高中数学定理证明汇总

2024-06-17

高中数学定理证明汇总(精选6篇)

1.高中数学定理证明汇总 篇一

初中数学定理证明

数学定理

三角形三条边的关系

定理:三角形两边的和大于第三边

推论:三角形两边的差小于第三边

三角形内角和

三角形内角和定理三角形三个内角的和等于180°

推论1直角三角形的两个锐角互余

推论2三角形的一个外角等于和它不相邻的两个内角和

推论3三角形的一个外角大雨任何一个和它不相邻的内角

角的平分线

性质定理在角的平分线上的点到这个角的两边的距离相等

几何语言:

∵OC是∠AOB的角平分线(或者∠AOC=∠BOC)

pE⊥OA,pF⊥OB

点p在OC上

∴pE=pF(角平分线性质定理)

判定定理到一个角的两边的距离相等的点,在这个角的平分线上

几何语言:

∵pE⊥OA,pF⊥OB

pE=pF

∴点p在∠AOB的角平分线上(角平分线判定定理)

等腰三角形的性质

等腰三角形的性质定理等腰三角形的两底角相等

几何语言:

∵AB=AC

∴∠B=∠C(等边对等角)

推论1等腰三角形顶角的平分线平分底边并且垂直于底边

几何语言:

(1)∵AB=AC,BD=DC

∴∠1=∠2,AD⊥BC(等腰三角形顶角的平分线垂直平分底边)

(2)∵AB=AC,∠1=∠

2∴AD⊥BC,BD=DC(等腰三角形顶角的平分线垂直平分底边)

(3)∵AB=AC,AD⊥BC

∴∠1=∠2,BD=DC(等腰三角形顶角的平分线垂直平分底边)

推论2等边三角形的各角都相等,并且每一个角等于60°

几何语言:

∵AB=AC=BC

∴∠A=∠B=∠C=60°(等边三角形的各角都相等,并且每一个角都等于60°)

等腰三角形的判定

判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等

几何语言:

∵∠B=∠C

∴AB=AC(等角对等边)

推论1三个角都相等的三角形是等边三角形

几何语言:

∵∠A=∠B=∠C

∴AB=AC=BC(三个角都相等的三角形是等边三角形)

推论2有一个角等于60°的等腰三角形是等边三角形

几何语言:

∵AB=AC,∠A=60°(∠B=60°或者∠C=60°)

∴AB=AC=BC(有一个角等于60°的等腰三角形是等边三角形)

推论3在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

几何语言:

∵∠C=90°,∠B=30°

∴BC=AB或者AB=2BC(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半)

线段的垂直平分线

定理线段垂直平分线上的点和这条线段两个端点的距离相等

几何语言:

∵MN⊥AB于C,AB=BC,(MN垂直平分AB)

点p为MN上任一点

∴pA=pB(线段垂直平分线性质)

逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

几何语言:

∵pA=pB

∴点p在线段AB的垂直平分线上(线段垂直平分线判定)

轴对称和轴对称图形

定理1关于某条之间对称的两个图形是全等形

定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

定理3两个图形关于某直线对称,若它们的对应线段或延长线相交,那么交点在对称轴上

逆定理若两个图形的对应点连线被同一条直线垂直平分,那这两个图形关于这条直线对称

勾股定理

勾股定理直角三角形两直角边a、b的平方和,等于斜边c的平方,即

a2+b2=c

2勾股定理的逆定理

勾股定理的逆定理如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形

四边形

定理任意四边形的内角和等于360°

多边形内角和

定理多边形内角和定理n边形的内角的和等于(n-2)·180°

推论任意多边形的外角和等于360°

平行四边形及其性质

性质定理1平行四边形的对角相等

性质定理2平行四边形的对边相等

推论夹在两条平行线间的平行线段相等

性质定理3平行四边形的对角线互相平分

几何语言:

∵四边形ABCD是平行四边形

∴AD‖BC,AB‖CD(平行四边形的对角相等)

