04 第四节 大数定理与中心极限定理
1.04 第四节 大数定理与中心极限定理 篇一
大数定律与中心极限定理的若干应用
摘要:在概率论中,大数定律是比较重要的内容,他主要就是以严格的数学形式来表达概率中随机现象的性质,也是一定稳定性的表现。大数定律在数学的应用中比较重要,一般都是利用大数定律和中心极限定理一起来应用。本文根据在不同的条件下存在的大数定律和中心极限定理做了具体的分析,对几种比较常见的大数定律进行了介绍,结合他们条件的不同,分析了不同数学模型的特定,并在各个领域应列举它们的应用。这也是将理论具体化的一种表现形式,使得大数定律与中心极限定理在实际的生活中应用更加广泛,应用价值更深一层。关键词:大数定律;中心极限定理;应用;范围 1前言
大数定律是概率历史上第一个极限定理。由于随机变量序列向常数的收敛有多种不同的形式,按其收敛为依概率收敛,以概率 1 收敛或均方收敛,分别有弱大数定律、强大数定律和均方大数定律。常见的大数定律有伯努利大数定理、辛钦大数定律、重对数定理等等。中心极限定理是是概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。
概率理论是数理理论都是研究现实世界随机现象的一种统计科学,大数定律与中心极限极限定理都是数学重要的组成部分,在自然学科与经济发展中有着广泛的应用,大数定律与中心极限定理都是重要定理,也是概率论与数理统计的一个枢纽中心,大数定律主要阐明的是平均结果具有稳定性,证明了在样本的条件下,样本平均值与总体平均值是一样的,这也是算术平均值法则的基本理论,在现实的生活中,经常可以看到这样的数据模型。取一个物体的平均值,一般都是反复测量的结果,当时测量结果在不断增大时,算术平均值的偏差就会越来越小,也是1nni1的偏差也是越来越小。这种思想贯穿在整个的概率理论中,并且占有着重要的左右,在其他的数学领域中占有着重要的地位,中心极限定理与大数定律相比就更加详细,中心极限定理是在严格的数学形势下阐明的条件,无论总体是怎样分布,样本的平均值都是呈正态的形式分布,中心极限定理也是以正态分布作为广泛的理论基础应用。目前无论是在国内还是在国外,大数定律与中心极限定理已经被广泛的研究,尤其是在实际生活中的应用,银行业就是根据中心极限定理来发展,而大数定律更是应用在保险行业,很多研究者在这个领域都研究了具有一定价值的成果。推广大数定律与中心极限定理的应用问题是一个非常有研究价值的方向,通过这些问题来不断的推广,这样不仅仅能够加深大叔定理与中心极限定律的理解,并且很多问题也能够加以解决。2相关定义定理以及应用 2.1相关定义
定义:设X1,X2,,Xn,是一个随机变量序列,a是一个常数,若对于任意正数,有limPXna1,nP则称序列X1,X2,,Xn,依概率收敛于a.记为Xna.切比雪夫不等式
设随机变量具有有限的期望与方差,则对0,有
P(E())D()2或P(E())1D()2
证明:我们就连续性随机变量的情况来证明。设~p(x),则有
(xE())2P(E())xE()p(x)dxxE()D()2p(x)dx
12(xE())p(x)dx22
该不等式表明:当D()很小时,P(E())也很小,即的取值偏离E()的可能性很小。这再次说明方差是描述取值分散程度的一个量。
切比雪夫不等式常用来求在随机变量分布未知,只知其期望和方差的情况下,事件{E}概率的下限估计;同时,在理论上切比雪夫不等式常作为其它定理证明的工具。
定理1(切比雪夫大数定律)
设{n}是相互独立的随机变量序列,每一随机变量都有有限的方差,且一致有界,即存在常数C,使D(i)ClimP{1nii1,2,,则对任意的0,有nni11niE(ni1)}0[即
ni11niE(pni11ni)(n)] 证明:由切比雪夫不等式知:0,有:
n0P{1nnii11nnE(i)}1i12D(1nnDi1ii)i1n22nCn22Cn20(n)
该定理表明:当n很大时,随机变量1,,n的算术平均值ni1nni1i接近于其数学期望E(ni11),这种接近是在概率意义下的接近。通俗的说,在定理的条件下,n个相互独立的随机变量算术平均值,在n无限增加时将几乎变成一个常数。
推论:设1,,n是相互独立的随机变量,由相同的数学期望和方差E(i),D(i)2i1,2,,则0,有
limP{n1nni1i}0(即
1nini1以概率收敛于)
这个结论有很实际的意义:人们在进行精密测量时,为了减少随机误差,往往重复测量多次,测得若干实测值1,,n,然后用其平均值
