平行四边形的性质练习

2024-07-15

平行四边形的性质练习(精选16篇)

1.平行四边形的性质练习 篇一

平行线的性质精选练习题

作者:admin 资源来源:本站原创

选择题:

1.如图所示,如果AD//BC,则:①∠1 =∠2;②∠3 =∠4;③∠1+∠3 =∠2+∠4;上述结论中一定正确的是

()

A.只有①

B.只有②

C.①和②

D.①、②、③

答案:A

说明:因为∠1与∠2是AD、BC被BD所截而成的内错角,所以由AD//BC可知∠1 =∠2成立;而AB与CD不一定平行,所以②、③难以确定是否正确;答案为A.

2.下列命题中,错误的命题的个数是()①互余的两个角都是锐角;

②互补的两个角一定不能都是钝角;

③邻补角的角平分线互相垂直;

④同旁内角的角平分线互相垂直;

⑤同位角的角平分线互相平行;

⑥一个角的邻补角一定只有一个

A.0个B.2个C.3个D.以上答案都不对

答案:C

说明:由互余的概念可得①正确;而若两角都为钝角,则和一定大于180º,所以互补的两角一定不能都是钝角,②也正确;不难说明,邻补角的角平分线互相垂直这个命题正确;而只有在两直线平行时,同旁内角的角平分线才互相垂

直、同位角的平分线才互相平行,所以④、⑤都是错误的命题;当两条直线相交时,其中任一角的邻补角有两个,⑥也是错误的命题,答案为C.

3.如图,已知∠1 = 90º+nº,∠2 = 90º−nº,∠3 = mº,则∠4等于

()

A.mº

B.90º−nº

C.180º−nº

D.90º+nº

答案:A

说明:如图,因为∠1 = 90º+nº,∠2 = 90º−nº,所以∠1+∠2 = 180º;而∠1与∠5为对顶角,所以有∠5+∠2 = 180º,因此,得到a//b,所以∠3 =∠4,即∠4 = mº,答案为A.

4.如图,AB//CD则∠α等于()A.50ºB.80ºC.85ºD.95º 答案:C

说明:如图,过点E作EF//AB,因为

AB//CD,所以EF//CD;因此,有∠ABE+∠BEF = 180º,∠FEC

=∠ECD,则∠BEF = 60º,∠FEC = 25º,所以∠α=∠BEF+∠FEC = 85º,答案为C.

5.如图,已知AB//CD,∠1 =∠2,∠E = nº,则∠F =()

A.nº

B.2nº

C.90º−nº

D.40º

答案:A

说明:因为AB//CD,知∠ABC =∠DCB,再由∠1 =∠2,得∠EBC =∠FCB,由此得到EB//FC,所以∠F =∠E = nº,答案为A.

判断题:

判断下列语句是否为命题,是的打√,不是的打×:①∠A = 50º;

√;是命题,它判断了∠A的度数是50º.

②作直线a⊥b;

×;不是命题,它是祈使句,没有判断.

③延长AB到C使BC = 2AB;

×;不是命题,它是祈使句,没有判断.

④对顶角相等吗?

×;不是命题,它是疑问句没有判断.

⑤同位角相等;

√;是命题,它对成同位角的角的大小进行了判断.⑥当|a| = −a时,a≤0

√;是命题,它可改写为:如果|a| = −a,那么a≤0,是一个判断句.

解答题:

1.如图所示,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD.

求证:∠1+∠2=90°.

证明:因为AB∥CD,所以∠BAC+∠ACD=180°,又因为AE平分∠BAC,CE平分∠ACD,所以∠1 =∠BAC,∠2 =∠ACD,故∠1+∠=(∠BAC+∠

ACD)=×180º = 90º.即∠1+∠2=90°.

2.已知如图,AB//CD,∠ABE = 3∠DCE,∠DCE = 28º,求∠E的度数.

解析:如图所示,∵∠1 = 3∠2,∠2 = 28º,∴∠1 = 3×28º = 84º

∵AB//CD(已知),∴∠3 =∠1 = 84º(两直线平行,同位角相等)

又∵∠BFC =∠3(对顶角相等)

∴∠BFC = 84º(等量代换)

过F作FP//CE交BC于P

∴∠4 =∠2 = 28º(两直线平行,内错角相等)∴∠5 =∠BFC−∠4 = 84º−28º = 56º

∵FP//CE(辅助线作法)

∴∠E =∠5 = 56º(两直线平行,同位角相等)

2.平行四边形的性质练习 篇二

一、求角度

例1 (2013年黔西南州中考) 已知ABCD中 (图1) , ∠A+∠C=200°, 则∠B的度数是 ()

A.100°B.160°C.80°D.60°

分析:由四边形ABCD是平行四边形, 可得∠A=∠C, AD∥BC, 又由∠A+∠C=200°, 即可求得∠A的度数, 继而求得答案。

解:∵四边形ABCD是平行四边形, ∴∠A=∠C, AD∥BC,

∴∠B=180°﹣∠A=80°。故选C。

点评:此题考查了平行四边形的性质。此题比较简单, 注意掌握平行四边形的对角相等、邻角互补的知识。

例2 (2013年江西省中考) 如图2, □ABCD与□DCFE的周长相等, 且∠BAD=60°, ∠F=110°, 则∠DAE的度数为___。

分析:已知两个平行四边形的周长相等, 且有公共边CD, 则有AD=DE, 即△ADE为等腰三角形, 顶角∠ADE=∠BCF=60°+70°=130°, ∴∠DAE=25°.

解:∵□ABCD与□DCFE的周长相等, 且有公共边CD,

点评:本题考查了平行四边形的性质, 等腰三角形的判定与性质.先要明确∠DAE的身份 (为等腰三角形的底角) , 要求底角必须知道另一角的度数, 分别将∠BAD=130°转化为∠BCD=130°, ∠F=110°转化为∠DCF=70°, 从而求得∠ADE=∠BCF=130°。

二、求线段长

分析:根据平行四边形性质推出AB=CD, AB∥CD, 得出平行四边形ABDE, 推出DE=DC=AB, 根据直角三角形性质求出CE长, 即可求出AB的长_____。

解:∵四边形ABCD是平行四边形, ∴AB∥DC, AB=CD,

∵AE∥BD, ∴四边形ABDE是平行四边形, ∴AB=DE=CD, 即D为CE中点,

∵EF⊥BC, ∴∠EFC=90°,

∵AB∥CD, ∴∠DCF=∠ABC=60°, ∴∠CEF=30°,

∵EF=, ∴CE=2, ∴AB=1,

点评:本题考查了平行四边形的性质和判定, 平行线性质, 勾股定理, 直角三角形斜边上中线性质, 含30度角的直角三角形性质等知识点的应用, 此题综合性比较强, 是一道比较好的题目。

三、求周长

例4 (2013年烟台中考) 如图4, ABCD的周长为36, 对角线AC, BD相交于点O.点E是CD的中点, BD=12, 则△DOE的周长为______。

分析:根据平行四边形的对边相等和对角线互相平分可得, OB=OD, 又因为E点是CD的中点, 可得OE是△BCD的中位线, 可得OE=BC, 所以易求△DOE的周长。

解:∵ABCD的周长为36,

∴2 (BC+CD) =36, 则BC+CD=18。

∵四边形ABCD是平行四边形, 对角线AC, BD相交于点O, BD=12,

∴OD=OB=BD=6。

又∵点E是CD的中点, ∴OE是△BCD的中位线, DE=CD,

∴OE=BC,

∴△DOE的周长=OD+OE+DE=BD+ (BC+CD) =6+9=15, 即△DOE的周长为15。故答案是:15。

点评:本题考查了三角形中位线定理、平行四边形的性质.解题时, 利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质。

四、证明角相等

例5 (2013年衢州中考) 如图5, 在□ABCD中, BE平分∠B, DF平分∠D, 且BE、DF分别交AD、BC于E、F, 求证:∠BED=∠BFD。

分析:∠BED和∠BFD是四边形的BFDE对角, 所以只要证明四边形BFDE是平行四边形即可。

证明:∵四边形ABCD是平行四边形, ∴AD∥BC, ∴∠1=∠3。

又∠ABC=∠ADC, ∴∠3=∠2.∴∠1=∠2.∴BE∥DF。

又AD∥BC, ∴四边形BFDE是平行四边形。

∴∠BED=∠BFD。

点评:平行四边形的定义及性质是证明线段平行、线段相等或角相等的一种重要方法, 而且这种方法非常简捷。

五、证明线段相等

例6 (2013年泸州中考) 如图6, 已知?ABCD中, F是BC边的中点, 连接DF并延长, 交AB的延长线于点E。求证:AB=BE。

分析:根据平行四边形性质得出AB=DC, AB∥CD, 推出∠C=∠FBE, ∠CDF=∠E, 证△CDF≌△BEF, 推出BE=DC即可。

证明:∵F是BC边的中点, ∴BF=CF,

∵四边形ABCD是平行四边形, ∴AB=DC, AB∥CD,

∴∠C=∠FBE, ∠CDF=∠E,

∴△CDF≌△BEF (AAS) , ∴BE=DC,

∵AB=DC, ∴AB=BE。

点评:本题考查了平行四边形性质, 全等三角形的性质和判定, 平行线的性质的应用, 关键是推出△CDF≌△BEF。

六、求解其他问题

例7 (2013年钦州中考) 如图7, 图 (1) 、图 (2) 、图 (3) 分别表示甲、乙、丙三人由甲A地到B地的路线图 (箭头表示行进的方向) 。其中E为AB的中点, AH>HB, 判断三人行进路线长度的大小关系为 ()

