二次函数新课教学

2025-02-24|版权声明|我要投稿

二次函数新课教学(共8篇)

1.二次函数新课教学 篇一

二次函数教学建议

1、教材分析

(1)知识结构

(2)重点、难点分析

本节的重点之一是使学生能掌握用描点法画出抛物线的方法。后面的学习中,经常会涉及到利用函数图像解决数学问题。因此,快速、准确地画出二次函数的图像,是学生必须要掌握的基本技能。画图时要求科学、准确。并且要尽量做到美观,这就要求要确定抛物线顶点的位置,与y轴、x轴交点的位置,对称轴开口方向等。因此,利用图像或配方法确定抛物线的开口方向及对称轴、顶点的位置成为本节的另一个重点,二次函数是初中阶段遇到的较为复杂的函数,无论它的解析式,还是它的图像、性质等都比另外三种函数复杂。在中考中,更始几乎每一年都要考察二次函数的相关知识。学生在反复地描点画图过程中,逐渐体会数形结合的数学思想,认识到图形更直观,能帮助我们发现解决问题的线索。在配方的具体训练中,学生能体会到配方的思想。

本节的难点之一是初步理解数形结合的思想。学生对深刻理解数形结合的数学思想方法有一定的困难。往往是题目要求画图了才画图,比较被动,不能形成主动画图解题的习惯。另外,对二次函数对称轴的理解也是难点。学生可以从图像中识别出抛物线关于哪条直线对称,但对主动应用抛物线的对称性解题却有一定的困难。例如抛物线直线方程也不太理解。

2、教学建议

这一节的知识点较多,正如前面所分析的二次函数是初中阶段所遇到的较为复杂的函数,而且对灵活性的要求较高。因此,要求学生在学习这一部分知识时要深刻地理解,不能机械地模仿、记忆。在老师创设的教学情境中,亲自感受数学知识的形成过程,积累丰富的经验,凭借自己的力量获取知识,从而达到培养能力的目的。

(1)创设情境,激励学生提出问题

辩证唯物主义告诉我们,理性认识是从丰富的感性认识中抽象、概括出来的。没有一定数量的材料和经验,事物的规律、本质是很难发现的。因此,在这一节课的开始,建议教师留出一段时间与学生共同列表、画图,允许学生有一个走弯,对称轴方程是x=1,学生对表示对称轴的路的过程,在探索的过程中,会有许多的疑问。而这恰是学习新知识的开始。例如,有的同学会认识到在画图时,有一个点是很重要的,必须要画出来。那么这个点的坐标是如何确定的呢?如果教师舍不得花时间,让学生不断地体验,而是迅速切入正题,指明二次函数的形状,教学生记下二次函数的性质。那么学生就丧失了主动探索的机会。我们要意识到,认识客观事物是有一个过程的,人为地缩短或逾越,违反了事物发展的一般规律。由老师代替学生的思考,会使数学学习索然无味,学习成为机械地模仿、复制,这样也会导致学生对数学概念的肤浅理解,无法把握事物运动变化的规律性,数学能力自然无法提高。

(2)数学地发现问题,解决问题

学习数学要善于多问几个为什么。刚才提到,在画图时,我们意识到二次函数的顶点非常重要,是必须要画出来的。二次函数在顶点处拐了一个弯,当抛物线开口向上时,图像有最低点;当抛物线开口向下时,图像有最高点。那么为什么二次函数有这个性质,而一次函数就没有呢?例如:,可变形为,依靠以前学过的代数知识,可知。又因为抛物线开口向上,所以会有最低点。学生在探索过程中不断地发现问题,并利用自己学过的知识解决问题。在这个过程中,对数学的理解不断地加深。

(3)反思回顾,总结深化

我们的教学可以从画个图开始,却不能止于仅能熟练画出图像。在发现二次函数的性质并进行代数方面的逐一说理论证的过程中。试图使学生领悟到数学知识的客观存在性,树立怀疑一切的科学探索精神。在学习时,既要建立相应的图像,借助形象整体、全面地把握知识,又要会用数学抽象,概括的语言去刻画。使学生既欣赏到数学的美,又为数学的力量所折服。正如笛卡儿所说:“每一个我解决过的问题都成为以后解决其它问题的原则或方法。”因此,如果学生情况允许的话,可以组织学生撰写小论文,谈一谈二次函数的学习。对这部分知识不仅要知道操作步骤,还要善于多问几个为什么?这样,在熟练地画图过程中,学生逐渐地体会到了数形结合的思想方法。

2.二次函数新课教学 篇二

一、当前初中数学的教育教学现状

数学的教学需要很强的知识综合性, 初中数学教学也不例外, 大多数数学教学能力偏低的数学教师只能照搬书本知识, 很难创新教学模式, 这将使课堂教学死气沉沉, 毫无新意, 难以激发学生的学习和创造性思维, 更无法激起学生的学习兴趣, 从而导致数学课堂沉闷, 学生学习成绩难以提高, 无法达到预期的教学效果.要想提高教学水平, 达到预期的教学效果, 我们就必须打破一成不变的教学模式, 创新教学方法, 在教学的实践中不断总结经验, 对教学方式方法不断进行研究创新, 使教与学双向互动起来.

二、初中数学二次函数创新教学实例研究

知识的进步性主要表现在其具有创新性和活力方面, 数学教学中也必须具备创新思维和可行性的学习方法, 方法和思维正确, 就能使学生学习达到事半功倍的学习效果, 这就需要教师的教学方法对知识的驾驭能力来实现.下面举出一个具有创新的二次函数教学实例, 以期抛砖引玉.

1. 培养学生的识图和观察能力

运用情景教学法教会学生如何观察识图和对二次函数抛物线的比较.学生对未知的东西总是具有一种探索欲望, 这就要求教师要及时抓住学生的这一求知欲望, 让学生手脑并用, 做学习的主人.下面例1的教学过程就是一个很好的教学例子.

例1在同一直角坐标系中, 画出下列函数的图象, 并指出它们有何共同点?有何不同点?

(1) y=2x2 (2) y=-2x2

解:共同点:两个函数都是二次函数, 都以y轴为对称轴, 顶点都在坐标原点, 图象都是一条抛物线.

不同点:y=2x2的图象开口向上, 顶点是抛物线的最低点, 在对称轴的左边, 曲线自左向右下降;在对称轴的右边, 曲线自左向右上升.y=-2x2的图象开口向下, 顶点是抛物线的最高点, 在对称轴的左边, 曲线自左向右上升;在对称轴的右边, 曲线自左向右下降.具体图象如图1所示.

实例教学创新:在例题讲解之前, 教师必须要求学生自己动手画出函数图象, 并鼓励学生到黑板上列表并画出相应的二次函数图象, 解题前要求学生认识到列表、描点时, 要注意合理灵活地取值以及图形的对称性, 因为图象是抛物线, 因此, 要用平滑曲线按自变量从小到大或从大到小的顺序连接.同时对大胆上黑板作图并解题的学生进行表扬.

2. 培养学生的动手能力和创新能力

在课堂中, 教师可以要求学生自己动手, 先列表, 画出相应的二次函数图象, 并与学生进行讨论, 这一组函数的相同点和不同点、它们的图象特征、抛物线的开口方向、对称轴、抛物线平移方向等问题进行研究和探讨.通过这一教学实践, 培养学生勤动手和勤思考的学习习惯, 把课堂空间还给学生, 达到抛砖引玉, 触类旁通的教学效果.

3. 运用函数的最值问题, 让学生从课内走向课外

在实际应用中体会二次函数作为一种数学模型的作用, 学会运用相关知识解决现实生活中的问题, 达到学以致用.会利用二次函数的性质求实际问题中的最大或最小值.

例2某涵洞是抛物线形, 它的截面如图所示, 现测得水面宽1.6 m, 涵洞顶点O到水面的距离为2.4 m, 在图中直角坐标系内, 涵洞所在的抛物线的函数关系式是什么?

解略.

在教学实践中, 教师应学会从课内知识牵引到课外中应用, 使知识能够服务于现实生活.二次函数是主要以图形和实际相结合的数学知识, 运用二次函数这一知识特点, 使学生学会把知识和生活联系起来, 达到创新学习, 学以致用的教学效果.

