和对算法的真正掌握。
三、沟通优化,促进发展
谈话:我们刚才解决了“平均每个葡萄园产葡萄多少吨”的问题,你能解决“装395千克大枣需要多少个箱子”吗?在作业纸上写一写。
学生独立做,教师巡视搜集素材。学生到展台前边指着题边说计算过程。追问:你有什么问题要问他? 预设:7为什么要写在商的十位上?
引导学生积极发表自己的想法,在交流中体验成功的快乐。
谈话:观察这两道算式,都是三位数除以一位数,商是几位数?(生回答两位数),这就是今天学习的“三位数除以一位数,商是两位数的笔算”(板书课题),这与以前所学的三位数除以一位数的笔算有什么不同?
预设:
①以前学的“三位数除以一位数”,被除数百位上的数够除的,而现在学习的“三位数除以一位数”,被除数百位上的数不够除。
②以前学的“三位数除以一位数”的商是三位数,现在学习的“三位数除以一位数”的商是两位数。
【设计意图】在这一环节,教师充分给予学生解决问题的时间,完全放手让学生运用知识的迁移,独立解决问题,并通过新旧知识的对比,进一步帮助学生理解“三位数除以一位数,商是两位数的笔算”的算理和算法,让学生体验到成功的快乐。
四、联系实际,灵活运用 1.基本练。(1)算一算。
学生拿出作业纸,独立做后,同桌互换,集体订正。
引导学生观察算式,追问:三位数除以一位数什么时候商是三位数?什么时候商是两位数?
预设:
百位数的数,不够除时,商是两位数;百位上的数,够除时,商是三位数。(2)先想一想商是几位数,再计算。
348÷6= 567÷9= 836÷4=
集体交流商的位数,学生说明判断的理由后,学生独立计算,同桌互换集体订正。
2.变式练。(1)填一填。
学生抢答统计表中的前两竖行的题,并说出自己的想法,再独立算出准确的商。
(2)
学生独立做后,找一学生讲解做题思路,其他学生提出疑问,学生在交流中解决问题。
【设计意图】
本环节设计了“说一说、算一算,解决生活中的问题”等学习活动,层层递进,很好的检测了学生对知识的掌握。同时也培养了学生有条理的思考问题的习惯,体会了数学在生活中的应用。
五、课堂总结,反思提升
谈话:回顾整堂课的学习过程,你有哪些方面的收获? 预设:
(1)通过与同学一起研究,我学会了三位数除以一位数商是两位数的笔算方法。
(2)我学会了用数学语言表达自己的想法。
(3)在遇到新问题的时候,可以把它转化成已学的知识来解决。小结:同学们的收获可真多,课后可以用本节课的收获解决一些生活中的数学问题,相信你能行。
【设计意图】以“回头看”为蓝本,让学生在“创设情境,提出问题”、“自主探索,算法交流”、“沟通优化,促进发展”“联系实际,灵活运用”这几方面的回顾中,梳理方法,在谈收获中进行知识整理与自我评价,培养自我反思、全面概括的能力。
板书设计
三位数除以一位数商是两位数
(1)平均每个葡萄园产葡萄多少吨?(2)需要多少个箱子?
10.三位数除以两位数公开课教案 篇十
《两位数除以一位数的笔算》教学设计
威海高区实验小学 邹燕娜
教学内容:教科书第48~49页,两位数除以一位数的笔算。教学目标:
1.借助学具操作,自主探究笔算两位数除以一位数的方法,明确笔算算理。2.经历探索两位数除以一位数的笔算过程。
3.能利用所学知识提出并解决简单的实际问题,感受数学与生活的联系,体验学数学、用数学的乐趣。教学重点:
两位数除以一位数商是两位数的笔算。教学难点:
理解两位数除以一位数的算理。教学过程:
活动一:课前复习,为新知铺垫。
【设计意图:口算是笔算的基础,也是提高计算能力的重要组成。复习笔算,可以引导学生回顾二年级上册所学的内容,为本节课学习新课做准备。】
活动二:创设情境,引出问题。
谈话:上节课,我们走进风筝加工厂,共同解决了师傅们能否完成任务的问题,今天让我们再次走进工厂。(课件出示情境图左半侧图。)你发现了什么数学信息?
1.解读信息。
一组的工人师傅正在加工风筝,阿姨说:“我们3小时做了63只燕子风筝。” 2.提出问题。
师:根据上面的信息,你能提出什么数学问题? 预设学生可能提出:
(1)平均每小时做了多少只燕子风筝?(2)平均每人做了多少只燕子风筝?(3)平均每人每小时加工多少只燕子风筝?
