四边形证明题复习(共10篇)(共10篇)
1.四边形证明题复习 篇一
四边形的证明题
1.如图,在矩形ABCD中,点O是边AD上的中点,点E是边BC上的一个动点,延长EO到F,使得OE=OF.F
AD
BEC
(1)当点E运动到什么位置时,四边形AEDF是菱形?(直接写出答案)
(2)若矩形ABCD的周长为20,四边形AEDF的面积是否存在最大值?如果存在,请求出最大值;如果不存在,请说明理由.
(3)若AB=m,BC=n,当m.n满足什么条件时,四边形AEDF能成为一个矩形?(不必说明理由)
【答案】(1)当点E运动到BC的中点时,四边形AEDF是菱形;
(2)存在.当x5时,四边形AEDF的面积最大为25;
(3)当m≤1n时,四边形AEDF能成为一个矩形.
2【解析】
试题分析:(1)根据矩形的性质得出AB=CD,∠B=∠C=90°,求出四边形是平行四边形,根据勾股定理求出AE=DE,即可得出答案;
(2)求出S四边形AEDF=2S△AED=S矩形ABCD,设AB=x,则BC=10﹣x,四边形AEDF的面积为y,求出y=x(10﹣x),求出二次函数的最值即可;
(3)根据矩形能推出△BAE∽△CED,得出比例式,代入得出方程,求出方程的判别式,即可得出答案. 试题解析:(1)当点E运动到BC的中点时,四边形AEDF是菱形,理由是:∵四边形ABCD是矩形,∴AB=CD,∠B=∠C=90°,∵E为BC中点,∴BE=CE,由勾股定理得:AE=DE,∵点O是边AD上的中点,OE=OF,∴四边形AEDF是平行四边形,∴平行四边形AEDF是菱形;
(2)存在.∵点O是AD的中点,∴AO=DO ,∵OE=OF,∴四边形AEDF是平行四边形 ,∴S四边形AEDF2SAEDS矩形ABCD ,设AB=x,则BC=10x,四边形AEDF的面积为y,yx(10x)
x210x
(x5)22
5当x5时,四边形AEDF的面积最大为25;
(3)当m≤1n时,四边形AEDF能成为一个矩形, 2
理由是:设BE=z,则CE=n﹣z,当四边形AEDF是矩形时,∠AED=90°,∵∠B=∠C=90°,∴∠BAE+∠BEA=90°,∠BEA+∠DEC=90°,∴∠BAE=∠DEC,∴△BAE∽△CED, ABBE, CECD
mz, ∴nzm∴
∴z﹣nz+m=0,22当判别式△=(﹣n)﹣4m≥0时,方程有根,即四边形AEDF是矩形, 解得:m≤
∴当m≤221n, 21n时,四边形AEDF能成为一个矩形. 2
考点:四边形综合题.
2.如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.
(1)求证:四边形AODE是菱形;
(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE的形状是什么?说明理由.
【答案】(1)证明见解析;(2)矩形,理由见解析.【解析】
试题分析:(1)根据矩形的性质求出OA=OD,证出四边形AODE是平行四边形即可;(2)根据菱形的性质求出∠AOD=90°,再证出四边形AODE是平行四边形即可.试题解析:(1)∵矩形ABCD的对角线相交于点O,∴AC=BD(矩形对角线相等),OA=OC=11AC,OB=OD=BD(矩形对角线互相平分).∴OA=OD.22
∵DE∥CA,AE∥BD,∴四边形AODE是平行四边形(两组对边分别平行的四边形是平行四边形).∴四边形AODE是菱形(一组邻边相等的平行四边形是菱形).(2)矩形,理由如下:
∵DE∥CA,AE∥BD,∴四边形AODE是平行四边形.∵菱形ABCD,∴AC⊥BD.∴∠AOD=90°.∴平行四边形AODE是矩形.
考点:1.矩形的判定和性质;2.平行四边形的判定;3.菱形的判定和性质.3.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.
①求证:BD⊥CF;
②当AB=4,FG的长.
