船舶与海洋工程专业毕业论文

2024-06-27

船舶与海洋工程专业毕业论文(精选7篇)

1.船舶与海洋工程专业毕业论文 篇一

船舶与海洋工程专业英语复习笔记

Unit 1

Ship Types Lecture 1

The Criterion of Translation 专业词汇学习

The Family Tree of Merchant Ships 商船分类 Group 1: Ocean Going Ships 远洋船舶 Subgroup 1: Passenger ships 客船

Passenger liners 客班船

Passenger and cargo ship 客货船 Subgroup 2: Cargo carrying ships(tramp or liner)

货船,不定航线、不定日期船或班船

General cargo ship 杂货船

Multipurpose(general purpose)ship 多用途船

Bulk carrier 散装货船, with the special forms:

Combination carrier 兼用船; Collier 运煤船

Ore carrier 矿砂船; OBO 矿、散、油船

Timber carrier 运木船 Tankers, divided into: Crude oil carrier 原油船:VLCC 巨型油船; ULCC 超级油船 Chemical tanker 化学品船 = Product carrier 成品油船 Containerships, including: Conventional containership 常规集装箱船 Hatchcoverless containership 无舱盖集装箱船 Liquified gas carrier, including: LPG 液化石油气船; LNG 液化天然气船 Refrigeration cargo ship(reefer)冷藏船 RoRo ship 滚装船

Barge carrier 载驳船; LASH 载驳船; SEABEE 升降式载驳船

Group 2: Sea and coastal ships, inland waterway ships 近海、沿海和内河船舶

(Cross-channel)ferries(for passengers, cars, or both)渡船 Passenger ships, with the following forms: Conventional liner 常规客班船

Hydrofoil 水翼艇

Hovercraft(air cushion vehicle: ACV)腾气艇、气垫船

Cargo vessels, the subdivision is much the same as above.Cargo-passenger ships 货客船

Pleasure boats 游艇

Barges 驳船

Group 3: Subsidiary ships 辅助船舶

Working ships, including: 工程船

Tug 拖轮; Floating crane 浮吊; Dredger 挖泥船

Salvage ship 打捞船; Drilling vessel 钻井船; Pile-driver 打桩船

Pipe line layer 敷管船; cable layer 布缆船; Dike layer 驻堤船

Icebreaker 破冰船; Firefighting ship 消防船;buoy tender 航标船

Research ship 调查船、研究船; Split hopper barge 开体泥驳

Fishing vessel, including: 渔船

Trawler 拖网渔船; Fish factory ship 鱼品加工船;

Seiner 围网渔船

Others

Supply ship(water, fuel oil)供应船

Training ship 训练船 Navy Ships Navy Armament Gun / heavy gun 枪、炮;

Depth bomb / charge 深水炸弹 Mine 水雷;

Torpedo 鱼雷

Missile 弹道;

Armed aircraft 武装飞机 Group 1: War Ships Subgroup 1: Surface combatant ship 水面舰艇 Patrol boat 巡逻艇;

Gun boat 炮艇

Torpedo boat 鱼雷艇;

Guided missile boat 弹道艇 Submarine hunter 猎潜艇;

Frigate 护卫舰 Destroyer 驱逐舰;

Cruiser 巡洋舰

Helicopter carrier 直升机母舰;

Aircraft carrier 航空母舰 Subgroup 2: Undersea ships 水下舰艇 Submarine, divided into: Conventional powered submarine 常规动力潜艇 Nuclear powered submarine 核潜艇 Group 2: Naval Auxiliary Ships Landing ship(boat)登陆舰/艇;

Minehunter(mine-sweeper)扫雷艇 Minelayer 布雷舰;

Combat stores ship 舰队补给船 Ammunition ship 军火船;

Surveying ship 测量船 Commuter boat(traffic boat)交通艇 课文阅读 Part A The development of ship types over the years has been dictated very largely by the nature of the cargo.The various designs can, to some extent, be divided into general cargo, bulk cargo and passenger vessels.这么多年来船型的发展在很大程度上受制于货物的性质。在某种程度上,各种式样可以划分为杂货船、散货船和客船。

The general cargo carrier is a flexible design of vessel which will go anywhere and carry anything.Special forms of the general cargo carrier include container ships, roll-on/roll-off ships and barge carriers.Bulk cargo may be liquid, solid, or liquefied gas and particular designs of vessel exist for the carriage of each.杂货船是一种灵活的船舶式样,它可以去任何地方载任何货物。杂货船的特殊形式包括集装箱船,滚装船和载驳船。散货可以是液态的、固态的或液化气,针对每一种货物运载都存在着特殊形式的船舶。Passenger-carrying vessels include cruise liners and ferries.Many special types of vessel exist which perform particular functions or are developments of particular aspects of technology.These include multi-hull vessels, hydrofoil and hovercraft.运载旅客的船舶包括(定期)旅游船和渡船。也存在许多特殊的船型,它们发挥特定的功能或是一些特定领域技术发展的产物。这些包括多体船,水翼艇和气垫船。

These various ship types will now be examined in further detail.这些各式各样的船型将予以进一步的讨论。

General cargo ships 常规杂货船

The general cargo ships have several large clear open cargo-carrying spaces or holds.One or more separate decks may be present within the holds and are known as “tween decks”.These provide increased flexibility in loading and unloading and permit cargo segregation as well as improved stability.Access to these holds is by openings in the deck known as hatches.杂货船有几个大而宽敞的载货空间或货舱。舱内可能设一层或更多层分离的甲板,它们被称为“间甲板”。这些间甲板增加了装货与卸货的灵活性,有利于分隔货物以及改善稳性。通向这些货舱的入口是在甲板上设置的开口,它们被成为舱口。

Hatches are made as large as strength considerations permit in order to reduce the amount of horizontal movement of cargo within the ship.Hatch covers are, nowadays, made of steel although older vessels used wood.The hatch covers must be watertight and rest upon coamings around the hatch.The coamings of the upper or weather deck hatches are a reasonable height above the deck to reduce the risk of flooding in heavy seas.只要强度方面允许,舱口升得尽可能大,以减少货物在船内的水平运动的幅度。当今舱口盖由钢铁制成,虽然在一些较旧的船上使用木质舱口盖。舱口盖必须水密并坐落在围着开口的舱口围板上。上甲板或露天甲板舱口的围板离甲板有一个合理的高度,以减少在大浪中货舱进水的风险。

Some form of cargo handling equipment is always fitted which may take the form of derricks and winches or deck cranes.Deck cranes are fitted to many vessels since they reduce cargo handling times and manpower requirements.Some ships have a special heavy-lift derrick fitted which may serve one or more holds.某种形式的起货机总装在这种船上,其形式可以是吊杆和绞车或甲板起重机。甲板起重机装在许多船上因为它们能减少货物搬运时间和人力需求。一些船上装有特殊的重型吊杆,可以为一个或几个货舱服务。

A double bottom is fitted along the ship‟s length and is divided into various tanks.These tanks may be used for fuel or lubricating oil, fresh water or ballast sea water.Fore and aft peak tanks are also fitted and may be used to carry ballast or to suitably trim the ship.Deep tanks are often fitted and can be used to carry liquid cargoes or water ballast.The water ballast tanks may be filled when the ship is only partially loaded in order to provide a sufficient draught for stability and total propeller immersion.沿船长方向设置双层底,并将其划分成各种液舱。这些液舱可用作燃油舱或滑油舱,淡水舱或压载海水舱。船上也设置首尾尖舱,可用来装压载水或用来适当地调准纵倾。船上常常设深舱,可用来装载液体货物或压载水。当船舶仅部分装载时,压载水舱可灌水以便为稳性和螺旋桨总浸深提高足够的吃水。There is usually one hold aft the accommodation and machinery space.This arrangement improves the trim of the vessel when it is partially loaded.The range of size for general cargo ships is currently from 2,000 to 15,000 displacement tones with speeds from 12 to 18 knots.住舱和机舱之后通常设一个货舱。这种布置在船舶部分装载时能改善船舶的纵倾。杂货船的尺度范围当前为2000至15000排水吨,速度为12至18节。

Refrigerated cargo ships 冷藏船

The refrigerated cargo ship differs from the general cargo ship in that it carries perishable goods.A refrigeration system is therefore necessary to provide low temperature holds for these cargoes.The holds and the various „tween decks are insulated to reduce heat transfer.The cargo may be carried frozen or chilled and various holds may be at different temperatures according to the cargo requirements.冷藏船与杂货船的不同之处在于装载易变质货物。因为必须设制冷系统为这些货物提供低温货舱。货舱和各层间甲板都作绝缘处理以减少热传递。货物可以冷冻或冷藏运载,而且根据货物的要求各个货舱可以调至不同的温度。

This type of vessel is usually faster than a general cargo ship, having speeds up to 22 knots.It is essentially a cargo liner having set schedules and sailing between fixed terminal ports.Up to twelve passengers may be carried on some of these vessels.这种船通常比杂货船快,具有高达22节的航速。它基本上是一种定期货船,有既定的计划并在固定的港口之间航行。这些船有的可以携带多到12名的旅客。

Container ships 集装箱船

A container is a re-usable box of 2,435 mm by 2,435 mm section, with lengths of either 6,055, 9,125 or 12,190 mm.Container are now used for most general cargoes and liquid-carrying versions also exist.Refrigerated versions are also in use which may have their own independent refrigeration plant or be supplied with cooled air from the ship‟s refrigeration system.集装箱是一只可反复使用的箱子,宽度和高度为2435mmX2435mm,长度6055,9125或12190mm三种。现在集装箱船用于装载大多数杂货,而且也有转载液体的集装箱。冷藏集装箱也在使用,它可以有自己独立的制冷装置或由船舶的制冷系统提供冷气。

The cargo-carrying section of the ship is divided into several holds each of which has a hatch opening the full width and length of the hold.The containers are racked in special frameworks and stacked one upon the other within the hold space.Cargo handling is therefore only the vertical movement of the container by a special quayside crane.Containers may also be stacked on the flush top hatch covers.Special lashing arrangements are used to secure this deck cargo.船舶的载货区划分成几个货舱,每一货舱的舱口大小与货舱的全宽和全长一样。集装箱放在特殊的框架内,并在货舱空间内一只箱子堆在另一只箱子上。因此货物搬运仅仅是用特殊的岸壁起重机使集装箱作垂向运动。集装箱也可以堆放在顶部平坦的舱口盖上。这种甲板货物用特殊的绑扎装置来固定。

The various cargo holds are separated by a deep web-framed structure to provide the ship with transverse strength.The ship structure outboard of the container holds on either side is a box-like arrangement of wing tanks which provides longitudinal strength to the structure.These wing tanks may be used for water ballast and can be arranged to counter the heeling of the ship when discharging containers.A double bottom is also fitted which adds to the longitudinal strength and provides additional ballast space.各个货舱用强框架结构隔开,为船舶提供横向强度。集装箱舱外侧船舶两舷的结构为箱形布置的边舱,为结构提供纵向强度。这些边舱可以用来装压载水,并能安排来抵抗船舶卸箱时产生的横斜。船舶也设双层底,它增加了纵向强度并提供额外的压载空间。

The accommodation and machinery spaces are usually located aft to provide the maximum length of full-boded ship for container stowage.Cargo-handling equipment is rarely fitted, since these ships travel between specially equipped terminals to ensure rapid loading and discharge.Container ship sizes vary considerably, with container carrying capacities from 1,000 to 2,500 TEU‟s or more.The twenty foot equivalent unit(TEU)represents a 20 ft(6,055 mm)“standard” container.Container ships are much faster than most cargo ships, with speeds up to 30 knots.They operate as liners on set schedules between fixed ports.居住舱室和机舱通常位于船尾,以提供最大长度的丰满船体用语储藏集装箱。起货设备很少安装,因为这些船舶行驶在特殊装备的终点港间以确保迅速装卸。集装箱船的尺度变化很大,其集装箱装载能力从1000箱到2500箱或更多。二十英尺相当单元(TEU)代表二十英尺(6055mm)“标准”集装箱。集装箱船比大多数船快得多,速度高达30节。它们作为定期航船按既定计划在固定港口间运营。

Roll-on / roll-off ships 滚装船

This vessel was originally designed for wheeled cargo, usually in the form of trailers.The cargo could be rapidly loaded and unloaded by stern or bow ramps and sometimes sideports for smaller vehicles.The loss of public capacity due to undercarriages and clearances has resulted in many roll-on roll-off vessels being also adapted to carry containers.这种船原先设计用于有轮货物,通常是拖车的形式。这种货物可通过尾或首跳板迅速装卸,有时候小型车辆用舷门。车架下空间和上部间隙损失了装卸容积,因而许多滚装船也设计成适于装载集装箱。

The cargo-carrying section of the ship is a large open deck with a loading ramp usually at the after end.Internal ramps lead from the loading deck to the other „tween deck spaces.The cargo may be driven aboard under its own power or loaded by straddle carriers or fork lift trucks.One or more hatches may be provided for containers or general cargo and will be served by one or more deck cranes.Arrangements may be provided on deck for stowing containers.Some roll-on roll-off(Ro-Ro)vessels also have hatch covers to enable loading of lower decks with containers.Where cargo(with or without wheels)is loaded and discharged by cranes the term lift-on lift-off(Lo-Lo)is used.船舶的装货区域是大而宽敞的甲板,在其尾端通常设置装载坡道。内部坡道由装载甲板通向其他间甲板区域。货物可用自己的动力开上船,也可用跨运车或叉车装上船。为了装运集装箱或杂货,船上可有一个或几个舱口,并配有一台或几台甲板吊车。甲板上也可以布置来堆放集装箱。某些滚装船也时舱口盖,以便在下层甲板上装载集装箱。当货物(有轮或无轮)用起重机装卸时,就用“吊上-吊下”(LO-LO)这一术语。

The ship‟s structure outboard of the cargo decks is a box-like arrangement of wing tanks to provide longitudinal strength.A double bottom is also fitted along the complete length.The accommodation is located aft and also the low-height machinery space.Only a narrow machinery casing actually penetrates the loading deck.Sizes range considerably with about 16,000 dwt(28,000 displacement tonne)being quite common.High speeds in the region of 18~22 knots are usual.货物加班舷侧部分的船体结构是箱形布置的边舱,以提供纵向强度。这种船也在全厂范围内设置双层底。住舱还有低高度的机舱都位于船尾。实际上仅有狭窄的机舱棚穿国装载甲板。尺度变化很大,16000载重吨(28000排水吨)相当普遍。速度通常高达18至22节。

Barge carrier 载驳船

This type of vessel is a variation of the container ship, instead of containers, standard barges are carried into which the cargo has been previously loaded.The barges, once unloaded, are towed away by tugs and return cargo barges are loaded.Minimal or even no port facilities are required and the system is particularly suited to countries with vast inland waterways.Two particular types will be described, the LASH(Lighter Aboard Ship)and the SEABEE.这种船是集装箱船的派生船型,所装载的不是集装箱,而是标准的驳船,驳船中预先装进了货物。驳船一当卸下就被拖轮带走,回来的驳船已装载。这一运输系统很少或甚至不需要港口设备,它特别适合于有大量内陆水道的国家。这里要介绍两种特殊类型,即载驳船(驳船上船)和升降式载驳船。

The LASH ship carries barges, capable of holding up to 00 tonne of cargo, which are 18.75 m(61.5 ft)long, 9.5m(31ft)beam and 3.96 m(13 ft)deep.About eighty barges are carried stacked in holds much the same as containers with some as deck cargo on top of the hatch covers.The barges are loaded and unloaded using a traveling gantry crane capable of lifting over 500 tonne.Actual loading and discharge takes place between extended “arms” at the after end of the ship.The shi structure around the barges is similar to the container ship.The accommodation is located forward whereas the machinery space is one hold space forward of the stern.LASH ships are large, in the region of 45,000 deadweight tones, with speeds in the region of 18 knots.载驳船载运驳船,驳船能装400吨货物,它长18.75m(61.5ft),宽9.5m(31ft),深3.96m(13ft)。与集装箱很相像,大约8只驳船放在货舱内,一些作为甲板货物放在舱口盖上面。用一台举力超过500吨的移动式门架起重机来装卸驳船。实际装卸作业在船尾的延伸臂间进行。装驳区周围的船体结构与集装箱船相似。住舱位于船首,而机舱在船尾一个货舱之前。载驳船很大,在45000载重吨左右,速度在18节左右。