A.甲<乙<丙B.乙<丙<甲

C.丙<乙<甲D.甲=乙=丙

分析:延长ED和BF交于C, 如图 (2) , 延长AG和BK交于C, 根据平行四边形的性质和判定求出即可。

解:图 (1) 中, 甲走的路线长是AC+BC的长度;

延长ED和BF交于C, 如图 (2) ,

∵∠DEA=∠B=60°, ∴DE∥CF,

同理EF∥CD,

∴四边形CDEF是平行四边形, ∴EF=CD, DE=CF,

即乙走的路线长是AD+DE+EF+FB=AD+CD+CF+BC=AC+BC的长;

延长AG和BK交于C, 如图 (3) ,

与以上证明过程类似GH=CK, CG=HK,

即丙走的路线长是AG+GH+HK+KB=AG+CG+CK+BK=AC+BC的长;即甲=乙=丙, 故选D。

3.“平行四边形的性质”课例评析 篇三

1.本节课的教材简析

在学生初步了解了平行四边形的概念,基本掌握了图形的旋转,图形的平移,以及三角形知识的学习过程与方法的基础上,通过“剪一剪”、“图形的旋转”、“图形的平移”等操作过程,使学生进一步理解平行四边形的概念,探索并验证“平行四边形对边相等、对角相等”的性质,学会运用平行四边形的有关性质解决简单问题。

与过去的教材相比,新教材更加体现了数学化的过程,充分体现了“从学生已有的生活经验出发”的课程标准精神,更加关注了学生活动经验的积累和空间观念的培养,为学生提供充分从事数学活动的机会,力求使学生自己进行知识的构建。

2.创造民主、和谐、宽松的教学环境

本节课采取“探究交流”作为教学的主要形式,把学生的活动置于具体的情境之中,使学生自主地从情境中和互动中形成知识。这样有利于教师与学生及学生与学生之间更好地互动。

教师少讲、少板书,把思考和活动的时间与机会多留给学生;少做示范,让学生自己探索和感悟;少站讲台,和学生形成学习共同体。

3.现代信息技术的利用

现代信息技术是学生学习数学和解决问题的一种强有力工具,但是,它不该取代学生的思考,不该取代学生的动手活动。本节课的课件使用,是在学生自己充分探索、充分动手活动的基础上再展现出来,目的是使学生的探索活动直观地呈现出来。这样,有利于学生进行观察、思考,使学生更加乐意投入到探索性的数学活动之中。

二、课堂实录

1.创设情境

师:(手拿实物)这是什么?

生:衣服挂。

师:这个衣服挂是由怎样的基本图形构成?

生:平行四边形。

师:我们对平行四边形了解多少呢?现在,我们共同做一个实验。

(点评:实物引入,简洁明了,体现了知识来源于生活。明确了下一步师生实验活动的目的性。)

2.探究交流

(师出示课件1,叙述实验规则,和同学们一起实验;学生按实验规则动手做实验。)

生1:按实验规则,我首先将纸对折。按折痕剪开后,得到两张叠放的纸片。然后,剪下了一对叠放的三角形。我利用对折的方法找到了一边的中点,并记做点O,上层的三角形纸片绕点O顺时针旋转180°就得到了一个平行四边形。

师:生1完整地叙述了他实验的过程,下面我们用电脑再直观演示一下。(出示课件。)

生2:(指大屏幕)我补充说明一下。因为旋转不改变图形的形状和大小,所以,旋转后的图形可以看作是由两个全等三角形拼成的;因为全等三角形的对应角相等,所以这个图形的两组对边分别平行。因此,这个图形是平行四边形。

生3:这个平行四边形中有四个顶点、四条边和四个内角。

(点评:师生共同操作,教师以组织者、合作者的角色进行教学,建立了师生学习共同体。 )

3.明确目标

师:两条相对的边,简称为对边;两个相对的角简称为对角;平行四边形不相邻的两个顶点连成的线段叫它的对角线,如图所示的平行四边形ABCD,记做◇(平形四边形)ABCD,读作“平行四边形ABCD”。

本节课我们就来探索和研究平行四边形中的对边、对角之间的关系。(板书:平行四边形的性质。)

(点评:教师的主导地位得以体现,对于概念、定义等知识性很强的一些知识,教师要给以准确的讲解。)

4.明晰知识

(师出示课件,叙述做一做的方法与要求,并参与学生的活动;学生实际操作。)

师:我们请生1给大家演示一下他的操作过程。

生1:(为大家演示,并说出结论)平行四边形对边相等,平行四边形对角相等。

(师用电脑把操作的过程再演示一遍。)

师:大家通过动手操作,观察得出了平行四边形对边相等,对角相等的结论。谁能用别的方法验证这个结论?

生1:连结对角线BD,得到△ABD和△CDB,平行四边形ABCD可以看作是△ABD绕BD的中点顺时针旋转180°而得到的。因为旋转不改变图形的形状与大小,所以AB=CD、AD=BC,所以角A=角C、角ABC=角CDA。

生2:我是利用平行线的性质来验证“平行四边形对角相等”这一性质的。因为AB平形CD,所以角ABC+角C=180°;因为AD平形BC,所以角A+角ABC=180°。根据同角的补角相等的性质可以得出角A=角C,同样的道理角ABC=角CDA。

师:同学们用不同的方法验证了相同的结论,图形的旋转、图形的平移、图形的全等等都是我们经常用到的解决问题的好方法。

(点评:教师向学生提供充分从事数学活动的时间和空间,帮助学生在探索与交流过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得数学活动的经验。教师引导学生进行立于操作基础上的理性思考,使学生自己进行知识的构建。学生的学习活动成为一个主动的、富有个性的过程。)

5.应用拓展

(1)(教师口述、学生口答),平形四边形ABCD中,角ABC=50°,AB=15cm,BC=30cm,你能求出哪些角的度数?哪些边的长?

(2)在平形四边形ABCD中,AB、CD是两条对角线:

a.图中有哪些相等的线段,哪些相等的角?

b。若△ABC是等边三角形,你能找出图中哪些相等的线段,哪些相等的角?

(3)如果平行四边形中有两个内角的度数比是1∶2,你能求出这个平行四边形的每个内角的度数吗?

(4)以不在同一条直线上的三个点A、B、C为顶点再添加一个点D,做出平行四边形。

(点评:数学知识的应用,体现“人人都能获得必需的数学;不同的人在数学上得到不同的发展”的基本理念。基础性、变式性、开放性习题的设计,能使数学教学真正做到面向全体学生。)

6.回顾思考

师生共同小结本节课的知识与技能、过程与方法。

[综合评价]本节课,讲课教师在教师教的方式、学生学的方式及教师角色的转变等方面进行了有益实践与探索,基本符合新的课程改革的要求。在教学中,讲课教师向学生提供了充分的从事数学活动的机会,促进了学生主动地进行观察、实验猜测、验证、交流等数学活动。对数学学习的评价更加关注学习的过程,关注学生在数学活动中所表现出来的感情与态度。现代信息技术运用的较为合理。

4.平行四边形的性质练习 篇四

例题解析:

例1.如图,ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点.求证:SA∥平面MDB.例2.正方形ABCD交正方形ABEF于AB,M、N

求证:MN//平面BCE

例3.已知ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH、例4.如图,在空间四边形ABCD中,P、Q分别是△ABC和△BCD的重心.求证:PQ∥平面ACD.例5.如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?

巩固练习:

1.若l//,A,则下列说法正确的是()

A.过A在平面内可作无数条直线与l平行B.过A在平面内仅可作一条直线与l平行 C.过A在平面内可作两条直线与l平行D.与A的位置有关

2.若直线a∥直线b,且a∥平面,则b与a的位置关系是()

A、一定平行B、不平行C、平行或相交D、平行或在平面内 3.如图在四面体中,若直线EF

和GH

相交,则它们的交点一定().A.在直线DB上B.在直线AB上

C.在直线CB上D.都不对

4.一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线(A.异面B.相交C.平行D.不确定

5.已知平面、β和直线m,给出条件:①m∥;②m⊥;③m⊂;④⊥β;⑤∥β.为使m∥β,应选择下面四个选项中的()

A.①④B.①⑤C.②⑤D.③⑤ 6.若直线l与平面α的一条平行线平行,则l和的位置关系是()

A.lB.l//C.l或l//D.l和相交

7若直线a在平面内,直线a,b是异面直线,则直线b和平面的位置关系是()A.相交B.平行C.相交或平行D.相交且垂直

8.若直线l上有两点P、Q到平面的距离相等,则直线l与平面的位置关系是()A.平行B.相交C.平行或相交D.平行、相交或在平面内 9.下列命题正确的个数是()

(1)若直线l上有无数个点不在α内,则l∥

(2)若直线l与平面α平行,l与平面内的任意一直线平行

(3)两条平行线中的一条直线与平面平行,那么另一条也与这个平面平行(4)若一直线a和平面内一直线b平行,则a∥ A.0个B.1个C.2个D.3个

10.如图,在四棱锥PABCD中,ABCD是平行四边形,M,N

是AB,PC的中点.求证:MN//平面PAD.

