船舶与海洋工程相关

2024-11-18

船舶与海洋工程相关(精选8篇)

1.船舶与海洋工程相关 篇一

The Naval Architect 船舶设计师

A naval architect asked to design a ship may receive his instructions in a form ranging from such simple requirements as “an oil tanker to carry 100 000 tons deadweight at 15 knots” to a fully detailed specification of precisely planned requirements. He is usually required to prepare a design for a vessel that must carry a certain weight of cargo (or number of passengers ) at a specified speed with particular reference to trade requirement; high-density cargoes, such as machinery, require little hold capacity, while the reverse is true for low-density cargoes, such as grain.

Deadweight is defined as weight of cargo plus fuel and consumable stores, and lightweight as the weight of the hull, including machinery and equipment. The designer must choose dimensions such that the displacement of the vessel is equal to the sum of the dead weight and the lightweight tonnages. The fineness of the hull must be appropriate to the speed. The draft------which is governed by freeboard rules------enables the depth to be determined to a first approximation.

After selecting tentative values of length, breadth, depth, draft, and displacement, the designer must achieve a weight balance. He must also select a moment balance because centres of gravity in both longitudinal and vertical directions must provide satisfactory trim and stability. Additionally, he must estimate the shaft horsepower required for the specified speed; this determines the weight of machinery. The strength of the hull must be adequate for the service intended, detailed scantlings (frame dimensions and plate thicknesses ) can be obtained from the rules of the classification society. These scantings determine the requisite weight of hull steel.

The vessel should possess satisfactory steering characteristics, freedom from troublesome vibration, and should comply with the many varied requirements of international regulations. Possessing an attractive appearance, the ship should have the minimum net register tonnage, the factor on which harbour and other dues are based. (The gross tonnage represents the volume of all closed-in spaces above the inner bottom. The net tonnage is the gross tonnage minus certain deductible spaces that do not produce revenue. Net tonnage can therefore be regarded as a measure of the earning capacity of the ship, hence its use as a basis for harbour and docking charges. ) Passenger vessels must satisfy a standard of bulkhead subdivision that will ensure adequate stability under specified conditions if the hull is pierced accidentally or through collision.

Compromise plays a considerable part in producing a satisfactory design. A naval architect must be a master of approximations. If the required design closely resembles that of a ship already built for which full information is available, the designer can calculate the effects of differences between this ship and the projected ship. If, however, this information is not available, he must first produce coefficients based upon experience and, after refining them, check the results by calculation.

Training

There are four major requirements for a good naval architect. The first is a clear understanding of the fundamental principles of applied science, particularly those aspects of science that have direct application to ships------mathematics, physics, mechanics, fluid mechanics, materials, structural strength, stability, resistance, and propulsion. The second is a detailed knowledge of past and present practice in shipbuilding. The third is personal experience of accepted methods in the design, construction, and operation of ships; and the fourth, and perhaps most important, is an aptitude for tackling new technical problems and of devising practical solutions.

The professional training of naval architects differs widely in the various maritime countries. Unimany universities and polytechnic schools; such academic training must be supplemented by practical experience in a shipyard.

Trends in design

The introduction of calculating machines and computers has facilitated the complex calculations required in naval architecture and has also introduced new concepts in design. There are many combinations of length, breadth, and draft that will give a required displacement. Electronic computers make it possible to prepare series of designs for a vessel to operate in a particular service and to assess the economic returns to the shipowner for each separate design. Such a procedure is best carried out as a joint exercise by owner and builder. As ships increase in size and cost, such combined technical and economic studies can be expected to become more common.

(From “Encyclopedia Britannica”, Vol. 16, 1980)

2.船舶与海洋工程相关 篇二

课程建设与专业建设一样, 也是高等学校一项重要的教学基本建设。课程建设 (特别是课程体系建设) , 与专业建设虽有区别, 当时也有着密切的联系。人才培养方案的主体是教学计划, 教学计划的主体则是课程, 包括理论教学的课程和实践教学的课程, 这些课程在教学计划中应该能够形成一个结构合理的体系, 这就是课程体系。课程体系是由若干个系列的课程构成的, 为了使课程结构合理, 就要注意柯雪德构建教学计划中的课程体系。

因此, 船舶与海洋工程专业课程建设过程中就不能只是单门课程的建设, 而是课程体系的建设, 要着重考虑课程体系中各门课程间的相互联系, 既要做到承上又要做到启下, 这样才能让学生觉得自己知识的学习具有连贯性, 使自己的学习更加轻松如意。

二、船舶与海洋工程专业课程建设的主要任务

船舶与海洋工程专业课程建设的主要有三个任务:

1. 促进当地经济的发展

钦州学院是广西沿海地区唯一一所公立的普通本科高等学校, 是北部湾畔崛起的全国首批应用技术大学改革试点高校, 学校的宗旨就是服务于地方经济, 强调应用性。因此, 钦州学院船舶与海洋工程专业的课程建设要始终围绕应用性和地方性, 广西沿海地区拥有钦州、北海、防城港三个地级市, 三个地级市是广西北部湾经济区中滨海的城市群, 大陆海岸线长1629公里, 20米水深以内的浅海面积6488平方公里, 潮间带滩涂面积1005平方公里, 海洋及港口资源丰富, 具有非常明显的临海区位优势。但广西境内学校却缺少船舶与海洋工程专业, 钦州学院充分考虑了这一现状, 在国家政策扶持和钦州市政府的大力支持下, 钦州学院决定开设船舶与海洋工程专业, 并致力于把该专业做大做强, 更好地服务于北部湾地方经济。因此, 船舶与海洋工程专业的课程建设一定要围绕“怎样能更好的促进当地经济的发展”这个中心, 课程建设要以培养应用技术型人才为目标。

2. 加强校企间的合作

钦州学院是应用技术型学校, 因此, 船舶与海洋工程专业的课程建设要保证该专业的应用性和技术性, 简单的来说, 钦州学院培养的人才注重的是实践能力, 而非学术性。其中“订单式”培养模式是我国在发展“校企合作”教学模式时自己摸索出来的比较符合我国职业教育现状的一种新的模式[3]。这种模式中, 人才培养目标和计划主要由其企业提出和制定, 学校并承担大部分培养任务。企业不仅仅是根据学校提出的要求, 提供相应的条件或协助完成部分的培养任务。主要采取提供教育资源的方式, 例如投入设备和资金帮助学校建立校内实训基地, 利用企业资源建立校外实训基地, 企业专家兼任学校教师, 设立奖学金、奖教金等, 而且还参与研究和制定培养目标、教学计划、教学内容和培养方式[3]。最终培养出企业自己想要的适合自己企业的专业人才。“招生与招工同步、毕业即就业”良好的就业、发展前景备受企业、和学校的推崇。

3. 转变思想

钦州学院是一所刚升本不久的院校, 与全国的名牌和老牌学校相比, 不论是在师资还是实验室等方面都存在着一定的差距。因此, 我们要转变思想, 不能以培养学术型学生为标准, 而是要根据国家地区发展战略、地方经济社会和文化发展需求和学校的办学实际来办学和培养学生。因此, 船舶与海洋工程专业在课程建设和发展过程中也应以应用型和技术型为主, 重点培养学生的实践动手能力。

三、船舶与海洋工程专业课程设置的弊端及课程改革的方向

纵观我国本科高等教育课程设置, 我国本科高等教育课程设置普遍存在着以下弊端:

(1) 知识面过窄, 过分强调专业的对口性, 毕业生的知识面比较窄, 适应能力差; (2) 管理过于集中, 学校缺乏活力、动力和压力; (3) 课程设置不够规范。

因此, 钦州学院船舶与海洋工程专业课程建设发展中要避免以上弊端, 要本着促进学校和地方经济发展、处处以学生为本的原则, 把船舶与海洋工程专业建设成应用技术型大学的标杆专业。

目前, 教育部在“十二五”期间实施的本科教育工程中, 有一项工程为专业综合改革, 我们应该把专业综合改革的精神扩展到课程改革中来。因此, 钦州学院在船舶与海洋工程专业课程改革中, 应该朝向下面几个方向发展:

(1) 坚持拓学生的知识面, 增强专业毕业生的适应能力; (2) 继续发挥钦州学院的应用性特色, 积极探索船舶与海洋工程专业在应用性方面的办学规律; (3) 坚持进行人才培养模式的改革, 特别是进行产学研结合之路的探索; (4) 在我国实行社会主义市场经济体制的条件下解决实习难的改革探索; (5) 加强课程体系建设的改革; (6) 在课程建设中走特色办学之路的改革。

四、总结

在课程建设和改革中, 要把建设与改革的关系处理好, 将两者很好地结合起来, 而不要把它们割裂开来、对立起来:在建设中进行改革, 用改革的精神指导建设, 不要一讲建设就不敢改革、不要改革, 也不要一讲改革就不要建设了, 甚至教育教学规律、教学管理的规范都不要了, 两者要统筹发展, 共同进步。

摘要:课程建设是高等教育教学基本建设之一, 决定了一所高校教学工作的好坏。船舶与海洋工程专业是钦州学院着重打造的优势特色专业, 本文以钦州学院船舶与海洋工程专业课程建设为例, 为钦州学院的课程建设和发展提供了些许思路与建议, 促进钦州学院课程建设与改革的发展。

关键词:课程建设,船舶与海洋工程,改革

参考文献

[1]牛国庆, 王海娟.对高校特色专业建设的思考[J].河南理工大学学报 (社会科学版) , 2009, 10 (2) .

[2]黎悦.“三势”:船舶与海洋工程专业[J].高校招生 (高考升学版) , 2006, Z1.

3.船舶与海洋工程相关 篇三

关键词 实习 本科 实践教学 船舶与海洋工程 虚拟仿真

实习教学是加强专业知识教育,增加学生的感性认识,培养学生实践能力、创新能力的重要综合性训练环节。对于应用型工科高等院校来说,结合自身行业特点,加强实践教学改革,着重培养学生的能力,是创新人才培养的重点。①船舶与海洋工程专业主要面向培养具备现代船舶与海洋工程设计、制造和技术研发的基本技能、计算机编程及应用能力,能在船舶与海洋结构物设计、制造、科研、检验和管理等部门从事相关工作的工程技术人才。为此,实习教学一直以来都在专业教学体系中占有重要地位。

1 传统专业实习教学体系

在船舶与海洋工程的专业实习体系中,主要包括金工实习、认识实习和生产实习。其中金工实习一般设置在大学一年级的第二学期,两周时间,主要在校办工厂对学生进行车、铣、刨、磨、数控切割和焊接等基本操作技能的实训;认识实习,一般设置在大学三年级的第二学期,1周时间,通过到造船企业进行船舶产品建造流程、主要设备设施和企业组织管理方面的认知参观学习。进而达到将理论知识和生产实践相结合,初步形成专业基本概念的目的;生产实习,一般设置在大学四年级的第二学期,1.5周时间,通过在造船企业向企业人员深入学习交流生产技术与管理知识,进行工程基本实训。

实习有规范的教学大纲、教学教案和考核细则作为指导。为保证实习质量,聘請技术专家做现场讲解和专题技术讲座,将相关知识、理念清晰明了地传授给学生。然而,随着高校扩招和学生数量的大幅增加以及企业实习基地生产现实需求同教学需求的矛盾,导致了当前专业实习存在了一些问题,主要表现在以下几个方面:

(1) 集中实习时,由于人数多,在企业里出于安全原因,学生很难有机会进行实际操作。此外,造船企业现场嘈杂,实习教师现场的讲解很难被全部学生接收,学生“走马观花”让实习渐渐偏离预期目标;

(2) 实习经费投入不足,实习以点带面,②造船企业各节点任务联系紧密,承接实习会提升企业经营管理的难度,影响正常的生产秩序。实习基地配合实习计划目标实现的积极性不高,企业生产现状与实习教学大纲和教学计划没有良好衔接,③实习内容的开展缺乏系统性;

(3) 学生在进入专业学习阶段,对本专业的学习要求不甚明确,对学成以后,自己能够达到的专业水准缺乏目标,一直处于老师教什么,学生学什么的被动状态中,学习缺乏成就感,专业学习兴趣不浓,很难调动学习的积极性。

2 实习教学体系改革

(1) 利用学校在船舶工业的综合影响力,促成国内两大船舶工业集团公司推动下属公司和地方骨干造船企业进行实习基地的建设,充分发挥各实习基地的互补作用。同时,通过协同合作,进一步密切产学研联系,全面提升学科人才培养、科技创新、社会服务的能力和水平,使各方在实习基地建设中受益;

(2) 在校内建设“船舶制造技术仿真实验室”,分担现场实习压力,并使学生在现场实习前系统了解实习内容与任务。实验室建设以扩大学校在船舶与海洋工程设计制造学科优势为目标,初期实现按照现代造船模式理论,制作大比例船厂布置和生产过程仿真缩比模型,展现船厂总布置,模拟造船工艺的流程,使学生迅速、全面地了解壳、舾、涂一体化和设计、生产、管理一体化的总装造船生产全过程;

(3) 引进、开发仿真平台系统,深化学科实验室建设。在认识实习和生产实习结束时,学生通过分组协作的方式利用课余时间在相关仿真平台上完成企业工程师和教师所设置的相关题目,进一步将实习过程中的所学知识灵活运用,同时将此项任务完成情况记入实习成绩;

(4) 完善实习成绩考评体系。将实习纪律、态度、实习报告和总结撰写规范工整以及实习后仿真选题与协作攻关等完成情况记入考评体系。同时,对实习后学生完成相关题目时出现的好点子、好思路给予资助,鼓励学生在毕业设计中或作为参加各类大学生科技创新大赛的项目进行深入研究。