【答案】(1)BD=CF成立,证明见解析;(2)①证明见解析;②FG=.5
【解析】
试题分析:(1)证明线段相等的常用方法是三角形的全等,直观上判断BD=CF,而由题目条件,旋转过程中出
现了两个三角形△BAD和△CAF,并且包含了要证明相等的两条线段BD和CF,∵△ABC是等腰直角三角形,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,只差夹角相等,在Rt△BAC中,∠BAD+∠DAC=90°,∠CAF+∠DAC=90°, ∴∠BAD=∠CAF, ∴△BAD≌△CAF, BD=CF.(2)①要证明BD⊥CF,只要证明∠BGC=90°,即∠GBC+∠BCG=∠GBC+∠ACF+∠ACB=90°,在Rt△BAC中,∠ABC+
∠ACB=∠ABG+∠GBC+∠BCA=90°,有(1)知,∠ACF=∠ABG,所以∠GBC+∠ACF+∠ACB=∠GBC+
∠ABG +∠ACB =90°,所以BD⊥CF.②求线段的方法一般是三角形的全等和勾股定理,题目中没有和FG直接相关的线段,而CG从已知条件中又无法求出,所以需要作辅助线,连接FD,交AC于点N, 在正方形ADEF中,, AN=1, CN=3, 由勾股定理CF=,设FG=x,CG=x,在Rt△FGD中,∵FD=2,∴GD=4x2,∵在Rt△BCG中,CGBGBC,∴(x)2(4x2)2(42)2,解之得FG=
试题解析:②解法一:
如图,连接FD,交AC于点N,222.5
∵在正方形ADEF中,, 1AE=1,FD=2, 2
∵在等腰直角△ABC 中,AB=4,∴CN=AC-AN=3,∴AN=FN=
∴在Rt△FCN中,CFFN2CN2232,∵△BAD≌△CAF(已证),∴BD=CF=,设FG=x,在Rt△FGD中,∵FD=2,∴GD=4x2, ∵CF=,∴CG=x,∵在等腰直角△ABC 中,AB=AC=4,∴BC
∵在Rt△BCG中,CGBGBC, ∴(x)2(4x2)2(42)2 ,整理,得5x2x60, 解之,得x122223,x2(不合题意,故舍去)55
∴FG=.5
解法二:
如图,连接FD,交AC于点N;连接CD,同解法一,可得:DG=4x2,CG=x,易证△ACD≌△ABD(SAS),可得CD=BD=,在Rt△CGD中,CGDGCD,即(x)2(4x2)2()2 解之,得x222,故FG=.55
考点:1.三角形的全等;2.勾股定理;3.正方形的性质.
2.特殊四边形的证明经典必考题范文 篇二
1、如图,已知矩形ABCD的对角线AC、BD相交于点O,AC=2AB,求证:∠AOD=120° A
OD
BC2、探究证明:
(1)如图,四边形ABCD的对角线为AC、BD,且AC=BD,点E、F、G、H分别为边AB、BC、CD、AD边上的中点,猜想四边形EFGH是什么样的图形,并证明;
A
EH
D
F
CGB
(2)如图,四边形ABCD的对角线为AC、BD,且AC⊥BD,点E、F、G、H分别为边AB、BC、CD、AD边上的中点,猜想四边形EFGH是什么的图形,并证明;
A
E
B
F
CGHD
(3)如果将一个四边形每个边的中点依次连接起来形成的四边形叫做这个四边形的中点四边形,那么自己讨论证明平行四边形、矩形、菱形、正方形和等腰梯形的中点四边形的形状,并总结一个四边形的中点四边形的形状由原来四边形的什么来决定;
3、如图,在矩形ABCD中,AC、BD相交于点O,AB=6,BC=8,P是AD上一点,且PH⊥AC,PK⊥BD,求PH+PK的值;
A
H
O
BPDC4、如图,梯形ABCD中,AD∥BC,AB=CD,AC⊥BD与点O,∠BAC=60°,若,求此梯形的面积;
A
O
BDC5、如图,平行四边形ABCD中,BE平分∠ABC交AD与点E,AB=8,BC=10,则
D
AED
O
AC
B6、如图,菱形对角线AC、BD交于点O,且AC=8,BD=6,过O做OH⊥AB与点H,则;
7、如图,在ABCD中,AE、DF分别为∠BAD和∠ADC的平分线,AE、DF相交于点G;
(1)求证:AE⊥DF AD(2)若AD=10,AB=6,AE=4,求DF的长;
BCFE
CHB8、如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB的中点;
求证:四边形BCDE是菱形
DC
AEB9、在正方形ABCD中,E为对角线上一点,连接EB、ED,(1)求证:∠CDE=∠CBE
(2)延长BE交AD与点F,若∠DEB=140°,求∠AFE的度数;
DF
EA
CB10、已知等腰梯形的底边长分别为2㎝和8㎝,高为4㎝,则一腰长为
211、已知菱形的两条对角线长分别为12㎝和6㎝,那么这个菱形的面积为。
12、矩形一个角的平分线分矩形一边为1㎝和3㎝两部分,则这个矩形的面积为
13、下列说法正确的是()
A.一组对边相等的四边形是平行四边形
B.一组对边平行,另一组对边相等的四边形是平行四边形
C.一组对角相等,一组对边平行的四边形是平行四边形
D.对角线互相垂直的四边形是平行四边形
14、平行四边形两个邻角的角平分线所成的角是()
A.锐角B.直角C.钝角D.不能确定
15/△ABC中,AD是角平分线,DE∥AC,DF∥AB。
求证:四边形AEDF是菱形。
16、如图所示,将矩形ABCD沿着直线BD折叠,使点C落在C,BC交AD于E,AD=8,AB=4,求△
BED的面积。′′
17、如图,O为平行四边形ABCD对角线AC、BD的交点,EF经过点O,且与边CD、AB分别交于点E、F,则图中的全等三角形有()
A.2对B.3对C.5对D.6对
18、如图,在梯形ABCD中AD∥BC,对角线AC⊥BD,且AC=12,BD=9,则AD+BC=()
A.20B.21 C.15D.2419、四边形ABCD,仅从下列条件中任取两个加以组合,使得ABCD是平行四边形,一共有多少种不同的组合?()
AB∥CDBC∥ADAB=CDBC=AD
3.特殊平行四边形:证明题 篇三
1、如图8,在ABCD中,E,F分别为边AB,CD的中点,连接DE,BF,BD.
