数据转换器英文文献(精选4篇)
1.数据转换器英文文献 篇一
温州大学
本科毕业设计(论文)
文献综述
题 目
英语构词的转类法与英汉翻译词类转化法 Comparison between Conversion in English Word Formation and Translation
专 业 学生姓名 指导教师 完成日期
英语 Jerry Joel Licia Wong
班 级 学 号 职 称
03英本6班 03046666 讲师
2007年1月18日
温州大学教学部制 英语构词转类法与英汉翻译 词类转化法的文献综述
v 在由于英语构词法和英汉翻译理论与实践中,都会提到一种方法,即转类法/词类转换法(conversion)。在英语构词法中,转类法是一种词汇扩大的重要方法和途径,能都转变词汇句法功能。在现代英语中,词类有一种词类转换成另一种词类似乎更加便捷,因此而有着普遍的存在。而在英汉翻译的实践过程中,一些句子可以逐字对译,有些句子则不然。在这些句子中,有些词就需要词类转换,使译文通顺自然,并传达出原文的准确意思。
英语构词法中的转类法(conversion)在英语发展的历史长河里,由于大部分词汇的词尾屈折变化的基本消失,衍生出一种新的构词法――转类法。这种方法成为现代英语构词方法中最为简便和有效的途径。它不改变词的形态,只是使词从一种词类转换为另一种词类,从而使词具有新的意义和作用,成为一个新词,这种构词法叫做转类法(conversion)。这种构词法的特点是无须借助词缀即可实现词类的转换(陆国强,1999:21)。因此,这种构词法又被成为零位后缀法(derivation by zero suffix),简称“零位派生法”(zero derivation),如fax(传真)可以由名词不加任何形式变化直接转化为动词to fax(发传真)。
在英语构词法中,转类法的几种突出表现包括:名词定语(noun attribute),如danger zone(危险区域),depth charge(深水炸弹);recipient country(受援国);名词转化为动词,如名词traget(目标)转化为动词to target(把„„作为目标),名词brainstorm(献策攻关)转换为动词to brainstorm(集中个人的智慧猛攻);动词转化为名词,如laugh动词转化为名词a laugh;形容词转化名词,如the poor, the rich, the riduculous, the condemned。
英语词汇中的简单词大多能够进行词类转化,如多数的单音节名词都有着与它形式相同的动词,如:chase n.→to chase v.;sight n.→to sight v.;search n.→to search v.等等。而真正意义上的派生词(derivatives)通常不能进行转类,因为派生词中已具有了明确表示词类的词缀。复合词(compounds)转类的情况比派生词多。复合词通常由两个单音节的词复合而成,如:spotlignt n.→to spotlight v.(聚光灯照射;使醒目突出);blacklist n.→to blacklist v.(把„„列入黑名单);to break down → breakdown(崩溃);to stand still→ standstill(停顿)等都是由名词转化为动词或者由动词词组转化为名词。转类法被认为是英语构词中构词能力最强的方法之一。不论是什么词类的词汇,都有相当的一部分可以进行转类而产生新词汇。
英汉翻译中的词类转换(conversion)翻译的实质是将一种语言转换成另一种语言,其目的在于把源语(Source Language)的全部信息准确地转换成译入语(Target Language),同时取得最大限度的等值效果。英汉两种语言属于不同的语系,两种语言的文字、词汇、语法以及表达方式都有着各自的形式和特点,在语言结构和表现手段上存在巨大差异。因此,在英汉翻译过程中,按照原文的词类对号入座地逐词对译,往往会使译文生硬别扭,带有“翻译腔”(translationese)。所以,有些情况下为了使译文更加符合汉语的表达习惯和规律,在忠实于原文的前提下,必须把词类适当地加以转换,才能使译文通顺自然,流畅得体。
词类转换(conversion)是翻译中常用的处理方法。词类转换指在翻译实际过程中,将源语的某类词转换成译入语的另一类词。(林煌天1998:104)词类的转换,目的在于超脱源语的语言形式,使译入语既能够忠实地传达原文的内容,又符合译入语的语法和修辞习惯。如在英汉、法汉翻译中,由于不同的语言在词汇的构成和使用习惯上都有很大的不同,进行逐词对译几乎是不可能完成的,因此,灵活地进行词类转换,就显得十分必要。从理论上讲,只要是出于表达的需要,任何的词类转换都是允许的。在英语的学习过程中,英语学习者被要求掌握把名词、动词、形容词、副词、介词、连接词、代词等词类分得清清楚楚的能力。这对于一个英语学习者来说,本该是一个长处,但在英汉翻译时过分强调词类的概念就可能成为译者的障碍。因为英汉翻译是英语和汉语两种语言之间的转换,在英语里可以用一个名词表达的概念,翻译成汉语也许可用一个动词来表达,也可能是可以并且只能用一个动词来表达。英汉翻译中的词类转换法就是把源语(Source Language)中的某种词类,转换成译入语(Target Language)中的另外一种词类来表达的翻译方法。英语词类的分类大体上可以分为10类,而汉语词类大体上可以分为12类。
英语词类
汉语词类 Noun
名词 Verb
动词 Adjective
形容词 Adverb
副词 Numeral
数词 Pronoun
代词
Preposition
介词(前置词)Conjunction
连词 Article
×× ×× 量词 ×× 助词 ×× 语气词 Interjection 叹词
在翻译实践中,使用词类转换这一翻译技巧和方法的目的主要是避免照搬原文结构而造成译文晦涩难懂,是译文语句流畅、清晰明确、合乎语法规范和语言习惯、便于理解。所以,译者应以忠实反映原文的内在实质为前提,以符合译入语语法规范和语言习惯为依据,具体问题具体分析,因地制宜的使用这种翻译方法。英汉翻译中常见的词类转换现象有:表示动词动作的名词,动名词,动宾结构转换成动词或形容词;介词转换成动词或副词;动词转换成名词或形容词;形容词转换为副词等等。