∠A=∠C,∠B=∠D(平行四边形的对边相等)

AO=CO,BO=DO(平行四边形的对角线互相平分)

平行四边形的判定

判定定理1两组对边分别平行的四边形是平行四边形

几何语言:

∵AD‖BC,AB‖CD

∴四边形ABCD是平行四边形

(两组对边分别平行的四边形是平行四边形)

判定定理2两组对角分别相等的四边形是平行四边形

几何语言:

∵∠A=∠C,∠B=∠D

∴四边形ABCD是平行四边形

(两组对角分别相等的四边形是平行四边形)

判定定理3两组对边分别相等的四边形是平行四边形

几何语言:

∵AD=BC,AB=CD

∴四边形ABCD是平行四边形

(两组对边分别相等的四边形是平行四边形)

判定定理4对角线互相平分的四边形是平行四边形

几何语言:

∵AO=CO,BO=DO

∴四边形ABCD是平行四边形

(对角线互相平分的四边形是平行四边形)

判定定理5一组对边平行且相等的四边形是平行四边形

几何语言:

∵AD‖BC,AD=BC

∴四边形ABCD是平行四边形

(一组对边平行且相等的四边形是平行四边形)

矩形

性质定理1矩形的四个角都是直角

性质定理2矩形的对角线相等

几何语言:

∵四边形ABCD是矩形

∴AC=BD(矩形的对角线相等)

∠A=∠B=∠C=∠D=90°(矩形的四个角都是直角)

推论直角三角形斜边上的中线等于斜边的一半

几何语言:

∵△ABC为直角三角形,AO=OC

∴BO=AC(直角三角形斜边上的中线等于斜边的一半)

判定定理1有三个角是直角的四边形是矩形

几何语言:

∵∠A=∠B=∠C=90°

∴四边形ABCD是矩形(有三个角是直角的四边形是矩形)

判定定理2对角线相等的平行四边形是矩形

几何语言:

∵AC=BD

∴四边形ABCD是矩形(对角线相等的平行四边形是矩形)

菱形

性质定理1菱形的四条边都相等

性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

几何语言:

∵四边形ABCD是菱形

∴AB=BC=CD=AD(菱形的四条边都相等)

AC⊥BD,AC平分∠DAB和∠DCB,BD平分∠ABC和∠ADC

(菱形的对角线互相垂直,并且每一条对角线平分一组对角)

判定定理1四边都相等的四边形是菱形

几何语言:

∵AB=BC=CD=AD

∴四边形ABCD是菱形(四边都相等的四边形是菱形)

判定定理2对角线互相垂直的平行四边形是菱形

几何语言:

∵AC⊥BD,AO=CO,BO=DO

∴四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形)

正方形

性质定理1正方形的四个角都是直角,四条边都相等

性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

中心对称和中心对称图形

定理1关于中心对称的两个图形是全等形

定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

梯形

等腰梯形性质定理等腰梯形在同一底上的两个角相等

几何语言:

∵四边形ABCD是等腰梯形

∴∠A=∠B,∠C=∠D(等腰梯形在同一底上的两个角相等)

等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

几何语言:

∵∠A=∠B,∠C=∠D

∴四边形ABCD是等腰梯形(在同一底上的两个角相等的梯形是等腰梯形)

三角形、梯形中位线

三角形中位线定理三角形的中位线平行与第三边,并且等于它的一半

几何语言:

∵EF是三角形的中位线

∴EF=AB(三角形中位线定理)

梯形中位线定理梯形的中位线平行与两底,并且等于两底和的一半

几何语言:

∵EF是梯形的中位线

∴EF=(AB+CD)(梯形中位线定理)

比例线段

1、比例的基本性质

如果a∶b=c∶d,那么ad=bc2、合比性质

3、等比性质

平行线分线段成比例定理

平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

几何语言:

∵l‖p‖a

(三条平行线截两条直线,所得的对应线段成比例)

推论平行与三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行与三角形的第三边

垂直于弦的直径

垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧

几何语言:

∵OC⊥AB,OC过圆心

(垂径定理)

推论

1(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

几何语言:

∵OC⊥AB,AC=BC,AB不是直径

(平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧)

(2)弦的垂直平分线过圆心,并且平分弦所对的两条弧

几何语言:

∵AC=BC,OC过圆心

(弦的垂直平分线过圆心,并且平分弦所对的两条弧)

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

几何语言:

(平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧)

推论2圆的两条平分弦所夹的弧相等

几何语言:∵AB‖CD

圆心角、虎弦、弦心距之间的关系

定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距也相等

推论在同圆或等圆中,如果两个圆心角、两条虎两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等

圆周角

定理一条弧所对的圆周角等于它所对的圆心角的一半

推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直角

推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

圆的内接四边形

定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

几何语言:

∵四边形ABCD是⊙O的内接四边形

∴∠A+∠C=180°,∠B+∠ADB=180°,∠B=∠ADE

切线的判定和性质

切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

几何语言:∵l⊥OA,点A在⊙O上

∴直线l是⊙O的切线(切线判定定理)

切线的性质定理圆的切线垂直于经过切点半径

几何语言:∵OA是⊙O的半径,直线l切⊙O于点A

∴l⊥OA(切线性质定理)

推论1经过圆心且垂直于切线的直径必经过切点

推论2经过切点且垂直于切线的直线必经过圆心

切线长定理

定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

几何语言:∵弦pB、pD切⊙O于A、C两点

∴pA=pC,∠ApO=∠CpO(切线长定理)

弦切角

弦切角定理弦切角等于它所夹的弧对的圆周角

几何语言:∵∠BCN所夹的是,∠A所对的是

∴∠BCN=∠A

推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

几何语言:∵∠BCN所夹的是,∠ACM所对的是,=

∴∠BCN=∠ACM

和圆有关的比例线段

相交弦定理:圆内的两条相交弦,被焦点分成的两条线段长的积相等

几何语言:∵弦AB、CD交于点p

∴pA·pB=pC·pD(相交弦定理)

推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

几何语言:∵AB是直径,CD⊥AB于点p

∴pC2=pA·pB(相交弦定理推论)

切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项

几何语言:∵pT切⊙O于点T,pBA是⊙O的割线

∴pT2=pA·pB(切割线定理)

推论从圆外一点因圆的两条割线,这一点到每条割线与圆的焦点的两条线段长的积相等

几何语言:∵pBA、pDC是⊙O的割线

∴pT2=pA·pB(切割线定理推论)。

2.高中数学定理证明汇总 篇二

在全国高等学校教学研究中心组织的“科学思维、科学方法在高校数学课程教学创新中的应用与实践”活动的背景下, 内蒙古科技大学投百万巨资启动了一项具有应用型大学特色的理科教学基地建设工程, 高等数学作为大学数学基础课程的重要课程之一当然在建设之列.在建设过程中发现, 数学证明的教学内容、体系与方法的改革不仅是争议最多而且也是难度最大的问题之一.

从培养创新人才的目标看, 在数学证明教学过程中既要给出命题的真假依据, 又要启发学生更深刻地理解命题, 还要导致发现.这就需要突破传统教学中对数学证明的观念, 创造数学证明教学的高附加值, 即文化价值和思维价值.因此, 证明教学的目标是训练和培养学生的逻辑和非逻辑的思维能力.为了实现这一目标, 在科学思维、科学方法的精神指导下, 在已有的教学成果基础上, 对微分中值定理一元与多元情形进行一体化的教学设计, 探究一种以教学过程和内容建设为核心的教学模式.

二、Rolle分项

(1) 在有界闭区域D上连续;

则在D内至少有一点ξ, 使得gradf (ξ) =0.