The SEABEE is somewhat larger than the LASH ship and carries thirty-eight barges.Each barge may be loaded with up to 1,000 tonne of cargo and is 29.72 m long, by 10.67 m beam and 3.81 m depth.The barges are loaded on board by an elevator located at the stern.They are then winched forward along the various decks.升降式载驳船比载驳船稍微大些,能装载38个驳船;每一驳船可载1000吨货物,它长29.72m,宽10.67m,深3.81m。驳船用位于船尾的一台升降机上船;然后用绞车沿着各层甲板拖向船首。

Deck hatch opening does not exist and the decks are sealed at the after end by large watertight doors.Two „tween decks and the weather deck are used to store the barges.The machinery space and various bunker tanks are located beneath these „tween decks.在甲板上不存在舱口,各层甲板在尾端用大型水密门密封。两层间甲板和露天甲板用来存放驳船。机舱和各种燃料舱位于这些间甲板下方。

The machinery space also extends into the box-like structure outboard of the barges on either side of the ship.The accommodation is also located here together with several ballast tanks.A barge winch room is located forward of the barge decks and provides the machinery for horizontal movement of the barges.The SEABEE is physically about the same size as the LASH ship but with a slightly smaller deadweight of 38,000 tonnes.The speed is similarly in the region of 18 knots.机舱延伸到驳船外侧船舶两舷箱形结构内。住舱也设在此处,还加上几个压载舱。早驳船甲板的前端设置了驳船绞车房,并布置了用于驳船水平运动的机械。升降式载驳船的实体尺度与载驳船大致相同,但载重量略小一些,约38000吨。速度也相似在18节左右。

Despite their being specialist vessels both LASH and SEABEE can be used for other cargoes.Each can be used to carry containers and the SEABEE will also take Ro-Ro cargo.Other variations of barge carriers have been proposed such as the barge carrying catamaran vessel(BACAT).Tug-barge systems have also been considered where the “Ship” is actually a number of linked barges with a separable propulsion unit.尽管它们是专用船,载驳船和升降式载驳船能用于其他货物。每一种船可用来装载集装箱,而升降式载驳船也能携带滚装货。载驳船的其他派生船型已经被提议,如装载双体船的驳船(简称BACAT)。还考虑了“拖轮-驳船”系统,系统中“船舶”实际上是一些相连接的驳船,配备一个可分离的推进单元。

Oil tankers 油船

The demand for crude oil is constantly increasing.Oil tankers, in particular crude carriers, have significantly increased in size in order to obtain the economies of scale.Designations such as ULCC(Ultra Large Crude Carrier)and VLCC(Very Large Crude Carrier)have been used for these huge vessels.Crude oil tankers with deadweight tonnages in excess half a million have been built although the current trend(1985)is for somewhat smaller(100,000~150,000 dwt)vessels.After the crude oil is refined the various products obtained are transported in product carriers.The refined products carried in these vessels include gas oil, aviation fuel and kerosene.对原油的需求在不断地增加。油船特别是原油船已显著地增加了尺度以获得规模经济。诸如ULCC(超级油轮)和VLCC(巨型油轮)这样的名称已用于这些巨大的船舶。载重吨位超过五百万的原油船也已制造,尽管当前(1985)的趋势是稍微小一点的船舶(十到十五万载重吨)。原油经过提炼后,得到的各种产品用成品油船来装载。这些船所装的提炼产品包括汽油,航空燃油和煤油。

The cargo carrying section of the oil tanker is divided into individual tanks by longitudinal and transverse bulkheads.The size and location of these cargo tanks is dictated by the International Maritime Organization Convention MARPOL 1973/78.This Convention and its Protocol of 1978 further requires the use of segregated ballast tanks(SBT)and their location such that provide a barrier against accidental oil spillage.An oil tanker when on a ballast voyage must use only its segregated ballast tanks in order to achieve a safe operating condition.油船载货区域用纵横舱壁分割成各个液舱。这些舱的尺寸和位置由国际海事组织公约MARPOL 1973/78所规定。这一公约及其1978年协议进一步要求采用隔离压载水舱(SBT)和其位置必须能提供一道屏障以抵御油泄漏事故。油船在压载航行时必须只使用它的隔离压载水舱以便获得一种安全的运行状况。

The arrangement of a 105,000 dwt crude oil tanker which satisfies these requirements is as follows.The cargo carrying tanks include the seven centre tanks, four pairs of wing tanks and two slop tanks.The segregated ballast tanks include all double bottom tanks beneath the cargo tanks, two pairs of wing tanks and the force and aft peak tanks.The cargo is discharged by cargo pumps fitted in the aft pump room.Each tank has its own suction arrangement which connects to the pumps, and a network of piping discharges the cargo to the deck from where it is pumped ashore.一艘满足这些要求的105,000载重吨原油船,其总布置如下。载货的液舱包括七个中央舱、四对边舱和两个污油舱。隔离压载水舱包括货油舱下的全部双层底液舱、两对边舱以及首尾尖舱。货物由设在后泵房的货油泵卸出。每一油舱都有自己的吸油装置,它与油泵相连,一组管路将货油输送到甲板,再从甲板泵送上岸。

Considerable amounts of piping are visible on the deck running from the after pump room to the discharge manifolds positioned at midships, port and starboard.Hose-handling derricks are fitted port and starboard near the manifolds.The accommodation and machinery spaces are located aft and separated from the tank region by a cofferdam.The range of size for crude oil tankers is enormous, beginning at about 20,000 dwt and extending beyond 500,000 dwt.Speeds range from 12 to 16 knots.在甲板上可以看到大量管路从后泵房走向位于左右舷船中的卸油分配阀箱。软管搬运吊架设在左右舷靠近分配阀箱处。住舱和机舱位于船尾,并用隔离舱与油舱区分开。原油船的尺度范围是巨大的,从二万载重吨直到超过五十万载重吨。速度范围是12至16节。

Product carrier at oil tankers which carry the refined products of crude oil.The cargo tank arrangement is again dictated by MARPOL 73/78.Individual “parcels” of various products may be carried at any one time which resulted in several separate loading and discharging piping systems.The tank surface is usually coated to prevent contamination and enable a high standard of tank cleanliness to be achieved after discharge.The current size range is from about 18,000 up to 75,000 dwt with speeds of about 14~16 knots.成品油船是能装载原油炼出产品的油船。同样,其油舱布置受MARPOL 73/78的约束。各种产品的一个个“包裹”可以随时一起装载,这导致了几套分离的装卸管系。油舱表面通常有可防止玷污的涂层,同时也可在卸货后获得高标准的油舱清洁度。目前的尺度范围约18000至75000载重吨,速度为14至16节。

Bulk carriers 散货船

The economies of scale have also been gained in the bulk carriage of cargoes such as grain, sugar and ore.A bulk carrier is a single-deck vessel with the cargo carrying sections of the ship divided into holds or tanks.The hold or tank arrangements vary according to the range of cargoes to be carried.Combination carriers are bulk carriers which have been designed to carry any one of several bulk cargoes on a particular voyage, e.g.ore or crude oil or dry bulk cargo.诸如谷粒、糖和矿砂等货物的大宗运载也赢得了规模经济效益。散装货船是单甲板船,船舶的载货区域划分成几个货舱或液舱。货舱或液舱的布置根据所载货物的种类而变化。兼用船是散货船,它们被设计成在特定的航程中装载几种散货中的任何一种,例如矿砂、油或干散货。In a general-purpose bulk carrier, only the central section of the hold is used for cargo.The partitioned tanks which surround the hold are used for ballast purposes when on ballast voyages.The upper, or saddle, tanks may be ballasted in order to raise the ship‟s centre of gravity when a low density cargo is carried.This hold shape also results in a self-trimming cargo.During unloading the bulk cargo falls into the space below the hatchway and enables the use of grabs or other mechanical unloaders.Large hatchways are a particular feature of bulk carriers since they reduce cargo handling time during loading and unloading.在多用途船散货船上,只有货舱的中央部位用来装货。货舱周围被分隔的液舱在空载时用于压载目的。上边舱或鞍形舱可以装压载,以便在装低密度货物时提高船舶的重心。这种货舱形状也造成货物自我调平。在卸载时,散货落到舱口下方,便于抓斗或其他机械卸货装置的使用。大舱口是散货船的明显特点,因为这可减少装卸作业中货物搬运时间。

An ore carrier has two longitudinal bulkheads which divide the cargo section into wing tanks port and starboard and a center hold which is used for ore.A deep double bottom is a particular feature of ore carriers.Ore, being a dense cargo, would have a very low centre of gravity if placed in the hold of a normal ship.This would lead to an excess of stability in the fully loaded condition.The deep double bottom serves to raise the centre of gravity of the very dense cargo.The behaviour of the vessel is thus much improved.On ballast voyages the wing tanks and the double bottoms ballast capacity.The cross-section would be similar to that for an ore / oil carrier.矿砂船有两道纵壁,从而将载货区域分隔成左右舷的边舱和一个中央货舱;中央舱用语装载矿砂。矿砂船的明显特点是双层底高。矿砂因密度大,如果装在普通船的货舱里其重心会很低。这在满载的状况下会导致稳性过度。高双层底用来提高这种密度货物的重心。船舶的性能因此会改善许多。在压载航行时边舱和双层底提供压载能力。该船的横截面与矿/油船的相似。

An ore / oil carrier uses two longitudinal bulkheads to divide the cargo section into centre and wing tanks which are used for the carriage of oil cargoes.When a cargo of ore is carried, only the centre tank section is used for cargo.A double bottom is fitted but is used only for water ballast.The bulkheads and hatches must be oiltight.矿/油船用两道纵壁将载货区域分隔成中央货舱和左右边舱,边舱用来装油。当装载矿砂时,仅中央舱部位用来装货。船也设置双层底,但只用来装压载水。舱壁和舱口必须油密。

The ore / bulk / oil(OBO)bulk carrier is currently the most popular combination bulk carrier.It has a cargo carrying cross-section similar to the general bulk carrier.The structure is, however, significantly stronger, since the bulkhead must be oiltight and the double bottom must withstand the high density ore load.Only the central tank or hold carries cargo, the other tank areas being ballast-only spaces, except the double bottom which may carry oil fuel or fresh water.矿/散/油船(OBO)是目前最流行的兼用散货船。其载货区横截面与多用途散货船类似。但其结构要强的多,因为其舱壁必须油密且双层底必须承受高密度矿砂的载荷。仅中央液舱或中央货舱装卸货物,但双层底除外,它可装燃油或淡水。

Large hatches are a feature of all bulk carriers, in order to facilitate rapid simple cargo handling.Many bulk carriers do not carry cargo-handling equipment, since they trade between special terminals which have special equipment.Where cargo handling gear is fitted(geared bulk carriers), this does make the vessel more flexible.Combination carriers handling oil cargoes have their own cargo pumps and piping systems for discharging oil.They will also be required to conform to the requirements of MARPOL 73/78.Deadweight capacities range from small to upwards of 200,000 tonnes.Speeds are in the range of 12~16 knots.大舱口是所有散货船的一个特点,以便促使货物搬运既迅速又简单。许多散货船没有起货设备,因为它们在有特殊装备的特定港口之间运行。安装起货机后(自装卸散装货船),确实能使船舶更加灵活。装油的兼用散货船有其自己的货泵和管系用于卸油。它们也被要求满足MARPOL 73/78规定。载重量能力范围从小到二十万吨。速度在12到16节。

Part B(节选)

Liquefied gas carriers 液化天然气船

The bulk transport of natural gases in liquefied form began in 1959 and has steadily increased since then.Specialist ships are now used to carry the various types of gases in a variety of tank systems, combined with arrangements for pressurizing and refrigerating the gas.大宗运输液态形式的天然气始于1959年,从那时起一直稳步增长。现在用专用船将各种形式的气体装在各种液舱系统里,这种系统结合了给气体加压和制冷的措施。

Natural gas is found and released as a result of oil-drilling operations.It is a mixture of methane, ethane, propane, butane and pentane.The heavier gases, propane and butane, are termed “petroleum gases”.The remainder, which consists largely of methane, is known as “natural gas”.The properties, and therefore the behaviour, of these two basic groups vary considerably, thus requiring different means of containment and storage during transportation.天然气是作为石油钻探作业成果被找到和释放的。它是甲烷,乙烷,丙烷,丁烷和戊烷的混合物。较重的气体丙烷和丁烷被称为“石油气”。其余的气体,主要由甲烷组成,被称为“天然气”。这两个基本组合的性质,进而性能,变化相当大,于是在运输过程中要求用不同的手段来容纳和储藏。

Passenger ships 客船

Passenger ships can be considered in two categories, the luxury liner and the ocean-going ferry.The luxury liner is dedicated to the luxurious transport of its human “cargo”.The ocean-going ferry provides a necessary link in a transport system between countries.It often carries roll-on roll-off in addition to its passengers.客船可以分为两类,即豪华班船和远洋渡船。豪华班船是专用于旅客运输的高档交通工具。远洋渡船给国与国之间的运输系统提供了必要的纽带。它不仅运送旅客,还可以运载滚装货。

Luxury passenger liners are nowadays considered to be cruise liners in that they provide luxurious transport between interesting destinations in pleasure climates.The passenger is provided with a superior standard of accommodation and leisure facilities.This result in large amount of superstructure as a prominent feature of the vessel.The many tiers of decks are fitted with large open lounges, ballrooms, swimming pools and promenade areas.Aesthetically pleasing lines are evident with well-raked clipper-type bows and unusual funnel shapes.Stabilizers are fitted to reduce rolling and bow thrusters are used to improve maneuverability.The cruise liner ranges in size up to passenger-carrying capacities of around 1,200(45,000 gt)although a few older large vessels are in service.Speeds are usually high in the region of 22 knots.由于豪华班船在气候宜人的季节里为旅游胜地之间提供高档的客运服务,所以现在通常作为旅游班轮。它为旅客提供了高级的住宿和休闲设施。这就造成这类船舶的显著特征是拥有大量的上层建筑。许多层甲板上装备了大型露天休息室、舞厅、游泳池和散步区。从审美的角度看,这类船舶明显具有充分前倾的飞剪式船首和不同寻常的烟囱造型。稳定器被用来减少横摇,而首部推力器被用来改善操纵性。虽然一些更老、更大的船仍在服役,这类巡航班船的载客能力可大到约1200人(45 000总吨),航速通常高达22节左右。

Ocean-going ferries are a combination of roll-on roll-off and passenger vessels.The vessel is therefore made up in three layers, the lower machinery space, the car decks and the passenger accommodation.A large stern door and sometimes also a lifting bow providing access for the wheeled cargo to the various decks which are connected by ramps.The passenger accommodation will vary according to the length of the journey.For short-haul or channel crossings public rooms with aircraft-type seats will be provided.For long distance ferries cabins and leisure facilities will be provided which may be up to the standard of cruise liners.Stabilizers and bow thrusters are also usually fitted to ocean-going ferries.Size will vary according to rout requirements and speeds are high at around 20~22 knots.远洋渡船是滚装船和客船的一种结合。因此这种船由三层组成,底层的机舱、车辆甲板和旅客住舱。位于船尾的一扇大门,有时还有提升式船首,为滚装货到达由坡道连接的不同层甲板提供了通道。客舱的标准根据旅途的长短有所区别。对于短途或横渡海峡的渡船,公共房间将配备航空式座椅。对于长途渡船,其住舱和休闲设施的豪华程度可达到巡航班船的标准。远洋渡船通常也安装稳定器和首部推力器。船的尺度将根据航线需要而不同,航速则高达20至22节左右。