虽然在英语和汉语两种语言当中名词的使用量都是首屈一指的,但这两种语言在名词的使用上也保持了各自的特点。从语法结构角度来说,在通常被称为“结构语言”的英语当中,一个句子往往只有一个谓语动词,因此名词用的更多一些;而在通常被称为“逻辑英语”的汉语当中,一个句子往往可以连用几个动词或动词词组,因此动词用的更多一些。从构词法(Word Formation)上说,有相当数量的英语的名词是有动词派生而成的(例:settle→ settlement, retrieve→retrieval),如同行词(例:research既是名词又是动词)或是同源词(例:sight和see)。基于上述原因,有许多英语名词在翻译过程中可以转换成汉语中的动词,翻译工作者可以根据具体文本和情况酌情处理实行灵活的词类转换。
英汉翻译也是存在动词转换为名词的过程。例:They have been victimized by the experiments.[译文]它们成了试验的牺牲品。其中,“victimize”是有名词victim派生而来的,因此在翻译过程中转换成了汉语中的名词,同时为了保持句子结构完整性,在译文中增补了相应的动词。这种现象从构词法的角度来说,是因为在英语历史的发展过程中,有着一定数量的动词是有名词派生或者转类而来的。在翻译这些词汇的过程中,翻译工作者往往难以找到相应的汉语动词,因此就有了把该种动词还原成名词的必要。
英语构词转类法与英汉翻译词类转化法的对比
语言是一个无限生成的系统,翻译的目的就是将原文的意思准确地在译入语中转达。按照美国翻译理论家奈达(Eugene A.Nida)的功能对等(functional equivalence)的观点(奈达,2003:14),译入语要在语言的功能上与原文对等,而不是在语言的形式上和原文对应。在奈达看来,翻译就是要在译入语中以最自然的方式重现原文中的信息,首先是重现意义,然后才是风格(Nida 2003:12)。最好的翻译就是应该读起来不像翻译。要让原文(Source Language)和译入语(Target Language)对等,让译入语自然流畅,就必须突破原文语言结构对翻译工作者的束缚。也就是说,翻译所追求的并不是语言的对等,而是语言功能的对等。奈达的理论给让翻译事业走入了柳暗花明的境界。所以,翻译的过程就是原文信息传达的过程,只要能够真实地传达出原文的信息,是否注重语言词汇的词类变化也就显得不那么重要了。但是,对于两种语言在遣词造句方面的相似性和差异的深入认识,有助于翻译工作者准确地完成传达原文信息的使命。
英语构词的转类法与英汉翻译中的词类转化法都是语言现象。英语构词中的转类现象较为普遍,因而产生了相当数量的转类语;而在英汉翻译的中,适时地运用词类转化法可以生成自然的译文。两种转类法/词类转换法(conversion)都是根据句子和表达的需求,在不改变词汇的基本意义的基础上,不通过任何词形变化方式,选择需要的词性的方法。
当前研究存在的问题
在当前的研究中,对于英语构词法中的转类法(conversion)在各种教材和专著里有着较为详细的论述和说明;在各种教程、教科书和专著里对于英汉翻译中的词类转化法(conversion)也有详细的描述,但是对于两者的比较分析却凤毛麟角。很少有研究人员从词汇学角度探讨和研究了翻译中的词类转换。此外,对于翻译中的词类转换的理论基础描述也存在着一定的空白。
作者拟解决问题
英语构词中的转类法和英汉翻译中的转类法是否存在着一定的联系?翻译实践中是否应该考虑两种语言的构词特征,灵活地运用词类转换法?本选题研究对英语构词中的转类法与英汉翻译中的词类转换法进行对比分析,探寻两者的关系和特征。以期能够为英语学习者和翻译人员提供一定的参考和帮助。
参考文献:
[1] Bauer, Laurie.English Word-Formation [M].Cambridge: Cambridge University Press, 1983.[2] Dalgish, G.M.Webster’s Dictionary of American English [M].New York: Random House, 1997.[3] Nida, Eugene A.and Taber, Charles R.The Practice and Theory of Translation
[M].Leiden: Brill Academic Publishers, 2003 [4] Nida, Eugene A.Language, Culture and Translating [M].Shanghai: Shanghai Foreign Language Education Press, 1993.[5] 林煌天.中国翻译词典[M].武汉 : 湖北教育出版社,1998.[6] 陆国强.现代英语词汇学[M].上海:上海外语教育出版社,1999.[7] 罗阿祥.英汉翻译中的词类转换[DB/OL].中国知网,2001.[8] 王蕾.英语构词转类法与英汉翻译词汇转译法[J].上海翻译,2006(3).[9] 汪榕培, 卢晓娟.英语词汇学教程[M].上海:上海外语教育出版社,1997.[10] 谢建国.英语翻译[M].北京:机械工业出版社,2005.[11] 许建平.英汉互译实践与技巧[M].北京:清华大学出版社,2000.[12] 叶子南.高级英汉翻译理论与实践[M].北京:清华大学出版社,2001.[13] 杨琦.英译汉翻译技巧之词类转换法[J].西南科技大学学报(哲学社会科学版), 2003,(4).[14] 章振邦.新编英语语法教程[M].上海:上海外语教育出版社,2000.[15] 张培基.英汉翻译教程[M].上海:上海外语教育出版社,1983.[16] 张春柏.英汉汉英翻译教程[M].北京:高等教育出版社,2003.[17] 中国人民解放军总装备部军事训练教材编辑工作委员会.科技英语翻译实用教程[M].北京:国防工业出版社,2003.
