证明不等式的方法(精选8篇)
1.证明不等式的方法 篇一
南通大学毕业论文
摘要
在高等数学的学习中,积分不等式的证明一直是一个无论在难度还是技巧性方面都很复杂的内容.对积分不等式的证明方法进行研究不但能够系统的总结其证明方法,还可以更好的将初等数学的知识和高等数学的结合起来.并且可以拓宽我们的视野、发散我们的思维、提高我们的创新能力,因此可以提高我们解决问题的效率.本文主要通过查阅有关的文献和资料的方法,对其中的内容进行对比和分析,并加以推广和补充,提出自己的观点.本文首先介绍了两个重要的积分不等式并给出了证明,然后分类讨论了证明积分不等式的八种方法,即利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用积分的性质、利用泰勒公式、利用重积分、利用微分中值定理,最后对全文进行了总结.
关键词:积分不等式,定积分,中值定理,柯西-施瓦兹不等式,单调性
南通大学毕业论文
ABSTRACT
When we study mathematics,the proof of integer inequality has always been seen as a complex content both in difficulty and skill.In this paper the proof methods of integral inequality are organized systematically to combine the knowledge of elementary mathematics and higher mathematics better.Also our horizons can be broadened,thinking can be divergencied and innovation ability can be improved,so as to improve our efficiency of problem solving.The paper is completed by referring to relevant literature,comparing and analysing related content, complementing and promoting related content.In this paper ,two important integral inequalities along with their proof methods are given first,and then eight approaches to proof integral inequalities are introduced,such as concavity and convexity of function,method of auxiliary function,important integral inequality, integral mean value theorem, integral property, Taylor formula,double integral and differential mean value theorem.Finally,the full paper is summarized.
Key words: Integral Inequality, Definite Integral,Mean Value Theorem,Cauchy-Schwarz Inequality, Monotonicty
南通大学毕业论文
1.引
言
不等式在数学中有着重要的作用,在数量关系上,尽管不等关系要比相等关系更加普遍的存在于人们的现实世界里,然而人们对于不等式的认识要比方程迟的多.直到17世纪之后,不等式的理论才逐渐的成长起来,成为数学基础理论的一个重要组成部分.众所周知,不等式理论在数学理论中有着重要的地位,它渗透到了数学的各个领域中,因而它是数学领域中的一个重要的内容.其中积分不等式更是高等数学中的一个重要的内容.
实际上关于定积分的概念起源于求平面图形的面积和一些其他的实际问题.有关定积分的思想在古代就有了萌芽,比如在公元前240年左右的古希腊时期,阿基米德就曾经用求和的方法计算过抛物线弓形和其他图形的面积.在历史上,积分观念的形成要比微分早.然而直到17世纪后半期,较为完整的定积分理论还没有能够形成,一直到Newton-Leibniz公式建立之后,有关计算的问题得以解决后,定积分才迅速的建立并成长起来.
本论文研究的积分不等式结合了定积分以及不等式.关于它的证明向来是高等数学中的一个重点及难点.对积分不等式的证明方法进行研究,并使其系统化,在很大程度上为不同的数学分支之间架起了桥梁.深刻的理解及掌握积分不等式的证明方法可以提升我们对其理论知识的理解,同时可以提高我们的创造思维和逻辑思维.
在论文的第三部分中对积分不等式的证明方法进行了详细的阐述.分别从利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用泰勒公式、利用重积分、利用微分中值定理、利用定积分的性质这八个方面给出了例题及证明方法.这样通过几道常见的积分不等式的证明题,从不同的角度,用不同的方法研究、分析了积分不等式的特点,归纳总结出了其证明方法.同时论文中也对有的题目给出了多种证明方法,这启示我们对于同一道积分不等式而言它的证明方法往往不止一种,我们需要根据实际情况采用合适的方法去证明,从而达到将问题化繁为简的目的.
南通大学毕业论文
2.几个重要的积分不等式
在高等数学的学习中我们遇到过许多重要的积分不等式,如Cauchy-Schwarz不等式,Young不等式等.它们的形式及证明方法都有很多种,在这一小结中我们将给出这两种积分不等式的证明方法.
2.1 Cauchy-Schwarz不等式
无论是在代数还是在几何中Cauchy-Schwarz不等式的应用都很广泛,它是不同于均值不等式的另一个重要不等式.其形式有在实数域中的、微积分中的、概率空间,F,P中的以及n维欧氏空间中的4种形式.接下来在这一部分中我们将对其在微积分中的形式进行研究.
定理2.1[1] 设f(x), g(x)在[a,b]上连续,则有
[f(x)g(x)dx]2{[f(x)]2dx} {[g(x)]2dx}.
aaabbb证明:要证明原不等式成立,我们只需要证
设Ftt2abaf2xdxat2bbgxdxfxgxdx0成立. a 222tfxdxgxdxfxgxdx,则只要证FbFa成立,aa由Ft在[a,b]上连续,在a,b内可导,得
Ftf2tg2xdxg2tf2xdx2ftgtfxgxdxaaa2222ftgx2ftgtfxgxgtfxdx atttt
ftgxgtfxdx0.
(2.1)a由(2.1)式可知Ft在[a,b]上递增,由ba,知FbFa,故原不等式成立.
证毕
实际上关于Cauchy-Schwarz不等式的证明方法有很多,这里我们采用的证明方法是较为普遍的辅助函数法,它将要证明的原积分不等式通过移项转变为了判断函数在两个端点处函数值大小的问题.通过观察我们可以进一步发现原Cauchy-Schwarz不等式能够改写成以下行列式的形式 t2 4 南通大学毕业论文
fxfxdxgxfxdx0,aabbbafxgxdxgxgxdxab由此我们可以联想到是否可以将它进行推广?答案是肯定的.下面我们将给出
CauchySchwarz不等式的推广形式.
定理2.2[2] 设fx,gx,hx在a,b上可积,则
hxfxdxfxgxdxgxgxdxhxgxdx0. fxhxdxgxhxdxhxhxdxaaabbbaaabbbaaabfxfxdxbgxfxdxb 证明:对任意的实数t1,t2,t3,有
bat1fxt2gxt3hxdx
bbbaaa2t12f2xdxt22g2xdxt32h2xdxbbaa
ba2t1t2fxgxdx2t1t3fxhxdx2t2t3gxhxdx0. 注意到关于t1,t2,t3的二次型实际上为半正定二次型, 从而其系数矩阵行列式为
babbaf2xdxbagxfxdxabhxb2fxdx
xfxhfaxgxdxdxbab2agxdxbaxhag0x.d x证毕 xdxgxhxdxh以上的推广是将Cauchy-Schwarz不等式的行列式由二阶推广到了三阶的形式,事实上Cauchy-Schwarz不等式是一个在很多方面都很重要的不等式,例如在证明不等式,求函数最值等方面.若能灵活的运用它则可以使一些较困难的问题得到解决.下面我们会在第三部分给出Cauchy-Schwarz不等式及其推广形式在积分不等式证明中的应用.
除了Cauchy-Schwarz不等式之外还有很多重要的积分不等式,例如Young不等式,相较于Cauchy-Schwarz不等式我们对Young不等式的了解比较少,实际上它也具有不同的形式且在现代分析数学中有着广泛的应用.接着我们将对Young不等式进行一些研究.
2.2 Young不等式
Young不等式,以及和它相关的Minkowski不等式,HÖlder不等式,这些都是在现代分
南通大学毕业论文
析数学中应用十分广泛的不等式,在调和函数、数学分析、泛函分析以及偏微分方程中这三个不等式的身影随处可见,是使用得最为普遍,最为平凡的知识工具.下面我们将给出积分形式的Young不等式的证明.
定理2.3[3] 设f(x)在[0,c](c0)上连续且严格递增,若f(0)0,a[0,c]且b[0,f(c)],则0f(x)dx0f1(x)dxab,其中f1是f的反函数,当且仅当bf(a)时等号成立.
证明:引辅助函数g(a)abf(x)dx,(2.2)
0aab把b0看作参变量,由于g(a)bf(a),且f严格递增,于是
当 0af1(b)时,g(a)0;当 af1(b)时,g(a)0;当 af1(b)时,g(a)0. 因此 当af1(b)时,g(a)取到g的最大值,即
gamaxgxgf1b
(2.3)
由分部积分得
f1(b)f1(b)0g(f(b))bf(b)作代换yf(x),上面积分变为
11f(x)dx0xdf(x),g(f1(b))f1(y)dy,(2.4)
0b将(2.2)式和(2.4)式代入(2.3)式得
abf(x)dxf(y)dyf1(x)dx,000ab1b即f(x)dxf1(x)dxab. 证毕
00ab 6 南通大学毕业论文
3.定积分不等式常见的证明方法
关于积分不等式的证明方法较为繁多,难度及技巧性也较大,因此对其进行系统的归纳总结是很有必要的.在这一部分中我们将归纳出利用辅助函数、微分中值定理、重要积分不等式及积分中值定理等证明积分不等式的方法.