只需简单地把定理中的函数拆分为两个函数的差, 即F (x) =f (x) -g (x) , 就得到下面的推论:

(1) 在有界闭区域D上连续;

推论1的几何意义是:两片连续光滑的曲面, 只要能够上下平移使其边界重合, 那么在D内至少存在一点使两片曲面上对应的点处有平行的切平面.

(2) 在线段]x1, x2[内具有连续偏导数;

(3) f (x1) =f (x2) ,

则在]x1, x2[内至少有一点ξ, 使得gradf (ξ) T[x2-x1]=0.

同理可由推论1得到:

(2) 在线段]x1, x2[内具有连续偏导数;

则在]x1, x2[内至少有一点ξ, 使得

三、方案设计

根据推论3, 可进行如下教学设计.

1.启发学生发现Lagrange中值定理

在推论3中, 取g (x) =cTx+d, 则结论变为在]x1, x2[内至少有一点ξ, 使得

2.启发学生发现Cauchy中值定理

由推论3知, 在]x1, x2[内至少有一点ξ, 使得

四、结语

上述教学模式的创新点是把微分中值定理一元与多元情形进行一体化的教学设计.期望效果是:不仅使学生对微分中值定理的学科结构和本质属性有更深刻的理解, 而且能够提高学习效率、扩展学生视野、拓宽应用领域[5].进行这样的尝试, 确实有其教育价值和现实意义.

摘要:数学证明教学的内容、体系与方法对培养创新人才具有重要作用.在科学思维、科学方法的指导下, 按照培养创新人才的目标要求, 在已有的教学成果基础上, 对微分中值定理一元与多元情形进行一体化的教学设计, 探究一种以教学过程和内容建设为核心的教育教学新模式.

关键词:教学模式,数学证明,罗尔定理,拉格朗日中值定理,柯西中值定理

参考文献

[1]王申怀.数学证明的教育价值[J].课程·教材·教法, 2000 (5) :24-26.

[2]熊惠民, 虞莉娟.从数学证明的二重性看其教育价值[J].数学教育学报, 2007, 16 (1) :17-20.

[3]同济大学数学系.高等数学 (第六版) 上册[M].北京:高等教育出版社, 2007:128-133.

[4][苏]卡尔塔谢夫, 罗吉斯特维斯基.数学分析[M].曹之江, 倪星堂, 译.呼和浩特:内蒙古大学出版社, 1991:123-123.

3.高中数学定理证明汇总 篇三

关键词:高中数学 圆 垂径定理 例题解析

中图分类号:G633.6 文献标识码:A 文章编号:1673-9795(2014)1(b)-0000-00

1圆的垂径定理及其重要性分析

圆在高中数学中占据着极为重要的位置,在高考数学中所占的比例也是相当之大的,其一直是高考的核心内容之一。从近年来的考察分析来看,高考对圆部分的要求越来越高,因而在日常的学习和圆部分的训练一定要循序渐进,掌握层次。这就需要咱们的学生在对知识有一定掌握的同时,必须要让学生能够对相关知识能进行进一步的灵活应用,在解决较为困难或综合性较强的问题的同时, 能够发散自己的思维。 解题的高效,灵活, 快捷,方便。有的人会说,解析几何的本质就是在于引导学生使用代数法对几何图形的性质进行相关的研究, 使几何问题代数问题两者之间能够相互转换, 一旦只是一味的使用纯代数进行相关的运算,方式方法的选择不得当的话,解析几何的运算量将会有明显的增大,学生的解题正确率就会很明显地下降,常常会因为运算太繁琐半途而废,也常常会因为运算的失误功亏一赞。

在高中数学的几何教学中,数形结合的思想无疑是最重要的数学思想之一,数形结合的典范很大一部分来自于解析几何,能够进一步体现数形结合的数学思想,学生若是能够对几何图形进行深入研究会发现,数的严谨性与形的直观性能在这一思想中得到充分的发挥。

2垂径定理证明

如图1 ,在⊙O中,DC为直径, AB是弦,AB⊥DC于点E,AB、CD交于E,求证:AE=BE,弧AC=弧BC,弧AD= 弧BD

图1垂径定理证明图

证明:连OA、OB分别交于点A、点B.