(1)求证:△ADE≌△CBF.
(2)若ADBD,则四边形BFDE是什么特殊四边形?请证明你的结论.
F C
A E B2、如图,四边形ABCD中,AB∥CD,AC平分BAD,CE∥AD交AB于E.
(1)求证:四边形AECD是菱形;
(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.
3.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.
(1)求证:AD=CE;
(2)填空:四边形ADCE的形状是.
A
DMN
B
4.如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.
(1)求证:△ABE≌△ACE
(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.
5.如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB交于点M.
(1)求证:△ABC≌△DCB ;
(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.
6、如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB,CD的延长线分别交于E,F.
(1)求证:△BOE≌△DOF;
(2)当EF与AC满足什么关系时,以A,E,C,F为顶点的四边形是菱形?证明你的结论.
F
A
B
E
D B N
7.600,它的两底分别是16cm、30cm。求它的腰长。
(两种添线方法)
C
8.如图
(七),在梯形ABCD中,AD∥BC,ABADDC,ACAB,将CB延长至点F,使BFCD.
(1)求ABC的度数;
(2)求证:△CAF为等腰三角形.
C
4.关于平行四边形的证明题例析 篇四
平行四边形是一种极重要的几何图形.这不仅是因为它是研究更特殊的平行四边形——矩形、菱形、正方形的基础,还因为由它的定义知它可以分解为一些全等的三角形,并且包含着有关平行线的许多性质,因此,它在几何图形的证明与研究上有着广泛的应用. 例1 如图所示.在ABCD中,AE⊥BC,CF⊥AD,DN=BM.求证:EF与MN互相平分.
分析 只要证明ENFM是平行四边形即可,由已知,提供的等量要素很多,可从全等三角形下手.
证明 因为ABCD是平行四边形,所以 ADBC,ABCD,∠B=∠D.
又AE⊥BC,CF⊥AD,所以AECF是矩形,从而
AE=CF.
所以
Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以
△BEM≌△DFN(SAS),ME=NF. ①
又因为AF=CE,AM=CN,∠MAF=∠NCE,所以
△MAF≌△NCE(SAS),所以 MF=NF. ②
由①,②,四边形ENFM是平行四边形,从而对角线EF与MN互相平分.
例2 如图所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求证:AE=CF.
分析 AE与CF分处于不同的位置,必须通过添加辅助线使两者发生联系.若作GH⊥BC于H,由于BG是∠ABC的平分线,故AG=GH,易知△ABG≌△HBG.又连接EH,可证△ABE≌△HBE,从而AE=HE.这样,将AE“转移”到EH位置.设法证明EHCF为平行四边形,问题即可获解.
证明 作GH⊥BC于H,连接EH.因为BG是∠ABH的平分线,GA⊥BA,所以GA=GH,从而
△ABG≌△HBG(AAS),所以 AB=HB. ①
在△ABE及△HBE中,∠ABE=∠CBE,BE=BE,所以 △ABE≌△HBE(SAS),所以 AE=EH,∠BEA=∠BEH. 下面证明四边形EHCF是平行四边形.因为AD∥GH,所以
∠AEG=∠BGH(内错角相等). ②
又∠AEG=∠GEH(因为∠BEA=∠BEH,等角的补角相等),∠AGB=∠BGH(全等三角形对应角相等),所以
∠AGB=∠GEH.
从而
EH∥AC(内错角相等,两直线平行).
由已知EF∥HC,所以EHCF是平行四边形,所以
FC=EH=AE.
说明 本题添加辅助线GH⊥BC的想法是由BG为∠ABC的平分线的信息萌生的(角平分线上的点到角的两边距离相等),从而构造出全等三角形ABG与△HBG.继而发现△ABE≌△HBE,完成了AE的位置到HE位置的过渡.这样,证明EHCF是平行四边形就是顺理成章的了.
人们在学习中,经过刻苦钻研,形成有用的经验,这对我们探索新的问题是十分有益的. 例3 如图所示.ABCD中,DE⊥AB于E,BM=MC=DC.求证:∠EMC=3∠BEM.分析 由于∠EMC是△BEM的外角,因此∠EMC=∠B+∠BEM.从而,应该有∠B=2∠BEM,这个论断在△BEM内很难发现,因此,应设法通过添加辅助线的办法,将这两个角转移到新的位置加以解决.利用平行四边形及M为BC中点的条件,延长EM与DC延长线交于F,这样∠B=∠MCF及∠BEM=∠F,因此,只要证明∠MCF=2∠F即可.不难发现,△EDF为直角三角形(∠EDF=90°)及M为斜边中点,我们的证明可从这里展开.
证明 延长EM交DC的延长线于F,连接DM.在□ABCD中,AB∥CD,则
∠F=∠BEM,∠MCF=∠B,CM=BM,所以
△MCF≌△MBE(AAS),所以M是EF的中点.又DE⊥AB,所以,DE⊥FD,三角形DEF是直角三角形,DM为斜边的中线,由直角三角形斜边中线的性质知,MF=MD
∠F=∠MDC,又由已知MC=CD,所以
∠MDC=∠CMD,则
∠MCF=∠MDC+∠CMD=2∠F.