11.如图,S是平行四边形ABCD平面外一点,M,N分别是SA,BD上的点,且求证:MN//平面SBC

12.如图A、B、C分别是△PBC、△PCA、△PAB的重心.求证:面ABC∥面ABC.AMSM=

BNND,13.如图,空间四边形ABCD的对棱AD、BC成60o的角,且ADBC2,平行于AD与BC的截面分别交AB、AC、CD、BD于E、F、G、H.(1)求证:四边形EGFH为平行四边形;

5.平行四边形的性质 篇五

本节课开始时学生有些紧张,经过两个“互动平台”和“想一想”、“议一议”等环节促使学生探索交流的积极性高涨。体现在对“平行四边形性质”探索时的推理论证,学生思维活跃,发言积极;在“新知应用2”证明线段DE=BF时,讨论时的积极热烈,让我感动和欣慰;在达标测评环节中,学生能独立冷静思考,有理有据地讲明理由;在“做一做”的活动中,学生思维深刻,灵活性强。可见,前面的交流与探索已水到渠成。课堂中一个学生的“双语”使用,给我们的课堂又加了点“糖”,同时也提醒我要不断提高自己,才能使学生更加信服你,爱戴你;从学生随堂练习展示中,部分学生忘记辅助线作法,提示我在教学中对此的强调可能还欠火候。本节课我为学生创设了大量的数学活动和交流的空间,使他们在合作交流中进步。

《数学课程标准》中指出“学生学习的数学内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动进行观察、实验、猜测、验证、推理、交流等数学活动”,在探索平行四边形的性质中,我设计了“我的发现、想一想、议一议、做一做”等环节,使学生深刻感受到探索的价值,体验成功的喜悦,感受数学中的“转化、化归”思想。本节教学过程中,我为学生创设了数学活动和交流的空间。 通过“实验―观察―猜想―发现―探究―推理验证―模仿体验”完成本节知识的学习,学生讨论积极热烈,合作学习愉悦,他们在合作交流中增长了知识,积累了经验,发展了思维,提高了能力。

6.平行四边形的性质教学反思 篇六

武进焦溪初级中学张小燕

《平行四边形的性质》是苏科版八年级上册第三章第四节内容。这节课承接了上一节旋转和中心对称的内容,课本的设计意图是利用图形旋转的特征和中心对称的性质来得出平行四边形的性质。

我在设计本节课时就遵循着这个原则,先让学生看图片,体会到平行四边形在日常生活中的广泛应用,并给出平行四边形的定义。再由学生动手操作作中心对称三角形得到一个平行四边形,接着利用多媒体动画,绕着一个平行四边形的对角线交点旋转,从动画的旋转过程中得出平行四边形的性质:(1)平行四边形是中心对称图形(2)平行四边形对边相等(3)平行四边形对角相等(4)平行四边形对角线互相平分。当然平行四边形对角线互相平分这一性质在得出平行四边形是中心对称图形后也可推导出,看学生的探索情况而定。因为本章课标明确要求学生能够严格说理过程,所以我在得出平行四边形性质的同时加上几何语言的描述,在练习中也注意规范学生的说理过程。

上完课后,总体感觉还可以,主线突出,学生通过动手操作的过程和多媒体课件的演示,得出并掌握性质,效果比较好。例题能够引导学生用不同的方法去解决问题并加以变式,能根据学生的具体情况在练习的过程中及时发现问题,并通过投影指出错误,规范说理过程,反馈工作做得较到位。

然而这节课需要改进的地方确是更多的:

1、在得出平行四边形定义的时候花了不少时间让学生回忆四边形的定义,其实是没什么用的,直接的引入应该可以更节省时间,把本节课要研究的问题直接摆出来,让学生明确自己的任务。

2、性质的探索所花的时间也较长,从三个过程才得出几个性质。其实由平行四边形是中心对称图形可以一次过把所有的性质都得出,这样学生还是需要动手做,但可以更快地得到结果。引导学生得出平行四边形对角线互相平分时,有学生回答对角相等且互相平分,这时应及时强调一般的平行四边形的对角线是不相等的,即明确指出OAOCOBOD。对角线互相平分的几何语言表示还可以是AC2OA2OC,BD2OB2OD。因为学生有平行线性质和全等图形的知识铺垫,也可以由两个全等三角形拼出平行四边形,再利用全等三角形的特征得出平行四边形的性质(这种方法可以稍加补充,培养学生的推理说理能力,但没有由中心对称得出性质来得形象)。

3、由于性质探索部分花了较多时间,导致练习的时间不够多。应该让学生在练习的时候有更多的时间讨论,说得更多。可把练习的1、2、3题放在例题前,先填空,再学着说理,增强练习的梯度性;第4题作为例题的类型题可放在例题后面,巩固对性质的运用;第5题作为对角线互相平分性质的运用,应更注意提醒学生怎样思考。还可以多加一道综合应用各个性质的题,让学生学会灵活运用性质解决问题。小结部分也做得较匆忙,如果时间充裕的话,应由学生自己归纳本节课的内容,把性质按边、角、对角线作归纳,配以图表方便记忆。

7.应用平行线的性质解题方法例析 篇七

例1:已知:如图1, 直线a∥b.求证: (1) ∠1=∠6; (2) ∠1+∠2=180°; (3) ∠2+∠4+∠3+∠6=360°.

证明: (1) ∵a∥b (已知) ,

∴∠1=∠3 (两直线平行, 同位角相等) .

又∵∠3=∠6 (对顶角相等) ,

∴∠1=∠6.

(2) ∵a∥b (已知) ,

∴∠1=∠3 (两直线平行, 同位角相等) .

又∵∠5+∠3=180° (邻补角的定义) ,

∴∠1+∠5=180°.

(3) ∵a∥b (已知) ,

∴∠1=∠3, ∠4=∠5 (两直线平行, 同位角相等) ,

∴∠2=∠5 (两直线平行, 内错角相等) .

又∵∠5+∠3=180°, ∠5+∠6=180° (邻补角的定义) ,

∴∠2+∠4+∠3+∠6= (∠5+∠3) + (∠5+∠6) =180°+180°=360°.

即:∠2+∠4+∠3+∠6=360°.

分析:这里运用了平行线的性质: (1) 两直线平行, 同位角相等; (2) 两直线平行, 内错角相等, 对顶角相等, 以及临补角的定义和等量代换等性质.如果不能牢记这些基本知识, 就很难进行推理论证, 所以要把这些性质熟记在心, 并注意把性质与判定区别开来, 而且还要学会使用因果推理论证的方法.“因”就是条件, “果”就是结论.

例2:如图2, 如果∠1=∠2, ∠C=∠D, 那么∠A=∠F吗?为什么?

分析:要使∠A=∠F, 必须DF∥CA, 因为如果DF∥CA, 就有∠A=∠F, 那么在什么情况下DF∥CA呢?于是就会想到前面学过的平行线的判定定理, 看看DF和CA有没有平行的可能.根据已知条件可知, ∠2和∠3互为对顶角, ∠2=∠3, 再由已知条件∠1=∠2可得∠1=∠3, 而∠1和∠3是一对同位角, 于是由平行线的判定定理可知BD∥CE (同位角相等, 两直线平行) , 下面再根据平行线的性质“两直线平行, 同位角相等”, 即可得到∠4=∠C;又因为已知∠C=∠D, 所以我们可以得到∠4=∠D, 于是可证明DF∥CA, 从而可进一步推出∠A=∠F.

解:结论:∠A=∠F, 道理如下:

∵∠1=∠2 (已知) , ∠2=∠3 (对顶角相等) .

∴∠1=∠3.

∴BD∥CE (同位角相等, 两直线平行) .

∴∠4=∠C (两直线平行, 同位角相等) .

又∵∠C=∠D,

∴∠4=∠D,

∴DF∥CA (内错角相等, 两直线平行) .

∴∠A=∠F (两直线平行, 内错角相等) .

例3:如图3, 在△ABC中, BE⊥AC于E, DF⊥AC于F, BC∥ED, BE是∠ABC的平分线, 那么∠BED=∠ADF吗?