∵OA、OB是⊙O的半径

∴OA=OB

∴△OAB是等腰三角形

∵AB⊥DC

∴AE=BE,∠AOE=∠BOE(等腰三角形的三线合一性质)

∴弧AD=弧BD,∠AOC= 角BOC

∴弧AC=弧BC

3 题型分析

3.1 常规题

已知圆C:(x-1)^2+y^2=9 内有一点P(2,2),过点P作直线L交圆C于A、B两点.

(1)当弦AB被点P平分时,求直线L的方程。

(2)当直线的倾斜角为45°时,求弦AB的长。

(1)当弦AB被点P平分时

圆心C与点P的连线必然与AB垂直

所以得到AB的斜率

k=-1/2

y-2=-1/2(x-2)

x+2y-6=0

(2)直線l的倾斜角为45°,直线AB的方程y=x

求圆心(1,0)到直线y=x的距离为1/√2

利用垂径定理,得|AB|=2×√34/2=√34。

3.2 两圆相交,巧用垂径定理

圆c:x2 +y2=2,过P(1,1)作两条相异直线与圆分别交于A,B两点,直线PA和PB拘倾斜角互补,判断直线OP与AB是否平行?若是,请给出证明;若不是请说明理由

解 过点P作y轴的平行线,与圆C交于点Q,则Q(l,-l)因为直线PA和PB的倾斜角互补,所以直线PA、PB关于直线Po对称,即角APQ=角BPQ所以,AQ= BQ,所以,oo垂直平分AB.因为直线OQ'的斜率为-l,直线OP的斜率为l,所以OO垂直OP,所以OP与AB平行。

3.3 椭圆化圆,运用垂径定理简化过程

椭圆的问题通常采用二次方程的根与系数的关系或引入参数来求解,但常常导致运算上的繁琐和消参的困难,而圆的有关问题却更容易解决。圆和椭圆具有明显区别,但又有必然联系。对于圆来说,利用垂径定理和点到直线间的距离公式,可以极大地简化计算量。将椭圆转化成圆,是利用了点与曲线、曲线与曲线的位置关系在这一变换下的不变性。

先对椭圆x^2/a^2+y^2/b^2=1做x=ax',y=by'的坐标转换。在这种转换下,xoy平面内的任一点P(x,y)转换为x'o'y'平面内的点P'(x',y')。椭圆方程x^2/a^2+y^2/b^2=1也就转换为x'o'y'平面内的单位圆x'^2+y'^2=1。但是要注意,被转化的椭圆的方程是标准方程。【椭圆的一般方程(高中不接触)经坐标变换总可以化为标准方程,当然我们接触的都是标准方程】还要注意要将结果完全还原。常见的问题会有:判断直线和椭圆位置关系,常规解法应该是直线与椭圆方程联立根据方程解的个数来判断直线与椭圆的位置关系。但如果把椭圆圆化,此问题便转化为直线与圆的位置关系了。因而,对上面问题的证明通常情况下可进行如下处理:一般化情况下,直线Ax+By+C=0与椭圆x^2/a^2+y^2/b^2=1的位置关系讨论(也是一个定理)如前所述,首先作变换x=ax',y=by',那么直线和椭圆分别转化为直线aAx'+bBy'+C=0和单位圆x'^2+y'^2=1。得到圆心到直线距离公式d=|C|/√(a^2A^2+b^2B^2)。(这个公式是不改变的)原来的直线和椭圆相交,就是转化后的直线和圆相交,那么d<1,得到a^2A^2+b^2B^2-C^2>0。同理,直线和椭圆相切,就是转化后的直线和圆相切,a^2A^2+b^2B^2-C^2=0;直线和椭圆相离,a^2A^2+b^2B^2-C^2<0。

参考文献

[1]许明达. 展示 “垂径定理” 教学过程 培养学生的思维品质[J]. 辽宁教育, 1998, 6.