从而
∠EMC=∠F+∠MCF=3∠F=3∠BEM.
练习:
1.如图1所示.DE⊥AC,BF⊥AC,DE=BF,∠ADB=∠DBC.求证:四边形ABCD是平行四边形.
2.如图2所示.在平行四边形ABCD中,△ABE和△BCF都是等边三角形.求证:△DEF是等边三角形.
3.如图3所示.
BE=CF.
ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:
温馨提示:
1、由∠ADB=∠DBC可得AD∥BC,则∠DAE=∠BCF,再证明△AED≌△CFB(AAS),从而得AD=BC,利用一组对边平行且相等的四边形是平行四边形即可得证.2、易知,AB=CD=EF,FB=FC,∠FCB+∠CBA=180°,60°-∠1+120°-∠2=180°。得∠1=∠2。证得,△EBF≌△DCF,得EF=DF,∠EFB=∠DFC,∠EFB-∠DFB=∠DFC-∠DFB,即∠EFD=∠BFC=60°。由一个角是60°的等腰三角形是等边三角形得△DEF是等边三角形。
5.中考数学复习几何证明压轴题 篇五
几何证明压轴题
1、如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.(1)
求证:DC=BC;
(2)
E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;
(3)
在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.[解析]
(1)过A作DC的垂线AM交DC于M,则AM=BC=2.又tan∠ADC=2,所以.即DC=BC.(2)等腰三角形.证明:因为.所以,△DEC≌△BFC
所以,.所以,即△ECF是等腰直角三角形.(3)设,则,所以.因为,又,所以.所以
所以.2、已知:如图,在□ABCD
中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.
(1)求证:△ADE≌△CBF;
(2)若四边形
BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.
[解析]
(1)∵四边形ABCD是平行四边形,∴∠1=∠C,AD=CB,AB=CD
.
∵点E、F分别是AB、CD的中点,∴AE=AB,CF=CD
.
∴AE=CF
∴△ADE≌△CBF
.
(2)当四边形BEDF是菱形时,四边形
AGBD是矩形.
∵四边形ABCD是平行四边形,∴AD∥BC
.
∵AG∥BD,∴四边形
AGBD
是平行四边形.
∵四边形
BEDF
是菱形,∴DE=BE
.
∵AE=BE,∴AE=BE=DE
.
∴∠1=∠2,∠3=∠4.
∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°.
∴∠2+∠3=90°.
即∠ADB=90°.
∴四边形AGBD是矩形
3、如图13-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.
(1)如图13-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;
(2)若三角尺GEF旋转到如图13-3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.
图13-2
E
A
B
D
G
F
O
M
N
C
图13-3
A
B
D
G
E
F
O
M
N
C
图13-1
A(G)
B(E)
C
O
D(F)
[解析](1)BM=FN.
证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴
∠ABD
=∠F
=45°,OB
=
OF.
又∵∠BOM=∠FON,∴
△OBM≌△OFN
.
∴
BM=FN.
(2)
BM=FN仍然成立.
(3)
证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠DBA=∠GFE=45°,OB=OF.
∴∠MBO=∠NFO=135°.
又∵∠MOB=∠NOF,∴
△OBM≌△OFN
.
∴
BM=FN.
4、如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5。
(1)若,求CD的长;
(2)若
∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留)。
[解析]
(1)因为AB是⊙O的直径,OD=5
所以∠ADB=90°,AB=10
在Rt△ABD中,又,所以,所以
因为∠ADB=90°,AB⊥CD
所以
所以
所以
所以
(2)因为AB是⊙O的直径,AB⊥CD
所以
所以∠BAD=∠CDB,∠AOC=∠AOD
因为AO=DO,所以∠BAD=∠ADO
所以∠CDB=∠ADO
设∠ADO=4x,则∠CDB=4x
由∠ADO:∠EDO=4:1,则∠EDO=x
因为∠ADO+∠EDO+∠EDB=90°
所以
所以x=10°
所以∠AOD=180°-(∠OAD+∠ADO)=100°
所以∠AOC=∠AOD=100°
5、如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.
(1)求证:点F是BD中点;
(2)求证:CG是⊙O的切线;
(3)若FB=FE=2,求⊙O的半径.
[解析]
(1)证明:∵CH⊥AB,DB⊥AB,∴△AEH∽AFB,△ACE∽△ADF
∴,∵HE=EC,∴BF=FD
(2)方法一:连接CB、OC,∵AB是直径,∴∠ACB=90°∵F是BD中点,∴∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO
∴∠OCF=90°,∴CG是⊙O的切线---------6′
方法二:可证明△OCF≌△OBF(参照方法一标准得分)
(3)解:由FC=FB=FE得:∠FCE=∠FEC
可证得:FA=FG,且AB=BG
由切割线定理得:(2+FG)2=BG×AG=2BG2
在Rt△BGF中,由勾股定理得:BG2=FG2-BF2
由、得:FG2-4FG-12=0
解之得:FG1=6,FG2=-2(舍去)
∴AB=BG=
∴⊙O半径为26、如图,已知O为原点,点A的坐标为(4,3),⊙A的半径为2.过A作直线平行于轴,点P在直线上运动.