3 实习改革进展

按照实习教学体系改革的相关举措,江苏科技大学进一步密切了同船舶行业的联系,同上海、江苏等地的大型造船企业、基地签订了实习基地共建协议,并与企业相关部门联合制定了相关实习教学大纲、考核细则。“船舶制造仿真实验室”建设也受到了“江苏省高校优势学科建设”项目的资助,一期工程已经实施完毕,成为认识实习和生产实习开展之前,实习动员与任务布置,学科方向概论性课程以及学科宣传介绍的平台。图1展示了实验室局部情况。

图1 船舶制造仿真实验室局部

在“船舶制造仿真实验室”建设二期工程中,学校船舶与海洋工程学院引进了DACS精度控制系统、AVEVA Marine系统、OPTIMUS/ISIGHT优化设计软件和COMPASS设计/评估软件系统,拓展了NAPA系统功能模块,并开展了相关软件系统的培训,TRIBON M3和HD-SPD系统已经在实践教学中成熟应用。同时,制定完成了省级“船舶数字化设计制造技术工程实践教育中心”建设计划,并获省教育厅批准、资助。

实习成绩评定体系的改革也使得同学们对专业学习产生了浓厚的兴趣,参加实习和实践创新活动的积极性明显提升。此外,学校和学院还分别设立了校、院级大学生创新研究专项基金项目,制定了“江苏科技大学关于进一步加强大学生科技活动的意见”、“江苏科技大学大学生科技创新基金管理细则”、“江苏科技大学大学生科技创新活动与科技创新基金实施方案”等制度。④实习教学体系改革三年以来,在实习仿真平台基础上完成了多项课题,其中获得“挑战杯”全国大学生课外学术科技作品竞赛三等奖一项,中国大学生船舶与海洋工程创新设计大赛获奖三项,“船舶与海洋工程专业应用型人才创新精神与实践能力培养”获江苏省高等教育教学成果一等奖。

4 结语

4.船舶与海洋工程专业英语 篇四

目录

Part 1.船舶与海洋工程英语

1.The Naval Architect…………………………………………….……….….....1 2.Definitions, Principal Dimensions……………………………….….………....3 3.Merchant ship Types………………………………………………..…………10 4.Ship Design…………………………………………………………………16 5.General Arrangement……………………………………………………....…20 6.Ship Lines……………………………………………………..…………...…25 7.Ship Equilibrium, Stability and Trim………………………………………..28 8.Estimating Power Requirements………………………………………….….33 9.Ship Motions, Maneuverability………………………………………………37 10.The Function of Ship Structural Components……………………………………….....40 11.Structural Design, Ship Stresses…………………………………………………….......43 12.Classification Societies…………………………………………………...…48 13.Shipyard, Organization, Layout…………………………………..….....…..53 14.Planning, From Contract to Working Plans……………………………...….56 15.Lines Plan and Fairing, Fabrication and Assembly………………………....58 16.Launching and Outfitting…………………………………………………....61 17.Sea Trials……………………………………………………………………64 18.Marine Engines………………………………………………………………………...66 19.Marine Electrical Equipment…………………………………………..……71 20.Unattended Machinery Spaces……………………………………….……..76 21.Mobile Drilling Platforms……………………………………………………………...81 22.Examples of Offshore Structures……………………………………….…..85 23.Oceanographic Submersibles…………………………………………….…91 24.Application of Engineering Economics to Ship Design……………..……..94 25.Computer Development and the Naval Architect………………………..…98 Part2.26.船舶英语实用词汇手册……………………………………………………………..101 27.船舶英语缩略语…………………………………………………………………...…129

Lesson One

The Naval Architect A naval architect asked to design a ship may receive his instructions in a form ranging from such simple requirements as ―an oil tanker to carry 100 000 tons deadweight at 15 knots‖ to a fully detailed specification of precisely planned requirements.He is usually required to prepare a design for a vessel that must carry a certain weight of cargo(or number of passengers)at a specified speed with particular reference to trade requirement;high-density cargoes, such as machinery, require little hold capacity, while the reverse is true for low-density cargoes, such as grain.Deadweight is defined as weight of cargo plus fuel and consumable stores, and lightweight as the weight of the hull, including machinery and equipment.The designer must choose dimensions such that the displacement of the vessel is equal to the sum of the dead weight and the lightweight tonnages.The fineness of the hull must be appropriate to the speed.The draft------which is governed by freeboard rules------enables the depth to be determined to a first approximation.After selecting tentative values of length, breadth, depth, draft, and displacement, the designer must achieve a weight balance.He must also select a moment balance because centres of gravity in both longitudinal and vertical directions must provide satisfactory trim and stability.Additionally, he must estimate the shaft horsepower required for the specified speed;this determines the weight of machinery.The strength of the hull must be adequate for the service intended, detailed scantlings(frame dimensions and plate thicknesses)can be obtained from the rules of the classification society.These scantings determine the requisite weight of hull steel.The vessel should possess satisfactory steering characteristics, freedom from troublesome vibration, and should comply with the many varied requirements of international regulations.Possessing an attractive appearance, the ship should have the minimum net register tonnage, the factor on which harbour and other dues are based.(The gross tonnage represents the volume of all closed-in spaces above the inner bottom.The net tonnage is the gross tonnage minus certain deductible spaces that do not produce revenue.Net tonnage can therefore be regarded as a measure of the earning capacity of the ship, hence its use as a basis for harbour and docking charges.)Passenger vessels must satisfy a standard of bulkhead subdivision that will ensure adequate stability under specified conditions if the hull is pierced accidentally or through collision.Compromise plays a considerable part in producing a satisfactory design.A naval architect must be a master of approximations.If the required design closely resembles that of a ship already built for which full information is available, the designer can calculate the effects of differences between this ship and the projected ship.If, however, this information is not available, he must first produce coefficients based upon experience and, after refining them, check the results by calculation.Training

There are four major requirements for a good naval architect.The first is a clear understanding of the fundamental principles of applied science, particularly those aspects of science that have direct application to ships------mathematics, physics, mechanics, fluid mechanics, materials, structural strength, stability, resistance, and propulsion.The second is a detailed knowledge of past and present practice in shipbuilding.The third is personal experience of accepted methods in the design, construction, and operation of ships;and the fourth, and perhaps most important, is an aptitude for tackling new technical problems and of devising practical solutions.The professional training of naval architects differs widely in the various maritime countries.Unimany universities and polytechnic schools;such academic training must be supplemented by practical experience in a shipyard.Trends in design The introduction of calculating machines and computers has facilitated the complex calculations required in naval architecture and has also introduced new concepts in design.There are many combinations of length, breadth, and draft that will give a required displacement.Electronic computers make it possible to prepare series of designs for a vessel to operate in a particular service and to assess the economic returns to the shipowner for each separate design.Such a procedure is best carried out as a joint exercise by owner and builder.As ships increase in size and cost, such combined technical and economic studies can be expected to become more common.(From ―Encyclopedia Britannica‖, Vol.16, 1980)

Technical terms

1.naval architect 造船工程(设计)师 32.scantling 结构(件)尺寸

naval architecture造船(工程)学 33.frame 肋骨 2.instruction 任务书、指导书 34.classification society 船级社 3.oil tanker 油轮 35.steering 操舵、驾驶 4.deadweight 载重量 36.vibration 振动 5.knot 节 37.net register tonnage 净登记吨位 6.specification 规格书,设计任务书 38.harbour 港口 7.vessel 船舶 39.dues 税收 8.cargo 货物 40.gross tonnage 总吨位 9.passenger 旅客 41.deductible space 扣除空间 10.trade 贸易 42.revenue 收入 11.machinery 机械、机器 43.docking 进坞 12.hold capacity 舱容 44.charge 费用、电荷 13.consumable store 消耗物品 45.bulkhead 舱壁 14.light weight 轻载重量、空船重量 46.subdivision分舱(隔)、细分 15.hull 船体 47.collision 碰撞 16.dimension 尺度、量纲、维(数)48.compromise 折衷、调和 17.displacement 排水量、位移、置换 49.coefficient 系数 18.tonnage 吨位 50.training 培训 19.fineness 纤瘦度 51.fluid mechanics 流体力学 20.draft 吃水 52.structural strength 结构强度 21.breadth 船宽 53.resistance 阻力 22.freeboard 干舷 54.propulsion 推进 23.rule 规范 55.shipbuilding 造船 24.tentative 试用(暂行)的 56.aptitude(特殊)才能,适应性 25.longitudinal direction 纵向 57.maritime 航运,海运 26.vertical direction 垂向 58.polytechnical school 工艺(科技)学校 27.trim 纵倾 59.academic 学术的 28.stability 稳性 60.shipyard 造船厂 29.shaft horse power 轴马力 61.electronic computer 电子计算机 30.strength 强度 62.owner 船主,物主 31.service 航区、服务 63.encyclop(a)edia 百科全书

Additional Terms and Expressions 1.the Chinese Society of Naval Architecture and Marine Engineering(CSNAME)中国造船工程学会

the Chinese Society of Navigation中国航海学会

“Shipbuilding of China‖ 中国造船 Ship Engineering 船舶工程

“Naval 安定Merchant Ships” 舰船知识

China State Shipbuilding Corporation(CSSC)中国船舶工业总公司

China offshore Platform Engineering Corporation(COPECO)中国海洋石油平台工程公司

Royal Institution of Naval Architects(RINA)英国皇家造船工程师学会

Society of Naval Architects and Marine Engineers(SNAME)美国造船师与轮机工程师协会

10.Principle of naval architecture 造船原理 11.ship statics(or statics of naval

architecture)造船静力学 12.ship dynamics 船舶动力学

13.ship resistance and propulsion 船舶阻力

和推进

14.ship rolling and pitching 船舶摇摆 15.ship manoeuvrability 船舶操纵性 16.ship construction 船舶结构

17.ship structural mechanics 船舶结构力学 18.ship strength and structural design 船舶

强度和结构设计

19.ship design 船舶设计

20.shipbuilding technology 造船工艺

21.marine(or ocean)engineering 海洋工程 2.3.4.5.6.7.8.9.Note to the Text

1.range from A to B 的意思为“从A到B的范围内”,翻译时,根据这个基本意思可以按汉语习惯译成中文。例:

Lathe sizes range from very little lathes with the length of the bed in several inches to very large ones turning a work many feet in length.车床有大有小,小的车床其车身只有几英寸,大的车床能车削数英尺长的工件。

2.Such that 可以认为是such a kind/value 等的缩写,意思为“这样的类别/值等……以至于……”。译成中文是,可根据具体情况加以意译。例:

The depth of the chain locker is such that the cable is easily stowed.锚链舱的深度应该使锚链容易存储。

Possessing an attractive appearance, the ship should have the minimum net register tonnage,the factor on which harbour and oyher dues are based.Possessing an attractive appearance现在分词短语,用作表示条件的状语,意译成“船舶除有一个漂亮的外形……”。一般说,如分词短语谓语句首,通常表示时间、条件、原因等。

The factor on which…are based中的the factor是前面the minimum net register tonnage的铜谓语,而on which…are based是定语从句,修饰the factor。

4.Electronic computers make it possible to prepare series id designs for a vessel to operate in a particular service and to assess the economic returns to the shipowner for each separate design.句中的it是形式宾语,实际宾语为不定式短语 to prepare series of designs …和to assess the economic returns …

Lesson Two

Definitions, Principal Dimensions Before studying in detail the various technical branches of naval architecture it is important to define chapters.The purpose of this chapter is to explain these terms and to familiarise the reader with them.In the first place the dimensions by which the size of a ship is measured will be considered;they are referred to as ‗principal dimensions‘.The ship, like any solid body, requires three dimensions to define its size, and these are a length, a breadth and a depth.Each of these will be considered in turn.Principal dimensions Length There are various ways of defining the length of a ship, but first the length between perpendiculars will be considered.The length between perpendiculars is the distance measured parallel to the base at the level of the summer load waterline from the after perpendicular to the forward perpendicular.The after perpendicular is taken as the after side of the rudder post where there is such a post, and the forward perpendicular is the vertical line drawn through the intersection of the stem with summer load waterline.In ships where there is no rudder post the after perpendicular is taken as the line passing through the centre line of the rudder pintals.The perpendiculars and the length between perpendiculars are shown in Figure 1.The length between perpendiculars(LBP)is used for calculation purposes as will be seen later, but it will be obvious from Figure 1 that this does not represent the greatest length of the ship.For many purposes, such as the docking of a ship, it is necessary to know what the greatest length of the ship is.This length is known as the length of the extreme point at the after end to a similar point at the forward end.This can be clearly seen by referring again to Figure 1.In most ships the length overall will exceed by a considerable amount the length between perpendiculars.The excess will include the overhang of the stern and also that of the stem where the stem is raked forward.In modern ships having large bulbous bows the length overall LOA may have to be measured to the extreme point of the bulb.A third length which is often used, particularly when dealing with ship resistance, is the length on the waterline LWL.This is the distance measured on the waterline at which the ship is floating from the intersection of the stern with the waterline to the length is not a fixed quantity for a particular ship, as it will depend upon the waterline at which the ship is floating and upon the trim of the ship.This length is also shown in Figure 1.6 Breadth The mid point of the length between perpendiculars is called ‗amidships‘and the ship is usually broadest at this point.The breadth is measured at this position and the breadth most commonly used is called the ‗breadth moulded‘.It may be defined simply as the distance from the inside of plating on one side to a similar point on the other side measured at the broadest part of the ship.As is the case in the length between perpendiculars, the breadth moulded dose not represent the greatest breadth the breadth extreme is required(see Figure 2).In many ships the breadth extreme is the breadth moulded plus the thickness of the shell plating where the strakes of shell plating were overlapped the breadth extreme was equal to the breadth moulded plus four thicknesses of shell plating, but in the case of modern welded ships the extra breadth consists of two thicknesses of shell plating only.The breadth extreme may be much greater than this in some ships, since it is the distance from the extreme overhang on one side of the ship to a similar point on the other side.This distance would include the overhang of decks, a feature which is sometimes found in passenger ships in order to provide additional deck area.It would be measured over fenders, which are sometimes fitted to ships such as cross channel vessels which have to operate in and out of port under their own power and have fenders provided to protect the sides of the ships when coming alongside quays.Depth The third principal dimension is depth, which varies along the length of the ship but is usually measured ant amidships.This depth is known as the ‗depth moulded and is measured from the underside of the plating of the deck at side amidships to the base line.It is shown in Figure 2(a).It is sometimes quoted as a ‗depth moulded to upper deck‘ or ‗depth moulded to second deck‘, etc.Where no deck is specified it can be taken the depth is measured to the uppermost continuous deck.In some modern ships there is a rounded gunwale as shown in Figure 2(b).In such cases the depth moulded is measured from the intersection of the deck line continued with the breadth moulded line.Other features