[2]陈广南. 圆与正多边形——圆的概念与垂径定理[J]. 中学理科: 初中数理化, 2004 (11): 69-70.

[3]赵彦庆. 关于垂径定理的另一条推论及其应用[J]. 中学生数学: 高中版, 2010 (008): 37-37.

4.高中数学定理证明汇总 篇四

勾股定理是初等几何中的一个基本定理。所谓勾股定理,就是指在直角三角形中,两条直角边的平方等于斜边的平方。数学公式中常写作:a2 + b2=c2(直角三角形两直角边分别为a,b,斜边为c)。

那么勾股定理是怎么证明的呢?方法很多很多。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。

在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。

在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2(即如上所说:a2 + b2=c2)”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500).

实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特性.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人,但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已开始在人们的知识土地中“萌芽”了。

因为勾股定理的证明方法太多,不可能全数叙述。所以,我们就来了解一下较简洁、易懂的几种方法。

方法一:课本内的方法

如图所示,S大正方形=S三角形×4+S小正方形。即(a+b)2= 4(1/2ab)+c2,化简后为:a2 + b2=c2。

方法二:

以a,b为直角边(b>a),以c为斜边作4个全等的直

角三角形,则每个直角三角形的面积为1/2ab。把这4个三角形拼成如图所示的正方形。

∵Rt△DAH≌Rt△ABE

∴∠HDA=∠EAB

∵∠HDA+∠HAD=90°

∴∠HAD+∠EAB=90°

∵ABCD是个边长为c的正方形,面积为c

2又∵∠HEF+∠BEA=180°

∴∠HEF=90°

∴EFGH是一个边长为b-a的正方形,面积为(b-a)2

∴4×1/2ab+(b-a)2=c2

∴a2 + b2=c2

方法三: C

以a、b为直角边,以c为斜边做两个全等的直角三角

形,则每个直角三角形的面积等于1/2ab。把这两个直角三角形拼成如图所示形状,使A,E,B三点在一条直线上。

∵RtEAD≌Rt△CBE

∴∠ADE=∠BEC

∵∠AED+∠ADE=90°

∴∠AED+∠BEC=90°

∴∠DEC=180°—90°=90°

∴△DEC是一个等腰直角三角形,面积为1/2 c

2又∵∠DAE=90°,∠EBC=90°

∴AD∥BC

∴ABCD是个直角梯形,面积为1/2(a+b)2

∴1/2(a+b)2=2×1/2ab+1/2 c2

∴a2 + b2=c2

方法四:

作三个变长分别为a,b,c的正方形,把它们拼成如图所示的形状,是H,C,B三点在一条直线上,连接BF,CD.过C作CL⊥DE,交AB于点M,交DE于点L。∵AF=AC , AB=AD

∠FAB=∠GAD

∴△FAB≌△GAD

∵△FAB≌△GAD

∵△FAB的面积为1/2a2.△GAD的面积等于矩形ADLM的面积的一半。

∴矩形ADLM的面积为a2,同理可得,矩形MLEB的面积为b2

∵矩形ADLM+矩形MLEB的面积=矩形ADEB的面积

∴a2 + b2=c2

5.高中数学定理证明汇总 篇五

教学目标

1、知识与技能目标

(1)掌握三角形内角和定理的证明及简单应用。(2)灵活运用三角形内角和定理解决相关问题。

2、过程与方法

用多种方法证明三角形定理,培养一题多解的能力

1、情感与态度目标

对比过去撕纸等探索过程,体会思维实验和符号化的理性作用. 教学重点:掌握定理证明的方法 教学难点:添加辅助线 教学准备:多媒体课件 教学过程:

第一环节:情境引入

活动内容:(1)用折纸的方法验证三角形内角和定理.