2.数据转换器英文文献 篇二
12-Bit A/D Converter
CIRCUIT OPERATION The AD574A is a complete 12-bit A/D converter which requires no external components to provide the complete successive approximation analog-to-digital conversion function.A block diagram of the AD574A is shown in Figure 1.Figure 1.Block Diagram of AD574A 12-Bit A-to-D Converter
When the control section is commanded to initiate a conversion(as described later), it enables the clock and resets the successiveapproximation register(SAR)to all zeros.Once a conversion cycle has begun, it cannot be stopped or restarted and data is not available from the output buffers.The SAR, timed by the clock, will sequence through the conversion cycle and return an end-of-convert flag to the control section.The control section will then disable the clock, bring the output status flag low, and enable control functions to allow data read functions by external command.During the conversion cycle, the internal 12-bit current output DAC is sequenced by the SAR from the most significant bit(MSB)to least significant bit(LSB)to provide an output current which accurately balances the input signal current through the 5kΩ(or10kΩ)input resistor.The comparator determines whether the addition of each successively-weighted bit current causes the DAC current sum to be greater or less than the input current;if the sum is less, the bit is left on;if more, the bit is turned off.After testing all the bits, the SAR contains a 12-bit binary code which accurately represents the input signal to within 1/2 LSB.The temperature-compensated buried Zener reference provides the primary voltage reference to the DAC and guarantees excellent stability with both time and temperature.The reference is trimmed to 10.00 volts 0.2%;it can supply up to 1.5 mA to an external load in addition to the requirements of the reference input resistor(0.5 mA)and bipolar offset resistor(1 mA)when the AD574A is powered from 15 V supplies.If the AD574A is used with 12 V supplies, or if external current must be supplied over the full temperature range, an external buffer amplifier is recommended.Any external load on the AD574A reference must remain constant during conversion.The thin-film application resistors are trimmed to match the full-scale output current of the DAC.There are two 5 kinput scaling resistors to allow either a 10 volt or 20 volt span.The 10 kbipolar offset resistor is grounded for unipolar operation and connected to the 10 volt reference for bipolar operation.DRIVING THE AD574 ANALOG INPUT
Figure 2.Op Amp – AD574A Interface
The output impedance of an op amp has an open-loop value which, in a closed loop, is divided by the loop gain available at the frequency of interest.The amplifier should have acceptable loop gain at 500 kHz for use with the AD574A.To check whether the output properties of a signal source are suitable, monitor the AD574’s input with an oscilloscope while a conversion is in progress.Each of the 12 disturbances should subside in sorless.For applications involving the use of a sample-and-hold amplifier, the AD585 is recommended.The AD711 or AD544 op amps are recommended for dc applications.SAMPLE-AND-HOLD AMPLIFIERS Although the conversion time of the AD574A is a maximum of 35 s, to achieve accurate 12-bit conversions of frequencies greater than a few Hz requires the use of a sample-and-hold amplifier(SHA).If the voltage of the analog input signal driving the AD574A changes by more than 1/2 LSB over the time interval needed to make a conversion, then the input requires a SHA.The AD585 is a high linearity SHA capable of directly driving the analog input of the AD574A.The AD585’s fast acquisition time, low aperture and low aperture jitter are ideally suited for high-speed data acquisition systems.Consider the AD574A converter with a 35 s conversion time and an input signal of 10 V p-p: the maximum frequency which may be applied to achieve rated accuracy is 1.5 Hz.However, with the addition of an AD585, as shown in Figure 3, the maximum frequency increases to 26 kHz.The AD585’s low output impedance, fast-loop response, and low droop maintain 12-bits of accuracy under the changing load conditions that occur during a conversion, making it suitable for use in high accuracy conversion systems.Many other SHAs cannot achieve 12-bits of accuracy and can thus compromise a system.The AD585 is recommended for AD574A applications requiring a sample and hold.Figure 3.AD574A with AD585 Sample and Hold