谈话:同学们可真了不起,提出这么多有价值的数学问题,咱们先看这个问题:一组平均每小时做多
小学数学精选教案
少只燕子风筝?应该怎样计算呢?
3.列出算式。
引导生列出算式,师板书:63÷3= 师:为什么用除法?
引导学生分析题意:3小时做了63只燕子风筝,要求每小时做多少只,就要把63只风筝平均分成3份,所以要用除法。
4.自主猜想。
师:想一想,63÷3等于多少呢?
(根据以往教学经验,一部分学生会回答出:21。)
【设计意图:此环节让学生根据情境提出有价值的问题,培养学生的问题意识,激发学生的求知欲望及学习兴趣。】
活动三:动手操作,感知算理。
师:到底是不是这样呢?我们动手分一下吧。如果把63只风筝带来太麻烦了,怎么办呢?(引导生说出借助小棒。)
【设计意图:在以往教学中,当出现算式63÷3时,通常会有一部分学生能口算出得数。这里教师不是直接判断部分学生计算的“21”是否正确,而是转向解决问题方法的讨论,目的是“让不同的人在数学上得到不同的发展”。】
教师为每人准备63只小棒,引导学生按要求摆放在右图上面圈中,然后动手分一分。
学生动手分后,找一名同学到前面展示分的过程,纠错后课件再次呈现分的过程,将课本中小棒图动态完整呈现,分后在上面大圈中留下小棒虚线图o(引导学生说清:把6捆小棒平均分成3份,每份分得2捆;把3根小棒平均分成3份,每份分得1根。两次每份共分得21根。)
【设计意图:新课程标准强调学生活动经验的积累,本环节旨在通过操作学具,让所有学生在动手分的过程中积累丰富的感性经验,形成清晰的表象认识,为抽象成符号化竖式做准备。】
活动四:算法探究,学习竖式。
小学数学精选教案
师:你能用数学的方法将刚才分小棒的过程表示出来吗?(学生独立思考完成。)交流:预设学生可能出现下面的情况:
方法(1)想乘算除法:因为21×3=63,所以63÷3=21。方法(2)60÷3=20,3÷3=1,20+1=21。
方法(3)竖式1:一次除完
针对方法(2),师可以引导学生结合小棒图说说每一个算式表示的意思;
针对方法(3),竖式1评价点落在“没有呈现两次分的过程”上;竖式2则让学生对照 课件中的小棒图分析每个数表示的含义,引导学生经历竖式的形成过程。
师:分小棒的时候,先分6捆,再分3根;在竖式中就要先分6个十,再分3个一。先分6个十,每份分得2个十,在十位上商2,有这样的3份,2个十乘3共分掉6个十,6减6得O,整捆正好分完;再分3个一,每份是1,在个位上商1,3乘1得3,3减3得O,单根正好分完。全部分完后,所得的结果是21。(师边说边板演,引导学生思考,2为什么写在十位?1为什么写在个位?)
回顾整理竖式,第一次除表示了分6捆的过程,第二次除表示分3根的过程。对比分析:仔细观察口算方法与竖式方法,看它们有什么联系?
(引导生发现:60÷3=20就是竖式中第一次除的过程,3÷3=1就是竖式中第二次除的过程,20+1=21就是竖式中的商。)
【设计意图:新课标强调运算能力的提高,即要让学生理解算理、掌握算法。本环节非常注重数形结合,将竖式的形成与分小棒的过程紧密结合,帮助学生理解两位数除以一位数的笔算算理,体会竖式写法的科学性,在理解算理的基础上掌握算法。】
活动五:巩固练习。1.:交流时让说说竖式中每个数表示什么意思,引导学生结合小棒图分析。
小学数学精选教案
2.:交流时引导学生分析:先分4个十,4个十除以2得2个十,写在十位,2个十乘2得4个十,4减4没有了;再分8个一,8个一除以2得4个一,写在个位,4个一乘2得8,8减8等于O,全部分完,结果是24。
3.如果有时间,再计算第50页自主练习第2题,解决生活中的问题。
【设计意图:儿童的思维发展都经历逐步由形象思维形成抽象思维的过程,此环节的练习中,有意设计有层次的练习,由上面探索新知环节摆小棒写竖式_练习1的想小棒写竖式一练习2的不想小棒直接写竖式,经历了层次清晰的思维提升过程,发展学生的想象力。】
活动六:课堂小结。
师:刚才,我们用竖式算出了两位数除以一位数计算的结果(揭示课题:两位数除以一位数),这节课你有什么收获?