分析:由于BE⊥AC于E, DF⊥AC于F, 所以∠AFD=∠AEB=90°, 根据平行线的判定定理可知:DF∥BE, 根据平行线的性质定理可知:∠ADF=∠ABE, (两直线平行, 同位角相等) , ∠BED=∠FDE (两直线平行, 内错角相等) ;再由已知条件BC∥ED, 可知∠ADE=∠ABC (两直线平行, 同位角相等) , ∠BED=∠EBC (两直线平行, 内错角相等) ;BE是∠ABC的平分线, ∠ABE=∠EBC (平分线的性质) , 所以可推出∠CBE=∠FDE, ∠ADF=∠FDE, 于是可知∠BED=∠FDE=∠ADF, 即:∠BED=∠ADF.

解:结论:∠BED=∠ADF, 道理如下:

∵BE⊥AC于E, DF⊥AC于F,

∴∠AFD=∠AEB=90° (垂直的定义) .

∴DF∥BE (同位角相等, 两直线平行) .

∴∠ADF=∠ABE (两直线平行, 同位角相等) ,

∠BED=∠FDE (两直线平行, 内错角相等) .

又∵BC∥ED (已知) ,

∴∠ADE=∠ABC (两直线平行, 同位角相等) ,

∠BED=∠EBC (两直线平行, 内错角相等) .

∵BE是∠ABC的平分线,

∴∠ABE=∠EBC (平分线的性质) ,

∴∠BED=∠CBE=∠FDE, ∠FDE=∠ADF=∠ADF (等量代换) ,

∴∠BED=∠ADF.

求∠AFC的度数.

分析:已知条件是:AB∥CD∥EF, ∠AEC=80°, , 据此我们可以想到利用平行线的有关性质, 比如:“两直线平行, 内错角相等.”于是可想到利用已知度数的∠AEC, 作辅助线, 延长FE (所作的辅助线应使用虚线) , 如图4, 这样就把∠AEC变成了两个角的和, 于是有:∠AEC=∠AEM+∠MEC, ∠AFC=∠FAB+∠FCD.接下去就很容易解题了.因为, ∠EFA=∠FAB, ∠EFC=∠FCD, 所以, 所以

解:作辅助线, 延长FE,

根据上述综合应用平行线性质解答有关问题的方法可知:教师在解答这类问题时, 一定要让学生牢牢掌握平行线的性质, 知道平行线性质的来由, 牢牢把握平行线的判定与性质的区别, 而且能在推理过程中正确地应用它们, 并注意文字语言、图形语言、符号语言间的相互转化.还要懂得几何中的计算往往要说理, 这就要求让学生不仅要熟悉解答几何计算题的格式和要求, 还要懂得由“已知”条件推得一系列新结论的推理方法.对于简单的题目, 能做到想得明白, 写得清楚, 书写规范, 对于较难的题目, 要与图形结合, 从图形中找出解决问题的入手点, 进行探究思考、推理证明.另外, 在解题过程中, 教师一定要让学生搞清楚每一步推理的依据, 严格按照解题的格式和要求去做.

【附典型训练题】

1.如图5, 直线AD与AB、CD相交于A、D两点, EC、BF与AB、CD相交于E、C、B、F, 如果∠1=∠2, ∠B=∠C.求证:∠A=∠D.

2.如图6, 若直线AB∥ED, 请你探求∠B、∠C、∠D之间的数量关系, 并说明理由.

3.如果一个角的两边分别平行于另一个角的两边, 那么这两个角之间有怎样的数量关系?请说明你的理由.

4.如图7, 已知∠ABC=40°, ACB=60°, BO、CO平分∠ABC和∠ACB, DE过O点, 且DE∥BC, 求∠BOC的度数.

5.如图8, AB∥CD, EF分别交AB, CD于M、N, ∠EMB=50°, MG平分∠BMF, MG交CD于G.求∠1的度数.

6.如图9, 已知AB∥CD, AE平分∠BAC, CE平分∠ACD, 那么AE与CE有什么关系呢?请你在得出结论后, 用一句话把题设与结论完整地总结出来, 作为有用的命题.

【答案与提示】

1.证明:∵∠1=∠2, ∠2=∠BMA (对顶角相等) ,

∴∠1=∠BMA,

∴CE∥BF,

∴∠B+∠BEC=180°.

又∵∠B=∠C

∴∠C+∠BEC=180°,

∴AB∥CD (同旁内角互补, 两直线平行) ,

∴∠A=∠D (两直线平行, 内错角相等) .

2.解:结论是∠C+∠D-∠B=180°.理由如下:

如图10, 过点C作CF∥AB, 则∠B=∠2.

∵AB∥ED, CF∥AB,

∴ED∥CF (平行于同一条直线的两直线平行) ,

∴∠1+∠D=180° (两直线平行, 同旁内角互补) .

而∠1=∠BCD-∠2=∠BCD-∠B,

∴∠BCD-∠B+∠D=180°, 即∠BCD+∠D-∠B=180°.

[注:平行线CF是联系AB、DE的桥梁, 本题还有其他做法.]

3.解:结论是这两个角相等或互补.理由如下:

如图11, ∠1的两边与∠2、∠3的两边分别平行.

∵AB∥CD, AF∥CE,

∴∠1=∠4, ∠4=∠2 (两直线平行, 内错角相等) ,

∴∠1=∠2,

又∵∠2+∠3=180°,

∴∠1+∠3=180°.

从而∠1=∠2, ∠1+∠3=180°.

[注:解答本题应分情况讨论, 全面考虑.]

4.提示:由于BO、CO平分∠ABC和∠ACB, 且DE∥BC, 所以可知, 又因为∠DOB+∠EOC+∠BOC=180°, 所以可知∠BOC=130°.

5.提示:要求∠1的度数, 根据两直线平行可得∠1=∠BMG, 所以只要根据已知条件求得∠BMG的度数即可.解:因为AB∥CD, 所以∠1=∠BMG (两直线平行, 内错角相等) , 又因为∠EMB=50°, MG平分∠BMF, 所以, 所以∠1=65°.

6.结论:如果两条平行线被第三条直线所截, 那么两个同旁内角的平分线就互相垂直.解题提示:过E作EM∥AB交AC于M, 利用平行线的性质: (1) 两直线平行, 内错角相等; (2) 两直线平行, 同旁内角互补, 接下去根据已知条件:AE平分∠BAC, CE平分∠ACD, 即可推出结论.

8.平行线的性质 篇八

1. 根据两直线平行求角的度数

例1(2007年丽水市)如图1,AB∥CD,若∠1=45°,则∠2的大小为().

A. 45° B. 90°C. 30° D. 135°

[解析:]这道题是一道基础题,难度不大,主要考查平行线的性质及其应用.要求∠2的大小,根据平行线的性质“两直线平行,同位角相等”即可解决问题.因为AB∥CD,所以∠2=∠1=45°.应选A.

例2(2007年广东)如图2,AB∥CD,直线EF分别交直线AB、CD于点E、F,EG平分∠AEF,交直线CD于点G,∠1=40°,求∠2的大小.

[解析:]这道题主要考查平行线的性质及角平分线的定义.

因为AB∥CD,所以∠AEG=∠1=40°.

又因为EG平分∠AEF,所以∠AEF=2∠AEG=80°,故∠2=180°-80°=100°.

2. 判断两直线平行

例3(2007年淮安市)如图3,下列四个条件中能判定EB∥AC的是().

A. ∠C=∠ABEB. ∠A=∠EBD

C. ∠C=∠ABCD. ∠A=∠ABE

[解析:]要判定两直线平行,可以考虑同位角相等、内错角相等、同旁内角互补.通过观察图形并对照选项可知,能判定EB∥AC的条件只有∠A=∠ABE.应选D.

3. 综合运用

例4(2007年永州市)如图4,AB∥CD,∠E=27°,∠C=52°,则∠EAB的大小为().

A. 25° B. 63° C. 79° D. 101°

[解析:]延长BA,交CE于点F.由于AB∥CD,所以∠EFA=∠C=52°.而∠EAF+∠E+∠EFA=180°,∠EAF+∠EAB=180°,可得∠EAB=∠E+∠EFA=27°+52°=79°.应选C.

例5(2007年长沙市)如图5,点E在直线DF上,点B在直线AC上.若∠AGB=∠EHF,∠C=∠D,则∠A=∠F,为什么?

[解析:]∠A与∠F是直线AC、DF被直线AF所截而成的内错角,要说明它们相等,只要说明DF∥AC即可.

因为∠AGB=∠DGF,∠AGB = ∠EHF,所以∠DGF=∠EHF.可知BD∥CE,从而可得∠ABD =∠C.

又因为∠C=∠D,所以∠ABD=∠D.故DF∥AC.

故∠A=∠F.