3.1 利用函数的凹凸性
在数学分析以及高等数学中,我们常常会遇到一类特殊的函数—凸函数.凸函数具有重要的理论研究价值和广泛的实际应用,在有些不等式的证明中,若能灵活地利用凸函数的性质往往能够简洁巧妙的解决问题.下面给出一个例子加以说明.
定理3.1 若t定义在间隔m,M内,且t0,则t必为下凸函数.
定理3.2 设fx在[a,b]上为可积分函数,而mf(x)M.又设t在间隔mtM内为连续的下凸函数,则有不等式
1b1bfxdxfxdx. aabababb例3.1[4] 设fx在a,b上连续,且fx0,求证:fxdxaa12dxba. fx证明: 取u112, 因为u20,u30,u0 uuu即在u0时,yu为凸函数,故有
1b1bfxdxfxdx,aabababa即fxdxabba1dxbbfx12dxba.
证毕,故fxdxaafxba在上述的题目中我们可以发现在证明中常常先利用导数来判断函数的凹凸性,然后再利用凹(凸)函数的性质来证明不等式.然而对于实际给出的题目,我们往往需要先构造一个凹(凸)函数,然后才能利用其性质来证明我们所要证明的问题.
3.2 辅助函数法
辅助函数法是积分不等式证明中的一种非常重要的方法,往往我们会根据不等式的特点,构造与问题相关的辅助函数,考虑在相同的区间上函数所满足的条件,从而得出欲证明
南通大学毕业论文 的结论.在第二部分中我们用辅助函数法对Cauchy-Schwarz不等式进行了证明,下面将对用辅助函数法证明积分不等式进行进一步的探讨.
例3.2.1[5] 设函数fx在区间0,1上连续且单调递减,证明:对a(0,1)时, 有: fxdxaf(x)dx.
00a11x证明:令Fxf(t)dt 0x1,由fx连续,得Fx可导
x0则Fxfxxftdt0xx2 fxxfxfxf ,(0x). 2xx因为f(x)在[0,1]上单调减少,而0x,有fxf, 从而Ft0,Fx在(0,1]上单调减少,则对任意a(0,1),有F(a)F(1). 即
a111af(x)dxafxdx. 证毕 a,两边同乘即得f(x)dxfxdx,0000a本题根据积分不等式两边上下限的特点,在区间(0,1)上构造了一个辅助函数,进一步我们可以思考对于一般的情形,该题的结论是否依然成立呢?答案是肯定的.例3.2.2 设函数fx在区间0,1上连续且单调递减非负,证明:对a,b(0,1),且0ab1时,有: fxdx0aabf(x)dx. ab证明:令FxFx1xf(t)dt,0x1,由fx连续,得Fx可导, 则 x0x0fxxftdtx2 fxxfxfxf ,(0x). 2xx因为f(x)在[0,1]上单调减少,而0x,有fxf,从而Ft0,Fx在(0,1]上单调减少,则对任意0ab1,有F(a)F(b),即
1a1b ftdtftdt.
(3.1)
a0b0由f非负,可得fxdxfxdx.
(3.2)0abb结合(3.1)式和(3.2)式可得 即a1a1bfxdxfxdx. a0ba0abfxdxfxdx.
证毕
babbaa例3.2.3[6] 函数f(x)在[a,b]上连续,且fx0 试证:f(x)dx 8
1dx(ba)2. f(x)南通大学毕业论文
在例3.1中我们给出了本题利用函数的凹凸性证明的过程,在这里我们将给出其利用辅助函数法证明的过程.
证明: 构造辅助函数xftdtaxxadt2xa, 则 ft xfxxaxdt1ftdt2xaftafx
xaxftxfxdtdt2dt
afxaftxfxft2dt0, aftfx
所以x是单调递增的,即ba0,故fxdxabba12dxba. 证毕 fxabbxfxdxfxdx.
2a例3.2.4 设fx在a,b上连续且单调增加,证明:[7]
ba证明: 原不等式即为xfxdx则Fttft1t2a1taftf , a,t.
2abbfxdx0,构造辅助函数 aa2tattFtxfxdxfxdx ,ta,b,a2atat1fxdxfttaftfxdxa 2 2b因为at,fx单调增加,所以Ft0.故Ft在a,b上单调递增,且Fa0, 所以对x(a,b],有FxFa0.当xb时,Fb0.即
baxfxdxabbfxdx0,故原不等式成立, 证毕 a2通过以上几道题目的观察我们可以发现:
1.当已知被积函数连续时,我们可以把积分的上限或者是下限作为变量,从而构造一个变限积分,然后利用辅助函数的单调性加以证明.
2.辅助函数法实际上是一种将复杂的问题转化为容易解决的问题的方法.在解题时通常表现为不对问题本身求解而是对与问题相关的辅助函数进行求解,从而得出原不等式的结论.
3.3 利用重要积分不等式
在第2部分中我们给出了Cauchy-Schwarz不等式以及它的推广形式的证明过程,实际上Cauchy-Schwarz不等式的应用也很广泛,利用它可以解决一些复杂不等式的证明.在这一小节中我们将通过具体的例子来加以说明它在证明积分不等式中的应用.
南通大学毕业论文
例3.3.1[8] 函数fx在0,1上一阶可导,f1f00, 试证明:10112fxdxfxdx.
402证明:由fxftdtf0和fxftdtf10x1x
可得
f2xx0ftdt2xx1112dtf2tdtxf2xdx,(x0,), 0002111112dtf2tdt(1x)f2xdx,(x,1). xx02 f2xxftdt12因此 f2xdx 120112fxdx,(3.3)0811
2(3.4)fxdx.8010
112f2xdx将(3.3)式和(3.4)式相加即可以得到f2xdx[2]
112fxdx.
证毕 40b例3.3.2 设fx,gx在a,b上可积且满足:0mfxM,gxdx0,a则以下两个积分不等式
bafxgxdx2b2f2xdxg2xdxm2bag2xdx及
aaabbb bafxgxdx2MmMmbaaf2xdxg2xdx成立.
ab证明:取hx1,由gxdx0及定理2.2知
babaf2xdxfxgxdxfxdxbagxfxdxfxdx0 gxdxaab2abb0bab bafab2xdxagxdxafxdxagxdxbaafxgxdx22bb2b0.
2因此
bafxgxdx2baf2xdxab1gxdxba2bafxdxgxdx.
(3.5)
2b2a 10 南通大学毕业论文
由mfx可知 bafxdx2b22m2ba,bb2因而bafxgxdxafxdxagxdxmbaag2xdx.
22MmMm由于0mfxM,因此fx.
22化简得f2xMmMmfx, 两边同时积分得 f2xdxMmbaMmfxdx, aabb22由算数-几何平均值不等式可知
于是2baf2xdxMmbaf2xdxMmba,abbaabf2xdxbafxdx2Mm4Mm2.
1则ba bafxdxgxdxba2b2abfxdxba2af2xdxbaf2xdxag2xdx
b2Mma4Mmb
(3.6)f2xdxg2xdx.
ab由式(3.5)和式(3.6)可知
bafxgxdx2MmMm2baf2xdxg2xdx.
证毕
ab以上两道题分别利用了Cauchy-Schwarz不等式及其推广形式.我们在证明含有乘积及平方项的积分不等式时应用Cauchy-Schwarz不等式颇为有用,但要注意选取适当的fx与gx,有时还需对积分进行适当的变形.
3.4 利用积分中值定理
积分中值定理展现了将积分转化为函数值,或者是将复杂函数积分转变为简单函数积分的方法.其在应用中最重要的作用就是将积分号去掉或者是将复杂的被积函数转化为相比较而言较为简单的被积函数,从而使得问题能够简化.因此合理的利用积分中值定理能够有效的简化问题.下面将通过两道例题来说明.
定理3.3(积分第一中值定理)若f(x)在[a,b]上可积且mf(x)M,则存在 11 南通大学毕业论文
u[m,M]使f(x)dxu(ba)成立.特别地,当f(x)在[a,b]上连续,则存在c[a,b],使abbaf(x)dxf(c)(ba)成立.