SUPPLY DECOUPLING AND LAYOUT CONSIDERATIONS It is critically important that the AD574A power supplies be filtered, well regulated, and free from high frequency noise.Use of noisy supplies will cause unstable output codes.Switching power supplies are not recommended for circuits attempting to achieve 12-bit accuracy unless great care is used in filtering any switching spikes present in the output.Remember that a few millivolts of noise represents several counts of error in a 12-bit ADC.Circuit layout should attempt to locate the AD574A, associated analog input circuitry, and interconnections as far as possible from logic circuitry.For this reason, the use of wire-wrap circuit construction is not recommended.Careful printed circuit construction is preferred.UNIPOLAR RANGE CONNECTIONS FOR THE AD574A The AD574A contains all the active components required to perform a complete 12-bit A/D conversion.Thus, for most situations, all that is necessary is connection of the power supplies(+5 V, +12 V/+15 V and –12 V/–15 V), the analog input, and the conversion initiation command, as discussed on the next page.Analog input connections and calibration are easily accomplished;the unipolar operating mode is shown in Figure 4.Figure 4.Unipolar Input Connections
All of the thin-film application resistors of the AD574A are trimmed for absolute calibration.Therefore, in many applications, no calibration trimming will be required.The absolute accuracy for each grade is given in the specification tables.For example, if no trims are used, the AD574AK guarantees 1 LSB max zero offset error and 0.25%(10 LSB)max full-scale error.(Typical full-scale error is 2 LSB.)If the offset trim is not required, Pin 12 can be connected directly to Pin 9;the two resistors and trimmer for Pin 12 are then not needed.If the full-scale trim is not needed, a 50 1% metal film resistor should be connected between Pin 8 and Pin 10.The analog input is connected between Pin 13 and Pin 9 for a 0 V to +10 V input range, between 14 and Pin 9 for a 0 V to +20 V input range.The AD574A easily accommodates an input signal beyond the supplies.For the 10 volt span input, the LSB has a nominal value of 2.44 mV;for the 20 volt span, 4.88 mV.If a 10.24 V range is desired(nominal 2.5 mV/bit), the gain trimmer(R2)should be replaced by a 50Ωesistor, and a 200Ωtrimmer inserted in series with the analog input to Pin 13 for a full-scale range of 20.48 V(5 mV/bit), use a 500 trimmer into Pin 14.The gain trim described below is now done with these trimmers.The nominal input impedance into Pin 13 is 5kΩ, and 10kΩinto Pin 14.UNIPOLAR CALIBRATION The AD574A is intended to have a nominal 1/2 LSB offset so that the exact analog input for a given code will be in the middle of that code(halfway between the transitions to the codes above and below it).Thus, the first transition(from 0000 0000 0000 to 0000 0000 0001)will occur for an input level of +1/2 LSB(1.22 mV for 10 V range).If Pin 12 is connected to Pin 9, the unit will behave in this manner, within specifications.If the offset trim(R1)is used, it should be trimmed as above, although a different offset can be set for a particular system requirement.This circuit will give approximately 15 mV of offset trim range.The full-scale trim is done by applying a signal 1/2 LSB below the nominal full scale(9.9963 for a 10 V range).Trim R2 to give the last transition(1111 1111 1110 to 1111 1111 1111).BIPOLAR OPERATION The connections for bipolar ranges are shown in Figure 5.Again, as for the unipolar ranges, if the offset and gain specifications are sufficient, one or both of the trimmers shown can be replaced by a 50 1% fixed resistor.Bipolar calibration is similar to unipolar calibration.Figure 5.Bipolar Input Connections
CONTROL LOGIC The AD574A contains on-chip logic to provide conversion initiation and data read operations from signals commonly available in microprocessor systems.Figure 6 shows the internal logic circuitry of the AD574A.The control signals CE, CS, and R/C control the operation of the converter.The state of R/C when CE and CS are both asserted determines whether a data read(R/C = 1)or a convert(R/C = 0)is in progress.The register control inputs AO and 12/8 control conversion length and data format.The AO line is usually tied to the least significant bit of the address bus.If a conversion is started with AO low, a full 12-bit conversion cycleis initiated.If AO is high during a convert start, a shorter 8-bit conversion cycle results.During data read operations, AO determines whether the three-state buffers containing the 8 MSBs of the conversion result(AO = 0)or the 4 LSBs(AO = 1)are enabled.The 12/8 pin determines whether the output data is to be organized as two 8-bit words(12/8 tied to DIGITAL COMMON)or a single 12-bit word(12/8 tied to VLOGIC).The 12/8 pin is not TTL-compatible and must be hard-wired to either VLOGIC or DIGITAL COMMON.In the 8-bit mode, the byte addressed when AO is high contains the 4 LSBs from the conversion followed by four trailing zeroes.This organization allows the data lines to be overlapped for