3.“二次函数”教学设计 篇三

【教材分析】

教学目标:

1.使学生能利用描点法画出二次函数y=a(x-h)2的图像.

2.让学生经历二次函数y=a(x-h)2性质探究的过程,理解函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图像与二次函数y=ax2的图像的关系.

教学重、难点:

重点:会用描点法画出二次函数y=a(x-h)2的图像,理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图像与二次函数y=ax2的图像的关系是教学的重点.

难点:理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图像与二次函数y=ax2的图像的相互关系是教学的难点.

【教学过程】

一、提出问题

(1)两条抛物线的位置关系.

(2)分别说出它们的对称轴、开口方向和顶点坐标.

(3)说出它们所具有的公共性质.

2.二次函数y=2(x-1)2的图像与二次函数y=2x2的图像的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图像之间有什么关系?

二、分析问题,解决问题

问题1:你将用什么方法来研究上面提出的问题?

(画出二次函数y=2(x-1)2和二次函数y=2x2的图像,并加以观察.)

问题2:你能在同一直角坐标系中,画出二次函数y=2x2与y=2(x-1)2的图像吗?

教学要点:

1.让学生完成下表填空.

2.让学生在直角坐标系中画出图来.

3.教师巡视、指导.

问题3:现在你能回答前面提出的问题吗?

教学要点:

1.教师引导学生观察画出两个函数图像.根据所画出的图像,完成以下填空:

开口方向对称轴顶点坐标

y=2x2

y=2(x-1)2

2.让学生分组讨论,交流合作,各组选派代表发表意见,达成共识:函数y=2(x-1)2与y=2x2的图像、开口方向相同,对称轴和顶点坐标不同;函数y=2(x-1)2的图像可以看作是函数y=2x2的图像向右平移1个单位得到的,它的对称轴是直线x=1,顶点坐标是(1,0).

问题4:你可以由函数y=2x2的性质,得到函数y=2(x-1)2的性质吗?

教学要点:

1.教师引导学生回顾二次函数y=2x2的性质,并观察二次函数y=2(x-1)2的图像;

2.让学生完成以下填空:

当x______时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大;当x=______时,函数取得最______值y=______.

三、做一做

问题5:你能在同一直角坐标系中画出函数y=2(x+1)2与函数y=2x2的图像,并比较它们的联系和区别吗?

教学要点:

1.在学生画函数图像的同时,教师巡视、指导;

2.请两位同学上台板演,教师讲评;

3.让学生发表不同的意见,归结为:函数y=2(x+1)2与函数y=2x2的图像开口方向相同,但顶点坐标和对称轴不同;函数y=2(x+1)2的图像可以看作是将函数y=2x2的图像向左平移1个单位得到的.它的对称轴是直线x=-1,顶点坐标是(-1,0).

问题6:你能由函数y=2x2的性质,得到函数y=2(x+1)2的性质吗?

教学要点:

让学生讨论、交流,举手发言,达成共识:当x<-1时,函数值y随x的增大而减小;当x>-1时,函数值y随x的增大而增大;当x=-1时,函数取得最小值,最小值y=0.

教学要点:

让学生讨论、交流,发表意见,归结为:当x<-2时,函数值y随x的增大而增大;

当x>-2时,函数值y随x的增大而减小;当x=-2时,函数取得最大值,最大值y=0.

四、课堂练习

P11练习1、2、3.

五、小结

1.在同一直角坐标系中,函数y=a(x-h)2的图像与函数y=ax2的图像有什么联系和区别?

2.你能说出函数y=a(x-h)2图像的性质吗?

3.谈谈本节课的收获和体会.

六、作业

1.P19习题26.21(2).

2.选用课时作业优化设计.

第二课时作业优化设计:

1.在同一直角坐标系中,画出下列各组两个二次函数的图像.

(4)分别说出各个函数的性质.

3.已知函数y=4x2,y=4(x+1)2和y=4(x-1)2.

(1)在同一直角坐标系中画出它们的图像;

(2)分别说出各个函数图像的开口方向,对称轴、顶点坐标;

(3)试说明:分别通过怎样的平移,可以由函数y=4x2的图像得到函数y=4(x+1)2和函数y=4(x-1)2的图像;

(4)分别说出各个函数的性质.

4.二次函数y=a(x-h)2的最大值或最小值与二次函数图像的顶点有什么关系?

(作者单位:兰西县第1中学)

编辑/张烨

4.《二次函数》教学反思 篇四

1、基本知识与性质。

2、待定系数法。

3、应用。

一、本章主要内容有:

1、概念。考查的方式是判断函数是否是二次函数,需要注意的是分母里有二次的函数;可以化掉二次项的函数;以及二次项系数可能为零的函数。

2、待定系数法求解析式。设解析式有三种形式,一般形式,双根式,顶点式。另外还有根据实际问题求解析式。特别是一些辩证性很强的题目,比如售价为某一个值时销售量为具体的某一个值,当售价提高后,销售量减少。为了获得最大的利润,应该怎样定价格。这种是典型的二次函数解决实际问题的类型。同样的背景在八年级的时候也有出现,通过一元二次方程解决。

3、图文信息题。根据图像来回答问题,求交点坐标,顶点坐标,构成三角形的面积等。同时要能判断增减性,在什么情况下函数值大于零,在什么情况下函数值小于零。

4、抛物线的平移。抛物线的形状和大小由二次项的系数决定,一次项系数和常数项主要是确定位置。所以抛物线的平移的前提条件是二次项的系数不变,规律是“上加下减,左加右减”。

5、根据图像来判断一些代数式的符号。主要用到的是开口方向,与纵轴的交点,顶点以及自变量为1和―1时的函数值来确定。

二、成功之处:

(一)在探究二:已知二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(―1,―6),并且该图象过点P(2,3),求这个二次函数的表达式中,设计了两个问题:

1、通过已知顶点A的坐标(―1,―6),你从中还能获取什么信息?

2、在不改变已知条件的前提下,你能选用“一般式”吗?

设计意图是:

1、由顶点(―1,―6),可知对称轴是直线x=―1,函数的最大(小)值是―6。从而得出,当已知对称轴或函数最值时,仍然选用“顶点式”。

2、挖掘顶点坐标的内涵:

(1)由抛物线的轴对称性,可求出点P(2,3)关于对称轴x=―1对称点P’的坐标是(―4,3);

(2)用点A、点P和对称轴;

(3)用点A、点P和顶点的纵坐标等。

3、得出结论:凡是能用“顶点式”确定的,一定可用“一般式”确定,进一步明确两种表达式只是形式的不同和没有本质的区别;在做题时,不仅会使用已知条件,同时要养成挖掘和运用隐含条件的习惯。

(二)在知识运用部分采用猜想、比较、方法选择等方法引导学生探究问题,从而大大的提高学生分析问题、解决问题的能力。

三、遗憾之处:

5.二次函数图像教学反思 篇五

教师的任务不仅在于教数学,更主要的是创设情境,激励学生凭借自己的能力去获取数学知识,理解数学的道理,构建数学思想.因此,在教学中,我们应鼓励学生通过独立思考或合作学习研究,“发现”或“再创造”出数学知识。

一、教学背景分析:

1、教材分析:二次函数的知识是看中学数学学习的重要内容之一,它是从生活实际问题中抽象出的数学知识,又是在解决实际问题时广泛应用的数学工具,无论是在生活中还是在运用二次函数知识的方法上,都具有重要意义的教学内容。因此,搞好二次函数的图像和性质的教学,对学生能力的培养有重要的奠基意义。

2、教学内容分析:本节课二次函数的图像的第一课时,主要是研究最简单的二次函数的图像的画法,从而总结出它的性质。这既是对学生进行理性思维的培养,又是进行抽象思维的培养,具有较高的数学教育价值。因此学好本节内容对以后的学习也很重要。我确定本节课的重点是:根据图像观察、分析出二次函数的性质。

3、学生情况分析:本节课的教学对象是职高一年级级学生,在此之前他们对一次函数的图像和性质有一定的基础,但他们的观察能力,概括能力还比较弱,因此我确定本节课的难点是继续渗透数形结合的数学思想方法。

二、教学目标的确定:

我根据数学课程标准中关于“二次函数的图像”的教学要求,结合学生的实际情况,从以下三个方面确定了本节课的教学目标:

知识与技能:

(1)会用描点法画出二次函数y=ax2的图像。

(2)根据图像观察、分析出二次函数的性质。

(3)进一步理解二次函数和抛物线的有关知识。

过程与方法:通过画函数图像,总结性质,渗透由特殊到一般的辨证唯物主义观点。渗透数形结合的数学思想方法,培养观察能力和分析问题的能力。

情感态度:培养学生勇于探索创新及实事求是的科学精神。

三、教学方法与手段:

教学方法主要采用问题导学、小组讨论与反馈练习相结合的方法,通过教

师设置问题,引导学生独立思考,通过总结二次函数的性质组织学生小组讨论,为较差学生提供得到帮助的机会,通过反馈练习了解学生情况,及时分析和矫正,提高课堂教学效果。

教学手段采用分层教学与学案相结合的方法。通过分层提问,使不同的学生获得不同的收获,通过学案的设计帮助学生检测学习情况,反思学习过程,不断提高学习效果。

四、教学过程的反思:

优点:

1、上课一开始,我就注重对所学过的平面直角坐标系的有关知识、平面内如何确定点的坐标、以及各象限内点的坐标特征和关于y轴对称点的坐标特征的复习。使学生在画二次函数图像时描点找得很快、很准确。在讲解抛物线的概念时,出示了同学们很感兴趣的姚明投篮的照片,激发了学生的学习兴趣。为了得出a不同对抛物线图像和性质的影响,在学生画完三个图像后,教师采用“问题导学”式教学方法,设置问题情境,引导学生自主进行观察、发现、归纳、反思等数学活动,得出二次函数y=ax2的图像和性质,在教学中,由学生自己动手,通过列表、描点、连线绘制出二次函数的图像,培养了学生动手动脑的习惯和综合分析归纳的能力。

2、小组合作学习,发现其中的规律。鼓励学生相互交流自己的想法,并说明理由。如在画出图像后,提问学生“我们可以从图中观察到什么”。渗透了数形结合的思想,培养了学生观察、综合分析的能力,增加了学习的自信心和学习的能力。在合作学习中,也培养了他们善于与人交流,合作,肯于负责任的良好个性品质。

3、教师适时地总结、深化,提高认识水平。教师在不断地总结中渗透数学思想方法,抓住时机培养学生思维的深刻性。如这几个基本函数的学习上一节课经历了从实例抽象概括出函数概念,本节课由函数的解析式画出函数的图像,总结出函数的性质,再利用所学知识解决有关问题。在师生的共同讨论中,深化所学知识,培养学生具备反省思维的能力。

4、课堂教学中充分体现了教师和学生的“双主作用”,其中“问题导学”的教学模式起了重要作用。只有教师创造性的教,学生才能创造性地学,一旦学生的学习活动充满创造性的时候,学习过程便充满美的魅力,成为学生积极进取、自我完善的过程。

不足:对y=-x2的读法,教师读的不规范,没有注意小的细节。在总结二

次函数性质时,对于开口宽度,我在备课时用a的绝对值来表示的,a为负数时与a为正数时正好相反,一个学生说对了,但不是老师要的答案,我当时没有多想,就说他说的不对。忽略了不同的说法。另外老师提出问题后,给学生去分析、归纳、总结的时间还不够,因此本节课中教师有包办现象。

五、得到的启示:

反思这节课,从课前准备到课堂实施再到课后作业效果和检测,我得到如下启示:

1、对教材的处理要灵活,要考虑到前后知识的联系。

2、学生是变化的,要能及时准确的了解学生情况。

3、要不断探索和完善自己的教学方法和手段,向其他老师学习。

4、不断提高学生学习兴趣,不断提高课堂实效。

6.二次函数教学设计 篇六

作为一位无私奉献的人民教师,常常要根据教学需要编写教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。那么应当如何写教学设计呢?以下是小编精心整理的二次函数教学设计(精选8篇),欢迎阅读,希望大家能够喜欢。

二次函数教学设计1

教学目标

(一)教学知识点

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.(二)能力训练要求

1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3.通过学生共同观察和讨论,培养大家的合作交流意识.(三)情感与价值观要求

1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.具有初步的创新精神和实践能力.教学重点

1.体会方程与函数之间的联系.2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.教学难点

1.探索方程与函数之间的联系的过程.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教学方法

讨论探索法.教具准备

投影片二张

第一张:(记作§2.8.1A)

第二张:(记作§2.8.1B)

教学过程

Ⅰ.创设问题情境,引入新课

[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.Ⅱ.讲授新课

一、例题讲解

投影片:(§2.8.1A)

我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可以用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面被以40m/s的速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么

(1)h与t的关系式是什么?

(2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.[师]请大家先发表自己的看法,然后再解答.[生](1)h与t的关系式为h=-5t2+v0t+h0,其中的v0为40m/s,小球从地面被抛起,所以h0=0.把v0,h0代入上式即可求出h与t的关系式.(2)小球落地时h为0,所以只要令h=-5t2+v0t+h.中的h为0,求出t即可.还可以观察图象得到.[师]很好.能写出步骤吗?

[生]解:(1)∵h=-5t2+v0t+h0,当v0=40,h0=0时,h=-5t2+40t.(2)从图象上看可知t=8时,小球落地或者令h=0,得:

-5t2+40t=0,即t2-8t=0.∴t(t-8)=0.∴t=0或t=8.t=0时是小球没抛时的时间,t=8是小球落地时的时间.二、议一议

投影片:(§2.8.1B)

二次函数①y=x2+2x,②y=x2-2x+1,③y=x2-2x+2的图象如下图所示.(1)每个图象与x轴有几个交点?

(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?解方程验证一下:一元二次方程x2-2x+2=0有根吗?

(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?

[师]还请大家先讨论后解答.[生](1)二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象与x轴分别有两个交点,一个交点,没有交点.(2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1=0有两个相等的根1或一个根1;方程x2-2x+2=0没有实数根.(3)从观察图象和讨论中可知,二次函数y=x2+2x的图象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0),方程x2+2x=0有两个根0,-2;

二次函数y=x2-2x+1的图象与x轴有一个交点,交点坐标为(1,0),方程x2-2x+1=0有两个相等的实数根(或一个根)1;二次函数y=x2-2x+2的图象与x轴没有交点,方程x2-2x+2=0没有实数根.由此可知,二次函数y=ax2+bx+c的图象和x轴交点的横坐标即为一元二次方程ax2+bx+c=0的根.[师]大家总结得非常棒.二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.三、想一想

在本节一开始的小球上抛问题中,何时小球离地面的高度是60m?你是如何知道的?

[师]请大家讨论解决.[生]在式子h=-5t2+v0t+h0中,当h0=0,v0=40m/s,h=60m时,有

-5t2+40t=60,t2-8t+12=0,∴t=2或t=6.因此当小球离开地面2秒和6秒时,高度都是60m.Ⅲ.课堂练习

随堂练习(P67)

Ⅳ.课时小结

本节课学了如下内容:

1.经历了探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系.2.理解了二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根.两个相等的实根和没有实根.Ⅴ.课后作业

习题2.9

板书设计

§2.8.1 二次函数与一元二次方程(一)

一、1.例题讲解(投影片§2.8.1A)

2.议一议(投影片§2.8.1B)

3.想一想

二、课堂练习

随堂练习

三、课时小结

四、课后作业

备课资料

思考、探索、交流

把4根长度均为100m的铁丝分别围成正方形、长方形、正三角形和圆,哪个的面积最大?为什么?

解:(1)设长方形的一边长为x m,另一边长为(50-x)m,则

S长方形=x(50-x)=-x2+50x=-(x2-50x+625)+625=-(x-25)2+625.即当x=25时,S最大=625.(2)S正方形=252=625.(3)∵正三角形的边长为 m,高为 m,∴S三角形= =≈481(m2).(4)∵2πr=100,∴r=.∴S圆=πr2=π·()2=π· = ≈796(m2).所以圆的面积最大.