The three principal dimensions give a general idea of the size of a ship but there are several other features which have to be considered and which could be different in two ships having the same length, breadth and depth.The more important of these will now be defined.Sheer Sheer is the height of the deck at side above a line drawn parallel to the base and tangent to the length of the ship and is usually greatest at the ends.In modern ships the deck line at side often has a variety of shapes: it may be flat with zero sheer over some distance on either side of amidships and then rise as a straight line towards the ends;on the other hand there may be no sheer at all on the deck, which will then be parallel to the base over the entire length.In older ships the deck at side line was parabolic in profile and the sheer was quoted as its value on the forward and after perpendiculars as shown in Figure 1.So called ‗standard‘ sheer was given by the formulae:

Sheer forward(in)=0.2Lft+20 Sheer aft

(in)=0.1Lft+10 These two formulae in terms of metric units would give:

Sheer forward

(cm)=1.666Lm+50.8 Sheer aft

(cm)=0.833Lm+25.4 It will be seen that the sheer forward is twice as much as the sheer aft in these standard formulae.It was often the case, however, that considerable variation was made from these standard values.Sometimes the sheer forward was increased while the sheer after was reduced.Occasionally the lowest point of the upper deck was some distance aft of amidships and sometimes departures were made from the parabolic sheer profile.The value of sheer and particularly the sheer forward was to increase the height of the deck above water(the ‗height of platform‘ as it was called)and this helped to prevent water being shipped when the vessel was moving through rough sea.The reason for the abolition of sheer in some modern ships is that their depths are so great that additional height of the deck above water at the fore end is unnecessary from a seakeeping point of view.Deletion of sheer also tends to make the ship easier to construct, but on the other hand it could be said that the appearance of the ship suffers in consequence.Camber Camber or round of beam is beam is defined as the rise of the deck of the ship in going from the side to the centre as shown in Figure 3(a).The camber curve used to be parabolic but here again often nowadays straight line camber curves are used or there may be no camber at all on decks.Camber is useful on the weather deck of a ship from a drainage point of view, but this may not be very important since the ship is very rarely upright and at rest.Often, if the weather deck of a ship is cambered, the lower decks particularly in passenger ships may have no camber at all, as this makes for horizontal decks in accommodation which is an advantage.Camber is usually stated as its value on the moulded breadth of the ship and standard camber was taken as one-fiftieth of the breadth.The camber on the deck diminishes towards the ends of the ship as the deck breadths become smaller.Bilge radius An outline of the midship section of a ship is shown in Figure 3(a).In many ‗full‘ cargo ships the section is virtually a rectangle with the lower corners rounded off.This part of the section is referred to as the ‗bilge‘ and the shape is often circular at this position.The radius of the circular arc forming the bilge is called the ‗bilge radius‘.Some designers prefer to make the section some curve other than a circle in way of the bilge.The curve would have a radius of curvature which increases as it approaches the straight parts of the section with which it has to link up.Rise of floor The bottom of a ship at amidships is usually flat but is not necessarily horizontal.If the line of the flat bottom is continued outwards it will intersect the breadth moulded line as shown in Figure 3(a).The height of this intersection above base is called the ‗rise of floor ‘.The rise of floor is very much dependent on the ship form.In ships of full form such as cargo ships the rise of floor may only be a few centimeters or may be eliminated altogether.In fine form ships much bigger rise of floor would be adopted in association with a larger bilge radius.Flat of keel

A feature which was common in the days of riveted ships what was known as ‗flat of keel ‘ or ‗flat of bottom ‘.Where there is no rise of floor, of course, the bottom is flat from the centre line to the point where the curve of the bilge starts.If there was a rise of floor it was customary for the line of the bottom to intersect the base line some distance from the centre line so that on either side of the centre line there was a small portion of the bottom which was horizontal, as shown in Figure 3(a).this was known as the ‗flat of bottom‘ and its value lay in the fact that a rightangle connection could be made between the flat plate keel and the vertical centre girder and this connection could be accomplished without having to bevel the connecting angle bars.Tumble home Another feature of the midship section of a ship which was at one time quite common but has now almost completely disappeared is what was called ‗tumble home‘.This is the amount which the side of the ship falls in from the breadth moulded line, as shown in Figure 3(b).Tumble home was a usual feature in sailing ships and often appeared in steel merchant ships before World War II.Ships of the present day rarely employ this feature since its elimination makes for ease of production and it is of doubtful value.Rake of stem In ships which have straight stems formed by a stem bar or a plate the inclination of the stem to the vertical is called the ‗rake‘.It may be defined either by the angle to the vertical or the distance between the intersection of the stem produced with the base line and the forward perpendicular.When ships have curved stems in profile, and especially where they also have bulbous bows, stem rake cannot be simply defined and it would be necessary to define the stem profile by a number of ordinates at different waterlines.In the case of a simple straight stem the stem line is usually joined up with the base line by a circular are, but sometimes a curve of some other form is used, in which case several ordinates are required to define its shape.Draught and trim The draught at which a ship floats is simply the distance from the bottom of the ship to the waterline.If the waterline is parallel to the keel the ship is said to be floating on an even keel, but if the waterline is not parallel then the ship is said to be trimmed.If the draught at the after end is greater than that at the fore end the ship is trimmed by the stern and if the converse is the case it is trimmed by the bow or by the head.The draught can be measured in two ways, either as a moulded draught which is the distance from the base line to the waterline, or as an extreme draught which is the distance from the bottom of the ship to the waterline.In the modern welded merchant ship to the waterline.In the modern welded merchant ship these two draughts differ only by one thickness of plating, but in certain types of ships where, say, a bar keel is fitted the extreme draught would be measured to the underside of the keel and may exceed the moulded draught of by 15-23cm(6-9in).It is important to know the draught of a ship, or how much water the ship is ‗drawing‘, and so that the draught may be readily obtained draught marks are cut in the stem and the stern.These are 6 in high with a space of 6in between the top of one figure and the bottom of the next one.When the water level is up to the bottom of a particular figure the draught in feet has the value of that figure.If metric units are used then the figures would probably be 10 cm high with a 10 cm spacing.In many large vessels the structure bends in the longitudinal vertical plane even in still water, with the result that the base line or the keel does not remain a straight line.The mean draught at which the vessel is floating is not then simply obtained by taking half the sum of the forward and after draughts.To ascertain how much the vessel is hogging or sagging a set of draught marks is placed amidships so that if da, d and df are the draughts at the after end amidships and the forward end respectively then

Hog or sag=

dadf-d

2When use is made of amidship draughts it is necessary to measure the draught on both sides of the ship and take the mean of the two readings in case the ship should be heeled one side or the other.The difference between the forward and after draughts of s ship is called the ‗trim‘, so that trim T=da-df, and as previously stated the ship will the said to be trimming by the stern or the bow according as the draught aft or the draught forward is in excess.For a given total load on the ship the draught will have its least value when the ship is on an even keel.This is an important point when a ship is navigating in restricted depth of water or when entering a dry dock.Usually a ship should be designed to float on an even keel in the fully loaded condition, and if this is not attainable a small trim by the stern is aimed at.Trim by the bow is not considered desirable and should be avoided as it reduces the ‗height of platform‘ forward and increases the liability to take water on board in rough seas.Freeboard Freeboard may be defined as the distance which the ship projects above the surface of the water or the distance measured downwards from the deck to the waterline.The freeboard to the weather deck, for example, will vary along the length of the ship because of the sheer of the deck and will also be affected by the trim, if any.Usually the freeboard will be a minimum at amidships and will increase towards the ends.Freeboard has an important influence on the seaworthiness of a ship.The greater the freeboard the greater is the above water volume, and this volume provides reserve buoyancy, assisting the ship to rise when it goes through waves.The above water volume can also help the ship to remain afloat in the event of damage.It will be seen later that freeboard has an important influence on the range of stability.Minimum freeboards are laid down for ships under International Law in the form of Load Line Regulations.(from ―Naval Architecture for Marine Engineers‖ by W.Muckle, 1975)

Technical Terms

1.principal dimension 主要尺度

2.naval architecture 造船(工程)学 3.造船工程(设计)师

4.length between perpendiculars(LBP)垂线间长 5.summer load waterline 夏季载重水线 6.forward/after perpendicular 首/尾垂线 7.rudder post 尾柱 8.stem 首柱

9.rudder pintle 舵销

10.length over all(LOA)总长

11.overhang(水线以上)悬伸部分 12.bulbous bow 球鼻艏

13.length on the waterline(LWL)水线长 14.amidship 船中

15.breath moulded 型宽 16.breath extreme 最大船宽 17.shell plating 船壳板 18.rivet 铆接 19.weld 焊接

20.strake(船壳板)列板 21.fender 护舷木

22.deck area 甲板面积(区域)23.cross channel vessel 海峡船 24.port 港口,船的左舷 25.side 舷侧(边)26.quay 码头

27.depth moulded 型深 28.plating of deck 甲板板 29.base line 基线 30.upper deck 上甲板 31.second deck 第二甲板

32.the uppermost continuous deck 最上层连续甲板 33.rounded gunwale 圆弧舷边顶部 34.moulded line 型线 35.sheer 舷弧 36.ends 船端

37.deck line at side 甲板边线 deck at side line 甲板边线 deck at side

甲板边线 38.profile

纵剖面(图),轮廓 39.sheer forward/aft 首/尾舷 40.platform

平台

41.rough sea

强浪,汹涛海面 42.seakeeping

耐波性

43.appearance

外形(观),出现 44.camber

梁拱

round of beam 梁拱 45.weather deck 露天甲板 46.drainage 排水

47.upright 正浮,直立 48.at rest 在静水中

49.accommodation 居住舱,适应 50.bilge radius

舭(部)半径 5.1 midship section 船中剖面 52.bilge

舭(部)53.rise of floor 船底升高 54.flat of keel 龙骨宽 55.flat plate keel平板龙骨 56.vertical center girder 中桁材

57.bevel

折射角,将直角钢改为斜角 58.connecting angle 联接角钢

59.tumble home 内倾 60.sailing ship 帆船

61.steel merchant ship 钢质商船 62.bar 棒,巴(气压单位)63.rake 倾斜

64.draught 吃水,草图,通风 65.even keel 等吃水,正浮

66.trimmed by the stern/bow 尾/首倾 67.moulded draught 型吃水 68.extreme draught 最大吃水 69.bar keel 棒龙骨 70.‖drawing‖“吃水” 71.draught marks 吃水标志 72.imperial unit 英制单位 73.metric unit 公制单位 74.spacing 间距 75.hogging 中拱 76.sagging 中垂 77.heel

横倾 78.dry dock 干船坞

79.fully loaded condition 满载标志 80.freeboard 干舷

81.seaworthiness 适航性

82.reserve buoyancy 储备浮力 83.range of stability 稳性范围

84.Load Line Regulations 载重线规范

Additional Terms and Expressions

1.form coefficients 船型系数 2.block coefficient 方型系数 3.prismatic coefficient 棱型系数

4.midship area coefficient 船中横剖面面积系数

5.waterplane area coefficient 水线面面积系数

6.vertical prismatic coefficient 竖向棱型系数 7.body section of U-form U形横剖面 8.V-shaped section V形横剖面

9.geometrically similar ships 几何相似船 10.base plane 基平面

11.center plane 中线面 12.midstation plane 中站面 13.moulded base line 基线 14.length breadth ratio 长度比 15.cruiser stern 巡洋舰型尾

16.principal coordinate planes 主坐标面 17.transom 方尾 18.soft chine 圆舭 19.hard chine 尖舭 20.counter 尾伸部 21.forefoot 首踵 22.aftfoot 尾踵

23.deadwood 尾鳍(呆木)

Notes to the Text

1.as will be seen later 和as is the case in the length between perpendiculars 中as 引出的从句为非限制性定语从句。关系代词as代替整个主句,并在从主语中作主语。as 也可在从句中作宾语,表语用。

2.A third length 序数字前面,一般用定冠词“the”,但当作者心目中对事物总数还不明确,或还不足以形成一个明确的序列时,序数字前面用不定冠词“a”。例:

will they have to modify the design a fourth time?(它们的设计究竟要修改多少次,心中无数,但依次下来已是第四次,所以用不定冠词“a”。)3.This is the distance measured on the waterline at which the ship is floating from the intersection of the stern with the waterline to the intersection of the stem with the waterline.这是一个符合据。其中at which the ship is floating 为定语从句,修饰the waterline.from the intersection of the stern(with the waterline为intersection 所要求的介词短语)to the intersection of the stern(with the waterline 为第二个intersection 所要求的介词短语)都属于介词短语,作状语用,说明测量的范围。