定理3.4(积分第一中值定理的推广)若函数fx,gx在区间a,b上可积,fx连续,gx在a,b上不变号,则在积分区间a,b上至少存在一个点,使得下式成立
fxgxdxfgxdx.
aabb定理3.5(积分第二中值定理的推广)若函数fx,gx在区间a,b上可积,且fx为单调函数,则在积分区间a,b上至少存在一个点,使得下式成立 fxgxdxfagxdxfbgxdx.
aabb例3.4.1 设函数fx在区间0,1上连续单调递减,证明:对a,b(0,1),且0ab1时,有fxdx0aabf(x)dx,其中fx0. ab对于这道题目我们在3.2.2中给出了其利用辅助函数法证明的过程,实际上这道题目还可以用积分第一中值定理来证明,下面我们将给出证明过程.
证明:由积分中值定理知
0afxdxf1a, 10,a; fxdxf2ba,2a,b;
ab因为12,且fx递减,所以有f1f2, 1a1b1bfxdxfxdxfxdx, 0aaababaab故 fxdxfxdx. 证毕
0ba即
例3.4.2 设fx在a,b上连续且单调增加,证明:baabbxfxdxfxdx.
2a同样地,在之前的证明中我们给出了此题利用辅助函数法证明的过程,仔细分析观察这道题目我们还可以发现它可以用积分第一、第二中值定理的推广形式来证明,接着我们将给出此题在这两种方法下的证明过程.
证法一
bababab2证明: xxfxdxxfxdxabfxdx. aa2222bab 12 南通大学毕业论文
abab由定理3.4可知,分别存在1a,,b, 222使得 ab2aabab2xfxdxfx1adx, 22abbabab abxfxdxfx2abdx, 2222 babab因此xfxdxa28b2ff,由于fx在0,1单调增加的,且
210121,所以有 f2f10.
ab从而xfxdx0,故原不等式成立, 证毕 a2b证法二
证明:由定理3.5可知:存在a,b,bababab使得 xfaxdxfbxfxdxdx aa222b fafbab.
由fx单调增加及a,b知fafb0,a0,b0.
bab可得xfxdx0,故原不等式成立, 证毕 a2通过上述两道题目我们可以了解到积分中值定理在实际应用中起到的重要作用就是能够使积分号去掉,或者是将复杂的被积函数转化为相对而言较简单的被积函数,从而使问题得到简化.因此,对于证明有关结论中包含有某个函数积分的不等式,或者是要证明的结论中含有定积分的,可以考虑采用积分中值定理,从而去掉积分号,或者化简被积函数.
3.5 利用积分的性质
关于积分的性质在高等数学的学习中我们已经学到了很多,我们可以利用它来证明许多问题.在这里我们主要利用定积分的比较定理和绝对值不等式等性质对问题进行分析处理.
例3.5.1[9] 设fx在0,1上导数连续,试证:x0,1,13 南通大学毕业论文
有 fxfxfxdx. 0证明:由条件知fx在0,1上连续,则必有最小值, 1即存在x00,1,fx0fx, 由ftdtfxfx0fxfx0ftdt, x0x0xx fxfx0ftdtfx0x0xxx0ftdtfx0ftdt
0101 fx0dt0110ftdtftdt01ftftftdtdt 0
1fxfxdx.故原不等式成立, 证毕
013.6 利用泰勒公式
在现代数学中泰勒公式有着重要的地位,它在不等式的证明、求极限以及求高阶导数在某些点的数值等方面有着重要的作用.关于泰勒公式的应用已经有很多专家学者对其进行了深入的研究,下面我们将举例说明利用泰勒公式也是证明积分不等式的一种重要方法.
定理3.6(带有拉格朗日型余项的Taylor公式)设函数f(x)在点x0处的某邻域内具有n1阶连续导数,则对该邻域内异于x0的任意点x,在x0与x之间至少存在一点,使得:
f(x0)fn(x0)2f(x)f(x0)f(x0)(xx0)(xx0)(xx0)nRn(x)
(1)
2!n!f(n1)()其中Rn(x)(xx0)n1(在x与x0之间)称为拉格朗日型余项,(1)式称为泰勒公(n1)!式.
例3.6.1[10] 设fx在a,b上有二阶连续导数,fafb0,Mmaxfx,xa,b试证明:fxdxabba123M.
证明:对xa,b,由泰勒公式得
f
fafxfbfxf1xax21xbx2faxa,x, , 2fbxx,b, , 2ab122, 两式相加得 fxfxxfaxfbx24 14 南通大学毕业论文
两边积分得 fxdxabbaab1b22dx, fxxdxfaxfbxa24bbbabab其中 fxxdxxdfxfxdx, aaa22于是有 fxdx故 ba1b22dx, faxfbxaa8Mb22dxMba3. 证毕 fxdxaxbx8a12b例3.6.2[6] 设fx在a,b上有二阶导数,且fx0,ab求证 fxdxbaf. a2b证明:将fx在x0ab处作泰勒展开得到 22ab1abababab, fxffxfxx,.
222222
ababab因为fx0,所以可以得到 fxffx,222babababb对不等式两边同时积分得到 fxdxfbafxadx. a222bab因为xdx0, 所以有afxdxbaa2babf. 证毕
2通过这两道题目我们大致可以了解到当题目中出现被积函数在积分区间上有意义且有二阶及二阶以上连续导数时,是提示我们用泰勒公式证明的最明显的特征.一般情况下我们选定一个点xo,并写出fx在这个点xo处的展开公式,然后进行适当的放缩或与介值定理相结合来解决问题.
3.7 利用重积分
在一些积分不等式的证明中,由于被积函数的不确定,从而我们不能求出其具体的数值,这时我们可以将定积分转换为二重积分再利用其性质来求解.以下列举了3种利用重积分来证明积分不等式的方法,这种技巧在高等数学中虽然不常见,但却是很重要的,下面我们将通过3道例题来进一步说明.
南通大学毕业论文
3.7.1 直接增元法
命题一[11]:若在区间[a,b]上f(x)g(x),则f(x)dxg(x)dx.
aa
bb例3.7.1[11] 设f(x),g(x)在[a,b]上连续,且满足:
xaf(t)dtg(t)dt,x[a,b],af(t)dtag(t)dt,证明:axf(x)dxaxg(x)dx.
axbbbb证明:由题得f(t)dtg(t)dt, aaxx从而可以得到dxf(t)dtdxg(t)dt,即dx[f(t)g(t)]dt0.
aaaaaabxbxbx左式dx[f(t)g(t)]dt [f(t)g(t)]dxdt(其中D{(x,t)|axb,atx})aaDbx dt[f(t)g(t)]dx (bt)[f(t)g(t)]dt
atabbb b[f(t)dtg(t)dt][tf(t)dttg(t)dt][tf(t)dttg(t)dt]0.
aaaaaabbbbaaaabbbbbb则 tf(t)dttg(t)dt0 , 即xf(x)dxxg(x)dx. 证毕
在本题中我们将一元积分不等式f(x)dxg(x)dx的两边同时增加一个积分变量
aaxxbadx,使得一元积分不等式化为二元积分不等式,然后巧妙的运用转换积分变量顺序的方法达到证明一元积分不等式的方法.3.7.2 转换法
在利用重积分来证明积分不等式的时候,我们不但可以采用直接增元法,还可以采用转换法.关于转换法又分为将累次积分转换为重积分,以及将常数转换为重积分这两种形式.下面我们将依次来介绍这两种方法.1.将累次积分转为重积分
命题二[11] 若f(x)在[a,b]上可积,g(y)在[c,d]上可积,则二元函数f(x)g(y)在平面区域D{(x,y)|axb,cyd}上可积,且
Df(x)g(y)dxdyf(x)dxg(y)dyf(x)dxg(x)dx.
acacbdbd其中D{(x,y)|axb,cyd}
例3.7.2[11] 设p(x),f(x),g(x)是[a,b]上的连续函数,在[a,b]上,p(x)0,f(x),g(x)为单调递增函数,试证:
南通大学毕业论文
babap(x)f(x)dxp(x)g(x)dxp(x)dxp(x)f(x)g(x)dx.
aaabbbaaabbb
证明:由p(x)f(x)dxp(x)g(x)dxp(x)dxp(x)f(x)g(x)dx可知:
babap(x)dxp(x)f(x)g(x)dxp(x)f(x)dxp(x)g(x)dx0,aaabbaabbb令Ip(x)dxp(x)f(x)g(x)dxp(x)f(x)dxp(x)g(x)dx, ab下证I0;
Ip(x)dxp(x)f(x)g(x)dxp(x)f(x)dxp(x)g(x)dx
aaaabbbb
同理
p(x)dxp(y)f(y)g(y)dyp(x)f(x)dxp(y)g(y)dy
aaaabbbbbabbabp(x)p(y)f(y)g(y)dxdybabap(x)f(x)p(y)gydxdy
aap(x)p(y)g(y)[f(y)f(x)]dxdy.