二次函数教学设计2

教材分析

本节课主要内容包括:运用二次函数的最大值解决最大面积的问题,让学生体会抛物线的顶点就是二次函数图象的最高点(最低点),因此,可利用顶点坐标求实际问题中的最大值(或最小值).在最大利润这个问题中,应用顶点坐标求最大利润,是较难的实际问题。

本节课的设计是从生活实例入手,让学生体会在解决问题的过程中获取知识的快乐,使学生成为课堂的主人。

按照新课程理念,结合本节课的具体内容,本节课的教学目标确定为相互关联的三个层次:

1、知识与技能

通过实际问题与二次函数关系的探究,让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法。

2、过程与方法

通过对实际问题的研究,体会数学知识的现实意义。进一步认识如何利用二次函数的有关知识解决实际问题。渗透转化及分类的数学思想方法。

3、情感态度价值观

(1)通过巧妙的教学设计,激发学生的学习兴趣,让学生感受数学的美感。

(2)在知识教学中体会数学知识的应用价值。

本节课的教学重点是 “探究利用二次函数的最大值(或最小值)解决实际问题的方法”,教学难点是“如何将实际问题转化为二次函数的问题”。

实验研究:

作为一线教师,应该灵活地处理和使用教材。充分发挥教师自己的智慧,把学生置于教学的出发点和核心地位,应学生而动,应情境而变,课堂才能焕发勃勃生机,课堂上才能显现真正的活力。因此我对教材进行了重新开发,从学生熟悉的生活情境出发,与学生生活背景有密切相关的学习素材来构建学生学习的内容体系。把握好以下两方面内容:

(一)、利用二次函数解决实际问题的易错点:

①题意不清,信息处理不当。

②选用哪种函数模型解题,判断不清。

③忽视取值范围的确定,忽视图象的正确画法。

④将实际问题转化为数学问题,对学生要求较高,一般学生不易达到。

(二)、解决问题的突破点:

①反复读题,理解清楚题意,对模糊的信息要反复比较。

②加强对实际问题的分析,加强对几何关系的探求,提高自己的分析能力。

③注意实际问题对自变量 取值范围的影响,进而对函数图象的影响。

④注意检验,养成良好的解题习惯。

因此我由课本的一个问题转化为两个实际问题入手通过创设情境,层层设问,启发学生自主学习。

教学目标

1.知识与能力:初步掌握解决二次函数在闭区间上最值问题的一般解法,总结归纳出二次函数在闭区间上最值的一般规律,学会运用二次函数在闭区间上的图像研究和理解相关问题。

2.过程与方法:通过实验,观察影响二次函数在闭区间上的最值的因素,在此基础上讨论探究出解决二次函数在闭区间上最值问题的一般解法和规律。

3.情感、态度与价值观:通过探究,让学生体会分类讨论思想与数形结合思想在解决数学问题中的重要作用,培养学生分析问题、解决问题的能力,同时培养学生合作与交流的能力。

教学重点与难点

教学重点:寻求二次函数在闭区间上最值问题的一般解法和规律。

教学难点:含参二次函数在闭区间上的最值的求法以及分类讨论思想的正确运用。

学生学情分析

我所代班级的学生是高一新生,他们在初中已学过二次函数的简单性质与图像,知道二次函数在顶点处取得最大值或最小值,在前几节课又学习了函数的概念与表示、单调性与最值的相关知识,已经具备了本节课学习必须的基础知识。

教法分析

根据教学实际,我将本节课设计为数学探究课,在探究的过程中,借助于多媒体教学手段,让学生观察几何画板中的动态演示,通过对二次函数图像的“再认识”,探究二次函数在闭区间上的最值。同时为了配合多媒体的教学,准备了学案让学生配套使用。先让学生提前预习相关内容,对所要探究的问题有初步的了解,再在课堂上详细的探究,课后在学案上有相应的课后作业题让学生巩固所学知识。

教学过程

(一)复习旧知

回忆二次函数的图像与性质:

1.图像:

2.定义域:

3.单调性:

4.最值:

【设计意图】复习旧知,引入新课。

(二)自主探究

探究1:定轴定区间最值问题

分别在下列范围内求函数f(x)=x2-2x-3的最值:

规律总结:作出二次函数的图像,通过图像确定函数在给定区间上的最值。

【设计意图】

通过探究

1,让学生讨论探究定函数在定区间上最值的求解方法,并通过二次函数在闭区间上图像直观形象地观察、分析问题和解决问题。

(三)合作探究(含参二次函数最值求解问题

探究2:动轴定区间最值问题

求函数f(x)=x2-2tx-3, t∈R在x∈[-2,2]上的最小值。

【设计意图】

通过探究2,让学生讨论探究动轴定区间上最小值的求解方法,并通过动态演示二次函数在闭区间上的图像,让学生直观形象地观察、分析问题和解决问题。

变式训练:求函数f(x)=x2-2tx-3在x∈[-2,2] ,t∈R上的最大值。

【设计意图】

通过变式训练,让学生进一步体会动轴定区间上最大值的求解方法,同时归纳出动轴定区间最值问题求解的一般规律。

规律总结:移动对称轴,比较对称轴和区间的位置关系,再结合图像进行进行分类讨论,注意做到“不重不漏”。

探究3:定轴动区间最值问题

求函数f(x)=x2-2x-3在x∈[t,t+2],t∈R的最小值。

【设计意图】让学生分组讨论探究3的求解方法,使学生体会运动的相对性,从而类比探究2的过程与方法可以制定出解决问题3的方法。

变式训练:求函数f(x)=-x2+2x-3在x∈[t,t+2], t∈R的最大值.【设计意图】

通过变式训练,让学生进一步体会定轴动区间上最大值的求解方法,同时归纳出定轴动区间最值问题求解的一般规律。

规律总结:移动区间,比较对称轴和区间的位置关系,再结合图像进行分类讨论,注意做到“不重不漏”。

(四)知识小结

本节课研究了二次函数的三类最值问题:

(1)定轴定区间最值问题;(2)动轴定区间最值问题;(3)定轴动区间最值问题.核心思想是判断对称轴与区间的相对位置,应用数形结合、分类讨论思想求出最值。

【设计意图】

归纳总结二次函数问题在闭区间上最值的一般解法和规律,完成本节课知识的建构。

(五)结束语

数缺形时少直观,形少数时难入微.数形结合百般好,割裂分家万事休!

(六)课后作业

1.分别在下列范围内求二次函数f(x)=x2+4x-6的最值。

2.求函数f(x)=x2+2tx+2,t∈R在x∈[-5,5]上的最值。

3.求函数f(x)=x2-2x+2在x∈[t,t+1], t∈R的最小值。

【设计意图】

学生应用探究所得知识解决相关问题,进一步巩固和提高二次函数在闭区间上最值的求解方法与规律。

二次函数教学设计3

一、说课内容:

九年级数学下册第27章第一节的二次函数的概念及相关习题(华东师范大学出版社)

二、教材分析:

1、教材的地位和作用

这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解数形结合的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

2、教学目标和要求:

(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.3、教学重点:对二次函数概念的理解。

4、教学难点:抽象出实际问题中的二次函数关系。

三、教法学法设计:

1、从创设情境入手,通过知识再现,孕伏教学过程

2、从学生活动出发,通过以旧引新,顺势教学过程

3、利用探索、研究手段,通过思维深入,领悟教学过程

四、教学过程:

(一)复习提问

1.什么叫函数?我们之前学过了那些函数?

(一次函数,正比例函数,反比例函数)

2.它们的形式是怎样的?

(y=kx+b,ky=kx ,ky= , k0)

3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?

【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课

函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。

例1、(1)圆的半径是r(cm)时,面积s(cm2)与半径之间的关系是什么?

解:s=0)

例2、用周长为20m的篱笆围成矩形场地,场地面积y(m2)与矩形一边长x(m)之间的关系是什么?

解: y=x(20/2-x)=x(10-x)=-x2+10x(0

例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

解: y=100(1+x)2

=100(x2+2x+1)

= 100x2+200x+100(0

教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?

(三)讲解新课

以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

二次函数的定义:形如y=ax2+bx+c(a0,a, b, c为常数)的函数叫做二次函数。

巩固对二次函数概念的理解:

1、强调形如,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

2、在 y=ax2+bx+c 中自变量是x,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r0)

3、为什么二次函数定义中要求a?

(若a=0,ax2+bx+c就不是关于x的二次多项式了)

4、在例3中,二次函数y=100x2+200x+100中,a=100,b=200,c=100.5、b和c是否可以为零?