1nini1来代替。
定理2(De Moivre-Laplace极限定理)(定理1的特殊情形)设n(n1,2,)是n重Bernoulli试验中成功的次数,已知每次试验成功的概率为p0p1,则对xR,有 limP{nnnpnpqx}12ext22dtx。
该定理也可改写为:ab,有limP{annnpnpqb}ba
1证明: 令i0第i次试验出现成功第i次试验不出现成功 则
{i}为独立同分布的随机变量序列,且Eip,Dip(1p)均存在
n显然:ni,此时ni1nnpnpq
该定理为上定理的一个特殊情形,故由上定理该定理得证。2.2几个大数定律的关系及适用场合
2.2.1伯努利定理是泊松定理的特例
泊松定理是指在一定的时间段内,平均若干次发生的时间,有的时候会多,有的时候会少,发生的次数是随机的时间,这也使泊松分配。P(k,T)(T)ke
若是Pk=p,则泊松大数定理也就是伯努利大数定理,伯努利大数定理也完全证明了时间在完全相同的条件下进行重复的试机实验,并且频率比较稳定,随着n的无限增大,n在试验中叶氏趋近于稳定,与A出现的频率的平均值比较接近。
2.2.2泊松大数定律是切比雪夫大数定律的特例
在泊松的大数定理的条件中,Dpiqn1,也能够满足切比雪夫大数定律的条件。
2.2.3切比雪夫大数定律是马尔科夫大数定律的特例
在切比雪夫大数定律中,DiC(i1,2,3,4.....),根据随机变量序列两两不相关的性质可以了解到,1nnD(i)i11nni1D(i)cn0,根据这样的式子也能够看出满足马尔可夫大数定
n律的条件。由此可见,伯努利大数定律与泊松大数定律都是马尔可夫大数定律的特例。伯努利大数定律也使辛钦大数定律的特别情况。在伯努利的大数定律中,由于随机变量时可以变化的,则n必然会是独立分布的,并且都会服从伯努利分布的基本情况:pi1p,pi0q,并且Eip,所以这样的公式必然会满足辛钦大数定律的条件。但是辛钦大数定律并不是泊松大数定律与切比雪夫大数定律的推广。2.2中心极限定理的基本关系
在实际问题中,常常需要考虑许多随机因素所产生总影响.例如:炮弹射击的落点与目标的偏差,就受着许多随机因素的影响.如瞄准时的误差,空气阻力所产生的误差,炮弹或炮身结构所引起的误差等等.对我们来说重要的是这些随机因素的总影响.中心极限定理,正是从理论上证明,对于大量的独立随机变量来说,只要每个随机变量在总和中所占比重很小,那么不论其中各个随机变量的分布函数是什么形状,也不论它们是已知还是未知,而它们的和的分布函数必然和正态分布函数很近似。这就是为什么实际中遇到的随机变量很多都服从正态分布的原因,也正因如此,正态分布在概率论和数理统计中占有极其重要的地位。中心极限定理也可以分为几种情况:由于无穷个随机变量之和可能趋于∞,故我们不研究n个随机变量之和,本身而考虑它的标准化的随机变量。
中心极限定理表明:在相当一般的条件下,当独立随机变量的个数增加时,其和的分布趋于正态分布。因此,只要和式中加项的个数充分大,就可以不必考虑和式中的随机变量服从什么分布,都可以用正态分布来近似,这在应用上是有效的和重要的。
nnZnk1XkE(Xk)k1n的分布函数的极限.D(Xk)k1列维一林德伯格中心极限定理:设随机变量相互独立,服从同一分布,且有n,n,则随机变量之和
n的标准化变量Yni1XiE(Xi)i1nXi1in的分布函数。
D(Xi)i1n将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数.试利用中心极限定理估计
(1)当n=1500时,舍入误差之和的绝对值大于15的概率;
(2)n满足何条件时,能以不小于0.90的概率使舍入误差之和的绝对值小于10.这就可以根
n据列维林德伯格中心极限定理来解决问题,当n充分大的时候,数据个数n应满足条件:|Sn|P{|Sn|10}Pn/120.90 ,即 2Φ(n/1210i1Xin近似地n~N(0,1),10n/12)10.90 ,Φ(10n/12)0.95 ,10n/121.645 ,n443.5 ,当n<443时,才能够保证误差之后的绝对值小于10,概率不小于0.9。3定理的应用