11.三位数除以两位数公开课教案 篇十一
濉溪县双堆中心小学
王庆
课题:《三位数乘两位数笔算乘法》
濉溪县双堆中心小学
王庆
教学内容:
人教版义务教育课程标准实验教科书《数学》四年级上册第49页例
1、做一做及练习七的第1-3题 教学目标:
1、知识目标:
让学生经历探索三位数乘以两位数笔算方法的过程,掌握三位数乘以两位数的基本笔算方法,能正确进行计算。
2、能力目标:
让学生在探索计算方法和解决实际问题的过程中体会新旧知识的联系,能主动总结、归纳三位数乘以两位数的笔算方法,培养类比及分析,概括能力,发展应用意识。
3、情感目标:
让学生在主动参与活动的过程中,进一步体验数学在日常生活中的运用,培养学生迁移类推的能力,掌握算理和计算的方法
教学重点:探索并掌握三位数乘两位数笔算乘法的算理和方法,能正确进行计算。教学难点:理解竖式中,第二个因数的十位与第一个因数相乘时,积的末尾要与十位对齐的道理。教学过程:
一、创设情境,复习旧知,导入新知
1.出示课件,让学生猜猜这是什么地方?(广州长隆乐园)师问:想不想去玩一玩?
如果今天你们表现好,老师答应你们有机会带你们去玩? 2.出示口算题;①.130×2= 140×4= 410×2= 230×3= ②.44x15= 78x32= 回顾两位数乘两位数的计算方法(学生上台板演)3.出示例题 李叔叔从某城市乘火车去北京用了12小时,火车1小时行145千米。该城市到北京有多少千米?
(1)、让学生理清题意,找出题中的已知量和所求量。(2)、根据已知量和所求量列出算式
(3)、全班齐做,然后指名板演并说说其计算过程。4.由学生列出式子,师板书:145×12 5师:现在请同学们观察45×12与145×12什么不同?找出其相同点和不同点。
揭示课题:这就是我们今天学习的内容。板书课题:三位数乘两位数
二、自主交流,合作探究,获取新知
1、估算
师:那你认为城市距离北京大约有多少千米呢?现在同学们来估算一下(学生动笔算)师:你是如何估算的?谁愿意把你的估算过程和想法跟我们分享一下呢? 让学生说说,教师随机板书学生的估算方法。
2、笔算
师:现在我们已经估算出来了,145×12大约是在1500至1800之间,那么如何准确算出145×12的积呢?同学们一起用自己喜欢的方法来算一算好不好?
学生动笔算,教师巡视,然后让学生说说自己是用什么方法算出来的。
(如果有用竖式算的就指名板演,并说出自己的计算方法;如果没有教师试着提示。)师:用竖式计算也就是笔算,这就是我们今天要掌握的内容:三位数乘两位数的笔算乘法(补充板书)
教师讲解,板书 145×12用竖式计算的过程
师:你认为三位数乘两位数,列竖式和笔算的顺序与两位数乘两位数的方法有联系吗?
3、小结三位数乘两位数的笔算方法(课件演示)
(1)、先用两位数个位上的数去乘三位数的每一位,得数的末位和两位数的个位对齐。(2)、再用两位数十位的数去乘三位数的每一位,得数的末位和两位数的十位对齐。(3)、然后再把两次乘得的积加起来。
4、巩固练习
教材第49页做一做。(分组完成,集体订正)
三、仔细琢磨,细心计算,巩固新知
1、数学医院,判断正误
(幻灯片出示题目,让学生观察,找出错误的地方,并改正过来。)2、50页第一题。(分组完成,集体订正)
3、解决问题(50页第二题)
四、仔细想想,谈谈收获,归纳小结 师:今天,我们学会了什么? 生:三位数乘两位数的笔算乘法
师:那现在哪个同学可以来帮我们小结一下三位数乘两位数竖笔算乘法的计算方法? 笔算乘法要注意:
1、相同数位要对齐,从个位算起;
2、先用第二个因数个位上的数去乘第一个因数,得数的末位和个位对齐
3、再用第二个因数十位上的数去乘第一个因数,得数的末位和的十位对齐;
4、然后把两次求得的积加起来。
五、作业布置:练习七第3题
六、板书设计
三位数乘两位数
———笔算乘法
复习
例1
45×12=540(元)
145×12=1740(千米)
5
5
×2
×2
0 9 0
……2乘145的积 4 5 1 4 5 ……10乘145的积 5 4 0 1 7 4 0
【三位数除以两位数公开课教案】推荐阅读:
三位数除以两位数教学反思10-28
《三位数除以两位数的笔算》教学设计09-08
《三位数乘两位数》计算练习课教学设计01-22
三位数乘两位数的笔算教案及其分析08-31
两位数加一位数教案设计08-06
两位数乘一位数的教案07-09
《两位数加一位数的进位加法》教案及反思12-27
两位数乘三位数竖式计算教学设计08-08