(1)当点P在⊙O上时,请你直接写出它的坐标;
(2)设点P的横坐标为12,试判断直线OP与⊙A的位置关系,并说明理由.[解析]
解:
1点P的坐标是(2,3)或(6,3)
2作AC⊥OP,C为垂足.∵∠ACP=∠OBP=,∠1=∠1
∴△ACP∽△OBP
∴
在中,又AP=12-4=8,∴
∴AC=≈1.94
∵1.94<2
∴OP与⊙A相交.7、如图,延长⊙O的半径OA到B,使OA=AB,C
A
B
D
O
E
DE是圆的一条切线,E是切点,过点B作DE的垂线,垂足为点C.求证:∠ACB=∠OAC.[解析]
证明:连结OE、AE,并过点A作AF⊥DE于点F,(3分)
∵DE是圆的一条切线,E是切点,∴OE⊥DC,又∵BC⊥DE,∴OE∥AF∥BC.∴∠1=∠ACB,∠2=∠3.∵OA=OE,∴∠4=∠3.∴∠4=∠2.又∵点A是OB的中点,∴点F是EC的中点.∴AE=AC.∴∠1=∠2.∴∠4=∠2=∠1.即∠ACB=∠OAC.8、如图1,一架长4米的梯子AB斜靠在与地面OM垂直的墙壁ON上,梯子与地面的倾斜角α为.
1求AO与BO的长;
2若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.①如图2,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端A沿NO下滑多少米;
②如图3,当A点下滑到A’点,B点向右滑行到B’点时,梯子AB的中点P也随之运动到P’点.若∠POP’=,试求AA’的长.
[解析]
1中,∠O=,∠α=
∴,∠OAB=,又AB=4米,∴米.米.--------------
(3分)
2设在中,根据勾股定理:
∴
-------------
(5分)
∴
∵ ∴
∴
-------------
(7分)
AC=2x=
即梯子顶端A沿NO下滑了米.----
(8分)
3∵点P和点分别是的斜边AB与的斜边的中点
∴,-------------
(9分)
∴-------
(10分)
∴
∴
∵
∴
-----------------------
(11分)
∴-----
(12分)
∴米.--------
(13分)
9.(重庆,10分)如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(1)
求直线AB的解析式;(2)
当t为何值时,△APQ与△AOB相似?
(3)
当t为何值时,△APQ的面积为个平方单位?
解:(1)设直线AB的解析式为y=kx+b
由题意,得
解得
所以,直线AB的解析式为y=-x+6.
(2)由AO=6,BO=8
得AB=10
所以AP=t,AQ=10-2t
1°
当∠APQ=∠AOB时,△APQ∽△AOB.
所以 =
解得 t=(秒)
2°
当∠AQP=∠AOB时,△AQP∽△AOB.
所以 =
解得 t=(秒)
(3)过点Q作QE垂直AO于点E.
在Rt△AOB中,Sin∠BAO==
在Rt△AEQ中,QE=AQ·Sin∠BAO=(10-2t)·=8
-t所以,S△APQ=AP·QE=t·(8-t)
=-+4t=
解得t=2(秒)或t=3(秒).
(注:过点P作PE垂直AB于点E也可,并相应给分)
点拨:此题的关键是随着动点P的运动,△APQ的形状也在发生着变化,所以应分情况:①∠APQ=∠AOB=90○②∠APQ=∠ABO.这样,就得到了两个时间限制.同时第(3)问也可以过P作
PE⊥AB.
10.(南充,10分)如图2-5-7,矩形ABCD中,AB=8,BC=6,对角线AC上有一个动点P(不包括点A和点C).设AP=x,四边形PBCD的面积为y.
(1)写出y与x的函数关系,并确定自变量x的范围.
(2)有人提出一个判断:“关于动点P,⊿PBC面积与⊿PAD面积之和为常数”.请你说明此判断是否正确,并说明理由.
解:(1)过动点P作PE⊥BC于点E.
在Rt⊿ABC中,AC=10,PC=AC-AP=10-x.
∵ PE⊥BC,AB⊥BC,∴⊿PEC∽⊿ABC.
故,即
∴⊿PBC面积=
又⊿PCD面积=⊿PBC面积=
即 y,x的取值范围是0<x<10.
(2)这个判断是正确的.
理由:
由(1)可得,⊿PAD面积=
⊿PBC面积与⊿PAD面积之和=24.