实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果

(1)(2)(3)(4)

试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。

第二环节:探索新知 活动内容:

① 用严谨的证明来论证三角形内角和定理. ② 看哪个同学想的方法最多?

A D A

E

E B B C

C

D

方法一:过A点作DE∥BC ∵DE∥BC ∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)∵∠DAB+∠BAC+∠EAC=180° ∴∠BAC+∠B+∠C=180°(等量代换)方法二:作BC的延长线CD,过点C作射线CE∥BA.

∵CE∥BA ∴∠B=∠ECD(两直线平行,同位角相等)∠A=∠ACE(两直线平行,内错角相等)∵∠BCA+∠ACE+∠ECD=180° ∴∠A+∠B+∠ACB=180°(等量代换)第三环节:反馈练习活动内容:

(1)△ABC中可以有3个锐角吗? 3个直角呢? 2个直角呢?若有1个直角另外两角有什么特点?

(2)△ABC中,∠C=90°,∠A=30°,∠B=?(3)∠A=50°,∠B=∠C,则△ABC中∠B=?

(4)三角形的三个内角中,只能有____个直角或____个钝角.(5)任何一个三角形中,至少有____个锐角;至多有____个锐角.(6)三角形中三角之比为1∶2∶3,则三个角各为多少度?(7)已知:△ABC中,∠C=∠B=2∠A。

(a)求∠B的度数;

(b)若BD是AC边上的高,求∠DBC的度数?

第四环节:课堂小结 活动内容:

① 证明三角形内角和定理有哪几种方法? ② 辅助线的作法技巧.③ 三角形内角和定理的简单应用.第五环节:布置作业

1、第239页随堂练习;第241页习题6.6第1,2,3题

6.高中数学《正弦定理》教案 篇六

本节内容是正弦定理教学的第一节课,其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力.

本节课以及后面的解三角形中涉及到计算器的使用与近似计算,这是一种基本运算能力,学生基本上已经掌握了.若在解题中出现了错误,则应及时纠正,若没出现问题就顺其自然,不必花费过多的时间.

本节可结合课件“正弦定理猜想与验证”学习正弦定理.

三维目标

1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法,会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.

2.通过正弦定理的探究学习,培养学生探索数学规律的思维能力,培养学生用数学的方法去解决实际问题的能力.通过学生的积极参与和亲身实践,并成功解决实际问题,激发学生对数学学习的热情,培养学生独立思考和勇于探索的创新精神.

重点难点

教学重点:正弦定理的证明及其基本运用.

教学难点:正弦定理的探索和证明;已知两边和其中一边的对角解三角形时,判断解的个数.

课时安排

1课时

教学过程

导入新课

思路1.(特例引入)教师可先通过直角三角形的特殊性质引导学生推出正弦定理形式,如Rt△ABC中的边角关系,若∠C为直角,则有a=csinA,b=csinB,这两个等式间存在关系吗?学生可以得到asinA=bsinB,进一步提问,等式能否与边c和∠C建立联系?从而展开正弦定理的探究.

思路2.(情境导入)如图,某农场为了及时发现火情,在林场中设立了两个观测点A和B,某日两个观测点的林场人员分别测到C处有火情发生.在A处测到火情在北偏西40°方向,而在B处测到火情在北偏西60°方向,已知B在A的正东方向10千米处.现在要确定火场C距A、B多远?将此问题转化为数学问题,即“在△ABC中,已知∠CAB=130°,∠CBA=30°,AB=10千米,求AC与BC的长.”这就是一个解三角形的问题.为此我们需要学习一些解三角形的必要知识,今天要探究的是解三角形的第一个重要定理——正弦定理,由此展开新课的探究学习.

推进新课

新知探究

提出问题

1阅读本章引言,明确本章将学习哪些内容及本章将要解决哪些问题?