由例1可知,b和c均可为零.若b=0,则y=ax2+c;

若c=0,则y=ax2+bx;

若b=c=0,则y=ax2.注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.(1)y=3(x-1)2+1(2)s=3-2t2

(3)y=(x+3)2-x2(4)s=10r2

(5)y=22+2x(6)y=x4+2x2+1(可指出y是关于x2的二次函数)

(四)巩固练习

1.已知一个直角三角形的两条直角边长的和是10cm。

(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关

于x的函数关系式。

【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。

2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3。

(1)分别写出S与x,V与x之间的函数关系式子;

(2)这两个函数中,那个是x的二次函数?

【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

五、评价分析

本节的一个知识点就是二次函数的概念,教学中教师不能直接给出,而要让学生自己在分析、揭示实际问题的数量关系并把实际问题转化为数学模型的过程中,使学生感受函数是刻画现实世界数量关系的有效模型,增加对二次函数的感性认识,侧重点通过两个实际问题的探究引导学生自己归纳出这种新的函数二次函数,进一步感受数学在生活中的广泛应用。对于最大面积问题,可给学生留为课下探究问题,发展学生的发散思维,方法不拘一格,只要合理均应鼓励。

二次函数教学设计4

一、教材分析

1.教材的地位和作用

(1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一,二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届佛山市中考试题中,二次函数都是必不可少的内容。

(2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。

(3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通。

2.课标要求:

①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。

③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导)。

④会根据二次函数的性质解决简单的实际问题。

3.学情分析:

(1)初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。

(2)学生的分析、理解能力较学习新课时有明显提高。

(3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。

(4)学生能力差异较大,两极分化明显。

4.教学目标

认知目标

(1)掌握二次函数 y=图像与系数符号之间的关系。通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力。

能力目标

提高学生对知识的整合能力和分析能力。

情感目标

制作动画增加直观效果,激发学生兴趣,感受数学之美。在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会感受探索与创造,体验成功的喜悦。

5.教学重点与难点:

重点:(1)掌握二次函数y=图像与系数符号之间的关系。

(2)各类形式的二次函数解析式的求解方法和思路。

(3)本节课主要目的,对历届中考题中的二次函数题目进行类比分析,达到融会贯通的作用。

难点:(1)已知二次函数的解析式说出函数性质

(2)运用数形结合思想,选用恰当的数学关系式解决几何问题.二、教学方法:

1.运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。

2.将知识点分类,让学生通过这个框架结构很容易看出不同解析式表示的二次函数的内在联系,让学生形成一个清晰、系统、完整的知识网络。

3.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知心理和已有的认知水平开展教学.形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

三、学法指导:

1.学法引导

“授人之鱼,不如授人之渔”在教学过程中,不但要传授学生基本知识,还要培育学生主动思考,亲自动手,自我发现等能力,增强学生的综合素质,从而达到教学终极目标。

2.学法分析:新课标明确提出要培养“可持续发展的学生”,因此教师有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

3、设计理念:《课标》要求,对于课程实施和教学过程,教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要.”

4、设计思路:不把复习课简单地看作知识点的复习和习题的训练,而是通过复习旧知识,拓展学生思维,提高学生学习能力,增强学生分析问题,解决问题的能力。

四、教学过程:

1、教学环节设计:

根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.

本节课的教学设计环节:

创设情境,引入新知 :复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”。学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了6个由浅入深的题型,让每一个学生都能为下一步的探究做好准备。

自主探究,合作交流:本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。

运用知识,体验成功:根据不同层次的学生,同时配有两个由低到高、层次不同的巩固性习题,体现渐进性原则,希望学生能将知识转化为技能。让每一个学生获得成功,感受成功的喜悦。

安排三个层次的练习。

(一)从定义出发的简单题目。

(二)典型例题分析,通过反馈使学生掌握重点内容。

(三)综合应用能力提高。

既培养学生运用知识的能力,又培养学生的创新意识。引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。

(四)方法与小结

由总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。

2、作业设计:(见课件)

3、板书设计:(见课件)

五、评价分析:

本节课的设计,我以学生活动为主线,通过“观察、分析、探索、交流”等过程,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。本节教学过程主要由创设情境,引入新知――合作交流;探究新知――运用知识,体验成功;知识深化――应用提高;归纳小结――形成结构等环节构成,环环相扣,紧密联系,体现了让学生成为行为主体即“动手实践、自主探索、合作交流“的《数学新课标》要求。本设计同时还注重发挥多媒体的辅助作用,使学生更好地理解数学知识;贯穿整个课堂教学的活动设计,让学生在活动、合作、开放、探究、交流中,愉悦地参与数学活动的数学教学。

二次函数教学设计5

教学目标

1、经历用三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系与各自不同的特点

2、能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题

3、能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究

教学重点和难点

重点:用三种方式表示变量之间二次函数关系

难点:根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究

教学过程设计

一、从学生原有的认知结构提出问题

这节课,我们来学习二次函数的三种表达方式。

二、师生共同研究形成概念

1、用函数表达式表示

☆做一做书本P56矩形的周长与边长、面积的关系

鼓励学生间的互相交流,一定要让学生理解周长与边长、面积的关系。

比较全面、完整、简单地表示出变量之间的关系

2、用表格表示

☆做一做书本P56填表

由于运算量比较大,学生的运算能力又一般,因此,建议把这个表格的一部分数据先给出来,让学生完成未完成的部分空格。

表格表示可以清楚、直接地表示出变量之间的数值对应关系

3、用图象表示

☆议一议书本P56议一议

关于自变量的问题,学生往往比较难理解,讲解时,可适当多花时间讲解。

可以直观地表示出函数的变化过程和变化趋势

☆做一做书本P574、三种方法对比

☆议一议书本P58议一议

函数的表格表示可以清楚、直接地表示出变量之间的数值对应关系;函数的图象表示可以直观地表示出函数的变化过程和变化趋势;函数的表达式可以比较全面、完整、简单地表示出变量之间的关系。这三种表示方式积压自有各自的优点,它们服务于不同的需要。

在对三种表示方式进行比较时,学生的看法可能多种多样。只要他们的想法有一定的道理,教师就应予以肯定和鼓励。

二次函数教学设计6

教学目标:

会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。

重点难点:

重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。

难点:会运用二次函数知识解决有关综合问题。

教学过程:

一、例题精析,强化练习,剖析知识点

用待定系数法确定二次函数解析式.

例:根据下列条件,求出二次函数的解析式。

(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

(2)抛物线顶点P(-1,-8),且过点A(0,-6)。

(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。

教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)

(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)

当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。

当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。

当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)

强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。

(1)若m为定值,求此二次函数的解析式;

(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。

二、知识点串联,综合应用

例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交

二次函数教学设计7

教学设计思想:本节主要研究的是与二次函数有关的实际问题,重点是实际应用题,在教学过程中让学生运用二次函数的知识分析问题、解决问题,在运用中体会二次函数的实际意义。二次函数与一元二次方程、一元二次不等式有密切联系,在学习过程中应把二次函数与之有关知识联系起来,融会贯通,使学生的认识更加深刻。另外,在利用图像法解方程时,图像应画得准确一些,使求得的解更准确,在求解过程中体会数形结合的思想。

教学目标:

1.知识与技能

会运用二次函数计其图像的知识解决现实生活中的实际问题。

2.过程与方法

通过本节内容的学习,提高自主探索、团结合作的能力,在运用知识解决问题中体会二次函数的应用意义及数学转化思想。

3.情感、态度与价值观

通过学生之间的讨论、交流和探索,建立合作意识和提高探索能力,激发学习的兴趣和欲望。

教学重点:解决与二次函数有关的实际应用题。

教学难点:二次函数的应用。

教学媒体:幻灯片,计算器。

教学安排:3课时。

教学方法:小组讨论,探究式。

教学过程:

第一课时:

Ⅰ.情景导入:

师:由二次函数的一般形式y=(a0),你会有什么联想?

生:老师,我想到了一元二次方程的一般形式(a0)。

师:不错,正因为如此,有时我们就将二次函数的有关问题转化为一元二次方程的问题来解决。

现在大家来做下面这两道题:(幻灯片显示)

1.解方程。

2.画出二次函数y= 的图像。

教师找两个学生解答,作为板书。

Ⅱ.新课讲授

同学们思考下面的问题,可以共同讨论:

1.二次函数y= 的图像与x轴交点的横坐标是什么?它与方程 的根有什么关系?