9.平行四边形的性质习题(有答案) 篇九

一、选择题(每题3分共30分)

1.下面的性质中,平行四边形不一定具备的是()

A.对角互补 B.邻角互补 C.对角相等 D.内角和为360° 2.在中,∠A:∠B:∠C:∠D的值可以是()

A.1:2:3:4 B.1:2:1:2 C.1:1:2:2 D.1:2:2:1 3.平行四边形的对角线和它的边可以组成全等三角形()A.3对 B.4对 C.5对 D.6对 4.如图所示,在定成立的是()

A.AC⊥BD B.OA=OC C.AC=BD D.AO=OD 5.如图所示,在

中,AD=5,AB=3,AE平分∠BAD交BC

BAECDAB中,对角线AC、BD交于点O,•下列式子中一

OCD边于点E,则线段BE、EC的长度分别为()

A.2和3 B.3和2 C.4和1 D.1和4 6.的两条对角线相交于点O,已知AB=8cm,BC=6cm,△AOB的周长是18cm,那么△AOD的周长是()A.14cm B.15cm C.16cm D.17cm 7.平行四边形的一边等于14,它的对角线可能的取值是()

A.8cm和16cm B.10cm和16cm C.12cm和16cm D.20cm和22cm 8.如图,在中,下列各式不一定正确的是()

A.∠1+∠2=180° B.∠2+∠3=180 C.∠3+∠4=180°D.∠2+∠4=180° 9.如图,在于()

A、20° B、25° C、30° D、35°

10.如图,在△MBN中,BM=6,点A、C、D分别在MB、NB、MN上,四边形ABCD为平行四边形,∠NDC=∠MDA,那么 A.24 B.18 C.16 D.12 中,∠ACD=70°,AE⊥BD于点E,则∠ABE等的周长是()

二、填空题(每题3分共18分)11.在12.在13.在中,∠A:∠B=4:5,则∠C=______.

中,AB:BC=1:2,周长为18cm,则AB=______cm,AD=_______cm. 中,∠A=30°,则∠B=______,∠C=______,∠D=________. 的对角线的交点,•AC=•48mm,•BD=18mm,14.如图,已知:点O是AD=16mm,那么△OBC的周长等于_______mm.

15.如图,在中,E、F是对角线BD上两点,要使△ADF≌△CBE,还需添加一个条件是________. 16.如图,在平行四边形.

三、解答题 17.已知:如图,在中,E、F是对角线AC•上的两点,AE=CF.BE与DF的大小有什中,EF∥AD,MN∥AB,那么图中共有_______•个么关系,并说明理由。(7分)

18.如图,已知ABCD的对角线交于O,过O作直线交AB、CD的反向延长线于E、F,试说明OE=OF.19.如图,在分)

中,AB=8,AD=12,∠A,∠D的平分线分别交BC于E,F,求EF的长.(7

ADBFEC20.如图,在中,过对角线AC的中点O所在直线交AD、CB•的延长线于E、F.试问:DE与BF的大小关系如何?证明结论.(7分)

21.如图四边形ABCD是平行四边形,BD⊥AD,求BC,CD及OB的长及(8分).的面积。

22.如图,中,过其对角线的交点O引一直线交BC于E交AD于F,•若AB=3cm,BC=4cm,OE=1cm,试求四边形CDFE的周长.(8分)

23.如图,O为的对角线AC的中点,过点O•作一条直线分别与AB、CD交于点M、N,点E、F在直线MN上,且OE=OF.

(1)图中共有几对全等三角形,把它们都写出来;(不用说明理由)(2)试说明:∠MAE=∠NCF.(8分)

24.已知:如图四边形ABCD是平行四边形,AF∥EC.求证:•△ABF≌△CDE.(7分)

25.如图所示,在中,E为AD中点,CE交BA的延长线于F.

(1)试证明AB=AF.(2)若BC=2AB,∠FBC=70°,求∠EBC的度数.(8分)

26.如图,在中,E、F分别是边AD、BC上的点,自己规定E、F•在边AD、BC上的位置,然后补充题设,提出结论并证明.(要求:至少编出两个正确命题,且补充题设不能相同)(8分)

答案: 1.A 点拨:利用平行四边形的性质. 2.B 点拨:根据平行四边形对角相等. 3.B 4.B 5.B 点拨:由平行四边形的性质AD BC,∴∠BAE=∠EAD=∠BEA,∴BE=AB=3,•CE=BC-BE=AD-BE=5-3=2.

6.C 点拨:OA+OB=18-8=10,∵OB=OD,∴△AOD的周长等于OA+OD+AD=(10+6)•cm=16cm. 7.D 点拨:平行四边形的对角线互相平分,再根据三角形的三边关系. 8.D 点拨:平行四边形的对角相等,但不一定互补. 9.C 10.D 点拨:由题设可得∠NDC=∠MDA=∠M=∠N,∴DC=CN=AB,MA=DA=BC,BN=•BM=6,2(AB+BC)=12. 11.80° 点拨:设∠A=4x,∠B=5x,∠A+∠B=180°,4x+5x=180°,x=20°,•∴∠A=80°,又∵∠A=∠C,∴∠C=80°.

12.3 6 点拨:2(AB+BC)=18,设AB=x,BC=2x,x+2x=3x=9,AB=3,BC=•6,•AD=•BC=6cm 13.150° 30° 140° 14.49 15.答案不唯一.如:BE=DF或BF=DE或∠BCE=∠DAF或AF∥EC等. 16.9 点拨:有ABCD,EBCF,EBNO,ONCF,AEOM,MOFD,AEFD,ABNM,MNCD.

17.证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D.

∵AD∥BC,∴∠DEC=∠BCE.

∵AF∥CE,∴∠AFB=∠BCE,∴∠DEC=∠AFB,∴△ABF≌△CDE.

18.点拨:证明△ABE≌△CDF. 19.9cm

20.解:DE=BF.证明如下:

∵O为AC的中点,∴OA=OC.

又AE∥CF,∴∠EAO=∠FCO.

故在△AOE与△COF中,EAOFCO AOCO

AOECOF(对顶角相等) ∴△AOE≌△COF(ASA),∴AE=CF.

又∵AD=CB(平行四边形的对边相等),∴AE-AD=CF-CB,即DE=BF. 21.解:(1)∵ABCD,∴AB=CD,DC∥AB,∴∠ECD=∠EFA ∵DE=AE,∠DEC=∠AEF ∴△DEC≌△AEF ∴DC=AF ∴AB=AF(2)∵BC=2AB,AB=AF ∴BC=BF ∴△FBC为等腰三角形

再由△DEC≌△AEF,得EC=EF ∴∠EBC=∠EBF=11∠CBF=×70°=35° 2222.(1)解:有4对全等三角形.

分别为△AMO≌△CNO,△OCF≌△OAE,△AME≌△CNF,△ABC≌△CDA.

(2)证明:如图,∵OA=OC,∠1=∠2,OE=OF.

∴△OAE≌△OCF,∴∠EAO=∠FCO.

在ABCD中,AB∥CD,∴∠BAO=∠DCO.

∴∠EAM=∠NCF.

23.(1)取AE=CF,从而可得BE=DF(或BE∥DF),证明过程略;

10.平行四边形的性质练习 篇十

一. 本章节知识点

1、掌握平行四边形的性质定理“平行四边形的两组对边分别相等、平行四边形的对角线互相平分、平行四边形的对角相等”。

2、会应用平行四边形的上述定理解决简单几何问题。

3、通过探索平行四边形的性质,进一步发展学生的逻辑推理能力及条理的表达能力。

4、在以平行四边形为载体为证明线段(或角)相等的问题中,•通常证明这些线段(或角)

所在的四边形是平行四边形,再由平行四边形的性质来证明,而不要仅仅停留在证三角形全等上.在学习时,应熟练掌握平行四边形的性质及判别方法,注意图形变换的一些特征,善于从折叠、旋转等几何变换中寻求已知条件.

二.典型例题

例 1.已知:如图,在中,那么OE、OF是否相等,说明理由.

交于点O,过O点作EF交AB、CD于E、F,分析观察图形,证明:

在,∴

∴,∴,则________,ABCD的周长=______.中,交于O,∴,从而可说明例2.O是ABCD对角线的交点,的周长为59,若与的周长之差为15,则______,解答:ABCD中,.∴的周长

.在ABCD中,的周长-

.∴的周长

ABCD的周长

与的周长的差转化为两条

说明:本题考查平行四边形的性质,解题关键是将线段的差.例3.已知:如图,ABCD的周长是,由钝角顶点D向AB,BC引两条高DE,DF,且

.求这个平行四边形的面积

.解答:设

.∵ 四边形ABCD为平行四边形,∴

.①

又∵四边形ABCD的周长为36,∴∵

.,解由①,②组成的方程组,得∴

.说明:本题考查平行四边形的性质及面积公式,解题关键是把几何问题转化为方程组的问题.例4如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE•与DF

有怎样的位置关系和数量关系?并对你的猜想加以证明.

解析猜想:BE∥DF,BE=DF.