4.参见第一课注3.中的第二部分说明 5.quay 一般指与海岸平行的码头

pier 系指与海岸或呈直角面突出的码头

wharf 一般用于的码头

6.the deck line continued 和the stern produced 为过去分词作后置定语,分别修饰“the deck line 和the stern.都可译成“延长时”。

considerable variation was made from these standard values 和departures were made from the parabolic sheer profile 和(when)use is made of amidship draughts 这三句都属于主语的成分被位于动词隔离成两部分。这是英语句子结构平衡的需要中带有这种情况,阅读和翻译时需加以注意。

7.considerable variation was made from these standard values 和departures were made from the parabolic sheer profile 和(when)use is made of amidship draughts 这三句都属于主语的成分被位于动词隔离成两部分。这是英语句子结构平衡的需要中带有这种情况,阅读和翻译时需加以注意。Lesson Three

Merchant ship Types Break-bulk cargo ships

The inboard space in break bulk cargo ships is divided longitudinally by transverse bulkheads, spaced 40-70 ft apart, into a series of cargo compartments of approximately equal volume, generally seven for a ship of about 500 ft Lap.Vertically, the bulkheads are divided by one or two decks below the uppermost, continuous deck(main or strength deck).The space between the inner bottom and the lowest deck, called the hold, is limited to a height of about 18 ft(5.5m)to minimize damage to cargo through crushing.Usually the height of each space between decks termed between deck space)is 9-10ft(2.7-3.0m).In addition to the previously mentioned double-bottom tanks, the most break-bulk cargo ships have deep tanks used for fuel oil, water ballast, or liquid cargoes such as latex, coconut oil, or edible oils.The cargo is handled through large rectangular deck openings(hatches)over each cargo space.Mechanically operated hatch covers are used to close the openings.The hatch covers in the tween decks are strong enough to support cargo stowed on them.The topside hatch covers are watertight.The tween deck space is generally suitable for break-bulk or palletized cargo holds have had one hatch per deck, with of 35-50% the ship‘s breath and a length of 50-60% the hold length.The trend is toward widen hatches or multiple hatches abreast and often longer hatches, to increase cargo handling speed.A multiple hatch arrangement(triple hatch, for instance)is efficiently used for a partial load of containers stowed under deck.Break-bulk cargo handling between pier and ship is done usually by means of cargo booms installed on board.The booms are raised or lowered by adjustable wire rigging led from the mast or king post to the boom ends.A wire rope leads over sheaves from a winch to the outer end of each boom and terminates in a cargo hook.Cargo can be hoisted using one boom(customarily for very heavy loads of cargo, 10 tons or over)or for faster handling, by a pair of married booms, with one boom end over the hatch and the other over the pier.This cargo handling operation, called burtoning, is customary for loads up to 10 tons.Most break-bulk cargo ships fitted with booms have a pair of booms at each hatch end to expedite cargo handling.The cargo is often piled together in a large net which is emptied and returned for the next load.Packaged cargo of nearly uniform dimensions may be stacked on pallets which are hoisted aboard individually.The sling load is landed through the hatch opening.The pallets or nets are then unloaded, and each item is individually stowed by the hold gang.Any cargo stowed in the wings of the hold is manhandled unless it is on pallets and handled by a forklift truck.The use of forklift trucks is becoming common practice, and a number of these trucks may be carried on board if they are not available at cargo terminals.The amount of cargo which is manhandled onboard determines largely the ship turnaround and port expenses, and, the profitability of the transportation system.Most break-bulk cargo ships have provisions for a heavy lift boom of 30-100-metric ton capacity for occasional units of heavy cargo.An increasing number of break-bulk cargo ships are being fitted with revolving deck cargo cranes instead of masts, booms and winches.Container ships

Container ships are replacing the conventional break-bulk cargo ship in trade routes where rapid cargo handling is essential.Containers are weatherproof boxes(usually metal)strengthened withstand stacking and motion at sea.Containers are of standard size, the largest ones weighing up to about 30 metric tons when loaded.The use of standard containers facilitates ship-board stowage, land or waterway transportation, and rental or lease.A large container ship may be loaded or unloaded completely in about half a day, compared to several days for the same amount of cargo in break-bulk cargo ship.Generally, the shipper places the cargo in the container and,except for custom inspection, it is delivered unopened to the consignee.Highway trailers(most commonly), railroad cars, or barges transport containers to and from their land destination and are therefore apart of the same transportation system.For a given payload cargo capacity, container ships are larger and more costly to build than the traditional cargo ship, but both the cargo handling cost and the idle ship time in port are reduced considerably.Although in some ships containers are moved horizontally for loading and unloading, the predominant arrangement is that illustrated in Fig.1 where containers are stowed in vertical cells and moved vertically in and out of the vessel.Roll-on/Roll-off ships

With a broad interpretation all ships that are designed to handle cargo by rolling it on wheels can be considered under this heading.This would include trailer ships;sea trains(carrying railroad cars or entire carriers: ships carrying pallets handled by forklift trucks from and to shore;and so on, the following is a description of a ship of this type, which is intended primarily to operate as a trailer ship, although it may handle several types of wheeled vehicles.Roll-on/Roll-off ships require a high proportion of cubic capacity relative to the amount of cargo and are particularly suited to services with short runs and frequent loading and unloading.They need even shorter port time than container ships but their building cost is higher.Because fully loaded toll-on/roll-off ships can not carry enough cargo to immerse them deeply, their large freeboard allows the fitting of side ports above the waterline for handling of cargo on wheels by means of ramps.Usually, ships of this type have a transom stern(a square-shaped stern like that of a motorboat)fitted with doors for handling wheeled vehicles on an aft ramp.Roll-on/Roll-off ships have several decks, and the cargo is handled on wheels from the loading deck to other decks by elevators or sloping ramps.Both internal elevators and ramps occupy substantial volume in the ship.The need for clear decks, without interruption by transverse bulkheads, and tween decks for vehicle parking results in a unique structural arrangement.Barge-carrying ships

This type of ship represents a hold step in the trend toward cargo containerization and port time reductions.Cargo is carried in barges or lighters each weighing up to 1000 metric tons when loaded.The lighters are carried below and above deck and handled by gantry cranes or elevator platforms.These are among the fastest, largest, and costest ships for the carriage of general cargo.For their size, their payload capacity is less than that of the conventional break-bulk cargo ship.However, they can be loaded and unloaded much faster and with a considerable saving in man-hours.Because the lighters can be waterborne and operated as regular barges, these large ships can serve undeveloped ports advantageously.Using portable fixtures that can be erected quickly, barge-carrying ships can be adapted for the transport of varying amounts of standard containers in addition to or in plane of lighters.Bulk cargo ships

A large proportion of ocean transportation is effected by bulk cargo ships.Dry bulk cargo includes products such as iron ore, coal, limestone, grain, cement, bauxite gypsum, and sugar.Most oceangoing dry bulk carriers are loaded and unloaded using shore side installations.Many dry bulk carriers operating in the Great Lakes have shipboard equipment for the handling of cargo(self-unloaders), and an increasing number of oceangoing ships carrying this type of cargo are being fitted with self-unloading gear.By far the largest amount of liquid bulk cargo consists of petroleum products, but ocean transportation of other bulk liquid products is increasing in importance;for example, various chemicals, vegetable oils, molasses, latex, liquefied gases, molten sulfur, and even wine and fruit juices.Practically all liquid bulk carriers have pumps for unloading the cargo, usually have ship board pumps for unloading liquids.Practically all bulk carriers have the machinery compartment, crew accommodations, and conning stations located aft.An exception is the Great Lakes self-unloader with crew accommodations and bridge forward.The tendency in bulk carriers is toward larger ships, with speeds remaining about constant at moderate level(16-18 knots or 30-33 km/h for oceangoing ships, lower for Great Lakes vessels).The oceangoing ore carrier is characterized by a high double bottom and small volume of cargo hold because of the high density of the ore.Storing the cargo high in the ship decreases stability and prevents excessively quick rolling.The oceangoing combination bulk carrier permits low-cost transportation because of its flexibility.It is able to carry many types of bulk cargoes over a variety of sea lanes.This type of ship carries bulk cargoes, such as petroleum product, coal, grain, and ore.The double bottom in bulk carriers is shallow and the volume of cargo holds is large compared to the size of the ship.The tanker is the characteristic, and by far the most important, liquid bulk carrier both in numbers and tonnage.Tankers carry petroleum products almost exclusively.The very large tankers are used almost entirely for the transport of crude oil.A few tankers are built especially for the transportation of chemical products, and others are prepared for alter native loads of grain.Bulk liquid carriers, with standing, rectangular, cylindrical, or spherical cargo tanks separated from the hull, are used for the transportation of molten sulfur and liquefied gases, such as anhydrous ammonia and natural gas.Liquefied natural gas(LNG)is also carried in ships with membrane tanks, i.e., where a thin metallic linear is fitted into a tank composed of ship structural and load-bearing insulation.The transportation of molten surfur and liquefied gases requires special consideration regarding insulation and high structural soundness of cargo tanks, including the use of high grade, costly materials for their construction.(From ―McGraw-Hill Encyclopedia of Science and Technology‖, Vol.8.1982).Passenger-cargo ships

The accommodations for passengers in this type of ship are located to assure maximum comfort.Generally a passenger-cargo ship serves ports that have an appeal for the tourist trade and where rather special, high freight-rate cargo is handled.Because of the service needs of passengers, a ship of this type requires a much larger crew than a merchant ship of comparable size engaged exclusively in the carriage of cargo.The living accommodations for passengers consist of staterooms with 1-4 berths, each room with bath and toilet.A few rooms may be connected and suites may include a living room, dressing room, and even a private outdoor veranda.Public rooms for passenger use may include dining room, lounge, cocktail room, card and game room, library, shops, and swimming pool.Ships carrying more than 12 passengers must comply with the SOLAS regulations.These regulations deal with ship characteristics related to items such as the following:(1)lessening the risk of foundering or capsizing due to hull damage,(2)preventing the start and spread of fires aboard, and(3)increasing the possibility and safety of abandoning ship in emergencies.The ship in Fig.2 is an interesting example of a departure from the traditional break-bulk cargo ship in which cargo is handled almost exclusively by means of a ship board installation of masts and booms.This ship is provided with gantry cranes to handle containers, vehicles, and large pallets.The containers may be stored in cargo holds equipped with container cells or on deck.Large-size pallets and vehicles may be handled through side ports by means of an athwart-ship gear called a siporter.Wheeled vehicles can also be rolled on and off the ship through the side ports.Cargo may be carried to and from lower decks by cargo elevators, and, in addition, there are vertical conveyors for handling cargo such as bananas.The horizontal conveyors shown in the typical section receive cargo automatically, mostly on pallets, from the cargo elevators.This cargo is then stowed by manually controlled, battery operated pallet loaders.Cargo for the forward hold is handled by a 5-ton burtoning cargo gear and transferred to lower levels by a cargo elevator.(From ―McGraw – Hill Encyclopedia of Science and Technology‖, Vol.12, 1977)

Technical Terms

1.break-bulk cargo ship 件杂货船 26.king post 吊杆柱,起重柱 2.inboard 船内 27.wire rope 钢丝绳 3.compartment 舱室 28.sheave

滑轮 4.transverse bulkhead 横舱壁 29.winch 绞车 5.main deck 主甲板 30.cargo hook 吊货钩 6.strength deck 强力甲板 31.married booms 联合吊杆 7.inner bottom 内底 32.burtoning 双杆操作 8.hold(cargo hold)货舱 33.cargo handling 货物装卸 9.tween deck space 甲板间舱 34.packaged cargo 包装货 10.double bottom 双层底 35.pallet 货盘 11.deep tank 深舱 36.sling load

悬吊荷重 12.water ballast 水压载 37.hold gang 货舱理货组 13.latex 胶乳 38.wings 货舱两侧 14.coconut oil 椰子油 39.forklift truck 铲车 15.edible oil 食用油 40.terminal 码头,终端 17.hatch 舱口 41.turnaround 周转期 18.hatch cover 舱口盖 42.profitability 利益 19.palletized cargo 货盘运货 43.container ship 集装箱船 20.multiple hatch 多舱口 44.trade route 贸易航线 21.abreast 并排 45.weather proof 风雨密 22.container 集装箱 46.stacking 堆压 23.pier 码头 47.stowage 装载,贮藏 24.cargo boom 吊货杆 48.waterway 水路 25.wire rigging 钢索索具 49.rental 出租(费)50.lease 租借 51.shipper 货运主 52.custom 海关

53.consignee 收货人

54.highway trailer 公路拖车

55.payload 净载重量,有效载荷 56.cell 格栅,电池,元件 57.roll-on/roll-off ship 滚装船 58.heading 标题,航向 59.trailer ships 拖车运输船

60.sea trains ferry 海上火车渡船 61.truck 卡车 62.trailer 拖车

63.military vehicle carriers 军用车辆运输船

64.cubic capacity 舱容 65.ramp 跳板,坡道 66.transom stern 方尾

67.motor boat 机动艇,汽艇 68.clear deck 畅通甲板 69.parking 停车(场)

70.barge-carrying ship 载驳船 71.lighter 港驳船 72.barge 驳船

73.portable fixture 轻便固定装置

74.bulk cargo ship/bulk carrier 散装货船 75.dry bulk cargo 散装干货 76.limestone 石灰石 77.bauxite 矾土 78.gypsum 石膏