direct interface to 8-bit buses without the need for external three-state buffers.It is not recommended that AO change state during a data read operation.Asymmetrical enable and disable times of the three-state buffers could cause internal bus contention resulting in potential damage to the AD574A.Figure 6.AD574A Control Logic An output signal, STS, indicates the status of the converter.STS goes high at the beginning of a conversion and returns low when the conversion cycle is complete.TIMING The AD574A is easily interfaced to a wide variety of microprocessors and other digital systems.The following discussion of the timing requirements of the AD574A control signals should provide the system designer with useful insight into the operation of the device.Figure 7 shows a complete timing diagram for the AD574A convert start operation.R/C should be low before both CE and CS are asserted;if R/C is high, a read operation will momentarily occur, possibly resulting in system bus contention.Either CE or CS may be used to initiate a conversion;however, use of CE is recommended since it includes one less propagation delay than CS and is the faster input.In Figure 7, CE is used to initiate the conversion.Figure 7
Once a conversion is started and the STS line goes high, convert start commands will be ignored until the conversion cycle is complete.The output data buffers cannot be enabled during conversion.Figure 8 shows the timing for data read operations.During data read operations, access time is measured from the point where CE and R/C both are high(assuming CS is already low).If CS is used to enable the device, access time is extended by 100 ns.Figure 8.Read Cycle Timing
In the 8-bit bus interface mode(12/8 input wired to DIGITAL COMMON), the address bit, AO, must be stable at least 150 ns prior to CE going high and must remain stable during the entire read cycle.If AO is allowed to change, damage to the AD574A output buffers may result.“STAND-ALONE” OPERATION
The AD574A can be used in a ―stand-alone‖ mode, which is useful in systems with dedicated input ports available and thus not requiring full bus interface capability.In this mode, CE and 12/8 are wired high, CS and AO are wired low, and conversion is controlled by R/C.The three-state buffers are enabled when R/C is high and a conversion starts when R/C goes low.This allows two possible control signals—a high pulse or a low pulse.Operation with a low pulse is shown in Figure 11.In this case, the outputs are forced into the high impedance state in response to the falling edge of R/C and return to valid logic levels after the conversion cycle is completed.The STS line goes high 600 ns after R/C goes low and returns low 300 ns after data is valid.Figure 11.Low Pulse for R/C—Outputs Enabled After Conversion
If conversion is initiated by a high pulse as shown in Figure 12, the data lines are enabled during the time when R/C is high.The falling edge of R/C starts the next conversion, and the data lines return to three-state(and remain three-state)until the next high pulse of R/C.Figure 12.High Pulse for R/C—Outputs Enabled While R/C High, Otherwise High-Z
Usually the low pulse for R/C stand-alone mode will be used.Figure 13 illustrates a typical stand-alone configuration for 8086 type processors.The addition of the 74F/S374 latches improves bus access/release times and helps minimize digital feedthrough to the analog portion of the converter.INTERFACING THE AD574A TO MICROPROCESSORS The control logic of the AD574A makes direct connection to most microprocessor system buses possible.While it is impossible to describe the details of the interface connections for every microprocessor type, several representative examples will be described here.GENERAL A/D CONVERTER INTERFACE CONSIDERATIONS A typical A/D converter interface routine involves several operations.First, a write to the ADC address initiates a conversion.The processor must then wait for the conversion cycle to complete, since most ADCs take longer than one instruction cycle to complete a conversion.Valid data can, of course, only be read after the conversion is complete.The AD574A provides an output signal(STS)which indicates when a conversion is in progress.This signal can be polled by the processor by reading it through an external three-state buffer(or other input port).The STS signal can also be used to generate an interrupt upon completion of conversion, if the system timing requirements are critical(bear in mind that the maximum conversion time of the AD574A is only 35 microseconds)and the processor has other tasks to perform during the ADC conversion cycle.Another possible time-out method is to assume that the ADC will take 35 microseconds to convert, and insert a sufficient number of ―do-nothing‖ instructions to ensure that 35 microseconds of processor time is consumed