3.1在生产生活中的应用 一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱的平均重50千克,标准差5千克.若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保证不超载的概率大于0.977.解答:设n为第i箱的重量(), YnXi1i由列维-林德伯格中心极限定理,有,近似地~500050n所以n必须满足P{Yn5000}Φ0.977Φ(2),N(50n,25n),5n100010nn也就是最多可以装98箱.2, n98.0199,(供电问题)某车间有200台车床,在生产期间由于需要检修、调换刀具、变换位置及调换零件等常需停车.设开工率为0.6, 并设每台车床的工作是独立的,且在开工时需电力1千瓦.问应供应多少瓦电力就能以99.9%的概率保证该车间不会因供电不足而影响生产? 解:某一时刻开动的车床数,X~B(200, 0.6),要求最小的k,使P{0Xk}0.999.由D-L近似地定理
P{0Xk}Φ(knpnpq)Φ(0npnpq,)X~N(np,npq),P{0Xk}Φ(knpnpq)Φ(0npnpq)Φ(k12048)Φ(12048)Φ(k12048)0.999
所以若供电141.5千瓦,那么由于供电不足而影响生产的可能性不到0.001,相当于8小时内约有半分钟受影响,这一般是允许的。
某产品次品率p = 0.05,试估计在1000件产品中次品数的概率.次品数X~B(1000,0.05),E(X)np10000.0550,D(X)np(1p)500.9547.5,由棣莫弗-拉普拉斯中心极限定理,有:P{40X60}Φ(605047.5)Φ(405047.5)2Φ(1.45)10.853.次品数:X~B(1000,0.05),E(X)np10000.0550,D(X)np(1p)500.9547.5,P{40X60}Φ(605047.5)Φ(405047.5)2Φ(1.45)10.853.若是使用切比雪夫的不等式来进行计算,P{40X60}P{X5010}147.51020.525.但是这样的计算并不完整,有点过于保守。
3.2在数学分析中的应用
在一次试验中事件A出现的概率为0.4,应至少进行多少次试验,才能使事件A出现的频率与概率之差在之间的概率不低于0.9 ?
解答:由中心极限定理知, Xn N(np, npq),P(Xnnp0.1)P(Xnnpnpq0.1npq)
2Φ(0.1npq)10.9 Φ(0.1npq)0.95 0.1npq1.65 n66.设第i次射击得分为,则的分布律为
100E(Xi)9.15,D(Xi)1.227.由中心极限定理,Xi N(915, 122.7)
i1100 P{900i1Xi930}P{1511.08Xi100122.71511.08}2Φ(1.354)120.911510.823.高尔顿(Galton)钉板试验:
如下图中每一黑点表示钉在板上的一颗钉子,它们彼此的距离均相等,上一层的每一颗的水平位置恰好位于下一层的两颗正中间。从入口处放进一个直径略小于两
颗钉子之间的距离的小圆玻璃球,当小圆球向下降落过程中,碰到钉子后皆以1/2的概率向左或向右滚下,于是又碰到下一层钉子。如此继续下去,直到滚到底板的一个格子内为止。把许许多多同样大小的小球不断从入口处放下,只要球的数目相当大,它们在底板将堆成近似于正态 的密度函数图形(即:中间高,两头低,呈左右对称的古钟型),其中 为钉子的层数。
令 量(表示某一个小球在第 次碰了钉子后向左或向右落下这一随机现象相联系的随机变表示向右落下,表示向左落下),由题意,的分布列可设为下述形式:对
则有,对
令,其中 相互独立。则 表示这个小球第 次碰钉后的位置。试验表明近似地服从正态分布。
上述例子表明,需要研究相互独立随机变量和的极限分布是正态分布的问题,这是本章要介绍的中心极限定理刻画的主要内容。这个问题的解决,对概率论在自然科学和技术应用中一个最重要的手段奠定了理论基础,这一手段是把一个现象或过程看作是许多因素的独立影响下出现的,而每一因素对该现象或过程所发生的影响都很小。如果我们关心的是该现象或过程的研究,则只要考虑这些因素的总作用就行了。
3.3在信息论中的应用
设在某保险公司有1万个人参加投保,每人每年付120元保险费.在一年内一个人死亡的概率为0.006,死亡时其家属可向保险公司领得1万元,问:(1)该保险公司亏本的概率为多少?(2)该保险公司一年的利润不少于40,60,80万元的概率各是多少? 设一年内死亡的人数为X,则XB(10000, 0.006),由D-L中心极限定理,(1)P{10000X1200000}P{X120}