证法一:如图1,∵四边形ABCD是平行四边形,∴BC=AD,∠1=∠2.又∵CE=AF,∴△BCE≌△DAF.∴BE=DF,∠3=∠4,∴BE∥DF.

证法二:如图2,连结BD,交AC于点O,连结DE,BF.∵四边形ABCD是平行四边形,∴BO=OD,AO=CO.又∵AF=CE,∴AE=CF,∴EO=FO,∴四边形BEDF是平行四边形,∴BE//DF. 三.习题演练

一、选择题

1.在四边形ABCD中,O是对角线的交点,下列条件中,不能判定四边形ABCD是平行四边形的是()

A.AD∥BC, AD=BCB.AB=DC,AD=BCC.AB∥DC,AD=BC

D.OA=OC,OD=OB

2.如图,在平行四边形ABCD中,AD5,AB3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和

3B.3和

2C.4和

1D.1和

4E 第2 题图

3.如图,在平行四边形ABCD中,AC,BD相交于点O

.下列结论中正确的个数有()

结论:①OAOC,②BADBCD,③ACBD,④BADABC180. A.1个

B.2个

C.3个

A第3题图

C

D.4个

4.如图,在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0)(5,0)(2,3),则顶点C的坐标是()A.(3,7)

二、填空题

B.(5,3)

C.(7,3)

D.(8,2)

x

5.如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是(添加一个条件即可).

6.在四边形ABCD中,AB=CD,AD=BC,∠B=50,则∠A=_______, ∠D=_________。

7.如图,平行四边形ABCD中,AC、BD相交于点O,已知AB=8cm,BC=6cm,△AOB的周长为18cm,那么△AOD的周长为__________。8.如图,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC12,BD10,ABm,那么m的取值范围是___________。

三.课后作业

AD

C

第5题图

C

A第7题图

9.如图:平行四边形ABCD的对角线AC、BD相交于点O,MN过点O与AB、CD相交于M、N,你认为OM、ON有什么关系?为什么?

10.如图,△ABC中,BD平分∠ABC,DE∥BC交AB于点E,EF∥AC交BC于F,试说明BE=CF。

四.参考答案

一、选择题C、B、C、C

二、填空题5.答案不唯一,可以是:ABCD或AD∥BC等。6.130,507.16cm8.1m1

1三、解答题 9.解:OM=ON

证明:∵平行四边形ABCD

∴OB=OD , AB∥CD∴∠ABD=∠CDB

又∵∠BOM=∠DON ∴△BOM≌△DON∴OM=ON。

10.解:∵BD平分∠ABC

∴∠ABD=∠DBC

∵DE∥BC,∴∠EDB=∠DBC ∴∠ABD=∠EDB ∴BE=ED

∵DE∥BC,EF∥AC

11.辨析平行线的条件与性质 篇十一

一、 明确“三线八角”这一前提

平行线的条件与性质都依托于“两条直线被第三条直线所截”(三线八角)这一基本图形,因此要掌握平行线条件及性质,必须先弄清楚图1:直线AB、CD被第三条直线EF所截,形成“三线八角”.

同位角:相同位置的两个角. 如∠1与∠5分别在交点的左上方,位置相同,所以∠1与∠5是同位角;同理:∠2与∠6,∠3与∠7,∠4与∠8都是同位角.

内错角:在两条直线内部,被截线错开的两个角. 如∠3与∠5在AB与CD两条直线的内部,被截线EF错开,所以∠3与∠5是内错角;同理:∠4与∠6也是内错角.

同旁内角:在两条直线内部,且在截线同一边的两个角. 如∠3与∠6在AB与CD两条直线的内部,且在截线EF的同一边,则∠3与∠6是同旁内角;同理:∠4与∠5也是同旁内角.

例1 (课本第7页练一练1改编)

如图2所示,∠1的同位角有________,

∠1的内错角有

___________,

∠1的同旁内角有

_________.

【解析】∠1的两边分别是线段DF与BC,若形成“三线八角”,可以抽象出以下图形:

通过以上图形可以很清楚地发现:在图3中∠C是∠1的同位角;图4中∠EDF是∠1的内错角;图5中∠ADF是∠1的内错角,此时若DF是截线,则∠BDF是∠1的同旁内角,若BC是截线,则∠B是∠1的同旁内角.

二、 分清条件与性质的本质区别

何谓条件?一般地说,图形满足这一内容,即可肯定它是什么样的图形,叫做图形的判别条件. 如:两条直线被第三条直线所截,如果同位角相等,那么直线平行. 同样,内错角相等、同旁内角互补都是判定两条直线平行的条件. 这其中同位角相等、内错角相等、同旁内角互补是“前提”,两直线平行是“结论”. 通过以上分析得出:平行线的判定条件是通过角的数量关系得到两直线平行的位置关系,可以形象地用图6表示:

例2 (2013·湖南永州)如图7,下列条件中能判断l1∥l2的是( ).

A. ∠1=∠2

B. ∠1=∠5

C. ∠1+∠3=180°

D. ∠3=∠5

【解析】本题考查了平行线的判定条件,要判断l1∥l2,首先我们确定截线,若截线为l3,则图中∠1与∠3是同旁内角,它们互补即∠1+∠3=180°时l1∥l2,所以C选项正确,又因为∠3=∠5,所以∠1+∠5=180°也可以证明l1∥l2;若截线为l4,图中∠2与∠4是同旁内角,∠2+∠4=180°时也可判断l1∥l2.

何谓性质?某个图形所具有的特征就是图形的性质. 例如:两条平行直线被第三条直线所截,同位角相等. 这就是平行线的一条性质. 同样,我们还可以得到另外两条性质:内错角相等、同旁内角互补. 这其中两条直线平行是“前提”,同位角相等、内错角相等、同旁内角互补是“结论”. 通过以上分析得出:平行线的性质是由两直线平行的位置关系得到角之间的数量关系,可以形象地用图8表示:

例3 (2013·湖北十堰)如图9,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于( ).

A. 18°B. 36°C. 45°D. 54°

【解析】由两直线平行内错角相等可知,因为AB∥CD,所以∠B=∠BCD,又因为CE平分∠BCD,所以∠BCD=2∠DCE=36°,所以∠B=36°.

基于以上分析可以看出平行线的判定条件和性质看起来差不多,实际上却有着本质的区别,判定条件是由角的关系得到平行,而性质是由平行得到角的关系,实际它们之间是互逆的,可以形象地用图10表示为:

为了方便使用可以简单概括为:要证平行用条件,已知平行用性质.

三、 灵活运用平行线的条件及性质

在运用平行线的条件及性质证明同一问题时,经常会出现前一步的结论会变成后一步的原因,对这种因果变化,做题时应注意灵活应对,做到以不变应万变.

例4 (2013·湖北孝感)如图11,∠1=∠2,∠3=40°,则∠4等于( ).

A. 120° B. 130°

C. 140° D. 40°

【解析】如图12,因为∠1=∠2,所以a∥b(同位角相等,两直线平行),这是判定平行的条件的应用.

因为a∥b,所以∠3=∠5=40°(两直线平行,同位角相等),这是平行线的性质的应用.

又因为∠4+∠5=180°,所以∠4=140°.

这道题目体现了平行线条件与性质紧密联系,第一步推出的结论a∥b,成了第二步证明的原因.

例5 (苏科版数学教材七年级下册第40页第6题改编)如图13,点D、E分别在AB、BC上,AF∥BC,∠1=∠2,∠3= 60°,求∠ADE的大小.

【解析】因为AF∥BC,所以∠2=∠C,理由是两直线平行内错角相等;

又因为∠1=∠2,所以∠1=∠C,所以DE∥AC,理由是同位角相等两直线平行;

所以∠3+∠ADE=180°,因为∠3=60°,所以∠ADE=120°,理由是两直线平行同旁内角互补.

这个题目很好地反映了平行线的判定条件与性质既有着本质的区别,也有着密切的联系.

12.平行四边形的性质练习 篇十二

教学片段1:搭建思考的平台

自然贴切的课堂导入是激发学生求知欲, 吸引学生注意力的内在动力.巧妙导入新课, 能让学生在愉悦的情境下产生对知识的好奇和渴望, 增强学生学习的积极性.如果能够恰当地利用学生熟悉的背景或图形来完成这一过程, 那就更加事半功倍了.

问题讨论 (情景引入)

师:本节课探讨如何运用平行线的判定和性质来解决实际问题.如图, (1) 要说明BD∥AE, 请添加一个适当的条件, 并说明添加的依据, 请思考.

生1:∠AFD=∠FDE, 依据内错角相等, 两直线平行.

师:这的确是一对内错角, 它们是哪两条直线被哪一条直线所截形成的. (启发学生思考)

生1:直线AE和直线CE被直线DF所截形成的, 而直线AE和直线CE是不平行的, 更不能说明BD∥AE.

师:你添加的条件合适吗?

生1:我明白了.应该添加∠BDF=∠DFE.

出示问题: (2) 如果DF∥AC, 请在图中找出相等的角或互补的角, 说出依据.