Unit 2

Ship Performances Lecture 2

The Treatment of Words 专业词汇学习

Spaces Aboard Ships Zone 1: After End(aft peak tank &.Poop)

Aft ballast tank 尾压载舱

Fresh water tank 淡水舱

Steering gear room(tiller room)舵机舱 Zone 2: Machinery Space(engine room)

E.R.double bottom, with the following subdivision:

Fuel tank

燃油舱;

Lube tank

滑油舱

Cofferdam

隔离舱;

Void space

空舱

Sea chest

海水箱;

Shaft tunnel 轴隧

E.R.grating

机舱踏格;E.R.Flats

机舱平台

Central control room 集控室;

Workshop 车间

Engine casing

机舱棚;

Funnel

烟囱 Zone 3: Cargo Space

货舱

In case of TK / OBO:

Central tank

中央舱

Wing tank, can be used as: 边舱

Ballast tank

压载舱;

Slop tank 污水舱,污油舱

Double bottom

双层底

In case of BC:

Cargo hold

货舱

Upper hopper tank

上边舱

Lower hopper / bilge tank 下边舱,底边舱

In case of CS:

Wing tank, can be divided vertically:

Torsion box 抗扭箱;

Ballast tank 压载舱

Bilge tank

底边舱

Zone 4: Fore End(fore peak tank & forecastle)

Bow thruster room(if any)侧推舱

Chain locker

锚链舱

Fore ballast tank

首压载舱

Forecastle, can be subdivided into: 首楼

Paint room

油漆间

Store(boatswain‟s store)

帆缆舱 Zone 5: Upper Deck

上甲板

Deck house

甲板室

Hatch coaming

舱口围板

Winch control room 绞车控制室

Store

储藏室

Zone 6: Accommodation(living quarters)上层建筑

Poop deck, generally with:

尾楼甲板

Provision room

食品库

Reefer room

冷藏库

Galley

厨房

Crew‟s mess room

船员餐厅

Accommodation deck, generally with: 起居甲板

Air conditioning room 空调机房

Laundry

洗衣机房

Crew‟s room

船员卧室

Officer‟s mess room

高级船员餐厅

Officer‟s room

高级船员卧室

Boat deck, generally with: 救生甲板

Captain‟s room

船长室

Gyro room

电罗经室

Navigation deck(bridge deck), with: 驾驶甲板

Wheelhouse

驾驶室

Radio office

报房

Chart room

海图室

Compass deck

罗经甲板 Terms of Ship Performance 1.Buoyancy 浮力方面 Floating conditions 浮态

Even keel 正浮;

Trim 纵倾 Trim by the bow / stem

首倾 Trim by the stern = stern

尾倾 Hell / list

横倾 Centers

中心

Center of gravity

重心; Center of buoyancy 浮心 Center of floatation 漂心; Metacenter

稳心 Centroid

形心,质心 2.Stability 稳性方面

Transverse / lateral stability 横稳性; Longitudinal stability 纵稳性

Initial / metacentric stability 初稳性

Stability at large angles of inclination 大倾角稳性

Intact stability 完整稳性

Damaged / impaired / flooded stability 破舱稳性 3.Resistance 阻力

Wave-making resistance 兴波阻力;Viscous resistance

粘性阻力 Friction resistance

摩擦阻力;Eddy-making resistance 旋涡阻力 Wave-breaking resistance 破波阻力;Appendage resistance

附体阻力 Wind(age)resistance

风阻力 1.Motion 运动

Ship: Three translation: 三个平移分量

Surging 纵荡;Swaying 横荡;Heaving 垂荡,升沉

Three rotation 三个转动分量

Wave: Head sea(345~15 degrees)

顶浪,迎浪

Bow sea(15~75, 285~345)

首斜浪

Athwart sea(75~105, 255~285)

横浪

Quartering sea(105~165,195~255)尾斜浪

Stern sea(165~195 degrees)

尾浪 2.Others Insubmersibility

不沉性;

Rapidity

快速性 Endurance

续航力;

Maneuverability 操纵性 Course keeping

航向保持性;Sea-keeping

耐波性 Sea-worthiness

适航性 课文阅读 Part A Hydrostatic curves 静水力曲线

It has been shown how the displacement of a ship and the position of the centre of buoyancy can be calculated and also how the position of the metacentres and the center of floatation can be determined.It is customary to calculate all these quantities for about six or seven waterlines parallel to the base and spaced one metre(3 or 4 ft)apart.The results so obtained are plotted in a diagram with draught measured vertically.The curves drawn in this way are called “hydrostatic curves”.已经说明船舶的排水量和浮心位置是如何计算的以及稳心和漂心位置是如何确定的。习惯上所有这些数据都按六至七条水线来计算,这些水线与基线平行且相隔一米(3或4英尺)。如此得到的结果画在一张图上,吃水垂直量取。这样绘制的曲线称为“静水力曲线”。Two curves of displacement are shown.One is called the “moulded displacement” and it is the displacement obtained to the moulded line of the ship between perpendiculars.To obtain the extreme displacement it is necessary to add on to this shell displacement, the displacement of the cruiser stern and bulb forward, if fitted, and in the case of multiple screw ships the displacement of the bossing enclosing the shafting.Sometimes the displacement of the rudder and propeller and shafting are included in the extreme displacement.两条排水量曲线需要说明。一条叫做“型排水量”曲线,它是根据两垂线间的船体型线得出的排水量。要得到最大排水量就必须在型排水量的基数上再加上外板排水量,如果没有巡洋船尾和球鼻首时还应该加上这两者的排水量,以及如果是多螺旋桨船时尚应加上包封轴系的轴壳的排水量。有时舵、螺旋桨和桨轴的排水量也计入最大排水量。

It is also important to correct the position of the centre of buoyancy for these items, and this would apply particularly to the longitudinal position of the centre of buoyancy since the volume of such items as bossing can have a major effect.就这些项目来修正浮心位置也很重要,这特别适用于浮心的纵向位置,因为如轴壳这类项目可能对排水体积有重要影响。

With regard to the displacement of the shell, this is determined by first of all calculating the wetted surface area.This area when multiplied by the mean thickness of the shell plating will give the volume displaced by the shell.The wetted surface area is not easy to calculate since the outside surface of a ship has double curvature.It can be approximated to by taking girths round the various sections and then applying Simpson‟s rule to find the area.The procedure ignores the curvature of the hull surface in the fore and aft direction(the “obliquity effect” as it is sometimes called), but this is often not of great magnitude.关于壳板的排水量。这首先要通过计算湿表面面积来确定。这一面积上外板的平均厚度可得到壳板的排水体积。但湿表面面积不是容易计算的,因为船体外表面具有双向曲度。这可以近似地量取各横剖面的围长然后用辛普生法得出湿面积。这一过程忽略了船体表面首尾方向的曲度(有时也称作“倾斜效应”),但通常影响程度不大。

Shell displacement represents only a small percentage of the total displacement of a ship but is of sufficient magnitude to justify its inclusion in the calculation of the displacement.In a large modern vessel it could amount to many hundreds of tonnes.船壳板排水量仅占有船舶总排水量很小的百分比,但其数值足够证明将其纳入排水量计算是正确的。大型现代船舶这一数值可能高达几百吨。

There is a curve which gives the increase in displacement for unit increase in draught.If A is the area of the waterplane at which the ship is floating, then for unit increase in draught the volume added is Ax1 assuming the ship to be wall sided in the neighbourhood of the waterline.It follows that increase in displacement = ρgA.When imperial unit are used the weight per unit volume of sea water is given as 1/35 ton/ft3, so that increase in displacement = A/35, and A in square feet, which may be called the “ton per foot immersion”.As this is quite a large quantity it was usually divided by 12 to give “ton per inch immersion”.Therefore: TPI = A/420 for sea water When using SI units it is probably more convenient to leave this quantity in the form given above, i.e., ρgA where ρ is the density in kg/m3, g is the acceleration due to gravity and A is the waterplane area in m2.For ρ = 1 025 kg/m3 and g = 9.81 m/s2: Increase in displacement per metre increase in draught =1 025 X 9.81 X 1 X A = 10 055 AN =0.010 055 A MN For 1 cm immersion this would become 0.000,100,55 A MN.有一根曲线给出单位吃水增加与排水量增加的关系。若A是船舶漂浮处的水线面面积,则单位吃水增加时排水体积的增加为AX1,假设船舶水线附近的舷侧是直壁状的。于是排水量增加 = ρgA。如果使用英制,每单位体积海水的重量给定为1/35 ton/ft3,那么排水量增加 = A/35,其中A 的单位是平方英尺,这一增量称作“浸水英吨/英尺”。鉴于这是一个很大的数量,通常将其除以12给出“浸水英吨/英尺”。因此:对海水浸水英吨/英寸= A/ 420。

3使用国际单位时,保留上面给出的形式可能更方便,即ρgA,式中:ρ是密度单位为kg/m,g是重力加速度而A是水线面面积,单位为m2。当g = 9.81 m/s2时:吃水每增加1米时排水量增加 = 1 025 X 9.81 X 1 X A = 10 055 AN 对于每厘米浸水这变成0.000,100,55 A MN。

The increase in displacement per unit increase in draught is useful in approximate calculations when weights are added to the ship.The weight added divided by this quantity gives the parallel sinkage of the ship.The calculation is only reasonably correct for the addition of relatively small weights, since the increase in displacement per unit increase of draught varies with the draught.当船舶增加重量时,单位吃水增加后排水量的增加在近似计算中是有用的。增加的重量除以这一数值可给出船舶的平行下沉量。只有当增加的重量相对较小时这种计算才有合理的正确性,因为单位吃水增加后排水量增加将随吃水而变化。

Hydrostatic curves are most useful in working out the end draughts and the stability of a ship as represented by metacentric height in various conditions of loading.This is done for all the calculations which have been discussed.The input data required consist of ordinates at various waterlines defining the form of a ship.When this is put into the computer the program calculates all the quantities necessary for plotting hydrostatic curves.It can be done in a very short space of time, whereas in the days of hand calculations the production of a set of hydrostatic curves required about two man weeks.静水力曲线在求得船舶最终吃水和稳性的过程中非常有用;稳性是用各种装载状态下的稳心高度来表示的。我们已讨论过的全部计算都是这样做的。所需的输入数据由定义船舶形状的各水线的坐标组成。当输入计算机后程序计算绘制静水力曲线所需的全部数值。这能在很短的时间内完成,而在手算的年代要算出一套静水力曲线要花约一人两周工作量。

Ship resistance 船舶阻力

A ship when at rest in still water experiences hydrostatic pressures which act normally to the immersed surface.It has already been stated when dealing with buoyancy and stability problems that the forces generated by these pressures have a vertical resultant which is exactly equal to the gravitational force acting on the mass of the ship, i.e., is equal to the weight of the ship.If the forces due to the hydrostatic pressure are resolved in the force and aft and the transverse directions it will be found that their resultants in both of these directions are zero.Consider what happens when the ship moves forward through the water with some velocity V.The effect of this forward motion is to generate dynamic pressures on the hull which modify the original normal static pressure and if the forces arising from this modified pressure system are resolved in the fore and aft direction it will be found that there is now a resultant which opposes the motion of the ship through the water.If the forces are resolved in the transverse direction the resultant is zero because of the symmetry of the ship form.置于静水中的船舶经受着静水压力,它垂直作用于船体的浸湿表面。早已经说过,在处理浮力和稳性问题时,这些压力产生的力有一个垂向合力,它与作用在船舶质量的重力刚好相等,也即等于船舶的重量。如果将静水压力产生的力沿着首尾和横向分解,结果会发现合力在这两个方向上都为0。考虑一下船舶以某一速度V在水中前进时会发生什么。这一向前运动的结果是将在船体上产生动态压力,这种动态压力改变了原来的静态正压力;如果将改变后的压力系统所产生的力在船的前后方向进行分解,那么可以发现这时有一个合力,它与船在水中运动的方向相反。如果这些力沿横向分解,因船体形状的对称性合力为0。

Another set of forces has to be considered when the ship has ahead motion.All fluids possess to greater or less extent the property known as viscosity and therefore when a surface such as the immersed surface of a ship moves through water, tangential forces are generated which when summed up produce a resultant opposing the motion of the ship.The two sets of forces both normal and tangential produce resultants with act in a direction opposite to the direction in which the ship is moving.This total force is the resistance of the ship or what is sometimes called the “drag”.It is sometimes convenient to split up the total resistance into a number of components and assign various names to them.However, whatever names they are given the resistance components concerned must arise from one of the two types of force discussed, i.e., either forces normal to the hull surface or forces tangential to that surface.船舶向前运动时还要考虑另一组力。所有流体或多或少有一性质叫粘性,因此当如船体浸湿表面那样表面在水中前进时就产生了切向力,将其累加起来便产生了与船舶运动反向的合力。这两组垂向和切向的力产生的合力其方向与船舶运动的方向相反。这一总力就是船舶的阻力或有时叫做“拖力”。有时为了方便将总阻力分成许多分量并给予不同的名称。然而不管给什么名称,有关的阻力分量必定来自讨论过的两种力,即与船体表面不是垂直就是相切的力。

The ship actually moves at the same time through two fluids of widely different densities.While the lower part of the hull is moving through water the upper part is moving through air.Air, like water, also possesses viscosity so that the above water portion of a ship‟s hull is subjected to the same two types of forces as the underwater portion.Because, however, the density of air is very much smaller than water the resistance arising from this cause is also very much less in still air conditions.However, should the ship be moving head on into a wind, for example, then the air resistance could be very much greater than for the still air condition.This type of resistance is, therefore, only a limited extent dependent on the ship speed and will be very much dependent on the wind speed.实际上船舶同时在两种密度极其不同的流体中移动。当船体下部在水中移动时,其上部在空气中移动。空气如水一样也具有粘性,因此船体水上部分与水下部分一样也经受着同样的两种力。然而,因为空气的密度比水小很多,这一原因引起的阻力在静水空气状态下也非常小。但是举例来说,假如船舶迎风行驶,那么空气阻力会比静止空气状态下大许多。因此,这种阻力程度有限,取决于船舶速度,也在很大程度上取决于风速。

Types of resistance 阻力类型

It was stated above that it is sometimes convenient to split up the total resistance into a number of components, these will now be considered.上面说过,有时为了方便将总阻力分为许多分量,现在来讨论这些分量。

The redistribution of normal pressure around the hull of the ship caused by the ahead motion gives rise to elevations and depressions of the free surface since this must be a surface of constant pressure.The result is that waves are generated on the surface of the water and spread away from the ship.Waves possess energy so that the waves made by the ship represent a loss of energy from the system.Looked at in another way the ship must do work upon the water to maintain the waves.For this reason the resistance opposing the motion of the ship due to this cause is called ”wave-making resistance”.With deeply submerged bodies the changes in the normal pressure around the hull due to ahead motion have only a small effect on the free surface so that the wave resistance tends to be small or negligible in such cases.船舶前进运动造成的船体周围正压力的重新分布引起自由液面的升起和降落,因为睡眠必须是常压表面。其结果是在水面产生了波浪并由船舶向外伸展。波浪具有能量,因此船舶造成的波浪代表了系统中能量的损失。从另一角度看,船舶必须对水做功以维持波浪。根据这一道理,由这个原因引起的抵抗船舶运动的阻力称作“兴波阻力”。对于深潜的物体由前进运动造成壳体周围正压力的变化对自由表面仅有细微影响,因而波浪阻力变得很小或在这种情况下可以忽略。