6.证明方法四边形必备初中 篇六
一.相交线、平行线: 1.相交直线邻补角相等。
2.a垂直b,c平行a,则c垂直b
二.三角形中:
1.等腰三角形三线合一。2.勾股定理逆定理。
3.三角形三条边上的高所在直线交于同一点。
三.四边形中:
1.菱形对角线互相垂直。2.矩形邻边互相垂直。
四.圆中: 1.垂径定理。2.切线性质定理。3.圆周角定理推论。
4.相交两圆连心线垂直平分公共弦。
五.图形运动:
1.图形翻折,对称轴垂直平分对应点连线。
六.角度计算:
证明线段平行
一.相交线、平行线: 1.同位角相等。2.内错角相等。3.同旁内角互补。4.平行线的传递性。
5.垂直同一条直线的两条直线平行。
6.比例线段。
二.三角形中: 1.三角形中位线。
三.四边形中:
1.平行四边形对边平行。2.梯形两底平行。3.梯形中位线平行两底。
四.图形运动:
1.图形平移对应边平行,对应点连线平行。2.图形翻折对应点连线平行。
五.平面直角坐标系:
1.一次函数斜率相等,两直线平行。六.向量:
1.向量a=k向量b,k不等于0,向量a,向量b不为0向量,向量a所在直线与向量b所在直线平行或重合。
证明角相等的方法 一.相交线、平行线: 1.对顶角相等。
2.等角的余角(或补角)相等。
3.两直线平行,同位角相等、内错角相等。4.凡直角都相等。
5. 角的平分线分得的两个角相等。
二.三角形中:
1.等腰三角形的两个底角相等。
2.等腰三角形底边上的高(或中线)平分顶角(三线合一)。3.三角形外角和定理:三角形外角等于和它不相邻的内角之和。4.全等形中,一切对应角都相等。5.相似三角形的对应角相等。
三.四边形中:
1.平行四边形对边相等,对角线相互平分。2.菱形的每一条对角线平分一组对角。3.等腰梯形在同一底上的两个角相等。
四.圆中:
1.在同圆或等圆中,若有两条弧相等或有两条弦相等,那么它们所对的圆心角相等。2.在同圆或等圆中,等弧所对的圆周角相等.。
3.圆周角定理:在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半。4.圆内接四边形的性质:圆内接四边形的对角互补;并且每一个外角都等于它的内对角。5.三角形的内心的性质:三角形的内心与角顶点的连线平分这个角。6.正多边形的性质:正多边形的外角等于它的中心角.。
7.从圆外一点引圆的两条切线,圆心和这一点的连线平分这两条切线的夹角。五.角运算:
1.利用等量代换、等式性质 证明两角相等。2.利用三角函数计算出角的度数相等。
证明线段相等的方法 一.常用轨迹中:
1.两平行线间的距离处处相等。
2.线段中垂线上任一点到线段两端点的距离相等。3.角平分线上任一点到角两边的距离相等。
4.若一组平行线在一条直线上截得的线段相等,则在其它直线上截得的线段也相等。
二.三角形中:
1.同一三角形中,等角对等边。(等腰三角形两腰相等、等边三角形三边相等)2.任意三角形的外心到三顶点的距离相等。3.任意三角形的内心到三边的距离相等。
4.等腰三角形顶角的平分线(或底边上的高、中线)平分底边。5.直角三角形中,斜边的中点到直角顶点的距离相等。6.有一角为60°的等腰三角形是等边三角形。
7.过三角形一边的中点与另一边平行的直线,必平分第三边。
8.同底或等底的三角形,若面积相等,则高也相等。同高或等高的三角形,若面积相等,则底也相等。
三.四边形中:
1.平行四边形对边相等,对角线相互平分。
2.矩形对角线相等,且其的交点到四顶点的距离相等。3.菱形中四边相等。
4.等腰梯形两腰相等、两对角线相等。
5.过梯形一腰的中点与底平行的直线,必平分另一腰。
四.正多边形中:
1.正多边形的各边相等。且边长
2.正多边形的中心到各顶点的距离(外接圆半径R)相等、各边的距离(边心距)相等。且
五.圆中:
1.同圆或等圆的半径相等、直径相等;等弧或等圆心角、等圆周角所对的弦、弦心距相等。2.同圆或等圆中,等弦所对的弦心距相等,等弦心距所对的弦相等。3.任意圆中,任一弦总被与它垂直的半径或直径平分。4.自圆外一点所作圆的两切线长相等。
5.两相交或外切或外离圆的二公切线的长相等;两外离圆的二内公切线的长也相等。6.两相交圆的公共弦总被连心线垂直平分。7.两外切圆的一条外公切线与内公切线的交点到三切点的距离相等。8.两同心圆中,内圆的任一切线夹在外圆内的弦总相等且都被切点平分。
六.全等形中:
1.全等形中,一切对应线段(对应的边、高、中线、外接圆半径、内切圆半径……)都相等。
七.线段运算:
1.对应相等线段的和相等;对应相等线段的差相等。
2.对应相等线段乘以的相等倍数所得的积相等;对应相等线段除以的相等倍数所得的商相等。
7.怎样证明一个四边形是梯形 篇七
答:一组对边平行而另一组对边不平行的四边形叫做梯形,梯形的定义明确指出,作为一种特殊四边形的梯形,必须具备两个条件,即“一组对边平行”和“另一组对边不平行”,因此判定一个四边形是否是梯形,也必须以是否满足这两个条件为依据,二者缺一不可.
证明两线平行的方法比较多,难点是如何判定两线不平行.
【例1】已知:如图1在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,A′、B′、C′、D′分别为AO、BO、CO、DO的中点.
求证:四边形A′B′C′D′是梯形.