2.如果方程(a0)有实数根,那么它的根和二次函数y= 的图像与x轴交点的横坐标有什么关系?

生甲:老师,由画出的图像可以看出与x轴交点的横坐标是-1、2;方程的两个根是-1、2,我们发现方程的两个解正好是图像与x轴交点的横坐标。

生乙:我们经过讨论,认为如果方程(a0)有实数根,那么它的根等于二次函数y= 的图像与x轴交点的横坐标。

师:说的很好;

教师总结:一般地,如果二次函数y= 的`图像与x轴相交,那么交点的横坐标就是一元二次方程 =0的根。

师:我们知道方程的两个解正好是二次函数图像与x轴的两个交点的横坐标,那么二次函数图像与x轴的交点问题可以转化为一元二次方程的根的问题,我们共同研究下面问题。

[学法]:通过实例,体会二次函数与一元二次方程的关系,解一元二次方程实质上就是求二次函数为0的自变量x的取值,反映在图像上就是求抛物线与x轴交点的横坐标。

问题:已知二次函数y=。

(1)观察这个函数的图像(图34-9),一元二次方程 =0的两个根分别在哪两个整数之间?

(2)①由在0至1范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到十分位的正根吗?

x 0 0.1 0.2[ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y-1-0.89-0.76-0.61-0.44-0.25-0.04-0.19 0.44 0.71 1

②由在0.6至0.7范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到百分位的正根吗?

x 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70

y-0.040-0.018 0.004 0.027 0.050 0.073 0.096 0.119 0.142 0.166 0.190

(3)请仿照上面的方法,求出一元二次方程 =0的另一个精确到十分位的根。

(4)请利用一元二次方程的求根公式解方程 =0,并检验上面求出的近似解。

第一问很简单,可以请一名同学来回答这个问题。

生:一个根在(-2,-1)之间,另一个在(0,1)之间;根据上面我们得出的结论。

师:回答的很正确;我们知道图像与x轴交点的横坐标就是方程的根,所以我们可以通过观看图象就能说出方程的两个根。现在我们共同解答第(2)问。

教师分析:我们知道方程的一个根在(0,1)之间,那么我们观看(0,1)这个区间的图像,y值是随着x值的增大而不断增大的,y值也是从负数过渡到正数,而当y=0时所对应的x值就是方程的根。现在我们要求的是方程的近似解,那么同学们想一想,答案是什么呢?

生:通过列表可以看出,在(0.6,0.7)范围内,y值有-0.04至0.19,如果方程精确到十分位的正根,x应该是0.6。

类似的,我们得出方程精确到百分位的正根是0.62。

对于第三问,教师可以让学生自己动手解答,教师在下面巡视,观察其中发现的问题。

最后师生共同利用求根公式,验证求出的近似解。

教师总结:我们发现,当二次函数(a0)的图像与x轴有交点时,根据图像与x轴的交点,就可以确定一元二次方程 的根在哪两个连续整数之间。为了得到更精确的近似解,对在这两个连续整数之间的x的值进行细分,并求出相应得y值,列出表格,这样就可以得到一元二次方程 所要求的精确度的近似解。

Ⅲ.练习

已知一个矩形的长比宽多3m,面积为6。求这个矩形的长(精确到十分位)。

板书设计:

二次函数的应用(1)

一、导入 总结:

二、新课讲授 三、练习

第二课时:

师:在我们的实际生活中你还遇到过哪些运用二次函数的实例?

生:老师,我见过好多。如周长固定时长方形的面积与它的长之间的关系:圆的面积与它的直径之间的关系等。

师:好,看这样一个问题你能否解决:

活动1:如图34-10,张伯伯准备利用现有的一面墙和40m长的篱笆,把墙外的空地围成四个相连且面积相等的矩形养兔场。

回答下面的问题:

1.设每个小矩形一边的长为xm,试用x表示小矩形的另一边的长。

2.设四个小矩形的总面积为y,请写出用x表示y的函数表达式。

3.你能利用公式求出所得函数的图像的顶点坐标,并说出y的最大值吗?

4.你能画出这个函数的图像,并借助图像说出y的最大值吗?

学生思考,并小组讨论。

解:已知周长为40m,一边长为xm,看图知,另一边长为 m。

由面积公式得 y=(x)

化简得 y=

代入顶点坐标公式,得顶点坐标x=4,y=5。y的最大值为5。

画函数图像:

通过图像,我们知道y的最大值为5。

师:通过上面这个例题,我们能总结出几种求y的最值得方法呢?

生:两种;一种是画函数图像,观察最高(低)点,可以得到函数的最值;另外一种可以利用顶点坐标公式,直接计算最值。

师:这位同学回答的很好,看来同学们是都理解了,也知道如何求函数的最值。

总结:由此可以看出,在利用二次函数的图像和性质解决实际问题时,常常需要根据条件建立二次函数的表达式,在求最大(或最小)值时,可以采取如下的方法:

(1)画出函数的图像,观察图像的最高(或最低)点,就可以得到函数的最大(或最小)值。

(2)依照二次函数的性质,判断该二次函数的开口方向,进而确定它有最大值还是最小值;再利用顶点坐标公式,直接计算出函数的最大(或最小)值。

师:现在利用我们前面所学的知识,解决实际问题。

活动2:如图34-11,已知AB=2,C是AB上一点,四边形ACDE和四边形CBFG,都是正方形,设BC=x,(1)AC=______;

(2)设正方形ACDE和四边形CBFG的总面积为S,用x表示S的函数表达式为S=_____.(3)总面积S有最大值还是最小值?这个最大值或最小值是多少?

(4)总面积S取最大值或最小值时,点C在AB的什么位置?

教师讲解:二次函数 进行配方为y=,当a0时,抛物线开口向上,此时当x= 时,;当a0时,抛物线开口向下,此时当x= 时。对于本题来说,自变量x的最值范围受实际条件的制约,应为02。此时y相应的就有最大值和最小值了。通过画出图像,可以清楚地看到y的最大值和最小值以及此时x的取值情况。在作图像时一定要准确认真,同时还要考虑到x的取值范围。

解答过程(板书)

解:(1)当BC=x时,AC=2-x(02)。

(2)S△CDE= ,S△BFG= ,因此,S= + =2-4x+4=2 +2,画出函数S= +2(02)的图像,如图34-4-3。

(3)由图像可知:当x=1时,;当x=0或x=2时。

(4)当x=1时,C点恰好在AB的中点上。

当x=0时,C点恰好在B处。

当x=2时,C点恰好在A处。

[教法]:在利用函数求极值问题,一定要考虑本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取得范围内画。

练习:

如图,正方形ABCD的边长为4,P是边BC上一点,QPAP,并且交DC与点Q。

(1)Rt△ABP与Rt△PCQ相似吗?为什么?

(2)当点P在什么位置时,Rt△ADQ的面积最小?最小面积是多少?

小结:利用二次函数的增减性,结合自变量的取值范围,则可求某些实际问题中的极值,求极值时可把 配方为y= 的形式。

板书设计:

二次函数的应用(2)

活动1: 总结方法:

活动2: 练习:

小结:

第三课时:

我们这部分学习的是二次函数的应用,在解决实际问题时,常常需要把二次函数问题转化为方程的问题。

师:在日常生活中,有哪些量之间的关系是二次函数关系?大家观看下面的图片。

(幻灯片显示交通事故、紧急刹车)

师:你知道两辆车在行驶时为什么要保持一定的距离吗?

学生思考,讨论。

师:汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,这段距离叫做刹车距离。刹车距离是分析、处理道路交通事故的一个重要原因。

请看下面一个道路交通事故案例:

甲、乙两车在限速为40km/h的湿滑弯道上相向而行,待望见对方。同时刹车时已经晚了,两车还是相撞了。事后经现场勘查,测得甲车的刹车距离是12m,乙车的刹车距离超过10m,但小于12m。根据有关资料,在这样的湿滑路面上,甲车的刹车距离S甲(m)与车速x(km/h)之间的关系为S甲=0.1x+0.01x2,乙车的刹车距离S乙(m)与车速x(km/h)之间的关系为S乙=。

教师提问:1.你知道甲车刹车前的行驶速度吗?甲车是否违章超速?