Once it is established that the conversion is finished, the data can be read.In the case of an ADC of 8-bit resolution(or less), a single data read operation is sufficient.In the case of converters with more data bits than are available on the bus, a choice of data formats is required, and multiple read operations are needed.The AD574A includes internal logic to permit direct interface to 8-bit or 16-bit data buses, selected by connection of the 12/8 input.In 16-bit bus applications(12/8 high)the data lines(DB11 through DB0)may be connected to either the 12 most significant or 12 least significant bits of the data bus.The remaining four bits should be masked in software.The interface to an 8-bit data bus(12/8 low)is done in a left-justified format.The even address(A0 low)contains the 8 MSBs(DB11 through DB4).The odd address(A0 high)contains the 4 LSBs(DB3 through DB0)in the upper half of the byte, followed by four trailing zeroes, thus eliminating bit masking instructions.SPECIFIC PROCESSOR INTERFACE EXAMPLES Z-80 System Interface The AD574A may be interfaced to the Z-80 processor in an I/O or memory mapped configuration.Figure 15 illustrates an I/O or mapped configuration.The Z-80 uses address lines A0–A7 to decode the I/O port address.An interesting feature of the Z-80 is that during I/O operations a single wait state is automatically inserted, allowing the AD574A to be used with Z-80 processors having clock speeds up to 4 MHz.For applications faster than 4 MHz use the wait state generator in Figure 16.In a memory mapped configuration the AD574A may be interfaced to Z-80 processors with clock speeds of up to 2.5 MHz.附录E 中文翻译
12位-AD574A转换器
电路工作原理
AD574A是一个完善的12位A/D转换器,不需要外部组件提供完全的逐步逼近模拟数字转换功能。图1所示为AD574A的方块结构图。
图1 AD574A的方块结构图
当控制部分收到初始化转换命令(后边会叙述)时,会开启时钟并把连续逼近寄存器(SAR)全部置零。一旦转换周期开始,它就不能终止或重新开始,也不能从输出缓冲中读数。时钟控制SAR寄存器的时序,SAR会安排好转换周期的顺序并向控制部分返回一个“转换结束”(end-of-convert)标志。接着,控制部分停止时钟,把输出状态标志位置低,并允许控制函数,以便外部命令可以执行数据读取功能。
在转换周期期间, 内部12 位当前的产品DAC 由SAR 程序化从最高位(MSB)对最低有效位(LSB)通过5 k(或10k)输入电阻器提供准确地平衡输入信号。比较器确定位电流的连续增大是否造成了DAC当前总电流比输入电流增大或者减小;如果总电流较小,此位被留下;如果总电流较大,位被关闭。在测试完所有位以后,SAR包含了准确表示输入信号在+1/2 LSB之内的12位二进制编码。温度补偿是外部提供给DAC基准电压并保证准确的转换的时间和温度的稳定性。基准在10.000.2%伏之间平衡,当AD574A使用15伏电源时,除了按要求向参考输入电阻提供0.5mA,向双极偏移电阻提供1mA电流外,它可以给外部负载提供提供高至1.5mA的电流。如果AD574A使用12伏电源,或者外部电流必须在全部温度范围内提供,那么我们推荐使用一个外部的缓冲放大器。任何在AD574A参考手册上的外部负载都必须在转换过程中保持稳定。要调整薄膜应用电容以匹配DAC(数模转换器)的实比例输出电流。有两个5千欧的输入测量电阻允许10伏或20伏的区间。10千欧的双极偏移电容接地用于单极操作,或连接到10伏参考电压上用于双极性操作。
AD574模拟输入电压
图2 OP放大器与AD574连接
OP放大器的输出阻抗有一个开环值,在一个封闭回路中,这个值被回路增益(由增加的频率产生)等分。放大器应该至少拥有500kHz的回路增益才能和AD574A一起使用。要检查信号源的输出特性是否合适,就要在转换进行中使用示波镜监控AD574的输入端。每12个干扰应该在1秒以内衰减。
关于取样—保持器的应用,我们推荐AD585型号。我们推荐让AD711型号和AD544型号取样—保持器应在直流电下工作。
虽然AD574A的转换时间最高为35秒,但为了能够实现几个赫兹的频率的精确12位转换还是需要使用采样-保持放大器(SHA)的。如果一个驱动AD574A的模拟输入信号电压在转换所需的计时周期中变化超过LSB的一半,那么输入端就需要一个SHA。
AD585是一种高线性的采样-保持放大器(SHA),它能够直接驱动AD574A的模拟输入端。AD585的快速采集时间、低孔径和低孔径抖动都很好地使用于高速数据采集系统。考虑到AD574A的转换时间为35秒,并且拥有10Vp-p的输入信号,这是能够实现1.5Hz精确转换时所能用的最高频率。如图3所示,加上AD585后,最高频率增加到了26kHz。
AD585的低输出阻抗、快速连环反应和低损耗能够在变化的周期性负荷工况下维持12位准确性,使它适当用于高精确度转换。许多其他SHAs达不到12位转换的准确性,并且可能因而减弱系统。AD585被推荐应用于AD574A的采样与保持。
图3 带采样保持器AD585的AD574A
AD574A 电源的滤波、良好地校准和远离高频噪声是异常重要的.。噪声补偿的使用会造成不稳定的输出信号。除非特别要求滤掉输出端的电火花,交换式电源电路建议达到12比特的精确度。注意: 一点点毫伏的噪声就代表着12比特ADC(电源)的巨大误差。
电路布局应该尝试定位AD574A,与之相连的相似物输入电路,并使其从逻辑电路上尽可能连接起来.因为这个原因,不推荐使用线路电路结构.应该选择好的印刷的电路体系.AD574A处理单极性信号
AD574A包括了所有进行完全12位AD转换所需的活动组件。这样,在大多数情况下,所需的只是电源连接(+5 V, +12 V/+15 V 和 –12 V/–15 V)、模拟输入以及转换初始化命令,下页会讨论到。模拟输入连接和校准都很容易完成。单极操作模式如图4所示。
图4
AD574A所有的薄膜应用程序电阻是通过绝对刻度来衡量的。因此在许多应用程序中,并不需要刻度平衡。规格表给出了每个等级的绝对精度。例如,如果没有应用区标,AD574AK保证1LSB最大零偏移误差和0.25%(10LSB)最大满额误差。(通常满额误差是2 LSB)。如果不允许使用这个弯管平衡的话,pin 12 可以直接同pin 9连接;pin 12 的这两个电阻器和这个微调电容器就不需要了。如果不允许使用完整的平衡,应该在pin 8和pin 10之间连接一个xxxx金属薄膜微调电容器。
此器件在输入电压0到10伏连接时须接脚9和脚13,当输入电压在0到20伏之间时,应从脚14和脚9引入。AD574A提供输入信号补偿,输入电压在10伏以内时理论值是2.44mV,在输入电压在20伏以内时理论值是2.44mV
如果电压达到10.24(也就是2.5mv/bit), 增益可调电阻就必须调整为50.一个200Ω可变电阻串连到模拟输入引脚13其满刻度值为20.48V(5 mV/bit),用500Ω的可变电阻串连到模拟输入引脚14.下述增益的调整用这些可变电阻完成.引脚13的名义输入阻抗为5 kΩ, 而插脚14的名义输入阻抗为10kΩ。
单极性输入
AD574A拥有一个名义上是LSB一半的偏移量,以便对一个给定编码的准确模拟输入可以正好处于这个编码的中央(在其前后各有一半的编码转换)。这样,第一个转换(从0000 0000 0000到0000 0000 0001)会在输入电平为+1/2LSB(对于10V的范围来说是1.22mV)时发生。
如果第12脚连在第9脚上,那么单元将在规格之内按此方式工作。如果使用了偏移调整(R1),虽然可以针对特定的系统要求设置不同的偏移量,但也应该按上述方法调整。这个电路会给出大约15mV的偏移调整范围。
满量程调整适用于一个信号在满量程下产生1/2 LSB线性误差,也就是对于10V范围来说是9.9963。调整R2来实现最后一个转换(1111 1111 1110到1111 1111 1111)
双极性输入
双极的联系范围如图5。还有,就单极的范围,如果输出量与增加量的数据充足的话,一个电容器或者两个都可以拿一个50±1%的固定电阻来代替。单极标准与双极标准是相似的。
图5 逻辑控制
AD574A包含了芯片上逻辑,可以通过微处理器中通常存在的信号中提供开始转换和读取转换结果操作‖ 如图6是AD574A的内部逻辑电路。