分析一:由A′、D′分别是AD、DO的中点,易知A′D′∥AD.由B′、C′分别是BO、CO的中点,易知B′C′∥BC.
又AD∥BC,∴A′D′∥B′C′,由A′、B′分别是AO、BO的中点,得A′B′∥AB,由C′、D′分别是CO、DO的中点,得C′D′∥CD,又AB与CD不平行,∴A′B′与C′D′也不平行.
综上所述,四边形A′B′C′D是梯形.
分析二:本题还可以通过证明A′D′∥B′C′且A′D′≠B′C′来判定四边形A′B′C′D′是梯形,即
由A′、D′分别为AO、DO的中点,得
由B′,C′分别为BO、CO的中点,得
∵AD∥BC且AD≠BC,∴A′D′∥B′C′且A′D′≠B′C′,∴四边形A′B′C′D′是梯形.
证明:略.
从以上分析中不难看出,证明一个四边形是梯形有两种方法,一种方法是证明四边形的一组对边平行而另一组对边不平行;另一种方法是证明四边形的一组对边平行且不相等,如果在证题过程中忽视了“一组对边不平行”的条件,只由“一组对边平行”来判定四边形是梯形显然是错误的.
【例2】 已知:如图2,在矩形ABCD中,对角线AC、BD交于O点,E、F分别为OA、OD的中点.
求证:四边形EBCF是等腰梯形.
证明:∵E、F分别是OA、OD的中点,∴EF∥AD,又四边形ABCD是矩形,∴AD∥BC,∴EF∥BC,∵E、F分别为OA、OD的中点,又 AD=BC,∴ EF≠BC
由 EF∥BC,EF≠BC.得
四边形EBCF是梯形,∴ EO=FO,又 ∠1=∠2,BO=OC,∴ △EBO≌△FCO
∴ EB=FC,∴ 四边形EBCF是等腰梯形.
分析:如果只证明了EF∥BC就判定四边形EBCF是梯形,不符合梯形的定义,应继续证明另一组对边EB与CF不平行,或继续证明EF≠BC都可以判定四边形EBCF是梯形,即
8.中考四边形压轴题 篇八
中考――与特殊四边形有关的填空压轴题
【题1】(.年河南省第题)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为 .
【题2】(四川省绵阳市第17题)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形AB
CD的边长为 .【题3】 (湖北随州第16题)如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P、EF、GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:
①当x=1时,点P是正方形ABCD的中心;
②当x=时,EF+GH>AC;
③当0<x<2时,六边形AEFCHG面积的最大值是
④当0<x<2时,六边形AEFCHG周长的值不变.
其中正确的是 (写出所有正确判断的序号).
;
【题4】(?泰州第16题)如图,正方向ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于 cm.
【题5】 (重庆市第18题)如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为 .
【题6】 (宁夏第15题)如图,在四边形ABCD中,AD∥BC,AB=CD=2,BC=5,∠BAD的平分线交BC于点E,且AE∥CD,则四边形ABCD的面积为 .
【题7】(?宁波第11题)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是 .
【题8】(?武汉第16题)如图,在四边形ABCD中,AD=4,CD=3,
∠ABC=∠ACB=∠ADC=45°,则BD的长为__________.
【题9】(?苏州第17题)如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE?ED=,则矩形ABCD的面积为 .
【题10】(?枣庄第18题)图①所示的.正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为____________cm.
9.平行四边形练习证明 篇九
BC
2.如图,在中,∠B=120°,DE⊥AB,垂足为E,DF⊥BC,垂足为F.求
∠ADE,∠
EDF,∠FDC的度数.
3.如图,在平行四边形ABCD中,已知对角线
AC和BD相交于点O,ΔAOB的周长为
15,AB=6,那么对角线AC和BD的和是多少?
4.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.
5.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F为对角线AC上的点,且AE=CF,求证:BE=DF.
6.已知:如图,在平行四边形ABCD中,E,F分别是AB,CD上的两点,且AE=CF,AF,DE相交于点M,BF,CE相交于点N.
求证:四边形EMFN是平行四边形.(要求不用三角形全等来证)
7.已知:如图,在△
ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.
8.如图,已知,▱ABCD中,AE=CF,M、N分别是
DE、BF的中点.
求证:四边形MFNE是平行四边形.
9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.
已知:如图,△ABC中,D是AB的中点,E是AC上的一点,EF∥AB,DF∥BE.
(1)猜想:DF与AE间的关系是______.
10.四边形证明题复习 篇十
学号__________姓名____________
一、知识回顾:
(一)命题与证明
1.定义:能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义.(1)概念:对一个事件作出正确或不正确的_______的句子
①
(2)分类
2.命题② 假命题(可通过
(3)形式:命题都可写成命题与证明(4)互逆命题
1)公理:一部分人们通过后公认为正确的命题
3.公理与定理
(2.(14.证明
(2__________________矛盾
______________
(二)平行四边形
1、n边形的内角和_________________,外角和:____________,对角线条数:______________
2、平行四边形定义:_______________的四边形叫做平行四边形。
3、平行四边形性质:
(1)角:平行四边形__________________________________;
(2)边:平行四边形__________________________________;
(3)对角线:平行四边形______________________________;
(4)对称性:平行四边形是______________;
4、平行四边形判定:
用边判定:⑴__________________________________;
⑵__________________________________;
⑶__________________________________;
用对角线判定:_____________________________________________。
5、三角形中位线性质定理:____________________________________;
逆定理:_______________________________________
6、平行线之间的距离定义:若两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离。
平行线之间的距离特征1:______________________________。
平行线之间的距离特征2:夹在两条平行线之间的__________相等。
二、典型例题:
1、命题的证明: 例1:(1)证明“全等三角形对应角平分线相等”是真命题.