2联想学习过的三角函数中的边角关系,能否得到直角三 角形中角与它所对的边之间在数量上有什么关系?

3由2得到的数量关系式,对一般三角形是否仍然成立?

4正弦定理的内容是什么,你能用文字语言叙述它吗?你能用哪些方法证明它?

5什么叫做解三角形?

6利用正弦定理可以解决一些怎样的三角形问题呢?

活动:教师引导学生阅读本章引言,点出本章数学知识的某些重要的实际背景及其实际需要,使学生初步认识到学习解三角形知识的必要性.如教师可提出以下问题:怎样在航行途中测出海上两个岛屿之间的距离?怎样测出海上航行的轮船的航速和航向?怎样测量底部不可到达的建筑物的高度?怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度?这些实际问题的解决需要我们进一步学习任意三角形中边与角关系的有关知识.让学生明确本章将要学习正弦定理和余弦定理,并学习应用这两个定理解三角形及解决测量中的一些问题.

关于任意三角形中大边对大角、小 边对小角的边角关系,教师引导学生探究其数量关系.先观察特殊的直角三角形.如下图,在Rt△ABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有ac=sinA,bc=sinB,又sinC=1=cc,则asinA=bsinB=csinC=c.从而在Rt△ABC中,asinA=bsinB=csinC.

那么对于任意的三角形,以上关系式是否仍然成立呢?教师引导学生画图讨论分析.

如下图,当△ABC是锐角三角形时,设边AB上的高是CD,根据任意角的三角函数的定义,有CD=asinB=bsinA,则asinA=bsinB.同理,可得csinC=bsinB.从而asinA=bsinB=csinC.

(当△ABC是钝角三角形时,解法类似锐角三角形的情况,由学生自己完成)

通过上面的讨论和探究,我们知道在任意三角形中,上述等式都成立.教师点出这就是今天要学习的三角形中的重要定理——正弦定理.

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即

asinA=bsinB=csinC

上述的探究过程就是正弦定理的证明方法,即分直角三角形、锐角三角形、钝角三角形三种情况进行证明.教师提醒学生要掌握这种由特殊到一般的分类证明思想,同时点拨学生观察正弦定理的特征.它指出了任意三角形中,各边与其对应角的正弦之间的一个关系式.正弦定理的重要性在于它非常好地描述了任意三角形中边与角的一种数量关系;描述了任意三角形中大边对大角的一种准确的数量关系.因为如果∠A<∠B,由三角形性质,得asin(π-A)=sinA,所以仍有sinA

正弦定理的证明方法很多,除了上述的证明方法以外,教师鼓励学生课下进一步探究正弦定理的其他证明方法.

讨论结果:

(1)~(4)略.

(5)已知三角形的几个元素(把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素)求其他元素的过程叫做解三角形.

(6)应用正弦定理可解决两类解三角形问题:①已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的另一角,并由正弦定理计算出三角形的另两边,即“两角一边问题”.这类问题的解是唯一的.②已知三 角形的任意两边与其中一边的对角,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和 角,即“两边一对角问题”.这类问题的答案有时不是唯一的,需根据实际情况分类讨论.

应用示例

例1在△ABC中,已知∠A=32.0°,∠B=81.8°,a=42.9 cm,解此三角形.

活动:解三角形就是已知三角形的某些边和角,求其他的边和角的过程,在本例中就是求解∠C,b,c.

此题属于已知两角和其中一角所对边的问题,直接应用正弦定理可求出边b,若求边c,则先求∠C,再利用正弦定理即可.

解:根据三角形内角和定理,得

∠C=180°-(∠A+∠B)=180°-(32.0°+81.8°)=66.2°.

根据正弦定理,得

b=asinBsinA=42.9sin81.8°sin32.0°≈80.1(cm);

c=asinCsinA=42.9sin66.2°sin32.0°≈74.1(cm).

上一篇:演讲稿正确格式(附范文)下一篇:总裁辞职报告