师:平行线的判定和性质的区别是什么?

生2:平行线的判定是用来判定两条直线平行, 平行线的性质可以得出角的关系.

师:上面两个问题的条件和结论分别是什么?

生3:第一个问题是由角的关系推出平行关系, 第二个问题是由平行关系推出角的关系.

教师板书:

片段1反思:这一问题将平行线的判定和性质进行全面概括, 给学生许多可以思考的问题, 抓住了学生的注意力.一堂课要有一个自然贴切的课堂导入, 才能在最短的时间内抓住学生的注意力.给学生创设一个思考的平台, 让学生在寻找角的关系中回忆平行线的判定和性质, 利用这一设问激发学生思考问题的兴趣, 在错误中认识问题的本质, 发散学生思维, 引发学生对数学问题的思考.学习数学离不开学生的学习经验, 在这里, 将平行线的判定和性质应用探索浓缩在一个图形中, 通过设计一系列问题, 揭示了课题, 同时让学生感悟要判定两直线平行, 可以寻找角的关系, 如一对同位角相等, 一对内错角相等或一对同旁内角互补.依据平行线的判定方法.由平行线的性质可以得出角的相等或互补关系培养学生“用数学”的意识和能力.

教学片段2:变式中启发思维

(课件出示) 例题1:已知:∠1=∠2, ∠C=70°, ∠ADE=70°.问BD平分∠ABC吗?

(1) 思考:学生思考后讨论交流想法.

(2) 教师引导分析:要说明BD平分∠ABC, 就是要说明什么?

生:两个角相等, 即∠1=∠DBC.

师:题目中有这个条件吗?

生:没有.

师:有与此有关的条件吗?

生:有∠1=∠2.

师:结合这个条件, 你想到什么?

生:只要说明∠DBC=∠2.

师:∠C=70°, ∠ADE=70°这两个条件的目的是什么?

生:是为了说明∠C=∠ADE.

师:这两个角有特征吗?

生:是一对内错角

师:由此可以得到什么结论?

……

(3) 打出证明过程, 突出说理的规范表达.

归纳思考问题的策略:由已知条件, 想到什么, 依据是什么.

(4) 请同学们思考: (如果改变题中的条件和结论, 该如何求解)

本题中的四个数学语句重新组合

变式:已知:BD平分∠ABC, ∠1=∠2, ∠C=70°.求∠ADE的度数. (本题让学生口述说理)

例题2:探索.

已知:∠A=∠D, ∠C=∠F,

问:CE与BF平行吗?为什么?

(1) 思考:学生思考后讨论交流想法

(2) 教师引导分析:

师:由∠A=∠D这个条件, 你想到什么?

生:FD∥AC.

师:FD∥AC作为条件得到什么?

生:可以得到许多结论, 如∠F=∠FBA, ∠C+∠FEC=180°……我不知道需要哪个结论?

师:你问得很好.大家都在思考同样的问题.在这里也许你的思维受到一定的限制.

教师追问:你观察到题目中还有一个条件吗?这个条件的合理使用是解决问题的关键.

生:选择的结论应该考虑∠C=∠F这个条件. (学生受到启发, 马上积极举手发言, 思维顿时活跃起来, 想出了多种思路解决本题.)

……

变式:已知:∠1=∠2, ∠C=∠F, 问:∠A=∠D吗?为什么?

通过该例题的分析, 学生已初步感知解决问题的方法, 即要抓住“由已知可知什么”、“待求量和已知量有什么关系”具体分析, 所以本环节让学生尝试独立完成说理, 鼓励学生进行思考分析.帮助学生进一步巩固对几何说理的基本方法的领悟和规范表达的体验.

片段2反思:例题关注学生的知识的应用, 让学生通过同桌交流、小组交流、全班交流等多形式, 多方位地描述, 既促使学生的合作探究, 培养学生的思维, 又提高了学生的语言表达能力, 通过教师引领启发分析, 深入分析已知条件, 形成初步的分析方法, 变式练习可以把初步形成的分析推理方法及对规范表述的体会进一步清晰明朗化.用合理的启发引导, 使学生的目光凝聚在一起, 使学生的思维动起来.

教学体会

(一) 学生的思维发展来自于教师的正确引导

本节课主要采用了传统的启发教学, 以优化教师的教学方法和学生的学习方式为目的, 将教材内容重组和整合, 进行了大胆地探索.学生由于基础不同, 思维也存在差异, 会给课堂提问造成困难.如果老师在课堂中包办代替, 学生给出错误的答案, 不针对错误原因进行引导, 而是直接给出正确答案, 学生就会失去了思考的机会, 对教材的理解会大打折扣.如教学片段1, 学生回答∠AFD=∠FDE, 应对其错误原因进行分析和探讨, 引发学生思考.另外, 如果教师死用教材, 就题讲题, 学生会失去动脑的机会, 但如果对设计的问题进行变化, 解读题目的本质, 便能使学生积极思考, 触类旁通, 从而激活思维.又如教学片段2中的例题2, 在说理的基础上进行了变式提问, 把问题进行拓展, 知识进行整合, 在探究的过程中, 鼓励学生发表意见, 学生出现错误时也并不急于打断学生, 而是让学生说说自己的想法, 充分暴露其思维的过程, 这样, 有助于学生从不同程度、不同角度积极思考, 激活学生的思维.

(二) 让学生在探索纠错中体验成功

整节课中, 始终以学生自主探究、合作学习、全班交流的方式来开展知识应用学习.课堂上, 为学生提供了独立思考、分析错误, 再思考, 相互讨论、动手实践的过程.授课时, 通过创设情境, 让学生演示、归纳、思考, 经历知识的形成过程, 增强他们学好几何的信心, 让学生尝试通过自己的努力思考获得成功的喜悦.例如, 为了区别平行线判定和性质, 让学生通过填表弄清条件和结论;在学习例题时, 又让学生自己尝试解决问题, 感受知识应用的乐趣……在整个过程中, 学生自始至终处于被肯定、被激励的状态中, 时时感受到自己是学习的主人, 学生有较大的学习空间.

参考文献

[1]林远达.谈初中数学变式教学设计.福建中学数学[J].2007 (10) .

13.平行四边形的性质练习 篇十三

在本节课的教学中,我按照课本上的思路,在实际过程中,学生作图、观察这个环节比较顺利,多数学生能得出对边相等,对角相等这两个结论,在进一步追问下,学生可以理解用全等知识来证明这两个结论的正确性。板书证明过程这个环节是由教师完成的,因为这个时候学生需要的是规范的证明格式与思路,我的重点放在引导学生将证明思维转化成具体的证明书写,课本上用箭头表示的思路过程非常清晰,但与中考的证明格式要求不同,所以在这个步骤上,花费时间较多。

在教师和学生共同完成定理证明后,再引导学生观察这两个全等三角形之间的旋转变换关系,加深对前一章旋转变换的理解。课后的习题讲解时,我采取先让学生说,再书写过程的方式,虽然费时较多,但个人认为对几何证题思路还是有帮助的,从中也发现了不少学生容易出错的地方,部分学生在说思路的时候跳跃性太大,写作证明过程的时候有掉条件的情况,比如证全等的条件,题目并未直接给出条件,有学生未经证明就用来证明全等。整节课书写证明过程花费的时间较长,课后习题未能处理完,留给学生课后完成。

其实无论采取哪种方式进行本节课的教学,最关键的是让学生理解平行四边形的性质,并会利用性质进行简单的应用,这里需要对学生进行严格的证明书写训练,从几何整体教学来看,公理化体系有助于学生理解后继的特殊平行四边形的性质、判定定理。

14.平行四边形及其性质 篇十四

平行四边形性质定理1:平行四边形的对角相等.

平行四边形性质定理2:平行四边形对边相等.

(教具用两个全等的三角形拼凑的平行四边形演示,由此得到证明以上两个定理的方法.如图2)

图2

如图3, , .

所以四边形 是平行四边形,所以 .

由此得到

推论:夹在两条平行线间的平行线段相等.

图3

要注意:必须有两个平行,即夹两条平行线段的两条直线平行,被夹的两条线段平行,缺一不可,如图4中的几种情况都不可以推出 .

图4

4.平行线间的距离

从推论可以知道,如果两条直线平行,那么从一条直线上所有各点到另一条直线的距离相等,如图5.

我们把两条平行线中一条直线上任意一点到另一条直线的距离,叫做平行线的距离.

图5

注意:(1)两相交直线无距离可言.

(2)连结两点间的线段的长度叫两点间的距离,从直线外一点到一条直线的垂线段的长,叫点到直线的距离.两条平行线中一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离,一定要注意这些概念之间的区别与联系.

例1 已知:如图1, , .

求证:(1) ; ; .

(2)△ 的顶点分别是△ 各边的中点(证法略),课堂提问(投影打出).

图1

①平行四边形两邻边的比为2:5,周长为28cm,则四条边长分别为___________.