(3.7)bbbIp(x)dxaabab(p)x(f)x(g)xdxab(p)x(f)xdx()pxgxdx
a
p(y)dybbap()xf()xg()xdxab(p)y(f)ydy(p)xgxdxab p(y)p(x)g(x)[f(x)f(y)]dxdy.
(3.8)aa
(3.7)(3.8)得
2Ibabap(x)p(y)[g(y)g(x)][f(y)f(x)]dxdy, 因为f(x),g(x)同为单调增函数,所以[g(y)g(x)][f(y)f(x)]0 又因为p(x)0,p(y)0,故 2Ibabap(x)p(y)[g(y)g(x)][f(y)f(x)]dxdy0,即I0.
证毕
2.将常数转换为重积分的形式
在例3.7.2中我们介绍了将累次积分转换为重积分,在下面的例3.7.3中我们将对常数转换为重积分来进行说明.我们可以发现有这样一个命题,若在二重积分中被积函数f(x,y)k,则可得到kdk(ba)2,其中D{(x,y)|axb,ayb}.
D例3.7.3函数f(x)在[a,b]上连续,且fx0试证:f(x)dx
abba1dx(ba)2. f(x)本题与前面的例3.1以及例3.2.3是同一道题目,在这里我们将利用重积分证明此题. 证明:原题即为 f(x)dxabba1dyd, f(y)D 17 南通大学毕业论文
移项可得(Df(x)1)d0, f(y)2(Df(x)f(x)f(y)1)d(1)d(1)d0, f(y)f(y)f(x)DDf(x)f(y)f(x)f(y)2)d0,因为f(x)0,f(y)0,所以20. f(y)f(x)f(y)f(x)所以即为证(D故 (Dbbf(x)f(y)12)d0 恒成立,即f(x)dxdx(ba)2成立, 证毕
aaf(x)f(y)f(x)通过以上三道例题我们可以大致了解到,在这一类定积分不等式的证明过程中我们一般先将所要证明的不等式转化为二次积分的形式,进一步再转换为二重积分,最后利用二重积分的性质或其计算方法得出结论.这种方法克服了数学解题过程中的高维数转化为低维数的思维定势,丰富了将二重积分与定积分之间互化的数学思想方法.
3.8 利用微分中值定理
微分中值定理是数学分析中的重要的一个基本定理,它是指罗尔中值定理、拉格朗日中值定理、柯西中值定理以及泰勒中值定理这四种定理.关于微分中值定理的应用也是很广泛的,证明不等式是微分中值定理最基本的应用之一.在这里我们将对利用柯西中值定理及拉格朗日中值定理证明积分不等式进行研究.下面将通过两个例子来具体说明这两个定理在证明积分不等式中的应用,以及不同的微分中值定理在证明不等式时的区别.
例3.8.1[12] 设fa0,fx在区间a,b上的导数连续,证明:
2baa1bfxdx1maxfx. x2a,b证明:应用Lagrange中值定理,a,x,其中axb,使得
fxfafxa, 因为fa0, 所以fxMxa, Mmaxfx,xa,b从a到b积分得
a bfxdxMbaM2bxadxMxadxx2
aa2bM1122bamaxfxba.即222babafxdx1maxfx.证毕 x2a,b 18 南通大学毕业论文
例3.8.2[13] 设函数fx在0,1上可微,且当x0,1时,0fx1,f00试证:
fxdxf121003xdx.
证明:令Fxx0ftdt,Gxf3tdt,02xFx,Gx在0,1上满足柯西中值定理,则
fxdx10210f03xdxF1F0FG1G0G02fftdt0f32ftdt0f2 01
2ftdtftdtf2f0202f11 , 01.
2fff所以 10fxdx2f2xdx.
证毕
01通过以上两道题目可以发现:
1.在应用Lagrange中值定理时先要找出符合条件的函数fx,并确定fx在使用该定理的区间a,b,对fx在区间a,b上使用该定理.若遇到不能用该定理直接证明的,则从结论出发,观察并分析其特征,构造符合条件的辅助函数之后再应用Lagrange中值定理.
2.在研究两个函数的变量关系时可以应用Cauchy中值定理,在应用该定理证明不等式时关键是要对结果进行分析,找出满足Cauchy中值定理的两个函数fx,gx,并确定它们应用柯西中值定理的区间a,b,然后在对fx,gx在区间a,b上运用Cauchy中值定理.
无论是Cauchy中值定理还是Lagrange中值定理在积分不等式的证明中都各具特色,都为解题提供了有力的工具.总之在证明不等式时需要对结论认真的观察有时还需要进行适当的变形,才能构造能够应用中值定理证明的辅助函数,进而利用微分中值定理证明不等式.
南通大学毕业论文
4.总
结
我们通过查阅有关积分不等式的文献和资料,并对其中的相关内容进行对比和分析后,将有关的内容加以整理并扩充形成了本文.在论文中给出了两个重要的积分不等式的证明以及总结了八种积分不等式的证明方法.然而由于自己的参考资料面不够广,参考的大多数文献都是仅给出了例题及其证明方法,而并没有给出进一步的分析,同时自己的知识面较窄,能力有限,导致还有很多难度较大的问题尚未解决.例如,在实际的问题中,还有一些证明方法是我们所不知道的,并且还有一些不等式并不能用本文所给出的八种方法来证明,这就需要我们进一步的思考与研究.今后我们应该更多的参考其他资料,充分拓展思路,以便于提出新的观点.
南通大学毕业论文
参考文献
[1]王宇,代翠玲,江宜华.一个重要积分不等式的证明、推广及应用[J].荆州师范学院学报(自然科学 版),2000,23(5):106 [2] 张盈.Cauchy-Schwarz不等式的证明、推广及应用[J].高师理科学刊,2014,34(3):34-37 [3] 黄群宾.积分不等式的证明[J].川北教育学院学报,1996,6(4):22-27 [4] 李志飞.积分不等式的证明[J].高等数学研究,2014,17(6):50-51 [5]郝涌,王娜,王霞,郭淑利.数学分析选讲[M].北京:国防工业出版社,2014 [6]张瑞,蒋珍.定积分不等式证明方法的研究[J].河南教育学院学报(自然科学版),2011,20(2):18 [7]林忠.一个积分不等式的几种证明方法[J].成都教育学院学报,2006,20(12):66 [8]刘法贵.证明积分不等式的几种方法[J].高等数学研究,2008,11(1):122 [9] 苏德矿,李铮,铁军.数学强化复习全书[M].北京:中国证法大学出版社,2015 [10] 李小平,赵旭波.定积分不等式几种典型证法[J].高等数学研究,2009,12(6):13-17 [11] 黄云美.重积分在积分不等式证明中的应用[J].杨凌职业技术学院学报,2014,13(3):27-33 [12] 葛亚平.积分不等式证明的再认识[J].河南教育学院学报(自然科学版),2015,24(3):18-20 [13] 王丽颖,张芳,吴树良.积分不等式的证法[J].白城师范学院学报,2007,21(3): 19-22
南通大学毕业论文
2.证明不等式的方法 篇二
在高等数学中证明不等式是一类十分典型的问题.证明不等式就是根据不等式的性质, 证明对于式中变量所允许的数值, 不等式恒能成立.不等式的种类繁多, 证明方法难易悬殊, 所用技巧各异, 没有一个统一的处理办法, 但是相当广泛的一类不等式可以用微分法和积分法给予论证.本文粗略地归纳总结了求证复杂、特殊的不等式的行之有效的一类方法——用微分法证明不等式.下面特别说明几种方法.
1.利用导数不等式定理证明不等式
定理 如果在区间[a, +∞) 上函数f (x) 与g (x) 满足条件:
(1) f (x) 与g (x) 都是n阶可导函数.
(2) f (k) (a) =g (k) (a) (k=0, 1, 2, …, n-1) .
(3) f (n) (x) >g (n) (x) (x>a) , 则当x>a时, 不等式f (x) >g (x) 成立.
在某区间上, 利用上面的定理证明不等式f (x) >g (x) 时只要考虑f (x) 与g (x) 在区间左端点小于n的各阶导数值及f (n) (x) 和g (n) (x) 在区间内的关系即可.