2.你知道乙车刹车前的行驶速度在什么范围内吗?乙车是否违章超速?

学生思考!教师引导。

对于二次函数S甲=0.1x+0.01x2:

(1)当S甲=12时,我们得到一元二次方程0.1x+0.01x2=12。请谈谈这个一元二次方程这个一元二次方程的实际意义。

(2)当S甲=11时,不经过计算,你能说明两车相撞的主要责任者是谁吗?

(3)由乙车的刹车距离比甲车的刹车距离短,就一定能说明事故责任者是甲车吗?为什么?

生甲:我们能知道甲车刹车前的行驶速度,知道甲车的刹车距离,又知道刹车距离与车速的关系式,所以车速很容易求出,求得x=30km,小于限速40km/h,故甲车没有违章超速。

生乙:同样,知道乙车刹车前的行驶速度,知道乙车的刹车距离的取值范围,又知道刹车距离与车速的关系式,求得x在40km/h与48km/h(不包含40km/h)之间。可见乙车违章超速了。

同学们,从这个事例当中我们可以体会到,如果二次函数y=(a0)的某一函数值y=M。就可利用一元二次方程 =M,确定它所对应得x值,这样,就把二次函数与一元二次方程紧密地联系起来了。

下面看下面的这道例题:

当路况良好时,在干燥的路面上,汽车的刹车距离s与车速v之间的关系如下表所示:

v/(km/h)40 60 80 100 120

s/m 2 4.2 7.2 11 15.6

(1)在平面直角坐标系中描出每对(v,s)所对应的点,并用光滑的曲线顺次连结各点。

(2)利用图像验证刹车距离s(m)与车速v(km/h)是否有如下关系:

(3)求当s=9m时的车速v。

学生思考,亲自动手,提高学生自主学习的能力。

教师提问,学生回答正确答案,教师再进行讲解。

课上练习:

某产品的成本是20元/件,在试销阶段,当产品的售价为x元/件时,日销量为(200-x)件。

(1)写出用售价x(元/件)表示每日的销售利润y(元)的表达式。

(2)当日销量利润是1500元时,产品的售价是多少?日销量是多少件?

(3)当售价定为多少时,日销量利润最大?最大日销量利润是多少?

课堂小结:本节课主要是利用函数求极值的问题,解决此类问题时,一定要考虑到本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取的范围内画。

板书设计:

二次函数的应用(3)

一、案例 二、例题

分析: 练习:

总结:

数学网

二次函数教学设计8

目标:

1.使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y=ax2的关系式。

2.使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。

3.让学生体验二次函数的函数关系式的应用,提高学生用数学意识。

重点难点:

重点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y=ax2、y=ax2+bx+c的关系式是的重点。

难点:已知图象上三个点坐标求二次函数的关系式是教学的难点。

教学过程:

一、创设问题情境

如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶。它的拱高AB为4m,拱高CO为0.8m。施工前要先制造建筑模板,怎样画出模板的轮廓线呢?

分析:为了画出符合要求的模板,通常要先建立适当的直角坐标系,再写出函数关系式,然后根据这个关系式进行计算,放样画图。

如图所示,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。这时,屋顶的横截面所成抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式为: y=ax2(a<0)(1)

因为y轴垂直平分AB,并交AB于点C,所以CB=AB2 =2(cm),又CO=0.8m,所以点B的坐标为(2,-0.8)。

因为点B在抛物线上,将它的坐标代人(1),得 -0.8=a×22 所以a=-0.2

因此,所求函数关系式是y=-0.2x2。

请同学们根据这个函数关系式,画出模板的轮廓线。

二、引申拓展

问题1:能不能以A点为原点,AB所在直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系?

让学生了解建立直角坐标系的方法不是唯一的,以A点为原点,AB所在的直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系也是可行的。

问题2,若以A点为原点,AB所在直线为x轴,过点A的x轴的垂直为y轴,建立直角坐标系,你能求出其函数关系式吗?

分析:按此方法建立直角坐标系,则A点坐标为(0,0),B点坐标为(4,0),OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,O点坐标为(2;0.8)。即把问题转化为:已知抛物线过(0,0)、(4,0);(2,0.8)三点,求这个二次函数的关系式。

二次函数的一般形式是y=ax2+bx+c,求这个二次函数的关系式,跟以前学过求一次函数的关系式一样,关键是确定o、6、c,已知三点在抛物线上,所以它的坐标必须适合所求的函数关系式;可列出三个方程,解此方程组,求出三个待定系数。

解:设所求的二次函数关系式为y=ax2+bx+c。

因为OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,拱高OC=0.8m,所以O点坐标为(2,0.8),A点坐标为(0,0),B点坐标为(4,0)。

由已知,函数的图象过(0,0),可得c=0,又由于其图象过(2,0.8)、(4,0),可得到4a+2b=0.816+4b=0 解这个方程组,得a=-15b=45 所以,所求的二次函数的关系式为y=-15x2+45x。

问题3:根据这个函数关系式,画出模板的轮廓线,其图象是否与前面所画图象相同?

问题4:比较两种建立直角坐标系的方式,你认为哪种建立直角坐标系方式能使解决问题来得更简便?为什么?

(第一种建立直角坐标系能使解决问题来得更简便,这是因为所设函数关系式待定系数少,所求出的函数关系式简单,相应地作图象也容易)

请同学们阅渎P18例7。

三、课堂练习: P18练习1.(1)、(3)2。

四、综合运用

例1.如图所示,求二次函数的关系式。

分析:观察图象可知,A点坐标是(8,0),C点坐标为(0,4)。从图中可知对称轴是直线x=3,由于抛物线是关于对称轴的轴对称图形,所以此抛物线在x轴上的另一交点B的坐标是(-2,0),问题转化为已知三点求函数关系式。

解:观察图象可知,A、C两点的坐标分别是(8,0)、(0,4),对称轴是直线x=3。因为对称轴是直线x=3,所以B点坐标为(-2,0)。

设所求二次函数为y=ax2+bx+c,由已知,这个图象经过点(0,4),可以得到c=4,又由于其图象过(8,0)、(-2,0)两点,可以得到64a+8b=-44a-2b=-4 解这个方程组,得a=-14b=32

所以,所求二次函数的关系式是y=-14x2+32x+4

练习: 一条抛物线y=ax2+bx+c经过点(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。

五、小结:

二次函数的关系式有几种形式,函数的关系式y=ax2+bx+c就是其中一种常见的形式。二次函数关系式的确定,关键在于求出三个待定系数a、b、c,由于已知三点坐标必须适合所求的函数关系式,故可列出三个方程,求出三个待定系数。

六、作业

1.P19习题 26.2 4.(1)、(3)、5。

7.初中数学二次函数的教学思路分析 篇七

函数是任何阶段数学学习都需要贯彻的内容, 而对于初中时期来说, 主要涉及的是二次函数的教学, 也由于其抽象性, 让目前很多初中的二次函数教学都存在一定的难度性, 不但教师在教学过程存在一定的不便性, 同时学生学习的效果也难以达到满意的要求, 也让其成为了初中教学的一个难点. 而笔者将通过本文, 就初中数学二次函数的教学思路方面展开分析与探讨.