The resistance arising due to the viscosity of the water is appropriately called “viscosity resistance” or often “frictional resistance”.The thin layer of fluid actually in contact with the immersed surface is carried along with it but because of viscosity a shear force is generated which communicates some velocity to the adjacent layer.This layer is turn communicates velocity to the next layer further out from the hull and so on.It is clear then that there is a mass of fluid which is being dragged along with the ship due to viscosity and as this mass requires a force to set it in motion there is a drag on the ship which is the frictional resistance.The velocity of the forward moving water declines in going outwards from the hull and although theoretically there would still be velocity at infinite distance the velocity gradient is greatest near the hull and at a short distance outwards the forward velocity is practically negligible.Forward velocity is therefore confined to a relatively narrow layer adjacent to the hull.This layer is called the “boundary layer”.The width of the layer is comparatively small at the bow of the ship but thickens in going aft.由于水的粘性引起阻力被确当地称为“粘性阻力”或通常叫做“摩擦阻力”。和浸湿表面实际接触的一薄层流体被表面夹带,但因为粘性而产生了剪力,剪力将一部分速度传给临近的薄层。这一薄层又将速度传给下一离船体更远的薄层,等等。那么很清楚有一定质量的流体因粘性被船体拖者走;因为这一质量要求外力使其运动,船舶就有阻力,叫做摩擦阻力。由船体向外,水向前运动的速度下降;尽管从理论上讲在无限远处水还有速度,速度梯度在靠近船体处最大而在一个短距离之外前进速度实际上可以忽略。因此前进速度仅限于船体附近相对很窄的一层。这一层称作“边界层”。这一层的宽度在船首相比较小,但往后会加厚。

The actual thickness of the boundary layer is indeterminate but the point where the forward velocity has fallen to about 1% of what it would be if the water were frictionless is considered to be the outer extremity of the boundary layer.Thus, where the velocity of the water relative to the body is 0.99 of what it would be at the same point if the water were frictionless would be the outer edge of the boundary layer.边界层的实际厚度是不能确定的;但是,如果水没有摩擦力时边界层水将随船前进,那么水的前进速度下降了1%,这一处就被认为是边界层的外沿。于是水的某处相对于物体的速度为99%的同一点速度(假如水没有摩擦)时,该处就是边界层的外缘。

Theoretical investigations on flow around immersed bodies show that the flow follows the type of streamline pattern.However, where there are sharp changes of curvature on the surface of the body, and partly due to the viscosity of the fluid, the flow separates from the surface and eddies are formed.This separation means that the normal pressure of the fluid is not recovered as it would be according to theory and in consequence a resistance is generated which is often referred to as “eddy-making resistance”.This type of resistance, like wave-making resistance, arises from a redistribution of the normal pressure around the hull in contrast to the frictional resistance which arises because of tangential viscous forces.对沉浸物体周围水流的理论研究表明水流呈现流线形式。但是,在物体表面有曲度突变之处,部分是流体粘性缘故,水流从表面散开而形成旋涡。这样的散开意味着流体的正压力没有像理论那样会恢复,结果产生了阻力,它常被称为“旋涡阻力”。这一形式的阻力,像兴波阻力,是由船体周围的正压力重新分布而引起的;与摩擦阻力相左,它是因切向粘性力引起的。

The fourth type of resistance is that due to the motion of the above-water form through the air, as has already been mentioned, and could consist of a combination of frictional and eddy resistance.第四种阻力是船体水上部分在空气中运动引起的那种阻力,如早已提到的,可由摩擦阻力和旋涡阻力联合构成。

Part B(节选)

The Propulsion device 推进设备

The force needed to propel the ship must be obtained from a reaction against the air, water or land, e.g., by causing a stream of air or water to move in the opposite direction.The sailing ship uses air reaction.Devices acting on water are the paddle wheel, oar and screw propeller.Reaction on land is used by the punt pole or the horse towing a barge.推进船舶所需的力必须由空气、水或陆地的反作用力而获得,例如,靠产生气流或水流朝相反方向运动。帆船利用空气反作用力。作用于水的设备如明轮、橹和螺旋桨。陆地反作用力的利用靠撑船杆(蒿)或马匹拖驳船。

For general applications, the land reaction is not available and the naval architect must make use of water or air.The force acting on the ship arises from the rate of change of momentum induced in the fluid.对于一般应用,陆地反作用力不可利用,造船师必须利用水和空气。作用在船上的力来自流体中产生的动量变化率。

Consider a stream of fluid, density ρ, caused to move with velocity v in a “tube”, of cross-sectional area A.Then the mass of fluid passing any section per second = ρAv and the momentum of this fluid = mv = ρAv2.Since fluid is initially at rest, the rate of change of momentum =ρAv2.考虑一股流体,密度ρ,在截面积为A的“管子”里被驱动,速度为V。那么,在管子任何一段通过的流体质量 =ρAV且这一流体的动量= mv = ρAV。然流体初始为静

2止,那么动量变化率=ρAV2。

In a specific application, the force required is governed by the speed desired and the resistance of the ship.Since the force produced is directly proportional to the mass density of the fluid, it is reasonable to use the more massive of the two fluids available, i.e., water.If air were used, then either the cross-sectional are of the jet must be large or the velocity must be high.在特定的应用中,所需的力由希望达到的速度和船舶的阻力来决定。因为产生的力直接与流体的质量密度成比例,所以利用现成的两种流体中的更重者是合理的,就是利用水。假如使用空气,那么不是喷流的截面积必须很大,就是速度必须很高,两者取其一。

This explains why most ships employ a system by which water is caused to move aft relative to the ship.A variety of means is available for producing this stream of water aft, but by far the most commonly used is the screw propeller.这说明了为什么大多数船舶采用一种系统驱使水流朝船的后方运动。有各种各样的方法可用来产生这种向后的水流,但到目前为止最广泛使用的还是螺旋桨。

The screw propeller Basically the screw propeller may be regarded as part of a helicoidal surface which, in being rotated, “screws” its way through the water driving water aft and ship forward.Some propellers have adjustable blades – they are called controllable pitch propeller – but by far the greater majority of propellers have fixed blades.The ones we are concerned with here are fixed pitch propellers.基本上螺旋桨可以认为是螺旋面的一部分,当它旋转时(螺旋桨)一路往水里“拧”,将水往后推,而使船向前进。一些螺旋桨有可调节的叶片,它们称作可调螺距螺旋桨,但到目前为止大多数螺旋桨有固定的螺距。这里我们关心的是固定螺距螺旋桨。

Propellers can be designed to turn in either directions in producing an ahead thrust.If they turn clockwise when viewed from aft, they are said to be right-handed;if anticlockwise, they are said to be left-handed.In a twin screw ship, the starboard propeller is normally right-handed and the port propeller left-handed.They are said to be outward turning and this reduces cavitation.螺旋桨可以设计成在产生向前推力时朝两个方向旋转。从后面往前看,如果它们顺时针转,就称为右旋,如果逆时针转,就称为左旋。在双桨船上,右舷桨通常是右旋的而左旋桨是左旋的。这一对桨叫做外旋,这样可减少空蚀。

Considering each blade of the propeller, the face is the surface seen when viewed from aft, i.e., it is the driving surface when producing an ahead thrust.The other surface of the blade is called the back.The leading edge of the blade is that edge which thrusts through the water when producing ahead thrust and the other edge is termed the trailing edge.现在考虑螺旋桨的每片桨叶,叶面是从后面往前看时所见的表面,也即产生向前推力时的驱动面。叶片的另一面称作叶背。叶片的导边是在产生向前推力时挤进水里的那边,而另外一边叫做随边。

Other things being equal, the thrust developed by a propeller varies directly with the surface area, ignoring the boss itself.This area can be described in a number of ways.The developed blade area of the propeller is the sum of the face area of all the blades.The projected area is the projection of the blades on to a plane normal to the propeller axis, i.e., the shaft axis.其他方面相同。螺旋桨发出的推力直接随表面积而变,忽略轮毂自身。面积可以用许多方法来描述。螺旋桨的桨叶展开面积是全部桨叶叶面积的总和。投影面积是桨叶在垂直于螺旋桨轴线即轴中心线的平面上的投影。

Seakeeping qualities 耐波性

The general term seaworthiness must embrace all those aspects of a ship design which affect its ability to remain at sea in all conditions and to carry out its specified duty.It should, therefore, include consideration of strength, stability and endurance, besides those factors more directly influenced by waves.Here the term seakeeping is used to cover these more limited features, i.e.motions, speed and power in waves, wetness and slamming.适航性作为一般的术语必须包括船舶设计的下列方面,即对船舶在各种海况下保持漂浮能力的影响,对执行指定任务能力的影响。因此除了那些更直接受波浪影响的因素,适航性还应该包括的考虑因素有强度,稳性和续航力等。这里的术语耐波性用来涵盖这些更为局限的特性,即运动,波浪中的速度和功率浸湿性以及拍击。

The relative importance of these various aspects of performance in waves varies from design to design depending upon what the operators require of the ship, but the following general comments are applicable to most ships.这些不同方面的波浪性能的相对重要性因设计而异,取决于船者对船舶的要求如何,但是下列一般性评论对大多数船都适用。

Motions 运动

Excessive amplitudes of motion are undersirable.They can make shipboard tasks hazardous or even impossible, and reduce crew efficiency and passenger comfort.In warships, most weapon systems require their line of sight to remain fixed in space and to this end each system is provided with its own stabilizing system.Large motion amplitudes increase the power demands of such systems and may restrict the safe arcs of fire.过大幅度的运动是不希望的。这会给船上任务带来危险,甚至不可能完成任务,并且会减低船员效率和旅客的舒适性。在军舰上,大多数武备系统要求其视线在空间保持固定,并为此目的每一系统都配备了自己的稳定系统。大的运动幅度增加这类系统的功率需求并可能限制其可靠火力圈。

The phase relationships between various motions are also important.Generally, the phasing between motions is such as to lead to a point of minimum vertical movement about two-thirds of the length of the ship from the bow.In a passenger liner, this area would be used for the more important accommodation spaces.If it is desirable to reduce the vertical movement at a given point, then this can be achieved if the phasing can be changed, e.g.in a frigate motion at the flight deck can be the limiting factor in helicopter operations.Such actions must inevitably lead to increased movement at some other point.In the frigate, increased movement of the bow would result and wetness or slamming might then limit operations.各种运动间的相位关系也很重要。一般来说,运动的相位要导致一点的最小垂向运动,该点约在自船首起船长的三分之二处。在定期客船上,这一区域会被用于更重要的居住舱室。如果希望在给定一点减小垂向运动,那是可以办到的,只要相位能改变,例如在护卫舰上飞行甲板的运动可能是直升飞机操作的限制因素。这些作用不可避免地会导致其他一些点上的运动增加。在护卫舰上会导致船首运动增加,那么浸湿性和拍击可能限制军事行动。

Speed and power in waves 在波浪上的速度和功率

When moving through waves the resistance experienced by a ship is increased and, in general, high winds mean increased air resistance.These factors cause the ship speed to be reduced for a given power output, the reduction being aggravated by the less favourable conditions in which the propeller is working.Other unpleasant features of operating in waves such as motions, slamming and wetness are generally eased by a reduction in speed so that an additional speed reduction may be made voluntarily.在水中运动时,船舶经受的阻力会增加,而且一般说来疾风意味着增加空气阻力。这些因素使得船舶在给定功率输出的情况下航速下降,并且由于螺旋桨在较为不利的条件下工作,航速下降将加剧。其他在波浪中操作令人不适的特性加运动、拍击和浸湿性一般可由减速来减轻,因此,可能会自愿地额外减速。

Slamming 拍击

Under some conditions, the pressures exerted by the water on a ship‟s hull become very large and slamming occurs.Slamming is characterized by a sudden change in vertical acceleration of the ship followed by a vibration of the ship girder in its natural frequencies.The conditions leading to slamming are high relative velocity between ship and water, shallow draught and small rise of floor.The area between 10 and 25 percent of the length from the bow is the area most likely to suffer high pressure and to sustain damage.在某些条件下水对船体施加的压力变得非常大,而且会发生拍击。拍击的特征是船舶垂向加速度突然改变随后船体梁以其固有频率发生振动。导致拍击的条件是船舶与水之间很高的相对速度,此吃水和较小的舭部升高。自船首起10%~25%之间的船长区域是最容易承受高压和遭受破坏的区域。

Ship routing 船舶航线

Since the ship behaviour depends upon the wave conditions it meets, it is reasonable to question whether overall performance can be improved by avoiding the more severe waves.This possibility has been successfully pursued by some authorities.Data from weather ships are used to predict the speed loss in various ocean areas and to compute the optimum route.In this way, significant saving has been made in voyage times, e.g.of the order of 10~15 hours for the Atlantic crossing.既然船舶的性能表现取决于它所遇到的波浪状况,那么就有理由问:是否可以通过避免严厉的波浪来改善船的总体性能呢?这种可能性被一些权威机构成功地追究过。气象船提供的资料用来预测在各种海域的速度损失和计算最佳的航行路线。用这种方法,航行时间已经得到显著的节省,比如,横跨大西洋节省的时间量级在10至15个小时。

Importance of good seakeeping 良好耐波性的重要性

No single parameter can be used to define the seakeeping performance of a design.In a competitive world, a comfortable ship will attract more passengers than a ship with bad reputation.A ship with less power augment in waves will be able to maintain tighter schedules or will have a lower fuel bill.In extreme cases, the seakeeping qualities of a ship may determine its ability to make a given voyage at all.没有哪一个参数可用来定义船舶设计的耐波性。在这个充满竞争的世界里,一艘舒适的船会比一艘声誉不好的船吸引更多的旅客。一艘在波浪中航行时功率增额较少的船舶能够严格遵守较紧凑的时间表,或者支付较低的燃料帐单。在极端的情况下,一艘船舶的耐波性好坏可能会完全决定它执行一次给定航程的能力。

Good seakeeping is clearly desirable, but the difficulty lies in determining how far other design features must, or should, be compromised to improve seakeeping.This will depend upon each particular design, but it is essential that the designer has some means of judging the expected performance and the effect on the ship‟s overall effectiveness.Theory, model experiment and ship trial all have a part to play.Because of the random nature of the sea surface in which the ship operates, considerable use is made of the principles of statistical analysis.良好的耐波性显然是人们所希望的。但是困难在于确定其他设计特性必须或应该在多大程度上做出让步以改善耐波性。这应取决于每一个特定的设计,但有一点是必须的,即设计者应有一套方法来判定预期的性能及其对总体有效性的影响。理论研究、船模试验和船舶试航都是可行的方法。由于船舶航行的海面状况是随机性的,因此相当多的方法是采用数理统计分析原理。

Having improved the physical response characteristics of a ship in waves the overall effectiveness of a design may be further enhanced by judicious sitting of critical activities and by fitting control devices such as anti-roll stabilizers.已经改善了船舶在波浪中的实际响应特性,一艘船舶设计的总体效果可以通过慎重地确定重要作业的位置和安装诸如抗摇稳定器等控制设备来进一步提高。

As with so many other aspects of ship design a rigorous treatment of seakeeping is very complex and a number of simplifying assumptions are usually made.For instance, the ship is usually regarded responding to the waves as a rigid body when assessing motions and wetness although its true nature as an elastic body must be taken into account in a study of structure.In the same way it is instructive, although not correct, to study initially the response of a ship to regular long-crested waves ignoring the interactions between motions, e.g.when the ship is heaving the disturbing forces will generate a pitching motion.由于船舶设计要考虑众多其他方面,因而对耐波性的严格处理是非常复杂的,通常要作大量简化问题的假定。比如说,尽管在结构研究中船舶必须以其真实特性——弹性体来考虑,但当评价它在波浪中的运动和淹湿性时,船舶通常仍被认为是刚体来响应波浪的。同样地,最初研究对规则长峰波的响应时,忽略了运动间的相互作用,例如船舶升沉时,干扰力会产生纵摇运动;这种忽略虽然不正确,但却有指导意义。

Unit 3

Structural Strength Lecture 3

Translation of Emphatic Sentences 专业词汇学习

Ship Structural Members 1.On Deck Deck plating(DK pltg)甲板板;

Deck stringer

甲板边板 Cross strip

横向甲板条; Deck Girder

甲板纵桁 Beam

横梁;