控制信号CE、CS, 和R/C 控制交换器的操作。R/C 的状态由CE 和CS 两个信号的加入来确定进行数据读取(R/C = 1)或数据转换(R/C = 0)。记数器控制输入AO ,12/8 控制转换长度和数据格式。AO 线通常被连结到地址总线的最低有效位。如果AO置低(电位)开始, 按12 位A/D进行转换。当12/8=1时,12位数据线一次读出,主要用于16位微机系统;12/8=0时,可与8位机接口。此引脚输入为高电平时,12位数据并行输出;当此引脚为低电平时,与引脚A0配合,把12位数据分两次输出。12/8的引脚接DIGITAL COMMON输出8位数据12/8引脚接VLOGIC输出12位数据。12/8的引脚不与TTL兼容的,必须和vlogic或者digital连接,在8位模式下,当Ao置高的时候,低4位加上尾随4个0有效。在不需要内部3态缓冲器的情况下,该结构允许直接接口的8位数据流重叠。在读取转换数据操作时不建议ao改变。三态缓冲器不对称的允许与阻止时间可能造成内部总线冲突,对AD574A造成潜在危害.图6
STS这个输出信号表明了转换器的状况。STS值在转换开始时升高,在转换过程完成后降低回原样。
AD574A 容易联接于多种微处理器和其他数字化系统。下列AD574A控制信号的计时要求的讨论应该为系统设计者提供有用的对设备的操作了解。
图7
图7显示的是完整的AD574A运作时间矢量图表.坐标轴R/C在CE和CS被捕获之前都应较低;如果R/C显示较高,操作提示会立即发生,并可能引发系统争用.无论CE还是CS都能被用来转换.但是,我们推荐使用CE,因为它比CS有更少的系统延迟,并且能被较快地 输入.在图表7,CE被用来转换.一旦转换开始STS置成高位,直到转换循环完成,转换开始命令将被忽略。直到转换周期是完全的。在转换期间,输出数据缓冲无效。
图8给出了数据读取操作时间状况,在数据读取过程中, 当CE和R/C都处于高电平(假定CS已经处于低电平)的时候,开始测量访问时间.如果这时CS能够使得设备工作, 访问时间可延长100纳秒.图8 在8位的总线接线模式中(和数字公用区连线的12/8 输出),地址位AO,必须在CE升高的150毫秒之前和整个读取循环中保持稳定。如果允许AO变化,将会导致对AD574A输出缓存区的损坏。
AD5474A单机操作
AD5474A可以“独立”模式使用,它是系统里很好用的、可用的和专用的端口,以这种方式不需要用总线连接。按这方式,CE和12/8置成高位,CS和AO置成低位,而转化由RC控制。当RC置成高位时,三态缓冲器启动,当RC置成低位时开始转换。其允许两种控制信号一种高电位脉冲,低高电位脉冲。由如图11所示的低脉冲操作。在这种情况下R/C下降沿的输出响应被强制为高阻状态,在一个转换周期结束后置回有效逻辑。STS线在R/C变为低电平600ns后变为高电平,当数据有效300ns后恢复低电平。
图9
如果转换是由如图12所示的高电平脉冲所初始化的,那么在R/C为高电平时,数据链是被允许的。R/C的下降沿启动下一个转换,并且数据链返回到三态(并一直保持三态),知道下一个R/C高电平脉冲出现。
图10
通常应用R/C单机模式下的低脉冲。图13阐明了典型的8086型处理机的单机构造。额外的74F/S374 插销提高了总线的访问/放行次数并协助简化转炉数-模部分的连接线。
图11
AD574与单片机接口
AD574A的控制逻辑使得绝大多数情况下和微处理器系统总线直接连线变成可能。然而它不可能描述出每一种微处理器类型的接口连接的所有细节,下面将举几个具有代表性的例子。
典型的数模转换器接口程序序列涉及以下几步:首先, 在初始化会话的时候,地址被写进数模转换。处理器必须等待会话周期的结束,因为多数数模转换器需要一个以上的指令周期来完成会话操作。当然,有效数据只有在会话结束后才能被读取。AD574A 提供信号端输出(STS),它能指示会话过程。这个信号可以由处理器通过读取外部三态缓冲(或其它输入端口)获得。如果系统的计时要求非常严格(请记住AD574A的最大转换时间只有35毫秒)并且处理器在ADC转换周期中有其它任务要做的话,这个STS信号同样可以用于产生一个中断信号传递给转换过程。另一种可行的延时方法是,先假设模数转换器会消耗35微秒来进行转换,然后插入足够多的空指令来保证处理器消耗掉35微秒的时间。
一旦建立,即完成转换,可以读取数据.在8位(或数位更少)ADC的情况下,单次读数运行即已足够.在转换器数位多于总线可使用数位的情况下,须选择数据格式,需进行多重读数运行.AD574A含有内部逻辑(器),允许通过选择连接12/8输入而直接到8位或多或16位数据总线界面上。在采用16位数据总线时,(12/8 高)数据总线(DB11 通过 DB0)既可以连接到数据总线的12位有效位或12位无效位。剩余4位应用软件将其掩蔽.到8位数据总线的界面是采用左优格式来实现的。在数位的上半部偶数地址(A0 低)包含 8 MSBs(DB11 通过 DB4).。奇数地址(A0 高)包含 4 LSBs(DB3 through DB0),后面跟有4个零,从而消除数位掩蔽指令.AD574A可以在输入/输出或者储存映像结构中被接线到Z-80 处理机上。图15阐明了一个输入/输出或者映像结构。Z-80使用A0–A7 地址线来解码输入/输出端口地址。
3.劳动力转移英文文献推荐 篇三
1、Todaro, M.P.(1980), “Internal migration in developing countries: a survey”, in: R.A.Easterlin, ed., Population and economic change in developing countries(University of Chicago Press, Chicago, IL)
2、Taylor and Martin(2001), “Human Capital: Migration and rural population change”, in: Gardner and Rausser, ed., Handbook of Agricultural Economics, Vol.1(Elsevier)
4.企业价值评估文献综述英文版 篇四
ABSTRACT
Business value measurement depends on expectations for the future earnings, there are many ways to assess earnings, and the mainly methods are DCF method, Residual Income valuation theory, Economic Value Added valuation method and Real Options Valuation method.This article bases on the development of domestic and foreign business value theory, and gives a brief summary of the latest research, then compares the different valuation theory at home and abroad.Finally, combining with practical features of Chinese enterprise value assessment concluded that assessments of the latest theories in Chinese enterprises.KEY WORDS :Business Value, Measurement Theory, Literature Review1、Introduction
Business value measurement theory rose in the United States in the early 1960th of the 20th century.With the 50 years’ development and application , Western developed countries have been greatly applied in practice.At present, the theory and method of enterprise value evaluation in Western developed countries have been more and more mature,and it has been used to assess in practice.In China, the application of business value measurement theory is later than western countries which is now relatively slowly.Therefore, arranging the present research results and analysis the theory structure have been an important aspects so as to form a tight,coherent theory system.On the guidance of the business valuation practice it can establish new
methods of business valuation in China, and it is essential to promote the development of theoretical study.2、Studies Abroad
Business value measurement have a history of hundreds of years as an industry in Western countries.During those hundreds of years, many scholars in Western countries on business valuation have done a large number of theoretical studies.Shiller(1981)used the discounted cash flow model to describe stock prices fluctuating boundaries, and the research shows that real stock prices change
significantly beyond this range.Because these uncertain information is estimated with hypothesis and data processing technology.Its disadvantage is that it required too many intuition for decision makers, but also achieving many possible distribution hypothesis [1]
In 1995,Ohlson use the conception of clean surplus
in residual income valuation model based on the use of clean-surplus(clean surplus)constructing and perfecting the concept of residual income valuation model