(2)用反例证明下列命题是假命题:①若x≠2,则分式
x
有意义;② 三个角对应相等的两个三角形全等.
2x
4(3)①用反证法证明命题“三角形的三个内角中,至少有一个大于或等于60°”时,•应假设____________②用反证法证明:在一个三角形中,如果两个角不等,那么它们所对的边也不相等.
2、平行四边形的性质和判定
例2 已知如图:在四边形ABCD中,AB=CD,AD=BC,点E、F分别在BC和AD边上,AF=CE,EF和对角线BD相交于点O,求证:点O是BD的中点。
D C
练
1、如图,在四边形ABCD中,E是BC边上的一点,连结DE并延长,交AB的延长线于F点,且DE=EF,AB=BF.再添加一个条件,你认为下面四个条件中不能使四边形ABCD是平
E
行四边形的是()A.ADBC
B.CDBF
C.AC
D.FCDE
A
B
F
练2:如图,已知平行四边形ABCD的周长为30cm,AE⊥BC于E点,AF⊥CD于F点,若AE∶AF=2∶3,∠C=120°.求S □ABCD =________________.变式:已知平行四边形ABCD的面积为12,过点A作直线BC的垂线交BC于点E,过点A作直线CD的垂线交CD于点F,若AB=4,BC=6,则CE+CF的值为.3、中点四边形
例3:已知如图:在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,求证:四边形EFGH是平行四边形。
变式1:顺次连结矩形四边中点所得的四边形是__________。
变式2:顺次连结菱形四边中点所得的四边形是__________。
2图
变式3:顺次连结正方形四边中点所得的四边形是__________。变式4:顺次连结等腰梯形四边中点所得的四边形是__________。
变式5:若AC=BD,AC⊥BD,则四边形EFGH是__________。
变式6:在四边形ABCD中,若AB=CD,E、F、G、H分别为AD、BC、BD、AC的中点,则四边形EFGH是____________.变式7:如图:在四边形ABCD中,E为边AB上的一点,△ADE和△BCE都是等
娈式6图
边三角形,P、Q、M、N分别是AB、BC、CD、DA边上的中点,求证:四边形
PQMN是菱形。
练3:如图四边形ABCD中,AB=CD.∠ABD=20°,∠BDC=70°,E、F、G分别是BC,AD,BD的中点,则∠GEF=____________°
娈式7图
课内练习:
1、下列句子中不是命题的是()A 明天可能下雨B 台湾是中国不可分割的部分
C 直角都相等D 中国是2008年奥运会的举办国
2、下列命题中的真命题是()A 锐角大于它的余角B 锐角大于它的补角 C 钝角大于它的补角D 锐角与钝角等于平角
3、下列命题中,属于假命题的是()A.若a⊥c,b⊥c,则a⊥bB.若a∥b,b∥c,则a∥c C.若a⊥c,b⊥c,则a∥bD.若a⊥c,b∥a,则b⊥c4、若等腰三角形的一个外角为110°,则它的底角为()A.55°B.70°C.55°或70°D.以上答案都不对
5、对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的例子是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°
6、下列给出的四个命题:
①若ab,则aabb;②若a5a5
0③(a1)
a1;
a④若方程x2pxq0的两个实根中有且只有一个根为0,那么p0,q0.1a
其中是真命题是()
A.①②B.②③C.②④D.③④
7、如图,在Rt⊿ABC中,∠C=90°,D 为BC上一点,∠DAC=30°,BD=2,AB=23,则AC = .
C
D
H
B
B
G
CD
A
C
A
l1l2l
3第9题
A
第7
题
B8、如图,正方形ABCD与正方形EFGH的面积分别为8cm和16cm,线段CD,EH在同一直线上,则△
AED与△BHC的面积之和为cm.
9、如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2 , l2,l3之间的距离为3 ,则AC的长是______________
10、一个六边形的六个内角都是120度,连续四边的长为1,3,4,2,则该六边形的周长是.
11、如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动.设动点运动时间为t秒.(1)求AD的长.(2)当△PDC的面积为15平方厘米时,求t的值.
(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在t,使得S△PMD请说明理由.
【四边形证明题复习】推荐阅读:
四边形证明及计算提高练习08-12
四边形知识归纳10-10
认识四边形教案表格07-23
四边形听课反思心得07-25
四边形的认识说课稿07-06
人教版四边形说课稿09-30
第十九章四边形知识点07-13
人教版三年级数学上册四边形的认识06-29
人教版三年级上册数学《四边形的认识》教案07-03
全区四边三化部署会上的发言稿11-03