Deck longitudinals 甲板纵骨 Hatch carling(carline)/ hatch side girder 舱口边桁 Hatch end beam 舱口端梁 Hatch coaming

舱口围板 2.On Sides Sheerstrake

舷顶列板 Sub – sheerstrake 次顶列板 Side shell

舷侧外板 Frame

肋骨 Deep frame

强肋骨 Side stringer

舷侧纵桁 3.In Bottom Space Inner bottom(IB)内底;

Outer bottom(OB)Plate keel

平板龙骨;

Duct keel

Bilge keel

舭龙骨;

Keel strake

Bilge strake

舭列板;

Keelson

Side girder

底部边纵桁;Bracket floor(Bkt Fl)Solide floor

实肋板;

Bottom longitudinals Docking bracket 坐坞肋板 4.On Bulkhead Longitudinal bulkhead(Long.Bhd)

纵舱壁 Transverse bulkhead

(Trans.Bhd)

横舱壁 Corrugated bulkhead

槽形舱壁 Deep tank bulkhead

深舱舱壁 Bulkhead plating

舱壁板 Vertical girder

垂桁 Horizontal girder

水平桁 Stiffener

扶强材 5.On Subassembly Face plate / rider 面板 / 顶板 Web plate

腹板 Bracket

肘板 Stiffener

扶强材 6.Materials Sections

型钢 Angle bar(Ang)角钢 Flat bar(FB)

扁钢 Bulb flat(BF)

球扁钢

Inequal angle(IA)不等边不等厚角钢 Plates

钢板 Sheet

薄板 Heavy plate

厚板 Steel Grades

钢级 Mild steel(MS)低碳钢

Higher tensile steel(HTS: H32 / H36)高强度钢 Ship Strength 船舶强度 1.Strength 强度

外底

箱形龙骨 K行板 肉龙骨 框架肋板 底部纵骨

Material 材料

Yield Strength

屈服强度 Tensile Strength

抗拉强度 Ultimate Strength 极限强度

Cyclic Strength

交变负荷强度 Permissible stress 许用应力 Ship Hull 船体

Bending strength 弯曲强度 Shearing strength 剪切强度 Torsional strength 抗扭强度 Buckling strength 翘曲强度 Fatigue strength

疲劳强度 2.Hull Girder 船体梁

Simple beam(simply supported beam)简支梁

Thin – walled box beam

薄壳箱形梁 Torsion box girder

抗扭箱形桁 Trochoidal wave

坦谷波 Longitudinal bending

纵总弯曲 Hogging

中拱 Sagging

中垂

Moment of area

静矩,面积矩 Neutral axis

中和轴

Section modelus at bottom

船底剖面模数 Hull moment of inertia

船体惯性矩 3.Forces 力

Deadweight 载重量 Buoyancy

浮力 Shearing force 剪力

Still – water bending moment(SWBM)

静水弯矩

Vertical wave bending moment(VWBM)垂向波浪弯矩 Cargo torque

货物扭矩

Wave induced torque 波浪扭矩 Structural Documents Rule scantlings calculations 船体构件规范计算书 Longitudinal strength calculations 总纵强度计算书

Hull steel list 船体钢料清单; Welding specification 焊接规格说明书 Booklet of details

节点图册 Basic structure arrangement 基本结构图

Profile 中纵剖面;

Upper deck 上甲板平面

Second deck(if any)二甲板平面;

Platform(if any)平台平面 Bottom 船底;

Superstructure plane 上层建筑平面 Shell expansion

外板展开图 Frame(body)plan

肋骨形线图 Bulkhead plan

舱壁结构图 Midship section plan

舯剖面结构图 Or Typical sections plan

典型横剖面图 Stern frame plan

尾框架结构图 Stern plan

首柱结构图 Aft end structure

尾部结构图 Fore end structure

首部结构图 Machinery space structure 机舱结构图 Cargo hold structure

货舱结构图 Deckhouse structure

甲板室结构图 Funnel structure

烟囱结构图 Bulwark structure

舷墙结构图 Bilge keel plan

舭龙骨结构图 Anchor recess structure

锚穴结构图 课文阅读 Part A It was stated that one of the requirements in the design of a ship was that the structure should be sufficiently strong to withstand without failure the forces imposed upon it when the ship is at sea.In this chapter the problem of structural strength will be studied in more details.曾经说过,船舶设计的要求之一是结构必须足够强以便承受船在海上时所遭受的各种力而不失效。在这一章中结构强度问题将予以更为详细的研究。

The problem consists first of all in assessing the forces acting on the ship and secondly in determining the response of the structure to those forces, i.e.in deformation of the structure.The structural strength problem is really a dynamic one.It has been seen that the ship is rarely in calm water and in consequence the motion of the sea generates motions in the ship itself.The motions generated because of the six degrees of freedom of the ship, i.e., heaving, swaying and surging, which are linear motions, and rolling, pitching and yawing, which are rotations, all involve accelerations which generate forces on the structure.It is also important to recognize that even in still water the ship is subjected to forces which distort the structure, the forces being due to hydrostatic pressure and the weight of the ship and all that it carries.A complete study of structural strength should take into account all these forces and in the present day development of subject that is in fact what is done.It is fitting, however, to examine the problem from the static point of view first of all.这一问题主要是,首先评估作用在船上的力,其次确定结构对这些力的响应,即结构的变形。结构强度问题实际上是一个动力学问题。已经看到,船舶很少处在平静的水中,结果海浪运动使船舶本身也产生运动。因船舶六个自由度而产生的运动,即垂荡、横荡和纵荡三个线性运动以及横摇、纵摇和首摇三个旋转运动,都涉及加速度,而加速度在结构上产生了力。同样重要的是应认识到即使在静水中船舶也受到力,它使结构变形,这些力是静水压力和船舶及所载物品的重力。完整的结构强度研究应该考虑到所有这些力;学科发展至今,实际上也是这样做的。然而,首先从静态的观点来讨论这一问题是合适的。

Static forces on ship in still water 静水中作用在船上的力

It has been seen that the hydrostatic forces on a floating body or ship in still water provide a vertical force B, say, which is exactly to the gravitational force acting on the mass M of the ship, i.e.Mg.Hence B = Mg.已经看到,在静水中作用到浮体或船舶的静水力提供了垂向力,比方说B,它和作用在船舶质量M上的重力即Mg恰好相等,因此B = Mg。

If the distribution of these forces along the length of the ship is examined it will be found that the gravitational force per unit length is not equal to the buoyancy per unit length at every point.If the mass per unit length at every point is m and the immersed cross-sectional area at the point is a then the net force per unit length is

ρga – mg 如果研究这些力沿船长的分布,则将发现在每一点上单位长度的重力和单位长度的浮力并不相等。如果每一点单位长度的质量为m而每一点浸湿横截面面积为a,则单位长度的净力是ρga – mg。

The ship under these circumstances carries a load of this magnitude which varies along the length and is therefore loaded like a beam.It follows that if this load is integrated along the length there will be a force tending to shear the structure so that

Shearing force = (gamg)dx

在这种情况下船舶携带这一大小随船长而变的负荷,因而就像一根加载的梁。于是,如果负荷沿长度积分,将有一个力倾向于剪切结构,因此

剪力 =

(gamg)dx

(gamg)dxdx On integration a second time the bending moment causing the ship to bend in a longitudinal vertical plane can be determined.Hence

Bending moment = 作第二次积分,可以确定造成船舶在纵向垂直平面内弯曲的弯矩,因此

弯矩 =

(gamg)dxdx

It will be seen that what is called longitudinal bending of the structure can be distinguished and this generates share and bending stresses in the material.将能看到,被称作结构纵向弯曲的情况可以分辨,这在船体材料中产生了剪切应力和弯曲应力。

Longitudinal bending is then a most important aspect of the strength of the structure of a ship and an accurate assessment of the longitudinal shearing force and bending moment is necessary in order to ensure safety of the structure.纵向弯曲是船舶结构强度最重要的一个方面,纵向剪力和弯矩的精确评定是必须的,以便确保结构的安全性。

The accurate determination of the still water shearing force and bending moment is a relatively easy task and while it does not give a complete picture of the longitudinal bending of the structure at sea it is most useful to calculate these quantities.High values of shearing force and bending moment in still water will usually indicate high values at sea, so that from still water calculations it is possible to obtain some idea of loading distribution which are likely to be undesirable.精确确定静水剪力和弯矩是相对容易的任务。虽然这种方法不能完善描述结构在海上的纵向弯曲,但计算这些数值还是非常有用的。在静水中剪力和弯矩的数值大,通常将预示在海上的数值也大,因此在静水计算中有可能获得载荷分布的一些概念,而这种分布可能是并不希望的。

The calculations of shearing and bending stresses in the material of the structure will be dealt with later.The other result arising from these forces and moments is that there is overall deflection of the structure, i.e.the ends of the ship move vertically relative to centre.When the ends move upwards relative to the centre the ship is said to “sag” and the deck is in compression while the bottom is in tension.If the reverse is the case then the ship “hogs” with the deck in tension and the bottom in compression.计算结构材料中的剪切应力和弯曲应力将在以后讨论。这些力和弯矩带来的其他结果是结构的总体桡曲,即船舶两端相对于中央的垂向运动。当两端相对于中央向上运动时,船舶被叫做中垂,其甲板处于压缩状态而底部处于拉伸状态。在倒过来的情况下,船舶被叫做中拱,其甲板处于拉伸状态而底部处于压缩状态。

The longitudinal bending of the ship due to static forces of weight and buoyancy has been dealt with above.These forces have other effects on the structure.This represents a transverse section through the ship and it will be seen that the hydrostatic pressure are tending to push the sides of the ship inwards and the bottom upwards.The weight of the structure and the cargo, etc., which is carried, are tending to pull the structure downwards.The result is that there must be material distributed in the transverse direction to resist this type of distortion.因重力和浮力两种静力引起的船舶纵向弯曲已在前面作了讨论。这些力对结构还有其他影响。这表现在船舶的横剖面;可以看到,静水压力倾向于将船侧向里推,将船底向上推。结构和所载货物等重量倾向于将结构向下压。结果是在横向方面必须分配材料来抵御这种形式的变形。

A third consequence of the forces acting upon the ship is local deformation of the structure.A typical example of this is the bending of plating between frames or longitudinals due to water pressure.Others are the bending of beams, longitudinals and girders under local loads such as those arising from cargo or pieces of machinery.力对船作用的第三个后果是结构的局部变形。这方面的一个典型例子如因水压力而致的肋骨或纵骨板间的弯曲。其他例子如横梁、纵骨和桁材在诸如货物或机器等局部载荷作用下的弯曲。

From the consideration of the forces acting upon the ship which have been discussed it is possible to distinguish three aspects of the strength of ship‟s structures.They are longitudinal strength, transverse strength and local strength.They are usually treated separately, although it is not strictly speaking correct since longitudinal and transverse bending are really interconnected.Considering, however, the complex nature of the problem of the strength of ship‟s structure it is a satisfactory approach, at least in the initial stages.已讨论过船上的作用力,由此考虑有可能区分船舶结构强度的三个方面。它们是纵向强度,横向强度和局部强度。这三种强度通常分别对待;诚然,严格地说这样做并不正确,因为纵向弯曲与横向弯曲实际上是相互联系的。但是,考虑到船舶结构强度问题的复杂性,这是一种令人满意的方法,至少在初始阶段是如此。

Function of the ship’s structure 船舶结构功能

The primary requirement of the ship‟s structure, i.e.that it should resist longitudinal bending, necessitates that a considerable amount of material should be distributed in the fore and aft direction.This “longitudinal” material as it may be called is provided by the plating of decks, sides and bottom shell and tank top, and any girders which extend over an appreciable portion of the length.The plating is thin relative to the principal dimensions of the transverse section of the structure and would buckle under compressive loads very easily if it was not stiffened.It is therefore necessary that there should be transverse stiffening of decks, shell and bottom, for this reason if for no other.The stiffening is provided in transversely framed ships by rings of material extending around the ship and spaced some 0.70~1 m(2~3 ft)apart.In the bottom the stiffening consists of vertical plates extending from the outer bottom to the inner bottom, the plates being called “floors”.The sides and decks are stiffened by rolled sections such as bulb angles or channels, called “side frames” and “beams”.The transverse material so provided has the dual function of maintaining the transverse form of the structure, i.e.providing transverse strength, and preventing buckling of the longitudinal material.船舶结构的基本要求,即它应该抵抗纵向弯曲,迫使相当数量的材料应该布置在纵向。这种材料可以称为“纵向”材料,由板材和各种桁材构成;板材如甲板板、舷侧与底部外板以及内底板,桁材应在船长方向延伸相当大的范围。与结构横向剖面的主要尺寸相比,板列的厚度很薄,假如不作加强,在压缩载荷的作用下可能很容易翘曲(失稳)。因此甲板、舷侧和船底该有横向加强是必要的,如果不为其他原因也是为上述原因。在横骨架式船上,这种加强由围绕船体伸展的材料框架提供,框架间隔0.70~1 m(2~3 ft)。在船底,加强构件由从外底伸至内底的垂直板件组成,该板叫做“肋板”。舷侧和甲板由轧制型钢如球扁钢或槽钢加强,它们称作“舷侧肋骨”和“横梁”。这样提供的横向材料具有维持结构横向形状的双重功能,即提供横向强度和防止纵向材料翘曲。

The spacing of the transverse material in relation to the plating thickness is an important factor both in resisting compressive stresses and in preventing local deformation due to water pressure, so that the span thickness ratio S/t cannot be allowed to be too great.Where thin plating is employed, as would be the case in small ships, the span S between the floors, frames and beams would have to be small but may be greater in large ships where thicker plating is employed.This will be found to be general practice, the frame spacing in small ships being less than in large ships.与板列厚度有关的横向材料间距是一个重要因素,原因在于一方面要抵抗压缩应力,另一方面要防止由水压力引起的局部变形,因此跨距厚度比S/t不允许大。在使用薄板的地方,例如在小船上,肋板间、肋骨间和横梁间的跨距必然较小,但在大船上使用较厚板列时跨距可以大一点。可以发现这是一般的习惯,小船上的肋骨间距比大船上的小。

Additional longitudinal strength is provided by longitudinal girders in the bottom of the ship.The centre girder is an important member in this respect.It is a continuous plate running all fore and aft and extending from the outer bottom to the tank top.Side girders are also fitted, and they are usually intercostals, i.e.cut at each floor and welded to them.The number of side girder depends upon the breadth of the ship.The double bottom egg box type of construction provided by the floors and longitudinal girders is very strong and capable of taking heavy loads such as might arise in docking and emergencies in going aground.额外的纵向强度由位于船舶底部的纵向桁材提供。在这方面中纵桁是一个重要构件。它是从船首通到船尾的连续板件并从外底伸至内底。也设置边纵桁,它们通常是间断的,即在每道肋板处切断并与之焊接。边纵桁的数量取决于船舶的宽度。双层底由肋版纳和纵桁构成的鸡蛋箱形式的结构是非常强的,能够承受重载荷,如在进坞时和搁浅紧急情况下引起的重载荷。

The practice of stiffening ships transversely has in recent years been largely replaced by a system of longitudinal framing.This method, which actually goes back a long way to such vessel as the Great Eastern, was initially adopted on a large scale in tanker and was known as Isherwood System.The system consists of stiffening decks, side and bottom by longitudinal members which may be either plate or rolled sections, the spacing being approximately of the same magnitude as beams, frames and floors in transversely framed ships.近几年来,横向加强船的做法大部分已被纵骨架式所取代。这一方法实际上可追溯到很久以前像“大东方”号那样的船舶,起初大规模用在油船上,并称为伊舍伍德纵骨架式。这一骨架形式的组成是:用纵向构件加强的甲板、舷侧和底部,构件可以是板件或轧制型钢件,间距与横骨架式船的横梁、肋骨和肋板的数值大致相同。