例1 求证:
证明 设辅助函数f (x) = (1+x) ln (1+x) ,
g (x) =arctanx, 则f (0) =g (0) =0.
求导
f′ (0) =g′ (0) =1.
再求导
因x>0, 显然有f″ (x) >g″ (x) , 即
(1+x) ln (1+x) >arctanx (x>0) .
2.利用函数单调性, 构造单调函数法
在证明不等式中, 这种方法最为常见, 构造方法常用的有两种:作差和作商, 如果证明f (x) >g (x) 一般优先考虑此方法.其通常步骤为:
(1) 构造函数F (x) =f (x) -g (x) 或
(2) 考察F (x) 在区间上及端点的连续性.
(3) 求出F′ (x) , 由F′ (x) 的符号来判断F (x) 在相应区间上的单调性.若一阶导不能直接证明, 进而可考虑二阶乃至更高次的导数.
若F (n) (x) >0, F (k) (a) ≥0, n≥1, a<x<b, 0≤k<n, 则F (x) >0.
(4) 求出F (x) 在区间端点处的函数值, 并根据单调性证明不等式.
例2 求证:sinx+cosx>1+x-x2 (x>0) .
证明 将不等式恒等变形为sinx+cosx-1-x+x2>0, 令f (x) =sinx+cosx-1-x+x2, 则有f (x) 在[0, +∞) 上连续可导, 且f′ (x) =cosx-sinx-1+2x.又f′ (x) 在[0, +∞) 上仍连续可导, 且f″ (x) =-cosx-sinx+2>0.故f′ (x) 在[0, +∞) 上单调增加, 于是有f′ (x) >f′ (0) =0 (x>0) , 从而有f (x) 在[0, +∞) 上单调增加, 故f (x) >f (0) =0 (x>0) .
3.利用单调极限证明不等式
若x<b, f (x) 递增或严格递增, 且x→b-0时, f (x) →A, 则f (x) ≤A或f (x) <A.
例3 求证:当x>0, t≤x时,
证明 当t=0或t=x不等式不证自明, 只需证x>0, t<x, t≠0的情况, 为此只需证
4.利用微分中值定理及泰勒公式证明不等式
如果欲证不等式经过简单变形一端可以写成
如果要证明不等式中有一部分是n次多项式, 且当利用函数单调性证明时判断其导数符号较困难时;或题设中函数具有二阶和二阶以上的导数, 且最高阶导数的大小或上下界可知, 这些情况均可以考虑利用泰勒公式证明.特别地, 对于泰勒公式, 当f (a) =f′ (a) =f″ (a) =…=f (n) (a) =0, f (n+1) (x) >0, x∈ (a, b) , 则
例4 求证:
∴由泰勒公式, 当x∈ (a, b) 时,
5.利用函数的凸凹性证明不等式
设f (x) 为定义在区间I上的函数, 若对于I上任意两点x1, x2和实数λ∈ (0, 1) 总有f (λx1+ (1-λ) x2) ≤λf (x1) + (1-λ) f (x2) , 则称f (x) 是I上的凸函数.
因为凸函数是用不等式定义的, 所以我们可以利用凸函数的这一特性来证明某些不等式.
凸函数定义的一般形式即詹森不等式:
若f (x) 为[a, b]上的凸函数, 对任意xi∈[a, b], λi>0 (i=1, 2, …, n) , 且
例5 设ai>0 (i=1, 2, …, n) 且不全相等, 求证:
arctan (λ1a1+λ2a2+…+λnan) ≥λ1arctana1+λ2arctana2+…+λnarctanan.
证明 考虑函数f (x) =-arctanx, x∈ (0, +∞) , 则
即f (x) 为 (0, +∞) 上的凸函数, 由詹森不等式即将f (x) 代入, 得
arctan (λ1a1+λ2a2+…+λnan) ≥λ1arctana1+λ2arctana2+…+λnarctanan.
最后提一下几个著名的不等式:Canchy不等式、Schwarz不等式、Höller不等式、平均值不等式, 这些不等式证明方法十分典型, 这里不再赘述.
参考文献
[1]张晓宁, 李安昌.高等数学方法[M].江苏:中国矿业大学出版社, 1998:103.
[2]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社, 1993.
3.不等式的证明方法与小结 篇三
关键词 不等式 方法 证明
不等式是数学基础理论的一个重要组成部分,也是中学数学的一个重要课题。它揭示了现实生活中广泛存在的量与量之间的不等关系,在现实生活和生产活动中有着重要的作用。就知识间的内在联系而论,不等式也是进一步学习函数方程等知识必不可少的基础,不少数学问题的解决,都将直接或间接地用到不等式的知识。本文,将就不等式学习中的难点——不等式的證明方法探讨一下。
一、比较法证不等式
比较法是证明不等式的最基本最重要的方法之一,它是两个实数大小顺序和运算顺序的直接运用。比较法可分为差值比较法(简称求差法)和商值比较法(简称求商法)两种。
(1)差值比较法
差值比较法的理论依据是不等式的性质:“ ”,其一般步骤为:1)作差:察不等式左右两边构成的差式,将其看成一个整体;2)变形:把不等式两边的差进行变形。或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个的平方等等(其中变形是求差法的关键,配方和因式分解是经常使用的变形手段);3)判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。
商值比较法的理论依据是:“若”,其一般步骤为:1)作商:将左右两边作商;2)变形:化简商式到最简形式;3)判断商与1的大小关系(就是判断商大于1或小于1)。
二、分析法证不等式
分析法是指从需证的不等式出发,分析使这个不等式成立的条件,把证明这个不等式转化为判断这些条件是否具备的问题。其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。
用分析法证明的逻辑关系为:。书写的模式是为了证明命题B成立,只需证明命题为真,从而有……,这只需证明为真,从而又有……,……这只需证明A为真,而已知A为真,故B必为真。这种证明模式告诉我们,分析法证题是步步寻求上一步成立的充分条件。
三、综合法证不等式
综合法是利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式。其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。其逻辑关系为:,即从已知A逐步推演不等式成立的必要条件从而得出结论B。
四、反证法证不等式
有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑。即要证明不等式A > B,先假设,由题设及其它性质推出矛盾,从而肯定A > B。
五、换元法证不等式
换元法是对一些结构比较复杂,变量比较多,变量之间的关系不甚明了的不等式,这时可引人一个或几个变量进行代换以便简化原有的结构或实现某种转化与变通,给证明带来新的启迪和方法。
六、放缩法证不等式
放缩法是要证明不等式A < B 成立不容易,而借助一个或多个中间变量通过适当的放大或缩小达到证明不等式的方法。放缩法证明不等式的依据主要有:
不等式的传递性;
等量加不等量为等量;
同分子(分母)异分母(分子)的两个分式大小的比较
七、数学归纳法证不等式
用数学归纳法证不等式主要是证明一些与自然数有关的不等式。
八 利用已知不等式法证不等式
用已经成立的不等式来证明不等式,往往可以收到事半功倍的效果,在我们学习中,常用的几个重要的不等式有Canthy 不等式,Jensen不等式,平均不等式,Bernoulli不等式等,熟悉并利用它们,在我们证明不等式的过程中是十分必要的。
以上是不等式证明中常用的几种方法,分别予于了说明。但由于关于不等式证明的问题其题型多变、技巧性强,加上无固定的规律可循,所以在对一题的证明中,往往不是用一种方法就能解决,而是各种方法的灵活运用,因此难度较大。本文是对不等式证明方法的终向剖析,要想更好的了解不等式的证明,也需要我们将其证明方法横向比较,较其优劣,争取在解题中寻找较简便的方法。
参考文献:
[1]不等式证明常用技巧[J].数学教学研究,1995.02.
[2]徐飞.不等式证明中的构造方法[J].数学通报,1981.03.
[3]赵云龙.不等式证明的几种常用类型及方法[J].天津教育,1995.02.
[4]雷小平.证明不等式的常用方法[J].太原科技,2002.01.
4.证明不等式的基本方法一 篇四
------比较法
教学目的:
以不等式的等价命题为依据,揭示不等式的常用证明方法之一——比较法,要求学生能教熟练地运用教学重点:比较法的应用
教学难点:常见解题技巧
一、复习引入:
两实数的大小关系。
我们知道,实数与数轴上的点是一一对应的,在数轴上不同的两点中,右边的点表示的实数比左边的点表示的实数大.例如,在图6一1中,点A表示实数a,点B表示实数b,点A在点B右边,那么ab. 我们再看图6一1,ab表示a减去b所得的差是一个大于0的数即正数.一般地:
若ab,则ab是正数;逆命题也正确.