P{Xnpnpq120npnpq}1Φ(12060600.994)1Φ(7.77)0,通过计算可得到即该保险公司亏本的概率几乎为0.2)P{120000010000X400000}P{X80}Φ(8060600.994)Φ(2.589)0.995,P{120000010000X600000}P{X60}Φ(6060600.994)Φ(0)0.5, P{120000010000X800000}P{X40}P{X40}
Φ(4060600.994)1Φ(2.589)0.005.假设生产线组装每件成品的时间服从指数分布,统计资料表明每件成品的组装时间平均为10分钟.设各件产品的组装时间相互独立.(1)试求组装100件成品需要15到20小时的概率;(2)以95%的概率在16小时内最多可以组装多少件成品? 解答:设第i件组装的时间为Xi分钟,i=1,„,100.利用独立同分布中心极限定理.100E(Xi)10,D(Xi)10,i1,2,,100,P{9001002i1Xi1200}
P{90010010100102i1Xi10010100102120010010100102}
100P{9001001010010n2i1Xi10010100102120010010100102}
X0.95P{i1i10n96010n100n100n}
Φ(96010n100n通过表可查的),96010n100n1.645,n81.18,故最多可组装81件成品。
Vk(k1,2,,20)20一加法器同时收到20个噪声电压,设它们是相互独立的随变量,且都
V在区间(0,10)上服从均匀分布。记
Vk1k,求P(V105)的近似值。
解:E(Vk)5,D(Vk)10012(k1,2,,20),由定理1,得 P(V105P(V205(1012)20105205(1012)20)P(V100(1012)20V100(100.387)
1P(12)200.387)
1(0.387)
0.348
即有 P(V105)0.348
抽样检查产品质量时,如果发现次品多于10个,则拒绝接受这批产品,设某批产品的次品率为10%,问至少应抽取多少个产品检查才能保证拒绝接受该产品的概率达到0.9?
解 设 为至少应抽取的产品数,为其中的次品数
则
拉斯定理,有,,由德莫佛-拉普
当 充分大时,4结语,随着试验次数的增加,事件发生的频率逐渐稳定于某个常数,这一事实显示了可以用一个数来表征事件发生的可能性大小,这使人们认识到概率是客观存在的,进而由频率的三条性质的启发和抽象给出了概率的定义,而频率的稳定性是概率定义的客观基础。在实践中人们还认识到大量测量值的算术平均值也具有稳定性,而这种稳定性就是本节所要讨论的大数定律的客观背景,而这些理论正是概率论的理论基础。
参考文献 [1] 钱和平宋家乐.强混合鞅差序列部分和乘积的几乎处处中心极限定理 [J].《中国科技信息》 2012年 第8期
[2] 罗中德.中心极限定理教学方法研究 [ J].《现代商贸工业》 2012年 第8期 [3] 冯凤香.独立随机变量序列部分和乘积的几乎处处中心极限定理 [J].《吉林大学学报:理学版》 2012年 第2期
[4] 许道云 秦永彬 刘长云.学习《概率论与数理统计》应该注意的若干问题(6)——极限性质及其应用 [J].《铜仁学院学报》 2011年 第6期
[5] 王丙参 魏艳华 林朱.大数定律及中心极限定理在保险中的应用 [ J].《通化师范学院学报》 2011年 第12期
[6] 任敏 张光辉.非同分布φ-混合序列部分和乘积的几乎处处中心极限定理 [J].《黑龙江大学自然科学学报》 2011年 第6期
[7] 王媛媛.部分和乘积的几乎处处中心极限定理 [J].《桂林理工大学学报》 2011年 第3期
[8] 张鑫.大数定理发展边程初探 [ J].《科技信息》 2011年 第22期
[9] 陈晓材 吴群英 邓光明 周德宏.不同分布φ^~混合序列的弱大数定理 [J].《平顶山学院学报》 2010年 第2期
【04 第四节 大数定理与中心极限定理】推荐阅读:
辅导第6讲大数定理和中心极限定理11-07
中心极限定理习题11-03
高二数学教学设计与反思必修5余弦定理10-23
《勾股定理逆定理》观评课报告09-28
正弦定理教案09-11
基础定理证明09-13
二项式定理应用11-23
高中数学定理证明汇总06-17
高二数学正弦定理讲义06-23
初中数学几何定理汇总07-11