The longitudinals are supported by deep, widely spaced transverse consisting of plates with face flanges, the spacing being of the order of 3~4 m(10~12 ft).These transverses provide the transverse strength for the structure.Additional transverse strength is provided on all ships by watertight or oiltight bulkheads.These are transverse sheets of stiffened plate extending from one side of the ship to the other.Their main purpose is of course to divide the ship into the watertight or oiltight compartments so as to limit flooding of the ship in the event of damage, but they have the additional function of providing transverse strength.纵骨由大间隔强横桁支撑,横桁由腹板和面板组成,间距在3~4 m(10~12 ft)量级。这些横桁为结构提供横向强度。在所有船上,额外的横向强度由水密或油密舱壁提供。舱壁是横向的加强板列薄片,从船的一舷延伸到另一舷。当然,它们的主要目的是要将船舶分隔成水密或油密的舱室,以便船舶一旦损坏时来限制淹水范围,但它们有额外的功能就是提供横向强度。

The original Isherwood System was applied to oil tanker but was not favoured in dry cargo ships, largely because of the restriction in cargo space created by the deep transverses.With the large scale development of welding in ships, however, resulting in greater distortion of the plating than would normally be found in riveted construction, longitudinal stiffening in the bottom and deck has become quite common in these vessels, while the side structure is framed transversely as formerly.It will be found that this “combined” system of construction is now almost universally adopted in dry cargo ships.As a matter of fact the combined system was used for a time in oil tankers, but with their increasing size in the years since 1954 the complete longitudinal system has been reverted to.原先的伊舍伍德纵骨架式应用于油船但并不有益于干货船,主要是因为强横桁造成货舱空间的限制。然而随着造船焊接技术大规模发展,结果板列中出现了比铆接结构中通常能发现的更大的变形;这些焊接船的底部和甲板采用纵向加强方法变得十分普遍,但舷侧结构仍同以前一样作横向加强。可以发现,这种“混合骨架式”在干货船上现在几乎被普遍地采用。事实上,混合骨架式曾在一个时期内用于油轮;但是自从1954年以来油轮尺度越来越大,于是已经恢复采用全纵骨架式结构。

Two of the advantage of the longitudinal system are that the longitudinals themselves take part in the longitudinal strength of the ship and it can be shown also that the buckling strength of the plating between longitudinals is nearly four times as great as the strength of the plating between transverse stiffeners of the same spacing.纵骨架式的两个优点是:纵骨本身参加船体纵强度;也能说明,纵骨间板列的翘曲强度为同间距横向加强筋间板列强度的四倍之大。

When the decks of a ship are stiffened by transverse beams, if these were supported only at the two sides of the ship without any intermediate support, they would be required to be of very heavy scantlings, i.e.dimensions, to carry the loads.By introducing pillars at intermediate positions the span of the beams is reduced with the result that they can be made of lighter scantlings, thus providing a more efficient structure from the strength / weight point of view.Pillars were formerly closely spaced, being fitted on alternate beams with angle runners under the deck to transmit the load to the beams not supported by pillars.This meant that pillars were spaced about 1.5 m(5 ft)apart so that access to the sides of holds was very restricted.For this reason heavy longitudinal deck girders were introduced which had the same function as a line of pillars, the girders being supported by widely spaced pillars.Thus, in a cargo hold there would be two deck girders supported by two heavy pillars at the hatch corners.In this way access to the sides of the holds was improved.船的甲板用横梁加强时,假如这些横梁仅在船舶的两舷作支撑而没有中间撑,那么它们要求具有很大的构件尺寸,即尺度,以承受甲板载荷。在中间位置引入支柱后横梁的跨距减小了,结果是它们可用较小的构件尺寸来制造;于是从强度/重量比的角度来看这样提供了更有效的结构。以前支柱间隔很小,每隔一档横梁安装,并在甲板下面设置角钢短梁以传递没有支柱支撑处横梁的载荷。这意味着支柱的间隔约1.5 m(5 ft),因此至货舱舷侧的通道很受限制。由于这个原因引入了大型甲板纵桁,它与一行支柱有相同的功能;该纵桁由隔得很远的支柱支撑。因此,在一个货舱内会有两道甲板纵桁,每一纵桁由舱口角隅处的大型支柱作支撑。这样至货舱舷侧的通道得到了改善。

Even these widely spaced pillars can be eliminated by fitting heavy transverses hatch end beams to support the longitudinal girders, the hatch end beams themselves being supported by longitudinal centre line bulkheads clear of the hatchways.通过安装大型舱口端梁来支撑纵桁,甚至可以把这些大间距的支柱省掉,而舱口端梁本身由在舱口范围以外的中纵舱壁来支撑。

In ships in which the longitudinal system of framing is adopted the deep transverse take the place of the longitudinal girders and give intermediate support to the longitudinals, thus reducing their scantlings.在采用纵骨架式的船上,强横桁代替甲板纵骨以中间支撑,因此可减小纵骨的尺寸。

Nearly every part of the structure of a ship has some local strength function to fulfil.For example, the bottom and side shell plating has to resist water pressure in addition to providing overall longitudinal strength of the structure.Thus, local stresses can arise due to the bending of the plating between frames or floors.The complete state of tress in such part of the structure is very complex because of the various functions which they have to fulfil, and even if the actual loading was known accurately it would be a difficult task to calculate the exact value of the stress.几乎每一船体结构都有一些局部强度功能要完成。例如,底部和舷侧外板除了提供结构的总纵强度之外还必须抵抗水压力。因此,由于肋板或肋骨间的板列弯曲可能会引起局部应力。结构在这些部位完整的应力状态是非常复杂的,因为它们必须完成各种功能;并且即使实际载荷已确切知道,要计算该应力的精神值也会是一项艰巨的任务。

Part B(节选)

Forces on a ship at sea 船舶在海上行驶的力

When a ship is moving through a seaway the forces acting on the ship are very different to those in still water.In the first place the static buoyancy is altered because the immersion of the ship at any point is increased or decreased compared with the still water immersion because of the presence of the waves.Secondly it has been seen that the pressure in a wave differs from the normal static pressure at any depth below the free surface.The ship also has motions which cause dynamic forces due to the accelerations involved.The two major effects are due to heaving and pitching.当船舶在海上航行时,作用在船上的力与在静水中时大不相同。首先,与静水状态下的浸深相比,由于波浪的存在船舶在每一点的浸深或增加或减少,因此静态浮力被改变。其次,已经看到,在自由表面下任何深度处,波浪中的压力与正常的静水压力不同。船舶还有运动,因涉及加速度而引起动态力。这两个主要影响是来自升沉和纵摇。

As stated above, the problem then becomes a dynamic one.The traditional practice has, however, been to reduce this dynamic problem to what is considered to be an equivalent static one.The procedure adopted was to imagine that the ship was poised statically on a wave and work out the shearing force and bending moments for this condition.Until relatively recently it was the procedure adopted in determining the longitudinal bending moments acting upon the ship at sea.如前所述,问题变成动态的了。然而传统做法已将这一动态问题简化为被认为是相当的静态问题。采取的步骤是先设想船舶静态地在波浪上保持平衡,然后计算出这一条件下的剪力和弯矩。直到最近这仍然是确定船在波浪上所受纵向弯矩的方法。

The static longitudinal strength calculation 在静态的纵向强度计算

In this calculation the wave upon which the ship is assumed to be poised statically is considered to be of trochoidal form and to have a length equal to the length of the ship.The height of the wave chosen for the calculation greatly affects the buoyancy distribution and this at one time was taken as the ship length divided by 20, i.e.h = L/20.More recently, however, a height given by h=0.607√L m(h=1.1√L ft)has been used in the calculation.This was considered to represent more closely the proportions of height to length in actual sea waves.在计算中,假定与船舶静态平衡的波浪被认为是次摆线型(坦谷)波,其长度等于船长。计算所选的波高会严重地影响浮力分布:波高曾一度取为船长除以20,即h = L/20。然而最近由公式h=0.607√L m(h=1.1√L ft)给出的波高已用于计算。这被认为更接近地代表了实际海浪的高度与长度之比。

Two conditions were usually examined;one with wave crests at the ends of the ship and one with a wave crest at amidships.In the former condition the bending moment due to the buoyancy provided by the wave produced sagging, and in the latter case hogging was produced.Associated with these two positions of the wave it was customary to assume loading conditions for the ship which would give the greatest bending moment.Thus, with the wave crests at the ends a concentration of loading amidships would yield the greatest sagging moment, while with a crest amidships concentration of load at the ends would give the greatest hogging moment.This could possible lead to some unrealistic conditions of loading for the ship.It is more satisfactory to consider the actual condition in which the ship is likely to be in service and to work out the bending moments for the two positions of the wave.In this way it is possible to determine for any given loading condition the cycle of bending moment through which the ship would go as a wave of any particular dimensions passes the ship.通常要讨论两种状态,一是波峰在船舶两端,一是波峰在船中。在前一状态下,由波浪提供的浮力所生成的弯矩产生中垂,而在后一状态下则产生中拱。结合这两种波浪位置,习惯上再假设船舶的装载情况,即会给出最大弯矩的装载情况。于是,波峰在两端而集中载荷在船中会产生最大的中垂弯矩;波峰在船中而集中载荷在两端会给出最大的中拱弯矩。这可能导致船舶一些不切实际的载荷状态。更令人满意的是考虑船舶在营运中容易出现的实际装载状态,并计算出这两种波浪位置时的弯矩。这样,对于任何给定的装载状态,都可以确定具有特定参数的波浪通过船舶时船体所承受的弯矩的循环周期。

In the procedure described the total bending moment is obtained, including the still water moment.It is often desirable to obtain these moments these separately so that the influence of the still water moment on the total can be examined.The wave moment depends only on the size of wave chosen and the ship form for any condition of loading, whereas the still water moment is dependent on the load distribution as well as the still water buoyancy distribution.在上述过程中,可获得总弯矩,包括静水弯矩。通常希望能分开获得这些弯矩,以便能研究静水弯矩对总弯矩的影响。波浪弯矩仅取决于所选波浪的尺度和任何装载状态下的船体形状,而静水弯矩取决于载荷分布和静水浮力分布。

The first step in the calculation is to balance the ship on the wave, which means working out the total mass M of the ship and the longitudinal position of its centre of gravity G.The problem then is to adjust the wave on the ship to give a buoyancy equal to Mg and a position of the centre of buoyancy which is vertically below G.In doing this it is usual to ignore the Smith effect.计算的第一步是让船舶在波浪上平衡,这意味着计算出船舶的总质量M和其重心纵向位置G。然后的问题是船上调整波浪以便给出浮力等于Mg,并且使浮心位置垂直地在G的下向方。这样做时通常忽略史密斯效应(水波质点运动对船体浮力的影响)。

To find the correct position of the wave is not an easy task since the free surface is a curve and not a straight line as in the still water position.Methods have been developed but will not be dealt with here.It will be supposed that this has been achieved, in which case the ship will be in static equilibrium under the gravitational force acting on the mass of the ship and the buoyancy provided by the wave.要找出波浪的正确位置不是一件容易的事,因为自由表面是曲线而不像在静水位置时的一条直线。方法已经开发出来,但在这里不予讨论。这里假定这一步已经达到,在这种情况下,船舶在由质量产生的重力与波浪产生的浮力的共同作用下处于静力平衡状态。

The next step in the calculation is to find the distribution of buoyancy and mass along the length of the ship.The former is easy since the buoyancy per unit length is simply ρgA, where A is the immersed cross--sectional area at any point in the length.The distribution of mass involves calculating the mass per unit length at a number of positions along the length and this is a tedious calculation requiring accurate estimates of the mass of the various part of the ship.The calculation is facilitated to some extent by dividing the total mass into the lightmass of the ship and the masses of the deadweight items.The details of these calculations will not be entered into here.计算的下一步是要找出浮力分布和质量沿船长的分布。前者容易,因为单位长度的浮力只是ρgA,式中A为船长任一点上浸湿横截面面积。质量分布涉及船长许多位置上单位长度质量的计算,然而这是一个枯燥的计算过程,要求精确地估算船舶各部分质量。将总质量划分为空船质量和各个载重量项目的质量,在某种程度上可以方便计算过程。这些计算的细节不在这里展开了。

Having obtained the distribution of buoyancy and mass, which in simplified form would look like the curves, it is possible to plot a load curve which is simply the difference between weight and buoyancy as in the still water calculation, i.e.Load per unit length = ρgA-mg From which the shearing force and bending moment are given by

F(gAmg)dx M(gAmg)dxdx

已经得出浮力和质量分布,其简化形式看起来像曲线,就有可能绘制负荷线,它只是重量和浮力之差,如在静水中的计算一样,即

单位长度负荷 =ρgA-mg 由上式,剪力和弯矩可由下列公式给出

F(gAmg)dx M(gAmg)dxdx

Because of the non-mathematical nature of load curve these integrations have to be done graphically or can be carried out by an instrument called “integraph”.In recent years, largely because of the development of the computer, a tabular method has been developed.It consists of dividing the length of the ship up into a number of equal parts(say 40)each of length l, and calculating the mean buoyancy per unit length b and the mean weight per unit length w in each of these divisions.It then follows that

Shearing force F(bw)ll(bw)

If then the mean value of the shearing force in each of these division is Fm then

Bending moment BMlFm

This procedure can be readily programmed for the computer and the shearing force and bending moment obtained very easily.因为负荷曲线的非数学属性,这些积分必须作图求得,或用称为“积分仪”的仪器来计算。主要是因为计算机的发展,近年来已开发了一种表格方法。它包括:将船舶长度分成许多相等的部分(比如40份),每一长度为L,并且在这些区间计算单位长度的平均浮力B和单位长度的平均重量W。于是

剪力F(bw)ll(bw)如果这些区间的剪力平均值为Fm,那么 弯矩BMlFm

这一过程可以容易地编写为计算机程序,因此剪力和弯矩很容易得到。

Characteristics of shearing force and bending moment curves 剪力曲线和弯矩曲线特性

The shearing force and bending moment curves for a ship poised on a wave are shown graphically and for most ships the curves follow this pattern.Both shearing force and bending moment are zero at the ends of the ship.The shearing force rises to a maximum value at a point which is roughly one quarter of the length from the end then falls to zero near amidships and changes sign, reaching a maximum value somewhere near a quarter – length from the bow.The bending moment curve rises to its maximum value at or near amidships, the exact positions occurring where the shearing force is zero.船舶在波浪上平衡时的剪力和弯矩曲线可以图示,并且大多数船舶的曲线都呈现这种模式。剪力和弯矩两者在船舶的两端都为0。大约在距船尾1/4 船长处剪力升到最大值,然后在靠近船中处降为0,并改变符号,又在距船1/4 船长的某处达到最大值。弯矩曲线在船中或靠近船中处升到最大值,确切的位置出现在剪力为0的一点。

The influence of the still water bending moment on the total moment can be seen from the curves.For a ship of any given total mass and the draught in still water the wave sagging and hogging moments are constant so that if the still water moment is varied by varying the loading the total moment may be altered considerably.The aim should be to keep the total as small as possible.If the wave sagging and hogging moments were equal then the smallest total moment would be obtained with a zero still moment.However, the wave sagging moment is usually greater than the wave hogging moment, the proportion depending amongst other factors upon the block coefficient.从曲线可以看出静水弯矩对总弯矩的影响。对于给定重量的船和给定静水吃水,波浪中垂和中拱附加弯矩是一定值。所以,如果由载荷变化而引起静水弯矩变化,那么总纵弯矩也可能发生很大的变化。目的是应该保持总弯矩尽可能地小。假如波浪中垂和中拱弯矩相等,那么将会得出最小的总弯矩而静水弯矩为0。然而波浪中垂弯矩通常比波浪中拱弯矩大。两者的比例取决于其他因素中的一个,即方形系数。