类似地,若ab,则ab是负数;若ab,则ab0;它们的逆命题都正确.这就是说:
abab0; b a abab0; A B abab0. 图6—
1由此可见,要比较两个实数的大小,只要考察它们的差就可以了.二、讲解新课:
思考一:
3322已知a,b是正数,且ab,求证:ababab
尝试:作差比较,作差——变形——定符号
证明:∵(ab)(abab)=a2(ab)b2(ab)
=(ab)(ab)=(ab)(ab)
2∵a,b是正数,且ab,∴ab0,(ab)>0
3322∴(ab)(abab)>0,∴ababab 3322332222
2注:比较法是证明不等式的基本方法,也是最重要的方法
比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论
例2(P21例)如果用akg白糖制出bkg糖溶液,则糖的质量分数为
时糖的质量分数增加到a,若上述溶液中添加mkg白糖,此bam,将这个事实抽象为数学问题,并给出证明。bm
ama 此即:已知a, b, m都是正数,并且a < b,求证:bmb
分析:这是一道分式不等式的证明题,依比较法证题步骤先将其作差,然后通分,由分子、分母的值的符
证明:amab(am)a(bm)m(ba)bmbb(bm)b(bm)
∵a,b,m都是正数,并且a 0 ,b a > 0 ∴amam(ba) 0即bmbb(bm)
思考:若a > b,结果会怎样?若没有“a < b”这个条件,应如何判断? 例3.在⊿ABC中a、b、c分别是A、B、C的对边,S是三角形的面积求证: c2a2b24ab43S
222证明:在⊿ABC中cab2abcosC,S1absinC
2c2a2b24ab4S2abcosC4ab23absinC所以134ab(1cosCsinC)4ab[1C)]226
由于a,b∈(0,+∞)又sin(C)1 6
222则4ab[1sin(C)]0即cab4ab43S 6
abab2思考二: 例4.设a, b R+,求证:ab(ab)
方法2:作商法abba
a1b 理论根据: aab,b01bab0
操作方法:“作商——变形——判断商式大于1或小于1”
证明:(作商)aabb
(ab)ab
2aab2bba2a()bab2
a当a = b时,()bab2
1aba0,()2bab2a当a > b > 0时,1,b1
ab
2a当b > a > 0时,01,b
∴ab(ab)abab2aba0,()2b1(其余部分略)
注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论
2.比较法之二(作商法)步骤:作商——变形——判断与1的关系——结论
三、练习
1.求证:x2 + 3 > 3x
证明:∵(x2 + 3) 3x = x3x()()3(x)
∴x2 + 3 > 3x
2. 已知a, b都是正数,并且a b,求证:a5 + b5 > a2b3 + a3b2 232232232230
4证明:(a5 + b5)(a2b3 + a3b2)=(a5 a3b2)+(b5 a2b3)
= a3(a2 b2) b3(a2 b2)=(a2 b2)(a3 b3)
=(a + b)(a b)2(a2 + ab + b2)
∵a, b都是正数,∴a + b, a2 + ab + b2 > 0
又∵a b,∴(a b)2 > 0∴(a + b)(a b)2(a2 + ab + b2)> 0
即a5 + b5 > a2b3 + a3b
23.例4后半题
四、小结 :我们一起学习了证明不等式的最基本、最重要的方法:比较法,1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论
2.比较法之二(作商法)步骤:作商——变形——判断与1的关系——结论
五、作业
5.证明不等式的几种方法 篇五
黄启泉
04数学与应用数学1班30号
近几年来,有关不等式的证明问题在高考、竞赛中屡见不鲜,由于不等式的证明综合性强,对学生的思维灵活性与创造性要求较高,因此,许多考生往往“望题生叹”,本人通过对该类题目认真分析与研究,总结以下几种解题方法,下面结合一些热点题加以简要的介绍。
1. 运用重要不等式法,一些重要不等式如均值不等式,柯西不等式等在证明一些不等式题目中往往能取得一种立杆见影的效果。1.1运用运用均值不等式
例1,已知a,b,c,d都是正数,求证:(abcd)(acbd)4abcd
证明:由a,b,c,d都是正数,得
abcd20,acbd2
0.
(abcd)(acbd)
abcd.即(abcd)(acbd)4abcd 1.2运用柯西不等式
例2.设a,b,x,y,kR,k1,且a2b2
2kab1,x2
y2
2kxy
1.axby
证:因为a2
b2
2kab1,所以
(a-kb)2
2
1(1)
同样的,2(kx-y)2
1(2)运用柯本不等式式解:
(1)左*(2)左[(akb(kxy)]
axby)
故axby
成立
2.配凑常数法
常数在不等式证明当中有着举足轻重的作用,充分发挥好常数的“过渡”功能,将使证明的解决如虎添翼。例3.已知a,b,cR,求证
acb+c
bca
ab
32
证明,给每个式子配以常数k有
a
bcb+cca
ab3(a
bcb+c
1)(ca1)(ab1)(abc)(1b+c
1ca
1ab)1112[(bc)(ca)(ab)](b+c
1ca
ab)
12(111)
所以
abb+c
ca
c9ab
3
32,当
abc时,可以取等号,故命题得证。
3.待定系数法
当直接运用重要不等式较难达到目标时,有时可引入参数作为待定系数再根据题意解方程达到目标。
例4.设x,y,z是不全为零的实数,求
证
xy2yzx2
y2
z
证:对不等式左边分子式分母直接运用均值不等式显然达到目标,为此引入待定系数a,b从而有:
xy2yz2
2
1zb
a1x2
y221222abybz
a
2x2
1212abyz2
b令a1b
1即ab2
2a
b
解
xy2yz
x
y2z
即
xy2yzx2
y2
z
4.向量法
向量做为中学数学一种新的工具,具在证明不等式中有时能达到异曲同工之效。例5.已知x,y,z是非负实数,具x+y+z=1求证:
证:构造向量:a
xy,x,y,byz,y,z,则
c
zx,z,x.abc(2,1,1),由abcabc
代入原式成立易知xyz13
时取等
号。
5.倒数变换法
这里所说的倒数变换是指将每一个字母都用其倒数的形式来代替,对一些分式不等式采用这一变换后,有时可将式子的结构化简从而为不等式的证明找到契机。
例6.已知abcR,且abc1,求证:
11a
bc
b
ac
1c
ab
证:
令A=
1a,B
b,C1
c,则
A,B,CR,且ABC=1
此式左边=
A+B+CA+B+C+B+CB+C
+
A+C
+
AA+B
-3
=12B+C+A+C+A+B1
11++B+CA+CA+B3
92-3=32
即原命题得证 注:倒数变换方法实质是通过变换达到化繁为简的目的,或将不熟悉的不等式转化为熟透的不等式,需要注意的是,变量代换后的取值范围可能有变化
6分母置换法
一般地,在分子不等式中当一个分式的分子较简捷而分母相对较复杂时,通过对分母进行代换可以使解题思路变得更顺畅。例
7.已知abc,R求证
a
bcb3c
8c
49a
347
a2。b 48
证:令b3
c,则
x
a9cb3c
b8c4a
3a2b
1y4x1z98yx614zxz
9z61
x16yz48
由均值不等式解
1y4x1z9x14z8xy9y61
6xz
16yz48118*4
16*6
16*12
61484748
当且仅当y2x,z3x时取等号。
故原命题得证。
7.数形结合法
恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学.”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又提示其几何直观使数量关系的精确刻画与空间形式的直观形像巧妙和谐地结合在一起,充分利用这种结合,寻找解题思路,有时能使问题化难为易,化繁为简。例
8.已知x0,x2
yz2
1,求证:5
xy
6
证:令z
xy
4z2
x
2
x2
y
该式,的分子可视为点P,x
y到
直
线
lx
0的距离平方,分母可视为
P点与原点的距离平方,因此利用几何意义将原问题进行代换,作PA⊥l于点A设
∠AOP
60o
90o,PA
易知
OP
以
sin=
PAOP,sin1
此时-2=4s2
in,可
3得4当.x0y,时0取最小值,5.当x,y32
时,取最大值。