79.Great Lakes(美国)大湖 80.petroleum 石油

81.chemicals 化学制(产)品 82.molasses 糖浆

83.liquefied gas 液化气体 84.molten sulfur 熔态硫 85.conning station 驾驶室

86.ore hold 矿砂舱 87.空

88.engine room 机舱

89.liquid bulk carrier 液体散货船

90.combination bulk carrier 混装散货船 91.ocean-going ore carrier 远洋矿砂船 92.lane 航道(线)93.tanker 油船 94.crude oil 原油

95.anhydrous ammonia 无水氨 96.natural gas 天然气

97.passenger-cargo ship 客货船 98.tourist 旅游者 99.freight-rate 运费率

100.carriage 装(载)运,车辆 101.stateroom 客舱 102.suite 套间

103.living room 卧室 104.veranda 阳台 105.lounge 休息室

106.cocktail room 酒吧间

107.card and game room 牌戏娱乐室 108.foundering 沉没 109.capsizing 倾覆 110.abandoning 弃船 111.emergency 应急

112.installation 装置,运载工具 113.vehicle 车辆,运载工具 114.gantry crane 门式起重机 115.container cell 集装箱格栅 116.siporter 横向装卸机

117.rolled on and off 滚进滚出 118.side port 舷门

119.cargo elevator 运货升降机 120.conveyor 输送机

Additional Terms and Expressions 1.2.3.4.transport ship 运输船 general cargo ship 杂货船 liquid cargo ship 液货船 refrigerated ship 冷藏船

5.6.7.8.working ship 工程船

ocean development ship 海洋开发船 dredger 挖泥船

floating crane/derrick boat 起重船 9.salvage vessel 救捞船 10.submersible 潜水器 11.ice-breaker 破冰船 12.fisheries vessel 渔业船 13.trawler 拖网渔船

seine netter 围网渔船 14.harbour boat 港务船 15.supply ship 供应船 16.pleasure yacht 游艇

17.hydrofoil craft 水翼艇 18.air-cushion vehicle 气垫船

hovercraft 全垫升气垫船 19.catamaran 双体船 20.concrete ship 水泥船

21.fiberglass reinforced plastic boat 玻璃钢

Notes to the Text

1.unless 连接词,作“如果不”,“除非”解释,例如:

An object remain at rest or moves in a straight line unless a force acts upon it.一个物体如无外力作用,它将继续保持静止或作直线运动。

In this book the word is used in its original sense unless(it is)otherwise sated.本书内,这个词按其意采用,除非另有说明。2.“to and from 名词”或“from and to +名词” 后面的名词委前面两个介词公用,可译作“来回于(名词)之间”。

3.with a broad interpretation 具有广泛的意思

under this heading 属于这个范畴

4.barge 和lighter 一般都可以译作驳船,但barge 往往指货物经过较长距离运输到达某一目的地,故译作“驳船”,而lighter 旨在港口或近距离内起到装卸货物的联络作用,故译作“驳船”。

5.in additional to or in place of lighters 是in addition to lighters or in place of lighters 的省略形式,翻译成中文时,不一定能省略。

6.“by far +形容词(或副词)的最高级或比较及”具有“远远,非常,最„,或„得多”的意思。例:

by far the fastest 最快的

by far faster than A 远比A快(比A 快得多)

By far the most common type of fixed offshore structure in existence today is the template, or jacket, structure illustrated in Fig 1.1.现今最普遍采用的固定平台型式是图1.1所示的导管架平台。

7.the SOLAS regulations 系指国际海上人命安全公约规则,几乎所有海运国家都要遵守这些规则。其中的“SOLAS”为“International Convention for the Safety Of Life At Sea‖的缩写。Lesson Four

Ship Design

The design of a ship involves a selection of the features of form, size, proportions, and other factors which are open to choice, in combination with those features which are imposed by circumstances beyond the control of the design naval architect.Each new ship should do some things better than any other ship.This superiority must be developed in the evolution of the design, in the use of the most suitable materials, to the application of the best workmanship, and in the application of the basic fundamentals of naval architecture and marine engineering.As sips have increased in size and complexity, plans for building them have became mare detailed and more varied.The intensive research since the period just prior to World War 2 has brought about many technical advances in the design of ships.These changes have been brought about principally by the development of new welding techniques, developments in main propulsion plants, advances in electronics, and changes in materials and methods of construction.All ships have many requirements which are common to all types, whether they are naval, merchant, or special-purpose ships.The first of such requirements is that the ship must be capable of floating when carrying the load for which it was designed.A ship floats because as it sinks into the water it displaces an equal weight of water, and the pressure of the water produces an upward force, which is called the buoyancy force is equal to the weight of the water displaced by the ship and is called the displacement.Displacement is equal to the underwater volume of the ship multiplied by the density of the water in which it is gloating.When floating in still water, the weight of the ship, including everything it carries, is equal to the buoyancy or displacement.The weight of the ship itself is called the light weight.This weight includes the weight of the hull structure, fittings, equipment, propulsion machinery, piping and ventilation, cargo-handling equipment and other items required for the efficient operation of the ship.The load which the ship carries in addition to its own weight is called the deadweight.This includes cargo, passengers, crew and effects, stores, fresh water, feed water for the boilers incase of steam propelling machinery, and other weights which may be part of the ships international load.The sum of all these weights plus the lightweight of the ship gives the total displacement;that is

Displacement = lightweight + deadweight

One of the first things which a designer must do is to determine the weight and size of the ship and decide upon a suitable hull form to provide the necessary buoyancy to support the weight that has been chosen.Owner’s requirements

Ships are designed, built, and operated to fulfill, the requirements and limitations specified by the operator and owner.These owner‘s requirements denote the essential considerations which are to form the basis for the design.They may be generally stated as(1)a specified minimum deadweight carrying capacity,(2)a specified measurement tonnage limit,(3)a selected speed at sea, or a maximum speed on trial, and(4)maximum draft combined with other draft limitations.In addition to these general requirements, there may be a specified distance of travel without refueling and maximum fuel consumption per shaft horsepower hour limitation, as well as other items which will influence the basic design.Apart from these requirements, the ship owner expects the designer to provide a thoroughly efficient ship.Such expectations include(1)minimum displacement on a specified deadweight carrying capacity,(2)maximum cargo capacity on a minimum gross tonnage,(3)appropriate strength of construction,(4)the most efficient type of propelling machinery with due consideration to weight, initial cast, and cost of operation,(5)stability and general seaworthiness, and(6)the best loading and unloading facilities and ample accommodations for stowage.Design procedure

From the specified requirements, an approach is made to the selection of the dimensions, weight, and displacement of the new design.This is a detailed operation, but some rather direct approximations can be made to start the design process.This is usually done by analyzing data available from an existing ship which is closely similar.For example, the design displacement can be approximated from the similar ship‘s known deadweight of, say, 11790 tons and the known design displacement of 17600 tons.From these figures, a deadweight-displacement ratio of 0.67 is obtained.Thus, if the deadweight for the new design is, for example, 10000 tons, then the approximate design displacement will 10,000/0.67 or 15000 tons.This provides a starting point for the first set of length, beam, and draft dimensions, after due consideration to other requirements such as speed, stability, and strength.Beam is defined as the extreme breath of a ship at its widest part, while draft is the depth of the lowest part of the ship below the waterline.Length and speed These factors are related to the hull form, the propulsion machinery, and the propeller design.The hull form is the direct concern of the naval architect, which the propulsion machinery and propeller design are concern.The naval architect has considerable influence on the final decisions regarding the efficiency, weight, and size of the propeller, as both greatly influence the design of the hull form.Speed has an important influence on the length selected for the ship.The speed of the ship is related to the length in term of the ratio V/

L, where V is the speed in knots and L is the effective waterline length of the ship.As the speed-length ratio increases, the resistance of the ship increases.Therefore, in order to obtain an efficient hull form from a resistance standpoint, a suitable length must be selected for minimum resistance.Length in relation to the cross-sectional area of the underwater form(the prismatic coefficient), is also very important insofar as resistance is concerned.Fast ships require fine(slender)forms or relatively low fullness coefficients as compared with relatively slow ships which may be designed with fuller hull forms.Beam and stability

A ship must be stable under all normal conditions of loading and performance at sea.This means that when the ship is inclined from the vertical by some external force, it must return to the vertical when the external force is removed.Stability may be considered in the transverse or in the longitudinal direction.In surface ship, longitudinal stability is much less concern than transverse stability.Submarines, however, are concerned with longitudinal stability in the submerged condition.The transverse stability of a surface ship must be considered in two ways, first at all small angles of inclination, called initial stability, and second at large angles of inclination.Initial stability depends upon two factors,(1)the height of the center gravity of the ship above the base line and(2)the underwater form of the ship.The center of gravity is the point at which the total weight of the ship may be considered to be concentrated.The hull form factor governing stability depends on the beam B, draft T, and the proportions of the underwater and waterline shape.For a given location of the center of gravity, the initial stability of the ship is proportional to B2/T.Beam, therefore, is a primary factor in transeverse stability.At large angles of heel(transeverse inclination)freeboard is also an important factor.Freeboard is the amount the ship projects above the waterline of the ship to certain specified decks(in this case, to the weatherdeck to which the watertight sides extend).Freeboard affects both the size of the maximum righting arm and the range of the stability, that is the angle of inclination at which the ship would capsize if it were inclined beyond that angle.5 Depth an strength

A ship at sea is subjected to many forces because of the action of the waves, the motion of the ship, and the cargo and other weights, which are distributed throughout the length of the ship.These forces produces stresses in the structure, and the structure must be of suitable strength to withstand the action.The determination of the minimum amount of material required for adequate strength is essential to attaining the minimum weight of the hull.The types of structural stress experienced by a ship riding waves at sea are caused by the unequal distribution of the weight and buoyancy throughout the length of ship.The structure as a whole bends in a longitudinal plane, with the maximum bending stresses being found in the bottom and top of the hull girder.Therefore, depth is important because as it is increased, less material is required in the deck and bottom shell.However, there are limits which control the maximum depth in terms of practical arrangement and efficiency of design.(From ―McGraw-Hill Encyclopedia of science and Technology‖, Vol.12, 1982)

Technical Terms

1.form 船型,形状,格式 22.distance of travel 航行距离 2.proportion 尺度比,比例 23.refueling 添加燃料 3.workmanship 工艺质量 24.consumption 消耗 4.basic fundamentals 基本原理 25.initial cost 造价 5.marine engineering 轮机工程 26.cost of operation 营运成本 6.intensive 精致的 27.unloading facility 卸货设备 7.propulsion plants 推进装置 28.cross sectional area 横剖面面积 8.naval ship 军舰 29.fineness 纤瘦度 9.special-purpose ship 特殊用途船 30.prismatic coefficient 菱形系数 10.buoyancy 浮力 31.slender 瘦长(型)11.fittings 配/附件 32.beam 船宽 12.piping 管路 33.inclined 倾斜的 13.ventilation 通风 34.external force 外力 14.cargo-handing equipment 货物装卸装35.surface ship 水面船舶

置 36.submarine 潜水艇 15.crew and effects 船员及自身物品 37.submerged condition 潜水状态 16.stores 储藏物 38.initial stability 初稳性 17.fresh water 淡水 39.weather deck 楼天甲板 18.feed water 给水 40.righting arm 复原力臂 19.boiler 锅炉 41.capsize 倾复 20.measurement(吨位)丈量,测量 42.stress 应力 21.trial 试航,试验 43.unequal distribution 分布不相等 44.longitudinal plane 纵向平面 45.hull girder 船体梁

AdditionalTerms and Expressions

1.tentative design 方案设计 2.preliminary design 初步设计 3.technical design 技术设计 4.working design 施工设计 5.basic design 基本设计

6.conceptual design 概念设计 7.inquire design 咨询设计 8.contract design 合同设计 9.detailed design 详细设计 10.finished plan 完工图

11.hull specification 船体说明书 12.general specification 全船说明书 13.steel weight 钢料重量

14.outfit weight(木作)舾装重量 15.machinery weight 机械重量 16.weight curve重量曲线

17.weight estimation 重量估计

18.cargo capacity 货舱容积

19.bale cargo capacity 包装舱容积 20.bulk cargo capacity 散装货容积 21.bunker capacity 燃料舱容积 22.capacity curve 容积曲线 23.capacity plan 容量(积)图 24.stowage factor 积载系数

25.homogenuous cargo 均质货物 26.gross tonnage 总吨位 27.net tonnage 净吨位

28.tonnage capacity 量吨容积 29.tonnage certificate 吨位证书

30.displacement length ratio 排水量长度比 31.accommodation 居住舱室 32.ice strengthening 冰区加强 33.drawing office 制图室 34.drafting room 制图室

Notes to the Text 1.A ship floats because as it sinks into the water it displace an equal weight of water, and pressure of the water produces an upward force which is called buoyancy.这是一个复合句。

从because开始至句末均属原因状语从句,它本身也是一个复合句,包含有以下从句:

as it sinks into the water 为整个原因状语从句中的时间状语从句;

it displaces an equal weight of water, and pressure of the water produces an upward 为整个原因状语从句中的两个并列的主要句子;

which is called buoyancy 为定语从句,修饰an upward force.2.In addition to 除……以外(还包括……)

例:In addition to these general requirements, … 除了这些一般要求外,还有……

而在The load which the ship carries in addition to its own weight is called the deadweight中的in addition to 应理解成“外加在它本身重量上的”,故应译为“本身重量除外(不包括本身重量)。

3.插入语,相当于 for example.一般在口语中用得比较多。

4.注意 ―ton‖, ―tonne‖, 和 ―tonnage‖ 三个词的区别。ton和tonne一般用来表示船舶的排水量和载重量,指重量单位。其中ton可分long ton(英吨)和 short ton(美吨),而tonne为公吨;tonnage 是登记吨,表征船舶容积的一种单位。