2.船舶与海洋工程专业毕业论文 篇二

船舶与海洋工程专业实现“卓越计划”是指针对船舶与海洋工程领域的实际需求,培养具有设计、建造和管理船舶与海洋结构物的工程师、并有获得工程师执业资质或者工程师职称潜力的后备工程师。(2)(3)本文首先分析了从“造船大国”到“造船强国”的转变对船舶工程人才的要求,以及当前船舶工程专业培养存在问题;其次,探讨船舶与海洋工程“卓越计划”对大学生实践能力提升的理论价值和实践意义;最后结合本校船舶与海洋工程专业人才培养的特点和优势分析如何实现转变工程教育的传统观念,提高学生的工程意识、工程素质和工程实践能力,探索一条符合中国国情的卓越船舶工程师的培养模式。

1 国内高校在船舶与海洋工程专业领域人才培养存在的问题

据统计,2010年我国造船完工量6560万载重吨,新接订单7523万载重吨,手持订单19590万载重吨,分别占世界市场的43%、54%、41%,均居世界第一。但是,我国船舶工业科技综合实力和自主创新能力仍较差:高技术船舶和海洋工程装备的核心技术依赖国外,高端产品的设计建造仍存在很多空白;三大主流船型缺乏品牌竞争力,市场快速反映能力亟待提高。

相对应的在当前高校船舶工程专业人才培养方面,存在如下的问题:人才培养模式单一(完全在课堂学习)、多样性欠缺,忽视人才多元化发展;工程性缺失和实践教学薄弱(毕业实习以到船厂参观为主);评价体系导向重理论、轻实践,重精深、轻综合、重论文、轻设计,培养的人才与社会需求不适应;产学研合作不到位,企业不参与人才培养过程;毕业设计缺乏实际工程背景和项目。

为了争取在“十二五”末把我国建设成为世界“造船强国”,则必须在主流船型方面提高生产效率、优化产品结构、加快船舶配套产业的发展、在高技术船舶和海洋工程装备方面提升自主创新能力。而这都需要一批工程实践能力强、具有创新能力和团队精神的高质量船舶工程人才。(4)

2 船舶与海洋工程专业“卓越计划”的理论价值

正如前面对当今国际造船新形势的分析,为了适应国内外航运和海洋经济发展的新变化,顺应世界绿色造船发展的新趋势,应更加注重创新驱动,更加注重技术和品牌优势,更加注重质量、效益和效率,做强做优船舶制造业,大力提升船舶配套产业,培育壮大海洋工程装备制造业。(5)船舶各行业认为,培养的未来船舶工程师应该具备如下能力:(1)扎实的力学和数学基础,以及广泛的人文社会学科背景知识;(2)精湛的船舶与海洋工程专业知识;(3)深入理解并掌握工程分析方法,创造性地提出解决当今船舶工程问题的新办法;(4)具有实现自己梦想的执着精神和对社会的奉献精神。

通过实施“卓越计划”,我们将与知名大型国企建立联合培养人才的新机制,将面向工业界、面向世界、面向未来,培养造就一批实践能力强、具有创新能力、能适应船舶行业发展的高质量工程技术人才。从而在未来十几年里,在船舶行业打造技术先进、结构优化、创新活跃的现代产业体系,努力实现由造船大国向造船强国的转变。

3 船舶与海洋工程专业人才培养模式的要求

3.1 专业定位

根据我校“十一五”发展规划,坚持“培养立足航运、依托上海、服务全国、面向世界的应用型船舶与海洋工程学科高级工程技术人才;为各大船厂、研究所、设计院等部门培养素质好、基础知识扎实、有较强实践能力的高质量人才”。本专业定位于:立足航运、面向海洋,紧随世界经济发展步伐,以期船舶与海洋工程专业在船舶与海洋工程的设计和建造领域形成自己的特色优势。

3.2 培养目标

本专业培养具备现代船舶工程设计与建造的基本理论,以及现代先进制造技术等专业基础知识与技能,接受现代船舶工程师的基本训练,具有进行船舶与海洋工程产品制造、设计及生产组织管理基本能力的人才。毕业生能在船舶与海洋结构物制造、设计、检验、使用和管理等部门从事技术和管理工作,尤其侧重为各大造船企业和地方船厂培养基础扎实、专业知识广泛、动手能力强、具有创新精神和实践能力的复合型、应用型船舶与海洋工程学科高级工程技术人才。

3.3 培养要求

培养德智体全面发展,基础扎实,知识面广,能适应社会发展的需要,具有在现代船舶与海洋工程领域进行工作的基本知识以及从事该行业工作所必需的基本技能。通过四年学习,学生应具备以下几个方面的知识和技能:(1)具有扎实的自然科学基础,较强的计算机和外语应用能力并有较好的人文、艺术和社会科学基础。(2)较系统地掌握船舶与海洋工程专业领域宽广的基础理论知识。掌握船舶与海洋工程设计与制造的理论、方法和工艺过程,熟悉现代船舶相关规范与法规,了解现代先进前沿造船技术与船舶企业管理方法。(3)具有从事船舶与海洋工程专业所需的设计、制图、计算机应用和文献检索等基本技能。具有较强的自学能力、创新意识和良好的综合素质,具有一定的科学研究能力和较强的实践应用能力。

4 船舶与海洋工程专业创新人才培养模式实践环节的构建

4.1 培养模式

依据上海海事大学发展定位规划以及“上海海事大学与沪东中华造船(集团)有限公司产学合作协议”,船舶与海洋工程专业实行专业理论+工程实践的“3+1”办学模式,注重“实践能力、创造能力、就业能力、创业能力”的培养,突出了船舶建造与设计的工程实践能力培养。即,大学本科前三年(大一~大三)在上海海事大学进行理论学习,最后一学年(大四)完成实践教学和实习,包括:金工实习(含船用装焊实习)、船舶企业实习、船舶设计原理课程设计、船舶建造工艺学课程设计、船舶生产设计课程设计、计算机辅助船舶制造模拟实践、毕业论文与毕业实习;以及相关课程:造船企业经营与管理、船舶生产设计、计算机辅助船舶制造设计、先进造船技术。最后在船厂实践的基础上完成毕业论文和毕业设计,突出了工程实践的船舶建造与设计能力的培养。

本专业的“3+1”办学模式是学校在充分考察、调研各大造船厂、研究所和设计院等部门的用人需求,同时又考虑到我国工程教育的转型和创新计划,在此基础上作出的重要决定。据现有的2008、2009级学生反馈效果良好。

4.2 实践教学体系的构建

根据船舶与海洋工程专业的培养目标定位,着重要培养学生的实践动手能力、计算机操作应用能力、软件设计能力等实践能力。所以在培养体系的具体实施构建中,注重学生创新意识、实践能力。

本专业现有“现代船舶设计、制造技术”实验室,用于完成计算机辅助船舶制造设计等课程的教学计划,为了更好地满足学院船舶与海洋工程专业本科生的实践教学需要,本年度拟在工程实训中心建设“船舶仿真实验室”,现已开工,计划投入150余万元人民币建设经费。

在实践教学方面,现有两个校外实习基地:沪东中华造船(集团)有限公司校外实习基地;市级实习基地:中海集团与上海海事大学共建航海与船舶工程校外实习基地。其中船舶08级的学生已完成在沪东中华造船(集团)有限公司的第四年培养计划,效果良好。2009级学生也在中海工业(江苏)有限公司实习基地完成了认知实习,深受学生们的欢迎。实习基地的建设将为我们实践教学环节的开展提供有力保障。

5 结语

船舶与海洋工程专业人才培养模式和课程体系的构建是按照教育部提出的“卓越计划”人才培养模式进行设置的。我们的最终目的是培养一批能适应未来船舶与海洋工程发展要求的专业基础知识扎实、工程实践能力强,能够在各大造船厂、设计院和研究所从事船舶的建造和设计工作的专业技术人才。要使这样的人才培养目标真正得到落实,还需要有一整套合理的教学管理制度,考核制度及学生评价体系。

教改项目:上海高校本科重点教学改革项目“卓越船舶

工程师培养的工程实践教学研”

参考文献

[1]http://baike.baidu.com/view/3863873.htm

[2]王丽铮,袁萍,刘祖源.船舶与海洋工程本科专业人才培养模式探讨.船海工程,2008.37(4):150-152.

[3]高高.关于船舶及海洋工程专业基础课教学的若干思考,船海工程,2008.37(4):153-155.

[4]聂剑宁,宁萍,张敏.重庆交通大学船舶与海洋工程专业发展对策.重庆交通大学学报(社科版),2009.9(3):42-44.

3.船舶与海洋工程专业毕业论文 篇三

关键词:船舶与海洋工程专业 应用型人才 培养模式 体系建设

中图分类号:C961 文献标识码:A 文章编号:1674-098X(2015)06(a)-0207-02

船舶与海洋工程对国民经济发展及国防建设现代化具有十分重要的意义。是大连海事大学所特有的的优势专业之一,目的是培养不仅仅具有船舶与海洋工程制造、研究的基本技能和管理基础知识的应用型人才,而且还能够在船舶以及海洋结构物的相关部门从事相应的管理层面的工作的船舶与海洋工程学科高级工程技术人员[1]。为了这一目标得以最终的实现,大连海事大学结合学校自身的实际情况,在学生的专业素质以及相关能力的培养上得到了一定的成果。

1 针对相关培养目标设计课程体系

各个高校对学生的基本素质与相关的业务素质特别重视。专业基础课以及专业方向等课程主要体现学生的业务素质;公共基础课、人文类等课程主要体现学生的基本素质。然而本文在方案的设计上则将对学生业务素质的提高作为侧重点。

为了实现学生的教育培养目标,并且提高教学质量,学校应该把教师教学的课程内容以及相关的课程体系作为核心部分[2]。各个高校要根据国内外析船舶与海洋工程教育的统一要求,明确人才目标定位,逐步构建有利于创新人才健康成长的人才培养体系。一个专业教学体系的构建需要以教学计划的形式来体现。该文通过对学校教学计划进行多次修改,设计出了能够使学生素质得到大大提高的方案,渐渐形成了一套自己的应用型人才的培养方案。

船舶与海洋工程专业课程分为四块:船舶设计、船体结构、船舶原理以及造船工艺类(图1)。

2 根据课程模块强化教学实践

教学实践作为一种加深学生理论认知以及相关知识巩固的一种有效方式,处于培育具有高度创新意识的高素质人才的重要部分,是一个能够提高学生动手能力的有效平台。根据训练方式的特点,可以将实践教学环节分为3大类:造船工艺、计算机综合与业综合设计类。这3大类按专业课程体系可以划分为4个模块中。

(1)造船工艺类的最终目的是不断改善相关的研究类实验项目,提高学生不断发现问题以及有效解决问题的能力、创新与实践能力,从而使得学生的综合素质得到不断地提高。

(2)计算机综合类包含的主要内容有高级语言编程、应用软件开发、专业技能应用等环节。其中具体实验项目主要包括软件开发、相关技能训练等。目的在于培养学生分析以及善于解决问题的相关能力[3]。

(3)專业综合设计类主要目的是培养学生利用自身的专业知识,对专业问题进行解决的一项综合型的能力。部分课程进进行双语教学,使得学生将英语与专业课相结合。

教学计划实施时,学校可以对工程概论系列课程的传授,使学生对工程背景以及学科前沿方面的信息有一个更为深入的了解。开设创新教育系列课程,使学生基础能力得到提高,不断提高学校的专业教育质量,培育工程师熟练的专业能力[4]。本专业在原来基础上,进一步增加了实验实习环节,以此来达到在教学实践中提高人才素质的目的。

3 统筹安排教学,优化考核方法

统筹协调课程与训练之间的关联,对授课内容以及具体实践模式进行合理设计,不断优化学校的授课内容,使之达到提高学生综合素质的教学目的。对于教学内容要进行统筹安排制定考核标准和方法。对于相关专业课如船体制图[5]等课程考核内容,实行一票否决制。高学生增强对船体结构知识的掌握。使得毕业生就业后,很快适应专业岗位的要求。近年来,这种考核效果收到了良好的效果。

4 通过综合素质训练,提高学生分析以及解决问题的能力

以前的实践教学内容存在单一的劣势,以此要改变这种模式,实行一种新型的教学方案,使学生成为教学的主体;增强学生面对问题的自信心,增强其钻研与竞争能力,以及敢为人先的主动精神。其具体的事实过程是将计算机实践教学分成三个层次:初、中、高。初级阶段主要将对单项应用问题的解决作为主要内容;中级阶段以应用软件二次开发为主;高级阶段以解决专业综合性问题为主。经过几年来的教学实践,学生的综合能力得到明显提高。

通过上面的相关训练,实现了基础知识同专业知识的有效结合,提高了学生对问题的分析能力、解决能力以及创新能力。培养应用型人才培养关键是素质和能力。其目的在于培育学生勤奋、终生学习的习惯,从而具有良好的工程意识。

5 毕业设计训练,重点培养学生的创新能力

与其他相关院校相比,大连海事大学在毕业设计方面具有自身的独到之处。要求每一个想、进行毕业设计的学生最一整条船进行设计,要求学生从船体方案的设计,甚至到整体的设计,从各个部分性能设计到主要图纸的绘制上都需要亲手做一遍。作为学生工作前一次实战演习。

毕业论文的选题,注意培养实践能力,要求学生有扎实的专业知识、灵活的思维模式、良好的软件应用能力以及解决问题的能力。充分发挥学生能动性,给学生提供自我发挥空间。使学生入职后,能更快地进入工作状态。毕业生为我校争得荣誉。从用人单位对我校毕业生的反馈来看,综合素质普遍高,能吃苦耐劳,适应能力快,动手能力强。

6 理论联系实际,实施多样化的实践性教学

多样化的实践性教学课程中大多数课程都有一套完善的专业技能训练方法,使学生能够得到系统的训练。在此项教学过程中,要着重提高学生综合素质,培养创新精神与创新能力。

(1)航行实习是最具特色的教学,学生在南北方造船基地等专业区域的实习,使学生了解船舶行业的发展前沿、增加专业知识、增强专业信心。

(2)在全国一流生产企业建立实习基地。

(3)形成船体结构类课程教育教学特色。由于专业特色,可以对学生进行在船厂进行讲课,使学生对船体的结构有一个更为具体的认知,构造一种职业氛围,增强对学生的教育作用,使教学收到良好反应。

7 结语

综上所述,通过对以上各个方面的不断完善与提高,我校逐渐建立起了适合自身并且适合船舶行业发展的一套综合性的人才培育模式,从而满足船舶行业对高素质综合型人才的要求。但是本研究仍然具有很多不足之处,需要根据具体情况及需求做进一步的完善。

参考文献

[1]黄亚南,刘大路,孙风胜,等.船舶与海洋工程专业应用型人才培养体系的建设与实践[J].船海工程,2011(4):48-50.

[2]程细得,袁萍.论创新型船舶与海洋工程专业人才培养[J].船海工程,2008(4):191-193.

[3]冯佰威.“船舶CAD”课程教学模式的剖析与实践[J].船海工程,2008(4):207-

209.

[4]王丽铮,袁萍,刘祖源.船舶与海洋工程本科专业人才培养模式探讨[J].船海工程,2008(4):150-152.

4.船舶与海洋工程专业教育部排名 篇四

本一级学科中,全国具有“博士一级”授权的高校共10所,本次有9所参评;还有部分具有“博士二级”授权和硕士授权的高校参加了评估;参评高校共计13所。 注:以下得分相同的高校按学校代码顺序排列。

船舶与海洋工程专业教育部排名

学校代码 学校名称 排名得分 10248 上海交通大学 91 10217 哈尔滨工程大学 90 90038 海军工程大学 80 10056 天津大学 77 10699 西北工业大学 75 10141 大连理工大学 73 10151 大连海事大学 10497 武汉理工大学 10487 华中科技大学 70 10289 江苏科技大学 68 10335 浙江大学 10340 浙江海洋学院 64 11646 宁波大学 62

5.船舶工程技术专业求职信 篇五

您好!