56即命题得证.8行列式法
这是一种比较特别又新颖的解法,虽然不常见,但有些不等式题采用此法可以显得很容易。例
9.若,,R,求
证
3s
insin
i
n证
:
令
usinsinsin
则
usincossincossincos
sincossincossincos
sin
cos1sin
cos1sin
cos
构
造
点
As
Bi
C
ns
则uSABC
n
很明显,上面三点A,B,C都在单位圆
x2
y2
1上因为圆内接三角形以正三角
形的面积最大所以当ABC为正三角形时,SABC取得最大
值,于
是
u
故命题得证.9.三角换元法
三角函数蕴涵着丰富的公式与性质,求运用这些公式与性质巧妙地解决某些不等式的证明问题 例
10.设正数a,b,c,x,满y足z
cybza,azcxb,bxayc求证:
x
y1x
1y
z
1z
证:由
条
件
解ba
z
x
b
c
0即b 2
bcxa2
b2
c2
0故2
x
bca
2bc
同
理
可
得y
c2
ab
bca
2ac,z
2ab
因a,b,c,x,y,z均为正数,综合上面3式可得
b2
c2
a2,a2
c2
b2,a2
b2
c2
故以a,b,c为边长可构造一个锐角三角形.令xcosA,ycosB,zcosC 则
原
不
等
式
转
化为cos2
Acos2
Bcos2
C1cosA
1cosB
1cosC
又令
ucotA,vcotB,wcotC.则u,v,wR,uvvwwu1
u2
1uvuw,且v21uvvw,w2
1uwrw,因
此
w
cos2
A2
1cosA
1
x
a
yc
a
u2u
2
bza
3u2
u
u2
u11
2uvuw
cos2B
v3
11
同理
1cosBv2uvuw
cos2
C3
111cosC
w
w2uw
vw
所
以
不等式左边
u2
v2
w2
1u3v3w3v3u3v3
2uvuvuv
u2v2w2
1
u2uvv2v2vww2u2uvw22
12
uvvwuw
当且仅当uvw时等号成立 此时abc,xyz12
故原命题得证.10.局部突破法
对于和式型不等式,不妨先研究局部性
质,导出一些局部不等式,再综合运用这些局部不等式推断出整体性质.例11.设x,y,zR
且x4
y4
z4
1.求
证
x
3z
31x
y
31y
1z
.证.先求x1x8的最大值.注
意
到
8x
1x
8x
1x8
1x8
1x
8个
9
8x881x8
89
9
因此x
1x
x
从而
x4
1x8
x
x
1x
8同理y
y4
z
3z4
1y
1z
故x
1x
xy3
z
当且仅当xyz.故原不等式得证.11.利用配对法
如果不等式AC中式子A的各项为形如
m
mn的和形式,则配上对应项为
n
mn的式子B,那么AB必定是一个整
式形式,再对AB进行适当变化有时可以找到解决问题的办法.例
12.已知x
1xxnR2,且xxxn1
.求证
x2
n
1x
x1
1x
x2
1x
1n
n1
.n
证明:令不等式左边=A,B
1
则
i1
1x
i
n
BA
1x2n
i
(1xi)n1
i11x
ii1n
n
222
BA
1xi
11nxi
i11x
n2
i
i1n(1xi)
n
n
n12nxi2
n22n11i1
n(1x
i)
i1
n2
1x2
in
n2n1
n2
B2
A
2n1n
B2
2n1
n
n1A2
从而易推得A
1n1
使原不等式成立.有时,不等式中的各项是
mmn
(其中
m为常数)的形式,此时可先将其化为
1m
mn
或
mn的形式,然后再应用上述配
对方法.12.引入复数法
复数的代数形式,三角形式与几何形式将代数,三角与几何进行有机地结合.因此,巧妙运用复数的性质也可以使很多问题”柳暗花明”
例13.若x,y,zR
且xyz1.求证
:
证
:
经
配
方
解
x2y2
xy12
x2y2
同理:y2z2
yz1yz22z
2
x2
z2
xz
1zx2x
2
1
构造复数:z1xyyi,22
1
z2yzzi,221
z3zxxi
22
解z1z2z2z1z2z332
xyz
xyzi
(当且仅当xyz
时,等号成立)
故命题得证.当然不等式证明方法远不止这些,不过从上面这些证法可以看出遇到不等式证明定要想办法把它向我到熟悉的不等式转化,这是各种证法的共同特征,应该说也是证明所有不等式的共同突破口。
参考文献:
6.中学数学不等式证明的常用方法 篇六
不等式证明是中学数学的一项基本内容,证明不等式的方法多种多样,但常见的几种方法有:放缩法、判别式、换元法、函数法、数学归纳法等[4].在这里通过学习,总结前人巧妙的证明方法,使中学生可以轻松地理解并掌握进而灵活运用常用的不等式证明方法解决有关不等式的证明问题.下面试图通过一些例子来说明.一、一般思路
不等式证明的总体思路是比较不等式两边式子的大小,一般用比较法证明不等式.比较法证明不等式可分为差比法和商比法,它是不等式证明中最基本思路.明确作差、作商比较法证明不等式的依据,理解转化,使问题简化是比较法证明不等式中所蕴含的重要数学思想,掌握作差、作商后对差式、商式变形以及判断符号的重要方法,并在今后学习中继续积累方法.但比较法证明不等式主要运用了综合法和分析法.利用题设和某些证明过的不等式作为基础,再利用不等式的性质推出欲证的不等式,称为综合法.思路是“由果索因”,即从题设条件或已知证明的结论﹑公式出发,逐步推理,得到欲证的不等式,这种方法条理清楚,易表述.
分析法是从求证的不等式出发,分析使这个不等式成立的条件,只要使不等式成立的条件已经具备,就断定不等式成立.思路是“执果索因”, 即从要证明的不等式出发,寻找使这个不等式成立的某一“充分”的条件,为此逐步往前追溯,一直追溯到已知便于探求解题思路.二、典型方法分析
(1)放缩法
不等式的传递性,若A>B,B>C则A>C告诉我们要证明A>C时就可以先把A缩小B,再把B缩小为C,从而证明A>C;同样A放大为B,再把B放大为C,可以证明A<C. 例1 求证:1+12131n2n(nN).
分析:注意观察不等式左边的形式,显然左边要比右边复杂,所以我们应选择从左到右来证明.先取有限项进行观察,从它们的规律分析进而得证.一般地,如果是分式就考虑放大(缩小)分子(分母).如本题就是利用放大分母
1n
=22n2nn12(nn1),每一项都可由此规律放大分母,从而易得证.但值得注意的是放大或缩小要适当.证明:1n=22n2nn12(nn1),∴1312<2(2-1),2(32),„„
1n11n2(n1n2),<2(nn1).
121n以上各式相加,得1+所以原不等式成立.
+„<2n-1<2n.
【评注】利用分数的性质,可适当地增项﹑减项,运用放缩法证明[4],但要注意放缩法要适度,否则不能同向传递.
例2 已知数列an,an=122334Ln(n1)
n(n1)(n1)2an<.求证:22n(n1)是前n个自然数的和,与an比较只须缩小为12﹑2﹑3„„n即可.仿此把各项放大2﹑3﹑„„(n+1)所得结论过弱,只能放
n(n1)弃,于是转而联想到关系式n(n1),右边的不等式证明,由此可证
2得.
证明 由于 分析: 注意到左边的式子an=122334n(n1)>122233n2 =1+2+3+„+n =n(n1)22n1n(n1)<
22又由n(n1)3572n1有an=122334n(n1)<
22221(n1)
2<[1357(2n1)]22n(n1)(n1)2an<综上所述. 22
【评注】放缩法的基本思路: ab,bc,ac.[3]技巧与方法:(1)适当添上
131或舍去某些项,例:(a)2(a)2;(2)如果是分式则需放大或缩小分子
242或分母,如:11111 2放大缩小切记适度.k(k1)kk(k1)k1k(2)判别式法
有些要证明的不等式,它的已知条件是一些等式,如果这些条件可以转化为一个含参数的一元二次方程式;或者要证明的不等式可以化为一个一元二次不等式,这时往往可以用判别式求证[2].
2xyz8x70例 已知x,y,z是实数,且满足条件22
yzyz6x60求证:1x9.证明 由已知等式得:
yz=x28x7
(yz)2yz6x6 x28x7+6x-6=x2-2x+1=(x-1)2 于是y,z是方程t2(x1)t(x28x7)=0的两个实根 △=(x-1)2-4(x28x7)>0解得1x9.【评注】本题可以将原方程组变形得到yz和yz的表达式,再把x看作常数写成关于t的一元二次方程,最后用判别式来求解.用判别式证明不等式,常常把要证明的内容通过韦达定理以及其他代数变形手段,放到某个一元二次方程的系数中去.(3)换元法
有些不等式可以把其中一些元素换成另一种元素,从而使条件之间的数量关系明朗化,便于解决问题[2].