5. …the angle of inclination at which the ship would capsize if it were inclined beyond that angle.从at 开始至句末是一定语从句,修饰angle, 而该从句本身又由一个带虚拟语气的主从复合句所构成。因为假设的条件不会发生,或发生的可能性非常小,所以主句和从句中的谓语动词都采用虚拟语气。

Lesson Five

General Arrangement

1.1 Definition The general arrangement of a ship can be defined as the assignment of spaces for all the required functions and equipment, properly coordinated for location and access.Four consecutive steps characterize general arrangement;namely, allocation of main spaces, setting individual space boundaries, choosing and locating equipment and furnishing within boundaries, and providing interrelated access.These steps progress from overall to detail considerations, although there is some overlapping.Generally, particular arrangement plans are prepared for conceptual, preliminary, contract, and working plan stages.The data for early stages come into first experience, and the degree of detail increases as the design progresses.It has often been said that ship design is inevitably a compromise between various conflicting requirements, and it is in formulation of the general arrangement that most of the compromises are made.Ship design requires a melding of many arts and sciences, and most of this melding occurs in the general arrangement.The designer considers the demands for all the functions and subfunctions of the ship, balances the relative types and importance of the demands, and attempts to arrive at an optimum coordinate relationship of the space assignments within the ship hull.The general arrangement, then, represents a summary or integration of information from other divisions and specialties in the ship design, to provide all the necessary functions of the ship in the most efficient and economical way from an overall viewpoint.The efficient operation of a ship depends upon the proper arrangement of each separate space and the most effective interrelationships between all spaces.It is important that the general arrangement be functionally and economically developed with respect to factors that affect both the construction and operation cost, especially the manpower required to operate the ship.Many other divisions of ship design provide the feed-in for the general arrangement, such as structure, hull engineering(hatch covers, cargo handling, etc), scientific(weights, stability, and lines), engineering(machinery, uptakes), and specifications.1.2 Function of ship

In this chapter, consideration of ship type is restricted to those whose function is to transport something for economic profit;in other words, commercial transportation.Such ship types may be subdivided in accordance with material to be transported;e.g., general cargo, bulk cargo, vehicles, passengers, etc.General cargo ships may further be subdivided in accordance with the form in which the general cargo is transported;e.g.break-bulk, containers, standardized pallets, roll-on/roll-off, etc.Bulk cargo ships may be subdivided into liquid bulk types and solid bulk types, or combinations of these, and, of course, may be further subdivided for specific liquids and solid bulks.Vehicle ships would include ferryboats and ships for the transoceanic delivery of automobiles, trucks, etc.Passengers can be carried in ships designed primarily for that purpose, as well as in any of the aforementioned types.Therefore, even after ship types are limited to those for Commercial transportation, they can have widely diverse functions.However, the common objective of the general arrangement in each case is to fulfill the function of the ship n the most economical manner;in other words develop a ship which will transport cargo at the least unit cost.This dual aspect of function cost is actually the force which has give rise to special ship types, many of which have been created in the last few years.The reason for this may be seen in a comparative annual cost break-bulk cargo ship fleet and a container ship fleet designed to carry the same cargo ,as estimated in ref[1].Conventional

Break-bulk

container

Fleer

Ship Fleet Capital……………………………………………………………..$2,370,000….$ 2,940,000 Operating…………………………………………………………….4,550,000

3,550,000 Cargo handing………………………………………………………22,900,000

4,920,000 Terminal allocation………………………………………………….1200,000

1,200,000 Overhead and allocations……………………………………………2,20,000

2200000 Total transportation cost …………………………………………….$33,220,000 $14,810,000 Cost per long ton of cargo transported………………………………$4,920

$2,190 It is the implication of such cost figures that gave rise to a rapid growth in the container ship type.Some such similar sets of cost figures, comparing different ways to accomplish the same function, explain the growth of any special ship type.The problems of general arrangement, then, are, associated with the function of the ship and generally fifer according to ship type.The arrangements of all types, however, have certain things in common.For example, the problems of accommodation and propulsion machinery arrangements are generally similar, although the different ship types impose different limitations.1.3

Ship as a system.In analyzing any tool or implement which has a functional-economic aspect, it is convenient to consider that tool as a system made up of a group of subsystems.By this approach, each subsystem may be analyzed separately, and its components and characteristics selected for optimum function and economics;then the subsystems may be combined to form the compatible system.Of course the subsystems must be compatible and the sum of their functions must equal the complete system function, just as the sum of their cists must equal the complete system costs.A ship which is a structural-mechanical tool or implement may be considered as a system for the transportation of goods or people ,across a body of water, from one marine terminal to another.The complete system is broken down into subsystems which generally must include, as a minimum, subsystems for:

 Enclosing volume for containing cargo and other contents of ship and providing buoyancy to support cargo and other weights(hull envelope). Providing structure for maintaining watertight integrity of enclosed volume and supporting cargo and other contents of ship against static and dynamic forces and primary strength of the hull girder(structure). Transporting cargo from pier to ship and stowing it aboard ship(cargo handling and stowage). Propelling ship at various speeds(machinery and control). Controlling direction of ship(steering). Housing and supporting human components of system(accommodations).Providing safety in event of accident(watertight subdivision, fire control, etc.).The general arrangement is largely developed by consideration of the requirement of each system, which are balanced, weighed, and combined into a complete system.However, the development of the general arrangement is not completely compatible with the system approach, because a general arrangement is a diagram of space and location, which may be minor aspects of certain subsystems.For example, some sub-subsystems occupy practically no space and do not appear on a general arrangement plan.Although this chapter will not go further with the system approach than is warranted by the subject of “general arrangement‖, it should be noted that each of the foregoing subsystems may be further broken down into second-degree subsystems(or sub-subsystems)and these in turn may be further broken down.The complete ship itself is, of course, a subsystem of larger system for the transportation of goods or people from any point on earth to any other point.1.4 The Problem and the approach

The first step in solving the general arrangement problem is locating the main spaces and their boundaries within the ship hull and superstructure.They are:

Cargo spaces

Machinery spaces

Crew, passenger, and associated spaces

Tanks

Miscellaneous

At the same time, certain requirements must be met, mainly:

Watertight subdivision and integrity

Adequate stability

Structural integrity

Adequate provision for access

As stated in the foregoing, the general arrangement is evolved by a gradual progress of trial, check and improvement.As for any other problem, the first approach to a solution to the general arrangement must be based on a minimum amount of information, including:  Required volume of cargo spaces, based on type and amount of cargo. Method of stowing cargo and cargo handling system. Required volume of machinery spaces, based on type of machinery and ship. Required volume of tankage, mainly fuel and clean ballast, based on type of fuel, and cruising range. Required standard of subdivision and limitation of main transverse bulkhead spacing. Approximate principal dimensions(length, beam, depth, and draft). Preliminary lines plan.The approximate dimensions and lines plan are base on a preliminary summation of the required volumes for all the aforementioned contents of the ship, a preliminary, estimate of all the weights in the ship, a selection of the proper hull coefficients for speed and power, and adequate freeboard and margin line for subdivision and stability.From the lines plan and margin line, a curve of sectional areas along the length of the ship and a floodable length curve may be made.The first general arrangement layout to allocate the main spaces is based on the foregoing information.Peak oulkheads and inner bottom are established in accordance with regulatory body requirements.Other main transverse bulkheads are located to satisfy subdivision requirements, based on preliminary floodable length curves.Decks are located to suit the requirements.Allowance for space occupied by structure must be deducted in arriving at the resulting net usable volumes and the clear deck heights.Usually, in the first approach, several preliminary general arrangements are laid out in the form of main space allocations, boundaries, and subdivisions.These are checked for adequacy of volumes, weights and stability, and the changes to be made in the preliminary lines to make these features satisfactory.At this point, certain arrangements may be dropped, either because they are not feasible or are less efficient than other arrangements.The general arrangement process then continues into more refined stages ,simultaneously with the development of structure, machinery layout, and calculations of weights, volumes, floodable length, and stability(intact and damaged).The selection of one basic arrangement may cone early in the process, or may have to be delayed and based on a detailed comparison of ―trade-offs.‖ In any case, the selection is usually made in consultation with the owner so that consideration may be given to his more detailed knowledge of operating problems.(From “Ship Design and Construction” by D‘ Arcangelo, 1969)

Technical Terms

1.general arrangement 总布置 29.profit 利益 2.assignment 指定,分配 30.annual cost 费用 3.space 处所,空间 31.breakdown 细目 4.access 通道,入口

32.terminal allocation 码头配置费 5.allocation 分配,配置 33.overhead 管理费,杂项开支 6.furnishings 家具 34.component(组成)部分,分量 7.conceptual(design)概念(设计)35.characteristic 特性 8.preliminary(design)初步(设计)36.mechanical 机械的 9.contract(stage)合同(阶段)37.goods 货物 10.working plan 施工图 38.marine terminal 港口,码头 11.formulation 公式化,明确表达 39.enclosing volume 密(围)闭容积 12.melding 融合 40.hull envelope 船体外壳 13.optimum 最佳 41.primary strength 总强度 14.coordinate relationship 协调关系

42.stowage 配载 15.summary 综合,摘要 43.housing 容纳 16.integration 综合,积分 44.diagram 图 17.division 部分,划分 45.superstructure 上层建筑 18.efficient and economical way 有效和46.machinery space 机舱

经济的方式 47.miscellaneous(其他)杂用舱室 19.speciality 专业 48.watertight subdivision 水密分舱 20.feed-in 送进,提供 49.integrity 完整性 21.specifications 各种技术条件,说明书 50.tankage 液舱,容量(积)22.uptake 烟道 51.clean ballast 清洁压载 23.commercial transportation 商业运输 52.lines plan 型线图 24.solid(liquid)bulk type 固体(液体)53.crusing range 巡航范围

散装型 54.margine line 限界线 25.ferryboat 渡船 55.floodable length curve 可浸长度曲线 26.transoceanic 渡(远)洋的 56.layout(设计,布置)草图 27.automobile汽车 57.peak bulkhead 尖舱舱壁 28.aforementioned(a.m.)上述的 58.regulatory body 主管机构(关)59.intact stability 完整稳性 60.trade-off 权衡,折衷

61.consultation 协商

Additional Terms and Expressions

1.interior arrangement 舱室布置

2.stairway and passageway arrangement 梯道及走道布置

3.interior/exterior passageway 内/外走道 4.bridge deck 驾驶甲板 5.compass deck 罗经甲板 6.boat deck 艇甲板

7.promenda deck 游步甲板

8.accommodation deck 起居甲板 9.vehicle deck 车辆甲板

10.winch platform 起货机平台 11.wheel house 驾驶室 12.chart room 海图室 13.radio room 报务室 14.electric room 置电室 15.mast room 桅室

16.caption‘s room 船长室 17.crew‘s room 船员室 18.cabin 客舱

19.main engine control room 主机操纵室 20.auxiliary engine room 副机舱

21.boiler room 锅炉间

22.steering engine room 舵机舱 23.workshop 机修间 24.store 贮藏室

25.fore/aft peak 首/尾尖舱

26.topside/bottomside tank 顶边/底边舱 27.wing tank 边舱

28.steering gear 操舵装置

29.anchor and mooring arrangement 锚泊和

系缆设备

30.howse pipe 锚链筒 31.chain locker 锚链舱

32.closing appliances 关闭设备 33.hatch cover 舱口盖

34.lifesaving equipment/appliance 救生设备 35.mast 桅 36.rigging 索

37.bollard 双柱带缆柱 38.bitt 带缆桩 39.fairlead 导缆钩

Notes to the Text

1.It is in formulation of the general arrangement that most of the compromises are made.这是“it is … that … ”强调句型,强调in formulation of the general arrangement.in formulation of 原意为“在……的表达中”,现意译为“体现在……中”。

2.It is important that the general arrangement be functionally and economically developed…

这是虚拟语气形式的句型,在that 从句中采用原形动词。类似的句型还有:

It is desired/suggested/requested that……

It is necessary that …

有时It is essential that …也用虚拟语气。3.hull engineering 为“船舶设备”之意 4.scientific 原意为“科学的”,现根据上下文意译成“船舶性能”。5.at the least unit cost 以最小的单价 6.a long ton 一英吨(=2240磅)

a short ton 一美吨(=2000磅)

7.any tool or implement 在这里implement 和tool 基本上同义,帮or 后面的名词在翻译时可以省略不译。

8.across a body of water 穿过一段水路/一个水域

9.aboard ship和 on board ship, 以及on board a(the ship)都为“在船上”之意。

10.Although this chapter will not go further with the system approach than is warranted by the subject of ―general arrangement‖.这个让步状语从句中包含有比较状语从句。than 后面的主语(this chapter)被省略掉了。其中的is warranted 原意为“补认为是合理(或正当)的”,整个从句可翻译成:“虽然这一章只限于‘总布置’这个主题,而不再进一步讨论系统处理方法”。