很感谢您在百忙之中抽空看我的求职信。

我是XX大学航运学院航海技术专业的一名应届毕业生,主要研究方向是船舶驾驶技术,船舶安全和海商法。

四年来,在师友的严格教益及个人的努力下,我具备了扎实的专业基础知识,系统的掌握了航海驾驶技术,船舶安全和海商法等有关理论;能够正常的使用航海仪器;熟悉涉外工作常用礼仪;具备较好的英语听、说、读、写、译等能力;能熟练操作计算机办公软件。同时,我利用课余时间广泛地涉猎了大量书籍,不但充实了自己,也培养了自己多方面的技能。更重要的是,严谨的学风和端正的学习态度塑造了我朴实、稳重、创新的性格特点。

此外,我还积极参加各种社会活动,抓住每一个机会,锻炼自己。大学四年,我深深地感受到,与优秀学生共事,使我在竞争中获益;向实际困难挑战,让我在挫折中成长。祖辈们教我勤奋、尽责、善良、正直;大学培养了我实事求是、开拓进取的作风。

我热爱贵单位所从事的事业,殷切地期望能够在您的领导下,为这光荣的事业添砖加瓦;并且在实践中不断学习、进步。现在,我作为一名应届生,以满腔的热血,准备投身到船舶事业这个大熔炉里面,虽然我所学的船舶专业知识有限,但我将谦虚好学,为我国的船舶事业奉献自己的青春。

长风破浪会有时,直挂云帆济沧海!希望贵公司能给我一个发展平台,我会好好珍惜它并全力以赴,为实现自己的人生价值而奋斗,为贵公司的发展贡献力量。

收笔之际,郑重地提一个小小的要求:无论您是否选择我,尊敬的领导,希望您能接受我诚恳的谢意!

此致

敬礼!

求职人:

XXXX年XX月XX日

附:不要太复杂。如果你申请的公司允许用两页简历,那就事先为你的经验和成果等等创建一个目录。简历要一目了然,不要排列太拥挤,让人难以阅读。写一封简洁的求职信,对你的帮助可不少的。

不要贪图省事。不要简单地照抄公司人力资源手册上列出的工作岗位描述。为了证明你比别人更适合这份工作,只靠列出工作职责是不够的。向老板出示你的成果和功绩,获得的奖励等等。

不要找借口。别把你辞职的原因也写在简历上。像“公司破产了”,“老板是个蠢货”,“为了赚更多钱”等等这些话语都是不应该出现在简历上的。

不要不分主次。虽然公司允许你提交两页简历,但是也不要把你做过的每一份工作都写上去。人事主管一般只对求职者最近的经历感兴趣,所以简历要着重说明你最近的工作经验和相关的工作经验。

不要太抠门。别为了省钱,用粗糙的复印纸来代替打印纸。检查一下简历上有没有语法错误,拼写错误或是咖啡渍。让朋友帮你检查一下,看是否还有遗漏的错误。

不要附件太多。当你投递简历的时候,别把你的复印件,推荐信,获奖证书等都投过去。如果你被通知面试,那再把这些资料带上不迟。

6.船舶与海洋工程专业毕业论文 篇六

1 船舶与海洋工程专业可以参加技能竞赛的种类

船舶与海洋工程专业是我国大学教育中新兴的专业, 专业建设起步晚, 国家组织的该专业技能竞赛较少。目前, 国家教育部和各省教育厅组织的船舶海洋类技能竞赛主要有:水上航行器竞速赛、国际水下机器人任务赛、船舶模型设计竞赛、石油平台创意设计竞赛等。这些竞赛需要船舶海洋专业知识, 需要学生综合学习的本专业各门课程进行创新与设计。

2 技能竞赛对船舶与海洋工程专业教师提高工程实践能力及双师型队伍建设的推动作用

参加技能竞赛能否取得优异的成绩, 关键取决于专业教师的指导能力。因为职业技能竞赛所需要的知识综合性、专业性强, 学生学习知识能力有限, 这就要求指导教师要具有丰富的专业知识和很好的工程实践能力。只有具备完善的专业理论知识、较高的工程实践经验和专业技能的教师, 才能培养出优秀高技能人才。学校要根据市场需求, 不断地改善知识结构, 定期组织有能力的教师去企业进行挂职锻炼, 参加各种专业知识培训, 取得专业技师以上的职业资格证书。学校还可以定期聘请企业一线有实践经验的工程师来学校给教师培训, 促进教师学习专业前沿实践知识, 培养教师的科研能力创新能力, 提高专业能力, 积累实践经验。

3 技能竞赛对船舶与海洋工程专业实验实训条件改善及校企合作建设推动作用

技能竞赛能推动专业实验实训条件的改善。学生要参加专业技能竞赛, 需要做出相应的作品或创意图。这就要求学校提供合适的设计和制作场地及制作设备。学校可以根据技能竞赛的要求, 采购专门的工具设备及材料, 建立专门的实验实训室, 作为参加技能竞赛的实验室提供给学生。学生有了安静的创新设计场所, 就能够在技能竞赛上投入所有精力制作作品, 在比赛上取得优异的成绩。反之, 要是学校没有改善实验实训条件, 学生连创新设计作品的地方都没有, 何来优秀作品参加技能竞赛。总之, 技能竞赛对专业实验实训条件的改善起到巨大的推动作用。

企业是学校人才培养的校外实训基地。国家举行竞赛的目的就是为了企业人才需求, 举行各种设计竞赛的主题, 也是根据社会上各企业的人才需求种类及方向制定。如武船重工、中海油等企业也越来越关注技能大赛, 每次比赛后企业认识了许多优秀学生, 比赛结束后就有企业联系学生毕业后来企业就业事宜。通过大赛, 企业和学校相互认识, 建立校企合作关系, 达成校企合作协议, 企业可以去学校直接选拔优秀人才到企业工作, 实现学校和企业的“双赢”。技能竞赛成为学校和企业交流的重要枢纽, 对校企合作的建设有了很大的推动作用。

4 技能竞赛对人才培养方案及培养模式改革的推动作用

通过参加技能竞赛, 可以检验自身的教学质量的好坏, 找出自身人才培养模式的不足之处。学校教授的知识是否满足社会人才需求, 哪些知识是学生上岗必不可少的专业知识, 都可以通过技能竞赛反映出来。技能竞赛促进了专业建设的改革, 推动了本科专业教育的进一步发展。

4.1 通过技能大赛可以改变教师传统的教学理念, 改进教学方法, 创新教学策略

在以往, 教师在教学过程中大多采用传统的教学理念。即教师对知识以讲解为主, 一节课50分钟, 基本上能讲述45分钟, 学生被动的听课学习, 很多学生在下面玩手机, 看小说, 根本没有听课, 教师不能及时发现, 教学效果肯定不好。技能大赛可以转变教师的传统思想, 更新教学理念。比如, 一门课的教学方法可以采用项目式教学法。给学生出题, 学生带着疑问自己去查阅资料, 研究完成的方法。教师可以把需要的重点知识给学生提示, 使学生有方向去研究。

4.2 技能竞赛对优化专业课程设置的推动作用

技能竞赛中所有操作都是由学生独立完成, 学生将课堂多学的知识灵活运用, 争取在最短的时间内出色完成比赛内容。这就要求学生既能够对所学的各门课程知识系统的掌握, 又要有熟练的实践操作能力。通过以往的技能竞赛我们看出, 专业课程设置与企业人才需求标准脱节, 课程理论知识过于深奥, 学生费精力学习了的知识大多数用不到;企业需求的人才标准多为灵活性高, 实用性强的知识。因此, 要意识到必须对专业课程设置做进一步的优化。学校可以派出教师深入与本专业相关企业了解企业的用人计划, 有能力的学校还可以联合企业开出“企业定向培养班”, 针对企业的用人需求开出相应的课程。

4.3 技能竞赛对课程考核方法改进的推动作用

以往的考核方法, 大多采用做学生做试卷、教师批改的方法考核, 这种方法知识简单的检验了学生所学理论知识的掌握程度。学生的创新能力和动手实践能力都没有表现出来。许多动手能力强, 思想上有创新意识的学生因理论知识掌握欠缺而被判为低分学生, 埋没了学生的综合能力。这就要求课程考核体系进一步改进。技能竞赛一般要求学生在规定的时间内利用所学知识完成某种功能的作品, 对于创新作品还有额外加分。鉴于技能竞赛的考核方法, 学校教学的考核方法也可以利用大赛题目或者是针对企业的需要解决的难题, 按照课程设计或者是作品制作的方式考核。采用这样的考核方法, 完全可以调动学生学习的积极性, 学生课上时间自主学习教材知识, 不懂的地方询问教师, 课下去图书馆查阅教材上没有的资料。学生由被动学习改为主动学习, 教学质量会大大提高。

实践证明, 技能竞赛对船舶与海洋工程专业的教学改革有着巨大的促进和推动作用。通过技能竞赛, 可以推动提高船舶与海洋工程专业教师工程实践能力及双师型队伍建设;推动改善船舶与海洋工程专业实验实训条件及校企合作建设;推动改变教师传统的教学理念, 改进教学方法, 创新教学策略;推动优化专业课程设置;推动考核方法的改进。学校要充分利用技能竞赛的推动作用, 改进教学模式, 充分挖掘资源, 不断地提高学生的灵活适应和创新实践能力。

参考文献

[1]王岩.职业技能大赛对教学模式改革的作用[J].现代企业教育, 2014 (10) .

[2]宋新丽, 王玲波.技能大赛对教学改革促进作用的研究[J].管理, 2012 (8) .

[3]聂章龙, 张静.关于职业技能大赛对教学改革推动作用的研究[J].问题探讨, 2012 (8) .

7.船舶与海洋工程专业毕业论文 篇七

上海应用技术学院教改项目:轨道工程毕业设计指导模式改革(1020T110023)

作者简介: 王长虹(1978.11- ),男,汉族,湖南衡山人,博士,副教授,研究方向:轨道工程

摘要:根据教师和学生特点,首先对轨道工程大类的毕业论文方向进行分组,毕业设计以专题设计为主,对毕业设计内容进行调研、研究、探讨,拓展专题毕业设计内容,强化后续设计过程,使学生对工程的全过程有比较清楚的认识,培养学生查阅相关文献分析问题、解决问题的能力。在此基础上初步建立轨道工程大类毕业设计指导的数据信息表,不断补充新的资料。

关键词:轨道工程 大类专业 毕业设计

中图分类号:G647文献标识码:A文章编号:1673-9795(2014)01(b)-0000-00

轨道工程大类专业以“依托行业”为办学宗旨,必须建立具有明显的轨道交通特色、专题性很强的毕业设计模式。因此,夯实专题设计的基础,延伸毕业设计的自身内涵,拓宽毕业设计的范围,使学生能够对设计全过程相关的设计环节都能参与,充分了解专题设计前导、后续的工作环节,培养学生设计总体的概念,以开阔学生的视野,毕业后尽快适应各种不同的新角色[1]。

轨道工程大类专业毕业设计方向涉及线路、桥梁、隧道、地下结构、岩土工程等[2]。对于一个新办专业而言,需要进行相关的毕业设计专题研讨。构建一个动态的毕业设计体系,根据教师和学生的特点,进行毕业设计选题,严格毕业设计过程,以保证设计内容高质量按期完成。

1毕业设计存在的问题

1.1设计内容单一

通过调研发现,铁路高校的轨道工程大类毕业设计可分为线路、桥梁、隧道和地下结构、岩土工程方向。比如轨道工程以轨道结构强度计算、缓和曲线设计、缩短轨计算及无缝线路稳定计算等内容为主的模式;桥梁工程以钢筋混凝土连续梁和连续刚构桥为主。指导老师根据毕业设计教学大纲拟定设计方面的题目,没有考虑学生毕业后的去处,学生毕业设计选择的余地很小。

1.2工作量不足

通过调研发现,由于大量计算软件的使用,如AUTOACD、ANSYS、桥梁博士、FLAC3D、同济启明星等软件。这样在较短时间内即可以完成结构的计算要求,如果仍按照结构计算和设计的要求做毕业设计,则显得设计工作量不够饱满。

1.3 毕业设计反馈情况

鉴于本专业的性质,有必要对轨道工程大类专业毕业课题进行改革,不仅是轨道工程毕业设计类型,让学生根据自己以后所从事的工作选择相关的题目,如线路、桥梁、隧道、基坑工程、深基础等。充实设计任务量,让学生在有限的时间里尽可能多的把所学的线、桥、隧专业知识应用于工程实践,掌握轨道交通工程设计、施工和维护的要点,增加就业机会。

2毕业设计内容的改进

2.1毕业设计题目拟定

拟在制定2014 届毕业设计任务书之前,由教研室主任牵头,了解每位教师的学习背景,和学生以后工作和学习的方向,尽量为同学制定切合工程实际的毕业设计题目。比如毕业生所签单位主要从事地铁隧道建设的公司,可以让教师增设与盾构隧道相关的论文组,对于考取研究生的学生,可以尝试让他们做毕业设计加论文的形式。通过这种“因才施教”制定题目的方法,让学生提前了解以后要从事的工作或研究,起到一个很好的衔接作用。

2.2有效利用计算机辅助软件

随着计算机辅助计算的发展,结构有限元软件、工程制图软件发展迅速,我院专门在第7学期为轨道工程专业的学生开设了ANSYS应用选修课,为毕业设计奠定了良好基础,另外AUTOCAD的广泛使用,为施工出图奠定了良好基础,为了保证工作量饱满,可以适当增加手算、编程计算和施工、管理方面的内容。

3过程控制方法

3.1充分利用两阶段实习收集资料

轨道工程专业学生将于第7学期在企业生产实习4周,学校规定要将毕业设计任务书于第七学期末之前下达给学生,第八学期第1-3 周为毕业实习阶段,在此两阶段实习过程中要求学生通过对工程实施过程的了解,进一步掌握所学的理论知识,尤其是去签约单位实习的学生,可以结合生产任务完成毕业设计。

3.2严格控制设计进度

在设计任务书中明确了各阶段应完成的任务,让学生了解各阶段的设计内容的份量和比重,结合自己的实际情况,参考教师建议的时间表,做出自己的控制性计划。在各个设计阶段,学生及时收集查阅资料,认真完成设计,指导教师亦通过学校的毕业设计管理系统,及时检查学生的阶段性成果,2周和教师完成一次面对面法的交流,以确保保质、按时完成设计任务。

3.3 明确量与质的要求

学校规定除了完成毕业设计以外,对于外文翻译、文字编排要求严格按照学校范本执行。由于办学规模的扩大,学生人数的剧增,教师队伍显得不足,以至于答辩时每组答辩教师人数偏少,答辩过程亦控制不够严格。根据教师人员专业情况,答辩拟按线路、桥梁、隧道分为三组、每答辩组有3-5位教师,每位学生自述设计内容10 分钟,提问5分钟。最后由答辩教师根据学生文本质量、论述情况和回答问题情况严格评分,保证答辩评分的合理性。

4资料整理

拟打算通过2至3届毕业设计的积累,初步建立轨道工程方向毕业设计指导的电子课件及设计资料等数据信息表,规范化毕业设计指导过程。构建一个规范化的毕业设计指导过程体系,在具有实际工程背景的條件下,完整、对口的获取设计资料,具有针对性积累参考资料。

5结语

以培养“卓越一线工程师”为目标的高等学校实践教学研究—高校轨道工程类毕业设计指导模式改革与探讨是完善我院教育教学改革的一个重要环节,是培养创新型毕业生的客观要求,理论上可以促进高校教学及管理环节合理有效,根据毕业设计中反映的问题,可以进一步完善轨道工程大类的毕业设计和专业知识的设置方式,使资源配置更趋合理,实践中可以培养具有鲜明特色、适应性强、能较好服务于社会、服务于行业的工程技术人员。

参考文献:

[1]中华人民共和国教育部.教育部办公厅关于公布卓越工程师教育培养计划2011年学科专业名单的通知(教高(2011)40号)[Z].

上一篇:3年级作文中秋节300字下一篇:《古风》唐诗鉴赏