[2].Felthan and Ohlson(1995)further developed this theory, that extraordinary income sources are twofold: first, monopoly rents, second, accounting for sound doctrine.Their most prominent contribution is presented for the evaluation of linear information models(1inear information model)[3].Evaluation of applying the residual income model, relates to the extraordinary income is not included in the current period in the time series estimates of future earnings, more difficult.1995年,Ohlson在剩余收益定价模型的基础上利用干净盈余(clean surplus)的概念构建并完善了剩余收益估值模型[2]。Felthan和Ohlson(1995)进一步发展了这一理论,认为非常收益的来源有两个方面:其一,垄断租金;其二,会计的稳健主义。他们最突出的贡献在于提出了用以价值评估的线性信息模型(1inear information model)[3]。运用剩余收益模型进行价值评估,涉及到对没有包含在当期非常收益中的未来非常收益的时间序列估计,难度较大。
Jackson(1997)认为,计算EVA能够使现金流量折现模型计算,更能反映企业真实经营状况并且容易评价企业历年的经营业绩[4]。
JohnA.Compbell(2002)应用实物期权分析方法讨论了IS(information System)的投资时机决策问题。
2000年,Copeland等几位专家合著《价值评估:公司价值的衡量与管理(第三版)》中,把价值评估方法分为现金流量法与非现金流量法两大类别。由于Copeland推崇现金,因而他将现金作为价值评估方法的分类标准。他主要论述了现金流量法,对于非现金流量法仅点到为止[6]。
2003年,David Fryman和Jakob Tolleryd在合著的《公司价值评估》专著中,将价值评估方法分为四大类:①基于现金流量的估值——股利折现模型、折现现金流量模型与投资的现金流收益;②基于收益的估值——经济增加值(EVA);③基于资产的估值——净资产估值;④期权估值——实物期权法[7] [5]
3、Domestic Research
我国企业价值评估理论及技术的运用比较晚,而且发展较为缓慢。在我国的价值评估研究体系中,主要以DCF及其衍生模型为主。早期提出的现金流与股利贴现模型随着我国市场经济的发展,已很难适应现代快速发展中的企业的价值评估。为解决未来不确定性因素对现代企业的影响,我国学术界引进了以期权理念为基础的价值评估理论。更加完善了我国企业价值评估的理论体系。
李姚矿、童昱(2006)回顾了期权定价理论在企业不确定性资产评估中的研究成果,根据科技型中小企业的特点对期权定价模型进行了修正,并以合肥市高新区内的一家科技型中小企业为案例,说明了具体的评估计算过程[8]。
肖留华(2007)提出的企业价值评估体系是:P=NV+AV+sV,其中NV即净资产价值是目标企业的实际账面价值,在总额上等于所有者权益;△V即资产溢价是指由无形资产带来的企业潜在的价值,△V=NV*d,d是溢价系数,由企业成长性、管理能力、创新能力三个方面来衡量;SV是协同溢价[9]。
白登顺与贺强(2009)对比了EVA估价法与自由现金流量折现法,发现EVA估价法优于自由现金流量折现法。与FCFF估价法相比EVA估价法具有双重优势:一方面EVA与企业价值相关联,便于了解企业每年的经营情况,对价值实效计算
考核;另一方面EVA克服了自由现金流量波动较大的缺点,不受前后年度资本随意投资额的影响[10]。
黄朔,赵银川(2010)指出由剩余收益模型计算出的企业价值并不能完全代表股票的实际价格。其原因主要表现在以下四个方面:首先,股票的实际价格往往与其内在的价值不一致,股票的内在价值由上市公司的财务数据分析而来,具有一定的稳定性;而影响股票实际价格的市场因素有很多,二者很难完全一致。其次,“清洁盈余关系”是EBO模型的—个重要前提假设。再次,股票非流通会影响剩余收益模型的价值评估能力。最后,从剩余收益模型的公式可以看出,企业的净资产的增长率低于净资产收益率是—个必须的条件[11]。
蒋大富,梅雨(2011)从高新技术企业的性质以及对高新技术企业价值再认识的基础上[12]。结合现行企业价值评估方法的优点与缺点。提出高新技术企业价值评估应将收益法和期权定价法结合起来,以全面、真实地反映高新技术企业的特征及其价值。提出,创新的高新技术企业价值评估方法应是实物期权定价法与收益法的有机融合,这种融合有助于实现两种评估方法的互补,即采用收益法对高新技术企业现有的经营业务所产生的预期现金流进行折现。评估现有基础上获利能力的价值;用实物期权定价方法对高新技术企业的机会价值进行测算,两者相加得出高新技术企业的评估价值。
王静,齐彩云,张东(2011)借助金融期权理论中的二叉树定价模型,将优化改进的二叉树模型运用到创业板企业价值评估当中,得出以下三方面的结论:第一,二叉树模型评估方法能够清楚、直观地反映出未来各种不确定性的结果,管理者可以将其作为一种在企业未来发展中价值判断的可参考的方法。第二,同传统实物期权中的二叉树模型相比,避免了上下波动率为负的情况,推导出的参数结果符合参数的真实关系,同时保证了计算精度。第三,通过案例分析得出,改进的二叉树模型比现金流贴现的方法更能全面地考虑企业管理弹性和不确定性对企业价值的影响,得出的价值结果更能贴近真实价值[13]。
4、Summary
Through the analysis of business value measurement at home and abroad, we can find that the current research is mainly the combination of new and old value measurement methods according to the real situation.above on both at home and abroad enterprise value assessment theory of
analysis, can found, currently of research main is through new old value assessment method according to reality for combination, put enterprise value for classification, on different type of enterprise value respectively for value assessment, again put results added, formed comparison reasonable of strategy merger enterprise value assessment results, then put value assessment system using Yu actual case in the, validation its effectiveness.通过上述对国内外企业价值评估理论的分析,可以发现,目前的研究主要是通过新老价值评估方法根据实际情况进行组合,把企业价值进行分类,对不同类型的企业价值分别进行价值评估,再把结果相加,形成比较合理的战略并购企业价值评估结果,然后把价值评估体系运用于实际案例中,验证其有效性。
参考文献
[1] Shiller,R.J.,1981,Do stock prices move too much to be justified
by subsequent change in dividends?[J]American Economic Review 71,PP.421~436.
[2] Ohlosn,J.A.Earnings,1995,Book Values,and Dividends in Equity
Valuation, Comemporary[J],Accounting Research 11,PP.661~687.
[3] Feltham,G.A.,Ohlson,J.A..,1995,Valuation and Clean Surplus
Accountingfor Operating and Financial Activities[J],Comemporary Accounting Research 11,PP.689~732.
[4] Jackson A.The How and Why of EVA at CS First Boston[J].Journal of Applied Corporate Finanee,1997(1):98-103.
[5] Campbell,J.A.,2002,Real options analysis of thetiming of IS
investment decisions[J],Informations & Managemem 39,PP.337~344.
[6] Copeland, Tom, Tim Koller, Jack Murrin.价值评估:公司价值的衡量
与管理(第三版)[M].郝绍伦等译.北京:电子工业出版社,2003: 2-10.[7] David Fryman, Jakob Tolleryd.Corporate Valuation[M].New York:
Prentice Hall,2003.[8] 李姚矿,童昱,科技型中小企业无形资产评估中的期权定价模型叨,合肥工业大学学报,2006,(12), 1493~1495.
[9] 肖留华.战略并购中目标企业的价值评估研究[D].武汉:武汉大学,2007.28-41.
[10] 白登顺,贺强.EVA估价法与FCFF估价法的比较[J].消费导刊,2009(10).[11] 黄朔,赵银川.剩余收益模型在上市公司价值评估中的应用研究[J].前
沿,2010,(23):104--108.
[12] 蒋大富,梅雨.高新技术企业价值评估的方法选择[J].财会月
刊,2011,(8):65-67.[13] 王静,齐彩云,张东.基于实物期权的创业板企业价值评估二叉树模型
【数据转换器英文文献】推荐阅读:
句型转换练习01-26
新旧动能转换工程08-03
语法填空词类转换12-23
词性转换练习题06-12
高考词性转换学案08-27
图文转换漫画公开课09-23
设计转换活动总结报告10-13
五年级上句式转换10-14
如何转换雅思口语思路11-09
新旧动能转换论坛活动11-25