1. 二次函数概念的理解与判断

对于概念来说, 是任何数学知识学习的基础, 而对于二次函数也不例外, 而要保证学生在二次函数的学习效果, 首先则需要教会他们对于概念进行理解, 然后通过概念完成函数的判断, 例如在二次函数理解, 教师在教学过程中首先列举二次函数的标准形式, 即y = ax2+ bx + c, a不等于0, 然后在通过各类已知条件的变化, 让学生了解二次函数的性质, 同时实现函数与方程之间的共通转化, 即像在根数目的教学过程中, 教师可以提出条件和问题, 让学生进行分析:当a、b、c满足什么样的关系条件时, 二次函数在x轴上有一个根;又满足什么样的关系条件, 二次函数在x轴上存在两个根;如果要让二次函数没有根, 则又需要满足什么条件. 而这时在教学过程中可以让学生将根的数目转变为与x轴的交点数目, 同时适当将二次函数与二元一次方程式关联, 然后进行分类讨论. 即可以通过三种情况展开讨论:1. 没有交点, 即y的取值不等于0 即可, 最后可以转化为ax2+ bx + c ≠ 0;2. 有一个交点, 即二元一次方程ax2+ bx + c = 0 有一个解或者两个相同的解, 那么c必须满足条件;3. 有两个交点, 即二元一次方程ax2+ bx + c = 0 有两个解, 由此分析可知, 只要同时不满足1, 2 的条件即可:ax2+ bx + c ≠ 0, 同时, 如果教师在教学过程中感觉单纯介绍和解释难以达到预期的教学效果, 则可以通过多媒体完成标准二次函数图形的绘制, 同时根据a的取值正负, 展示不同开口方向的二次函数图形, 以便达到全面教学介绍的效果.c≠-b24a

2. 二次函数的数形结合解题方法

数形结合法是目前很多逻辑科目都需要采用的方法, 这种方法的优势在于利用数字的计算性质配合图形的直观性质, 能够让两者进行有效联系, 也便于教学者能够有效拓展教学的过程, 同时学生的学习效果也能得到较大提升. 不过数形结合法的教学也需要有一个循序渐进的过程. 例如教师在开展数形结合教学前, 首先可以将标准的二次函数进行简化, 即展示y = ax2的形式, 然后以多媒体展示这个二次函数的图形, 然后开始对函数进行平移得到函数y = ax2+ bx + c, 同时再提出相应的简化方式, 即函数平移可以转变为对称轴平移, 然后在进行相应的例题拓展教学, 即如例题1:已知有一个二次函数表示形式为, 试图分析该函数的性质. 而相应的解题思路为:1. 首先根据二次项x2的系数可以得出函数是开口向下的, 然后将原式进行化简可得:, 然后分析可知, 函数的对称轴为x = -1, 然后绘制出函数的相应图像 (如下图图1 所示) .

3. 二次函数的生活应用题解题

二次函数作为数学的一个主要教学知识点, 自然符合了数学中的一系列性质, 而应用性质就是其中一点, 教师在教学过程中则可以通过一些生活化的应用题, 让学生通过实际解题分析和运用, 了解二次函数的特点以及使用价值. 例如有一道生活买卖的问题:即某个电器商场的某个电器的价格为59 元, 每星期可以销售出250 件, 而为了保证商场的盈利, 则需要对该商品的价格进行调整, 而对此, 财务部门也进行了相应的估算:若该商品的价格均提高1 元, 则会导致商场每星期的销售量锐减18 件;相反的, 若价格都降低1 元, 则每星期的销售量会多19 件, 而该电器商品的成本价为每件39 元, 问如何设定价格, 可以保证该商场每星期的收益最大化? 解题思路为:首先目前价格是个未知数, 而商场每星期的收益也是未知数并与其关联, 所以教师在教学过程中可以让学生找出两个未知数, 并建立起x, y的二次函数, 其中x代表每件商品的变动价格, y代表商场的每星期总收益, 然后了解总收益的计算方法:即商场的总收益= 卖出电器商品的数量 × (目前每件商品的单价- 每件商品的成本) , 然后根据已知条件进行分类讨论, 分为涨价和降价两种情况, 然后分开列出二次函数式, 即令y1作为涨价的总价, y2为降价的总价, 它们相关的二次函数式分别为:y1= (59 + x - 39) (250 -18x) ;y2= (59 - x - 39) (250 + 19x) , 最后结合二次函数思想完成相应的解题过程即可.

4. 结语

8.二次函数新课教学 篇八

[关键词]二次函数教学实践初中数学

[中图分类号]G633.6[文献标识码]A[文章编号]16746058(2015)230015

二次函数是初中数学教学中较为关键的部分,对于后续的数学问题以及解决问题的方法具有非常关键的作用.且在日常生活中,很多问题都需要用到二次函数,因此在课堂上加强教学的力度,强化教学的效果是非常关键的.二次函数的学习难度较大,为了有效提升教学效率,就需要由教师引导学生形成数学思维,在教学中注重概念的讲解,以此提高教学效率.

一、初中数学的特点

经过教学改革,近年来苏教版初中数学的内容与生活的联系越来越紧密.因此教师在讲解知识点时需要从实际入手,结合教材的内容为学生举例,由此深化学生已经掌握的内容.此外,苏教版教材还将教材中所有的数学内容联系起来,学生在学习时,就可把数学知识进行串联,这在教学活动中起到了非常关键的作用.在教学中,可以将数学教学的内容看做一个整体,对知识点间存在的共同点进行整理,帮助学生形成较强的逻辑结构,最终促进学生整体发展.

二、二次函数的教学实践

1.借助现代化工具强化知识的理解

在二次函数教学中,由于二次函数涉及的知识非常多,且较为抽象,假如采取常规的讲解方法进行教学,无法培养学生对二次函数的理解,且对学生数学能力的培养也非常不利.对此,教师可在教学中运用多媒体工具来教学.采用此种教学方法,不仅调动学生的积极性,还能吸引学生的注意力.此外,使用多媒体技术还能够扩展知识的容量,提高教学的效果,同时还能够改善课堂氛围,使学生在课堂更容易掌握二次函数的知识.在日常教学中,教师可通过多媒体来为学生讲解二次函数的概念,例如,教师可通过多媒体为学生播放推铅球的小短片,在观看短片的过程中,教师就可设计问题,如“假设铅球的行进高度为y,水平距离为x,运用两者的关系来计算推铅球的距离”.学生接触到这个问题后,积极参与讨论,通过思考与讨论得出最终的结果.教师在讲解二次函数时,应当先带领学生了解,假如给的x值不同,y值也会发生变化,这表明y是x的二次函数.此外,教师还需要让学生了解,这一等式并不是简单的等式,而是通过一个未知数将其他未知数表现出来的变化关系,使学生在头脑中形成概念,随后运用到解题中.

2.深入讲解二次函数的概念

在学习二次函数时,最为重要的是对二次函数的概念产生深刻的认识,由此加深学生对二次函数的理解与运用.教师在讲解应用题与公式计算时,就可在其中渗透二次函数的改变.例如在讲解圆面积公式时,圆的半径是r,面积为S,随后带领学生写出圆面积的表达公式:S=πr2.通过这个公式的性质向学生讲解二次函数的性质.在此种情况下,学生在学习不同的知识时,还能够巩固二次函数的概念与内涵.此外,在教学中,教师还需要通过实例来为学生讲解二次函数,例如在二次函数y=ax2+bx+c(a≠0)中,在为学生讲解相关概念的同时,教师还需要对公式进行解释,使学生了解到系数间的关系变化,y属于自变量,x属于因变量,两者是函数的关系,如此便能够使学生从函数方程中了解与掌握函数的概念.

3.数形结合,引导学生通过图形理解二次函数

在数学课堂上,教师可通过情境教学法来引导学生运用图形来理解二次函数,借助图形直观的特点来使学生更好地认识函数,并进行对比.例如在同一个直角坐标系中,可画出不同的函数图像,在画图的过程中还需要对这些图像进行对比,指出图像的相同点与不同点.通过这一问题让学生展开分析与讨论,随后得出结论.需注意的是,在教学中,教师在为学生讲解例题前,应当让学生按照题意来作图,如此便能够使学生在解题的过程中通过图像来解决问题,不仅能够培养学生的思维能力,还能够培养学生的实践能力.在画图前,教师应当叮嘱学生按照题意灵活合理地取值,由此保证图形的对称性.在数学课堂上,不仅要注重为学生传授新的知识,同时还要注意把握新旧知识间的联系,由此使学生对数学内容产生更加清晰的认识,增强学生对于新旧知识的理解.例如在学习二次函数时,教师还可为学生适当融入一些二次函数与一元二次方程间的联系,通过比较两者的内容,使学生更好地区分两者的关系,提高学生的数学水平.

综上所述,二次函数是初中数学的重点,教师在教学过程中,应当按照苏教版的特点与学生的具体情况为学生设计教学活动,综合采用多种教学方法,将二次函数与数学教材内的其他知识点结合起来,按照学生的反馈不断地调整教学策略,由此提高教学效率.

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:iwenmi@163.com

上一篇:田园教案下一篇:职高教研活动方案

付费复制
学术范例网10年专业运营,值得您的信赖

限时特价:7.99元/篇

原价:20元
微信支付
已付款请点这里联系客服
欢迎使用微信支付
扫一扫微信支付
微信支付:
支付成功
已获得文章复制权限
确定
常见问题