Lesson Six

Ship Lines The outside surface of a ship is the surface of a solid with curvature in two directions.The curves which express this surface are not in general given by mathematical expressions, although attempts have been made from time to time to express the surface mathematically.It is necessary to have some drawing which will depict in as detailed a manner as possible the outside surface of the ship.The plan which defines the ship form is known as a ‘line plan‘.The lines plan consists of three drawings which show three sets of sections through the form obtained by the intersection of three sets of mutually orthogonal planes with the outside surface.Consider first a set of planes perpendicular to the centre line of the ship.Imagine that these planes intersect the ship form at a number of different positions in the length.The sections obtained in this way are called ‗body section‘ and are drawn in what is called the ‗body sections‘ as shown in Figure 1*.When drawing the body plan half-sections aft of amidships(the after body sections)are drawn on one side of the centre line and the sections forward of amidships(the fore body sections)are drawn on the other side of the center line.It is normal to divide the length between perpendiculars into a number of divisions of equal length(often ten)and to draw a section at each of these divisions.Additional sections are sometimes drawn near the ends where the changes in the form become more rapid.In merchant ship practice the sections are numbered from the after perpendicular to the forward perpendicular —thus a.p.is 0 and f.p.is 10 if there are ten divisions.The two divisions of length at the ends of the ship would usually be subdivided so that there would be sections numbered 1/2, 11/2, 81/2, and 91/2.Sometimes as many as 20 divisions of length are used, with possibly the two divisions at each end subdivided, but usually ten divisions are enough to portray the form with sufficient accuracy.Suppose now that a series of planes parallel to the base and at different distances above it are considered.The sections obtained by the intersections of these planes with the surface of the ship are called ‗waterlines‘ or sometimes ‗level lines‘.The lines are shown in Figure 1.The waterlines like the body sections are drawn for one side of the ship only.They are usually spaced about, 1m(3-4ft)apart, but a closer spacing is adopted near the bottom of the ship where the form is changing rapidly.Also included on the half breadth plan is the outline of the uppermost deck of the ship.A third set of sections can be obtained by considering the inter-section of a series of vertical planes parallel to the centre line of the ship with the outside surface.The resulting sections are shown in a view called the ‗sheer profile‘ see Figure 1 and are called ‗buttocks‘ in the after body and ‗bow lines‘ in the fore body or often simply ‗buttocks‘.The buttocks like the waterlines will be spaced 1m(3-4ft)apart.On the sheer profile the outline of the ship on the centre line is shown and this can be regarded as a buttock at zero distance from the centre line.The three sets of sections discussed above are obviously not independent of one another, in the sense that an alteration in one will affect the other two.Thus, if the shape of a body section is altered this will affect the shape of both the waterlines and the buttocks.It is essential when designing the form of the ship that the three sets of curves should be ‗fair‘ and their interdependence becomes important in this fairing process.What constitutes a fair curve is open to question.But formerly the fairing process was done very largely by eye.Nowadays the lines plan is often faired by some mathematical means which will almost certainly involve the use of the computer.However the fairing process is carried out the design of the lines of a ship will normally start by the development of an approximate body plan.The designer when he has such a body plan will then lift offsets for the waterlines and will run the waterlines in the half-breadth plan.This means drawing the best possible curves through the offsets which have been lifted from the sections, and this is done by means of wooden or plastics battens.If it is not possible to run the waterlines through all the points lifted from the body plan then new offsets are lifted from the waterlines and new body sections drawn.The process is then repeated until good agreement is obtained between waterlines and body sections.It is then possible to run the buttocks, and to ensure that these are fair curves it may be necessary to adjust the shape of body sections and waterlines.The process of fairing is usually done in the drawing office on a scale drawing.It is clear that a much more accurate fairing of the form is necessary for production purposes in particular, and this used to be done in the mould loft of the shipyard full size.The procedure was for the drawing office to send to the mould loft office from the lines as faired in the office and they were laid out full size on the loft floor.A contracted scale was adopted for the length dimension but waterline and section breadths and buttock heights were marked out full size.The same process of fairing was then adopted as used in the office, the fairing being done by using wood battens of about 25mm square section pinned to the loft floor by steel pins.To save space the waterlines and buttocks in the forward and after bodies were overlapped in the forward and after bodies were overlapped in the length direction.This type of full scale fairing enabled sections, waterlines and buttocks to be produced which represented the desired form with considerable accuracy.From the full scale fairing, offsets were lifted which were returned to the drawing office and made the basis of all subsequent calculations for the ship, as will be seen later.A more recent development has been the introduction of 1/10 scale lofting, which can be done in the drawing office, and the tendency has been to dispense with full scale loft work.Several methods have also been developed for the mathematical fairing of ship forms and linking this up with production processes.Discussion of these topics, however, is outside the scope of this work..The lines drawn on the lines plan representing the ship form are what are called ―moulded lines‖, which may be taken to represent the inside of the plating of the structure.The outside surface of the ship extends beyond the moulded lines by one thickness of shell plating in an all welded ship.When riveting was put on in a series of ―in‖ and ―out‖ strakes.In this case the outsides surface of the ship extended two thicknesses of plating beyond the moulded lines in way of an outside strake and one thickness beyond the moulded lines in way of an inside strake.Actually the outside surface would be rather more than one thickness or two thicknesses of plating, as the case may be beyond the moulded line in places where there is considerable curvature of the structure, as for example at the ends of the ship or below the level of the bilge.In multiple screw merchant ships it is customary to enclose the wing shafts in what is called a ―shaft bossing‖.This consists of plating, stiffened by frames and extending from the point where the shafts emerge from the ship and ending in a casting called a ―shaft bracket‖.The bossing is usually faired separately and added on to the main hull form.The bossing is treated as an appendage.In many ships of the cross section does not change for an appreciable distance on either side of amidships.This portion is called the ―parallel middle body‖ and may be of considerable extent in full slow ships but may not exist at all in fine fast ships.Forward of the parallel middle the form gradually reduces in section towards the bow and in like manner the form reduces in section abaft the after end of the parallel middle.These parts of the form are called respectively the ―entrance‖ and the ―run‖ and the points where they join up with the parallel middle are referred to as the ―forward‖ and ―after shoulders‖.(From ―Naval Architecture for Marine Engineering‖ by W.Muckle, 1975)

Technical terms

1.ship lines 船体线型 21.drawing office 制图/设计室 2.ship form 船体形状 22.mould loft 放样间 3.mathematical expressions 数学表达式 23.full size 实尺(1:1)4.drawing 图,拉延 24.loft floor 放样台 5.lines plan 型线图 25.contracted scale 缩尺 6.orthogonal plan 正交平面 26.lofting 放样 7.body section 横剖面 27.steel pin 铁钉 8.body plan 横剖线图 28.mathematical fairing of ship form 船体9.symmetry 对称 数学光顺法 10.water lines /level lines 水线,水平型线 29.screw 螺旋桨,螺钉 11.half breadth plan 半宽水线图 30.wing shaft 侧轴 12.view 视图,观察 31.shaft bossing 轴包套 13.sheer profile 侧视图,纵剖线图 32.casting 铸件 14.buttocks 后体纵剖线 33.shaft bracket 轴支架 15.bow line 前体纵剖线 34.appendage 附属体 16.after/fore body 后/前体 35.parallel middle body平行中体 17.alteration 修改,变更 36.full slow ship 丰满的低速船 18.fairing process 光顺过程 37.fine fast ship 尖瘦的快速船 19.offsets 型值 38.entrance 进流端入口

to lift offsets 量取型值 39.run 去流端,运行,流向 20.Wooden/plastics battern 木质/塑料压条 40.forward/after shoulder 前/后肩

Additional Terms and Expressions

1.grid 格子线 4.station ordinate 站线 2.ordinate station 站 5.finished/returned offsets 完工型值 3.midstation 中站 6.table of offsets 型值表 7.diagonal 斜剖线 11.preliminary offsets 原始型值 8.keel line 龙骨线 12.mathematical lines 数学型线 9.rake of keel, designed drag 龙骨设计斜13.mathematical fairing of lines 型线数学光度 顺法 10.knuckle line 折角线

Notes to the Text

1.in as detailed a manner as possible 相当于 in a manner as detailed as possible, 阅读和翻译科技原文时,应注意这类不一般的语序。

2.关系词what可引出主语从句,表语从句等。例如:…in what is called the ‘body plan’及…in what is called a ‘shaft bossing’中的what从句作为介词in的宾语从句。

What constitutes a fair curve is open to question…中的what从句为主语从句。

The lines drawn on… are what are called moulded lines 中的what 从句为表语从句。3.When drawing the body plan half-sections only are shown because of the symmetry of the ship.When drawing the body plan 是省略了主语和谓语一部分(to be)的时间装语从句,尽管从句和主句的主语并不一致。这种省略方法似乎与一般的英语语法规律有矛盾,但在科技文献中较常见,其原因是这类省略不会引起读音的误解。

4.a.p.和f.p.分别为after perpendicular(尾垂线)和forward perpendicular(首垂线)的缩写。5.Also included on the half-breadth plan is the outlines of the uppermost deck of the ship.这是依据倒装句,为了突出情调部分,此句中的also included on the half breadth plan 这部分移至句首,主语the outline of…反而置于句末。

6.on a scale of 1/4 in to 1 ft or on 1/50 scale 以一个1/4英寸代表1英尺的比例尺(即1:48)或1:50的比例尺。

7.The procedure was for the drawing office to the mould loft offsets from the lines as faired in the office and they were laid out full size on the loft floor.for the drawing office to send….是‖for+名词+不定式‖结构,在句中作表语。For后面的the drawing office 可看作不定式的逻辑主语。

Offsets 是不定式to send 的宾语。由于它后面有一个较长的介词短语from the line(其后面又有as faired in ….On the loft floor 修饰the line)加以修饰,为了句子结构平衡的需要,被移至介语短语to the mould loft(作为地点状语用)之后。8.in way of….在…部位,在….处

这一组合介词在造船和海洋工程英语中用得较普遍。例:The structural strength of a ship in way of the engine and boiler space demands special attention the designer.机炉舱部位的船体轻度要求设计人员给予特别的注意。

The thickness of upper shell plating should be increased in way of the break.船楼端部处的上层壳板厚度应该增加。/ 9.as the case may be 按情况而定。

Lesson Seven

Ship Equilibrium, Stability and Trim

The basis for ship equilibrium

Consider a ship floating upright on the surface of motionless water.In order to be at rest or in equilibrium, there must be no unbalanced forces or moments acting on it.There are two forces that maintain this equilibrium(1)the force of gravity, and(2)the force of buoyancy.When the ship is at rest, these two forces are acting in the same perpendicular line, and , in order for the ship to float in equilibrium, they must be exactly equal numerically as well as opposite in direction.The force of gravity acts at a point or center where all of the weights of the ship may be said to be concentrated: i.e.the center of gravity.Gravity always acts vertically downward.The force of buoyancy acts through the center of buoyancy, where the resultant, of all of the buoyant forces is considered to be acting.This force always acts vertically upward.When the ship is heeled, the shape of the underwater body is changed, thus moving the position of the center of buoyancy.Now, when the ship is heeled by an external inclining force and the center of buoyancy has been moved from the centerline plane of the ship, there will usually be a separation between the lines of action of the force of gravity and the force of buoyancy.This separation of the lines of action of the two equal forces, which act in opposite directions, forms a couple whose magnitude is equal to the product of one of these forces(i.e.displacement)and the distance separating them.In figure 1(a),where this moment tends to restore the ship to the upright position, the moment is called the righting moment, and the perpendicular distance between the two lines of action is the righting arm(GZ).Suppose now that the center of gravity is moved upward to such a position that when the ship is heeled slightly, the buoyant force acts in a line through the center of gravity.In the new position, there are no unbalanced forces, or, in other words, a zero moment arm and a zero moment.In figure 1(b),the ship is in neutral equilibrium, and further inclination would eventually bring about a change of the state of equilibrium.If we move the center of gravity still higher, as in figure 1(c),the separation between the lines of action of the two forces as the ship is inclined slightly is in the opposite direction from that of figure 1(a).In this case, the moment does not act in the direction that will restore the ship to the upright but will cause it to incline further.In such a situation, the ship has a negative righting moment or an upsetting moment.The arm is an upsetting arm, or negative righting arm(GZ).These three cases illustrate the forces and relative position of their lines of action in the three fundamental states of equilibrium.32

Fig.1 Stable(a), Neutral(b), and Unstable(c)

Equilibrium in the upright position

The hull is shown inclined by an outside force to demonstrate the tendency in each case(From ―Modern Ship Design ‖ Second Edition, by Thomas.C.Gillmer, 1975)Stability and trim

Figure 2 shows a transverse section of a ship floating at a waterline WL displaced from its

buoyancy

Weight of ship

Fig.2 Stability shown in a transverse section of a floating ship(see text)

original waterline WL.One condition of equilibrium has been defined above.A second condition is that the centre of gravity of a ship must be in such a position that, if the vessel is inclined, the forces of weight and buoyancy tend to restore the vessel to its former position of rest.At small angles, vertical lines through B, the centre of buoyancy when the vessel is inclined to an angle 0,intersect the center line at M, the metacentre, which means ―change

point‖.If M is above G(the centre of gravity of the ship and its contents),the vessel is in stable equilibrium, When M concides with G, there is neutral equilibrium.When M is below G, the forces of weight and buoyancy tend to increase the angle of inclination, and the equilibrium is unstable.The distance GM is termed the metacentric height and the distance GZ, measured from G perpendicular to the vertical through B, is termed the righting level or GZ value.Weight and buoyancy are equal and act through G and B, respectively, to produce a moment(tendency to produce a heeling motion)△GZ, where △ is the displacement or weight in tons.Stability at small angles, known as initial stability, depends upon the metacentric height GM.At large angle, the value of GZ affords a direct measure of stability, and it is common practice to prepare cross-curves of stability, from which a curve of GZ can be obtained for any particular draft and displacement.Transverse stability should be adequate to cover possible losses in stability that may arise from flooding, partially filled tanks, and the upward thrust of the ground or from the keelblocks when the vessel touches the bottom on being dry-docked.The case of longitudinal stability, or trim, is illustrated in Figure3.There is a direct analogy with the case of transverse stability.When a weight originally on board at position A is moved a distance d, to position B, the new waterline W1L1 intersects the original waterline WL at center of flotation(the centre of gravity of the water plane area WL),the new centre of buoyancy is B, and the new centre of gravity is G.For a small angle of trim, signified by the Greek letter theta(θ),θ=(a+f)/L wd=△GMl(a+f)/L