1125例1 设a,bR且a+b=1.求证:(a)2(b)2.ab2 证明: a+b=1可设:a=sin2,b=cos2
x2y2xy 又 则
2211(a)2(b)2
ab111(ab)2 2ab1112)=(sin2+cos2+2
2sincos2142125)(14)2=(1.
2sin2222例2 设a,b>0,求证:3a3b+3a3b23a. 证明:设3a3b=m,3a3bn,则m3n3=2a 于是要证的不等式等价于(mn)3<4(m3n3)只要证:4(m3n3)-m33m2n3mn2n30 而3m3+3n33m2n3mn2 =3m2(mn)3n2(nm)
=3(m-n)(m2-n2)=3(m-n)2(m+n)>0 ∴(mn)34(m2n2)成立.【评注】本题巧用三角代换,使不等式的证明变得简捷明了.当所给的条件复杂,一个变量不易由另一变量表示时,可考虑三角代换,将两个变量都用一个参数表示.换元法中最常用的是三角代换,三角代换法多用于条件不等式的证明[3].具体代换方法有:(1)若a2b21,可设acos,bsin(为参数);(2)若a2b21,可设arcos,brsin(为参数);
(3)对于1x2,x1,由cos1或sin1知,可设xcos或xsin;(4)若xyzxyz,由tanAtanBtanCtanAtanbtanC知,xtanA,y
tanB,ztanC.(ABC)
(4)函数法
有些不等式的证明可以借助于函数的一些性质,如单调性,函数的值域等进行证明.例:求证:|x1x2xn||xn||x1||x2| 1|x1x2xn|1|x1|1|x2|1|xn|xx的形式,于是可以构造函数f(x)= 1x1x分析:要证不等式的每一项结构都是证明: 构造函数f(x)=
x 1xf(x1)f(x2)x1xx1x2 21x11x2(1x1)(1x2)当x1x20时,显然f(x1)f(x2)所以函数f(x)当x0时是增函数
Q|x1x2Lxn||x1||x2|L|xn|
x1x2xn|xn|1 1|x1x2xn|1|x1|x2||xn|1|x1||x2||xn|
|xn||x1||x2|1|x1|1|x2|1|xn|
7.浅谈不等式的证明方法 篇七
对于两个量,我们比较它们之间的大小,证明一个量大于或者小于另一个量,这就是不等式证明的实质过程。下面归纳了一些不等式的证明方法。
1 数学归纳法
数学归纳法有很多表达形式,其中最基本和最常用的是第一数学归纳法和第二数学归纳法。
第一数学归纳法:设P(n)是一个(关于正整数n)的命题。如果:
P(1)成立;(2)设P(k)成立,可推出P(k+1)成立,那么P(n)对一切正整数都n成立.
第二数学归纳法:设P(n)是一个(关于正整数n)的命题。如果:
P(1)成立;(2)n燮k(k为任意正整数)时P(n)(1燮n燮k)成立,可推出P(k+1)成立,那么P(n)对一切正整数都n成立。
在遇到与正整数n有关的不等式时,往往可以想到采用数学归纳法去证明。下面举出对应实例:
证明:由平均不等式,得
下面证明对一切正整数n,有
因此(1)对一切正整数n成立,当然对2005也成立。
(2)假设n=k时,。
当n=k+1时,由相应函数是增函数,
因此,要证不等式成立,只要证
这已成立,所以n=k+1时,不等式也成立。
由(1)和(2)可知,对一切正整数n成立。
注意:本题在推证n=k+1时,引入了,与函数有效结合起来,这既是本题的难点,也是突破点,是要极其重视的地方。
2 比较法
一般情况下我们认为,比较法就是通过确定两个实数a与b的差或a与b商的符号或者是其符号的范围来确定a与b大小关系的方法。比较法写成公式的形式大致有如下两种:
若证A叟B,只要证A-B叟0即可;
若B>0,证A叟B,只要证叟1即可。
在用比较法时,我们经常需要对不等式进行一些适当的处理,比如作差、分解、拆项、合并等等方法的处理,这样才能使得用比较法证明不等式更加简便。
下面举出相对应的计算实例:
例2.1实数x、y、z满足,求证:。
证明:
注意:本题中常数4的变换,是通过拆分项再合并所得到的,因此需要学生有一定计算基础与观察的能力。
例2.2设a,b,c,求证:
证明:由于不等式是关于a,b,c对称的,不妨设,于是
3 换元法
我们知道,换元法在不等式的证明中也是很常见的方法之一,通过对不等式添加或者去掉某些元素,使原来的未知量(或变量)变换成新的未知量(或变量),从而更容易达到证明原有不等式的目的。
换元法一般可分为三角换元、整体换元等,下面举出对应的实例。
例3.1已知,证明:。
证明:已知(求证式中分母含a2,b2),
同样的题目,我们用整体换元法重新做一次。
例3.1已知a2+b2=1,证明:。
证明:设,把代入上述方程并简化得:,由
说明此种方法就是把a2+b2看作一个整体,设为t,换元后使方程变的简单。
4 放缩法
当直接证明不等式A叟B比较困难的情况出现时,我们可以试着去找一个中间量C,使得A叟C及C叟B成立,自然就有A叟B成立。那么我们就可以理解为“放缩”就是将A放大到C,再把C放大到B,反过来说也可以。常用的有“添舍放缩”和“分式放缩”。
例4.1设a,b,c,证明:
所以原不等式成立。
注意:在证明分式不等式的时候,通分只有在极其特殊的情况下才进行的,比较简便的一种思想就是“放缩”。
以上简单的归纳了几种证明不等式的方法,其他证明不等式的方法还有很多这里就不做详细的介绍了。
在解决不等式过程中,由于不等式的不同,证明的方法也各有不同。在证明不等式时,应注意多种证明方法的综合应用,绝不可以将某种证法看成是孤立的。
总之,解题有法,但无定法,遵循规律,因题择法,想要熟练掌握这些技巧,必须多实践,悟出规律。
参考文献
[1]张禾瑞,高等代数1997
[2]赵忠彦.用数学归纳法证明一类不等式的技巧[J].数学通讯2007
8.浅谈证明不等式的几种方法 篇八
一、单调性证明不等式
若f(x0)=0而当x>x0时f’(x)≥0,且f(x)在x0点右连续(f’(x)不恒为零),则因f(x)单调增而有f(x)f(x)f(x0)=0(x>x0);若f(x0)=0,而当x>x0时f(x)≤0,且f(x)在x0点右连续(f’(x)不恒为零),则因f(x)单调减而有f(x)
例1:证明:
证明: 设
所以f(x)在(0,+∞)内严格递增。
有。从而。再考虑函数 ,有
故g(x)在(0,+∞)内严格递减。
有 。即 。
从而
用函数单调性证明不等式,一般步骤如下:
找一个函数f(x),研究f'(x)的正负;
找f(x)的起点或终点时的值。
二、用求极值的方法证明不等式
若 min f(x)≥0则f(x)≥0;若 max f(x)≤0,则f(x)≤0
例2:证明不等式1+xln(x+√1+x2)≥√1+x2x∈(-∞,+∞)。
证明:设函数f(x)=1+ln(x+√1+x2)-√1+x2,
则
令f(x)=0,得驻点x=0。当x>0时,f'(x)>0;当x<0时,
<0所以x=0是函数f(x)的唯一的极小值点。当x∈(-∞,+∞)时,恒有f(x)≥f’(x)=0。
即1+xln(x+√1+x2)≥√1+x2,x∈(-∞,+∞)。
三、函数的凹凸性证明不等式
设f(x)在,(a,b)内有定义,若对于任意的x1,x2∈(a,b),x1 则称f(x)在(a,b)是凸的,若式(*)中不等号相反,则称f(x)是凹的。 例3:证明: 证明:考虑函数f(x)=xlnx,f'(x)=lnx+1,。 故f(x)为(0,+∞)上的凸函数,从而 ; 即 所以 四、将不等式问题转化为函数问题 例4:设b>a>0,求证: 证明:设函数 所以函数f(x)在[a,+∞)上单调增加, 当x>a>0,有f(x)>f(a)>0 【证明不等式的方法】推荐阅读: 证明不等式的若干方法06-27 积分不等式的证明10-15 定积分中不等式的证明06-28 不等式证明10-01 高中数学知识点总结_不等式的性质与证明06-29 分式不等式放缩、裂项、证明08-09 利用函数凹凸性质证明不等式08-30 关于柯西不等式的证明07-07 关于不等式的高考真题09-07 不等式的基本性质练习09-21