②在 中,若 ,则 , .

【总结、扩展】

1.小结

本堂所讲的主要内容有

(1)平行四边形的概念,要理解这个概念的实质.

(2)平行四边形的部分性质.

①关于边的:对边平行;对边相等.

②关于角的:对角相等;邻角互补.

(3)“两平行线的距离”是一定值,不随垂线段的位置改变,即两平行线间的距离处处相等.

2.思考:如图.已知:平面 , , 求证: .

八、布置作业

教材P141.2 (1)、(2)、(3) P142中 3(1)

九、板书设计

十、随堂练习

教材P.133中1、2、3

补充1.在 中 (1)若 ,则 度, 度, 度;(2)若 ,则 度, 度;(3)若 ,则 度, 度.

2. 中,周长为 ,△ 的周长比△ 周长多 则 , .

15.平行线的性质教学设计及反思 篇十五

平行线的性质这一节安排在了人教版七年级下册第五单元中,在这个单元中先是讲平行线的判定,而后是平行线的性质,这样的安排既渗透了图形的判定和性质之间的互逆关系,又体现了知识的连续性。

二、学情分析

平行线的性质是学生对图形性质的第一次系统研究,对于研究过程和研究方法都是陌生的,所以学生要在老师的引导下类比研究平行线判定的过程建构平行线性质的研究过程。

三、教学目标

(一)理解平行线的性质。

(二)经历平行线性质的探究过程,从中体会研究几何图形的一般方法。

四、教学重点

得到平行线的性质的过程。

五、教学难点

得出性质2和性质3的推理过程的逻辑表达。

六、教学过程

(一)梳理旧知,引出新课。

教师提出问题:上节课,我们学习了几条平行线的判定方法?在这三个判定方法中条件和结论分别是什么?

在这三种条件下,能得到两直线平行,如果反过来,两直线平行同位角、内错角、同旁内角又有什么关系呢?

设计意图:复习上节课所学的平行线的判定方法,引出本节课要解决的问题。为学生学习平行线的性质做好铺垫。

(二)动手操作,探究新知。

教师提出问题:两条平行线被第三条直线截得的同位角会有什么样的数量关系?

师生讨论:学生首先对结论进行猜想,然后教师进行引导,接着让学生动手操作。

教师提出问题:在两条平行线被第三条直线所截的条件下,同位角有什么关系,你能证明你的结论吗?

师生讨论:让学生画出以下图形,证明自己的猜想。在此过程中教师要关注学生能否找到同位角,能否使用恰当的工具测量出角的大小。对于有困难的学生,教师要及时予以帮助,鼓励学生参与动手操作的学习过程中。

教师提出问题:你能把自己的结论及验证方式告诉大家吗?

师生交流:给学生充分展示的机会,如果出现知识性错误,教师要及时指正。学生在验证自己的结论时可能会用到的方式是:度量法,即用量角器进行测量或使用图形计算器来验证。重叠法,即通过剪纸,重新拼图的方式进行比较验证。

教师继续提问:如果改变第三条截线的位置,我们发现的结论还依然成立吗?

师生活动:让学生进行小组合作,制订方案,进行验证。有以上的探究,学生在这轮活动中会有较清晰的思路,教师稍加指点就可以。最后,学生在小组合作的基础上发现同位角的数量关系是不变的。

教师提出问题:谁能用文字语言表述一下你刚才发现的结论?(性质1:两直线平行,同位角相等。)谁能用符号语言来表述一下性质1?(如图:如果a∥b,那么∠1=∠5。)

设计意图:让学生充分经历动手操作——独立思考——合作交流——验证猜想的验证过程,并且在这一过程中,锻炼学生由图形语言转换为文字语言,文字语言转换为符号语言的归纳能力和表达能力。为下一步推出性质2和性质3打好基础。

(三)应用转化,推出性质。

教师提出问题:上节课中,我们利用“同位角相等,两直线平行”推出“内错角相等,两直线平行”。类似的,“咱们能由性质1,推出两直线平行,同位角相等”推出“性质2两直线平行,内错角相等”吗?

教师继续提问:谁能用性质1和其他相关知识说明理由?

师生讨论:教师指名,让学生阐述自己的观点,接着师生共同修正论证过程。在这个环节中教师应该多多关注推理过程,格式慢慢改正,最后师生共同完成证明过程。

教师提出问题:谁能用文字语言表述一下你刚才发现的结论?(性质2:两直线平行,内错角相等。)谁能用符号语言来表述一下性质2?(如图:如果a∥b,那么∠3=∠5。)

设计意图:

在教师的引领和指导下逐渐建构研究思路,循序渐进的让学生从“说思路”到“证推理”过渡。

教师提出问题:我们已经得出了平行线的两条性质了,那么,你能根据“性质1两直线平行,同位角相等.”推出“性质3两直线平行,同旁内角互补”吗?

学生活动:这次推理让学生单独完成,当学生完成后,教师借助多媒体出示推理过程,给予指点和纠正。

共同得出结论:文字语言:性质3,两直线平行,同旁内角互补。符号语言:如果a∥b,那么∠4+∠5=180。

设计意图:逐步培养学生的推理能力,使学生逐步养成言之有理、言之有据说的好习惯,从而进行简单的推理证明。

(四)巩固练习,深化理解。

练习:如图,在四边形ABCD中,如果AB∥CD,∠A=118°。

(1)求∠D的度数。

(2)不用度量的方法,能否求得∠B的度数?

设计意图:设计本题是为了让学生灵活运用平行线的性质,第一题比较简单;但是第二题需要学生学以致用,灵活掌握。

(五)小结。

性质定理:由“线”定“角”。

由“线”的位置关系(平行),定“角”的数量关系(相等)。

判定定理:由“角”定“线”

由“角”的数量关系(相等),定“线”的位置关系(平行)。

设计意图:通过小结,帮助学生梳理平行线的判定和性质,并掌握本节课所学的核心知识——平行线的性质。

七、教学反思

(一)把握好教学要求。

本章是初中阶段学生接触“图形与几何”的起始阶段,在这章的教学过程中,要逐渐让学生认识到“图形与几何”的重要性与趣味性,因此,笔者在执教“平行线的性质”这一节中,尤其是推断性质1时,教师让学生通过动手操作的方式验证自己的猜想,这样做的目的是让学生对几何产生兴趣,当学生形成良好的态度和情感时,才能乐学。在具体的教学中,教师不要急于提高教学要求,增加难度,一旦难度超过学生的接受能力,学生学习数学的积极性就会挫伤。为了提高教学效率,提高学生的学习兴趣,教师要理解教学内容在本章节及在全书中的位置与地位。

(二)充分发挥实物、模型、图片的作用和信息技术的应用。

图形的认识和几何知识都是从现实生活中抽象出来的,所以课本中的许多几何知识都存在于我们的生活周围。在教学过程中,笔者让学生用量角器等工具测量角的度数,这其实是借助实物判定平行线的性质的。在证明性质3的时候,教师并没有把证明过程一一列举出来,而是等学生完成后,再借助多媒体更正答案。利用多媒体不仅使教学变得简单,还能展示多彩的几何图形及解决抽象的数学问题。因此,在教学过程中,教师要善于借助一切外力辅助教学。

参考文献:

[1]课程教材研究所中學数学课程教材研究开发中心.教师培训手册[M].人民教育出版社,2014,06.

16.平行四边形的性质教学反思 篇十六

平行四边形是学生小学就接触过的基本几何图形,对于平行四边形的边、角的位置关系及数量关系学生都比较了解。因此本课不应该停留在归纳结论,而在于呈现结论的来龙去脉。我首先在课堂上安排了一个活动。让学生动手把两个全等的三角形拼成各种形状,其中就包括了平行四边形。到理论证明时,学生自然就会联想到全等这个知识点,而不用老师再费唇舌引导之。这是我认为本课比较成功的一个地方。

其次,在讲平行四边形的性质时,我让学生结合拼图过程,分组合作,畅所欲言。学生思维打得很开,甚至能把书本上没有提到的如“邻角互补”,“对角线把平行四边形分成四个面积相等的三角形”这种结论想出来。这点让我感到非常欣慰。

例题1给出平行四边形的周长及其中一边长,求其余三边的长。简单明了地考察了“平行四边形的对边相等”这个性质。本题可能用填空题的形式出现更好。例题2考察了另一个性质――平行四边形的对角相等。发现学生在书写解答过程中过于罗嗦,甚至用求证全等的方法来解答,说明这部分学生没有及时更新知识。两道例题后,我都有一道配套的练习,一来可以为掌握情况一般的学生提供多一次尝试的机会,同时思维快、书写流畅的同学也可以在别人做例题的时候超前一点。

在小结知识和解题技巧后,我安排了四道提高题。这些题目更加灵活,更加注重思维的敏捷性和计算的准确性,有助于加强学生的综合解题能力。

上一篇:一次有趣的主题班会作文400字下一篇:初中生作文大全