Changes in stern trim is x-y

Fig.3 Longitudinal section of float ship showing change in stern trim as deck load w was shifted

from position A to position B(see text)

Thus if(a+f)=1 inch =1/12 foot, wd =△GM/12L and this presents the moment to change trim one inch.The inclining experiment

A simple test called the inkling experiment provides a direct method of determining GM, the metacentric height, in any particular condition of loading, from which the designer can deduce the position of G, the ship‘s centre of gravity.If a weight w(ton)is transferred a distance d(feet)from one side of the ship to the other and thereby causes an angle of heel theta(θ)degrees,34 measured by means of a pendulum or otherwise, then GM=wd/△tanθ(see Figure 2).For any particular condition, KB and BM can be calculated, GM is found by the inclining experiment, whence KG=KM-GM.It is simple to calculate the position of G for any other condition of loading.(From ―Encyclopedia Britannica‖, Vo1.16, 1980)

Technical Terms

1.equilibrium平衡 15.stable equilibrium 稳定平衡 2.stability and trim 稳性与纵倾 16.netural equilibrium 中性平衡 3.floating upright 正浮 17.metacenter height 稳心高 4.force of gravity 重力 18.righting level 复原力臂 5.resultant 合力 19.initial stability 初稳性 6.center of buoyancy 浮力 20.cross-curves of stability 稳性横截曲线 7.couple 力偶 21.flooding 进水 8.magnitude 数值(大小)22.thrust 推力 9.displacement 排水量,位移,置换 23.keelblock 龙骨墩 10.righting moment 复原力矩 24.dry dock 干船坞 11.righting arm 复原力臂 25.center of floatation 漂心 12.upsetting moment 倾复力矩 26.Greek letter 希腊字母 13.upsetting arm 倾复力臂 27.inclining experiment 倾斜试验 14.metacentre 稳心 28.pendulum 铅锤,摆

Additional Terms and Expressions

1.lost buoyancy 损失浮力 9.stability at large angles 大倾角稳性 2.reserve buoyancy 储备浮力 10.dynamical stability 动稳性 3.locus of centers of buoyancy 浮心轨迹 11.damaged stability 破舱稳性 4.Bonjean‘s curves 邦戎曲线 12.stability criterion numeral 稳性衡准书 5.Vlasov‘s curves 符拉索夫曲线 13.lever of form stability 形状稳性臂 6.Firsov‘s diagram 菲尔索夫图谱 14.locus of metacenters 稳心曲线 7.Simpson‘s rules 辛浦生法 15.angle of vanishing stability 稳性消失角 8.trapezoidal rule 梯形法 16.free surface correction 自由液面修正

Notes to the Text

1.When the ship is at rest, these two forces are acting in same perpendicular line, and, in order for the ship to float in equilibrium, they must be exactly equal numerically as well as opposite in direction.in order for the ship to float in equilibrium 是“in order带to的不定式“结构,表示目的状语,其中for the ship中的the ship是不定式逻辑主语。

As well as是一个词组,可有几种译法,具体译成什么意思应根据上下文加以适当选择。例如:

The captain as well as the passenger was frightened.船长和旅客一样受惊。(和……一样)受惊的既有旅客又有船长。(既……又)

不仅旅客而且船长也受惊了。(不仅……而且)除旅客外,还有船长也受惊了。(除……外,还)

不管那种译法,强调的都是as well as前面的那个名次(例句中的the captain,船长),因此谓语动词的性、数也由这个名词决定。

2.thus moving the position of the center of buoyancy.由thus引出的现在分词短语用作表示结果的状语。一般来说,如分词短语位于句末,往往有结果、目的等含义。

3.suppose now that the center of gravity is moved upward to such a position that when the ship is heeled slightly, the buoyant force acts in a line through the center of gravity.Suppose now that …与now let‘s suppose that…同意,其后that 所引出的从句是suppose 的宾语从句。

to such a position that…是such…that…引导结果状语从句。但在这个从句中又包含了一个由关系副词when引导的时间状语从句。

4.Figure 2 shows a transverse section of a ship floating at a waterline WL, displaced from its original waterline WL.floating at a waterline WL 现在分词短语(含有主动态),修饰前面的名词a ship;displaced from its original waterline WL 过去分词短语(含有被动态),也是修饰前面的名词,ship,注意这里的displaced 应选择“移动位置”的词义。

5.At small angles, vertical lines through B, the center of buoyancy when the vessel is inclined at an angle θ,intersect the center line at M, the metacenter, which means ―change point‖.此句的主要成分为vertical lines intersect the center line.the center of buoyancy 是B的同位语。the metacenter 是M的同位语。

6.Tranverse stability should be adequate to cover possible losses in stability that may arise from flooding ,partically filled tanks, and the upwards thrust of the ground or from the keelblocks when the vessel touches the bottom on being dry-docked.that may arised from…the keelblocks是定语从句,修饰losses.when the vessel…on being dry-docked是时间状语从句,修饰may arise from the keelblock.on being dry-docked 中的being dry-docked是动名词的被动态,接在on之后表示(刚)进船坞的时候。

7.or otherwise意为“或相反,或其他”。例:

It can be verified by trial or otherwise.这可用试验或其他方法加以验证。

Fine or otherwise,we shall have to do this test.不管天气好不好,我们非做这个试验不可。

Lesson Eight

Estimating Power Requirements The power required to propel a new ship is subject to a formidable number of variable items.The family tree of power for propulsion(Fig.1)shows these divided into two main groups.One is concerned with the resistance to motion caused by the interaction of the hull of the ship with the surrounding water and the other concerns the efficiency with which the power developed in the engine itself can be used and converted into thrust at the propeller.Before considering the methods used for estimating their combined effect on power requirements, it is necessary to take the items in turn and discuss briefly their significance and nature.Fig.1 Power for propulsion

Ship resistance Friction at the hull surface in contact with the water is the major part of the resistance of all merchant vessels.Wave-making resistance does not assume prime importance until a speed/length ratio(V/√L)in excess of unity has been reached.The reason for surface friction is that water is far from being a perfect fluid.Its magnitude depends on the length and area of surface in contact and its degree of roughness, and it varies with the speed of the body through the fluid.By observation and experiment it can be shown that the particles of water in actual contact with the ship adhere to its surface and are carried along by it(it does not seem unreasonable to assume some interlocking of particles).There is no slip.At small distances from the body the velocity imparted to the surrounding fluid is only very small but with a noticeable degree of turbulence.The width of this belt, known as the layer increases somewhat towards the after end of the moving body.Its appearance is one of the most spectacular sights to be seen when a vessel is moving at high speed.from a practical point of view it is assumed that all the fluid shear responsible for skin friction occurs within this belt and also that outside it fluid viscosity can be disregarded.The exact width of the belt is difficult to determine, but an arbitrary assessment is usually accurate enough.If it is now considered that the effective shape of the immersed body is defined by the extremities of the boundary layer, then that body may be assumed to move without friction.However, this does not apply to the transmission of pressure.Part of the energy necessary to move a ship over the surface of the sea is expended in the form of pressure waves.This form of resistance to motion is known as residual resistance, or wave-making.Three such wave systems are created by the passage of a ship: a bow system, a stern system(both of which are divergent), and a transverse system.They occur only in the case of a body moving through two fluids simultaneously.For instance, the residuary resistance of well formed bodies like aircraft or submarines, wholly immersed, is comparatively small.Because of surface waves formed by a floating body the flow pattern varies considerably with speed, but

with an immersed body this flow pattern is the same at all speeds.For this reason the shape of a submarine or aircraft(in consideration of submerged performance only)is more easily related to the constant conditions under which it performs ,in the dynamic sense, than is the form of surface vessel.Returning to a consideration of our three wave systems, it can easily be understood that the bow system is initiated by a crest due to the build-up of pressure necessary to push the water aside and the greater the speed the greater will be the height of the crest and its distance from the bow.Conversely, the stern system is associated with a hollow due to filling-in at the stern.If a ship had a sufficient length of parallel middle body the bow wave system would die out before it reached the stern, but in practice ships are never long enough for this to obtain and interference effects have to be taken into account.The transverse wave system becomes of importance at high speeds and is responsible for the greater part of wave-making resistance.The net effect of the three systems is extremely important from a residuary resistance point of view, and it is necessary to ensure that they do not combine to produce a hollow(a through)at the stern.Of course, if the energy produced at the bow could be recovered at the stern then there would be no net energy loss.But this is not the case as energy is dissipated laterally in order to maintain a wave pattern.The more developed the wave pattern the more energy is needed to maintain it.Considerations of minimum resistance, therefore, involved a complicated assessment of the interrelation of ship-form characteristics likely to reduce wave causation.Wave-making resistance follows the laws of dynamic similarity(also known as Froude‘s Law of Comparison), which state that the resistances of geometrically ships will vary as the cube of their linear dimensions provided the speeds are in the ratio of the square root of the linear dimensions.Perhaps the law, which does not apply to frictional resistance, looks more concise if stated symbolically, namely:

RtL3V3providedrtvlL l

The most important cause of eddy-making is the ship.There is sometimes a tendency to think of eddy-making as being related only to such appendages as rudders, bilge keel, propeller bossings and the like.While it is perfectly true that badly designed appendages can have eddy-making resistances which are excessive in relation to their size and frictional resistances, the eddy-making of a ship, though relatively small, may be a very large part of the total eddy-making resistance.Eddy making is usually included with the wave-making resistance because it is impracticable to measure the one without the other.However, some distinction is helpful to an understanding of resistance phenomena.In eddy-making it is the stern of the ship which plays the influential part because of the difficulty of maintaining streamline flow even in the most easily shaped body.Propulsion

It will be obvious that the total resistance of a ship at any speed and the force necessary to propel it must be equal and opposite.The power that the ship‘s machinery is capable of developing, however, must be considerably more than this to overcome the various deficiencies inherent in the system, because engines, transmission arrangements and propellers all waste power before it becomes available as thrust.The total efficiency of propulsion therefore involves a consideration of the separate efficiencies of individual items the product of which is expressed in the form of a propulsive coefficient.The engine efficiency depends upon the type of engine employed and its loading.In the case of a reciprocating engine, either diesel or steam, the power developed in the cylinders can be calculated from the effective pressures recorded on indicator cards.This is known as indicated h.p., which is naturally more than the horsepower output when measured by means of a brake at the crankshaft coupling.The ratio b.h.p./i.b.p.is, of course the mechanical efficiency of the engine.If the power is measured on the propeller shaft aft of the thrust

block and any gearing, then this is known as shaft h.p.and in the case of a turbine is the only place at which it is practicable to measure the power output.There is no such thing as indicated or brake horsepower for a steam or gas turbine, shaft h.p.is almost the same as b.h.p.for a reciprocating engine which drives the propeller directly, but where gearing or special couplings are introduced in the case of high-speed diesel engines or turbines, the transmission losses in these items influence the s.h.p.This is, of course very necessary in order that fair comparisons between the efficiencies of different types of drives can be made.The remainder of the transmission losses are those in the stern tube.When all the engine and transmission losses have been taken into account what is left is a certain amount of the original power which is now delivered at the propeller.We have already noted that a ship in motion drags along with it a large mass of water.This ―wake‖ as it is known(not the popular interpretation of something that is left astern!)has a forward velocity in which the screw operates, so that the speed of the screw through the wake water is less than the speed of the ship.This is beneficial as it involves a gain in efficiency which is referred to as the wake gain.On the pressure distribution at the stern of the vessel which causes some augment of resistance.It is usual to consider this as a thrust deduction effect.These almost separate effects can be combined to give the effective horse-power required.The screw efficiency in the open, i.e.delivering its thrust to an imaginary vessel, is most important.It is only by considering hull resistance and propeller performance as separate entities that any proper assessment can be made of their effect when combined.The mechanism of hull resistance has been fairly well explored, but the theories of propeller action are still incomplete.Power estimates

When power estimates are required by a shipbuilder who is tendering for the construction of a new vessel, there is no time to run model tests, nor would the expense normally the justified.The naked e.h.p.is therefore estimated from a published series of methodical tests such as those of Ayre or Taylor.Percentage allowances are made to the naked e.h.p.for appendages and air resistance combined with an estimated lies in the proper selection of the QPC.There are numerous methods of estimating power, but the above is one of the most popular.Some rapid means of evaluating ship power requirements merely from a lines plan and main technical particulars has long been needed.With increasing productivity, faster construction times and fierce international competition for new orders this has become ever more pressing.Detailed power assessments for ship design proposals are needed frequently well in advance of any firm order.Statistical analysis methods are now being applied to resistance and propulsion problems to peed up the process of ship performance prediction.Performance criteria are expressed, in terms of equations based on selected parameters of hull shape, dimensions, propeller characteristics and stern conditions.Performance of a design can be assessed from these regression equations which have been derived from a large number of previous model results for the ship type under review.Comparison of a particular result with established data is obtained by minimization of the regression equations.The big advantage of doing things this way is that the coefficients of the regression equations can be fed into a high-speed digital computer.This means that in less than an hour the results of well over a dozen different combinations of hull characteristics can be calculated.This should then lead to an optimum combination of form parameters.The eventual link up with work now being done on the complete definition of hull shape in mathematical terms should take us one step nearer to the soundly based fully automated shipyard.(From ― Background to Ship Design and Shipbuilding Production‖ by J.Anthony Hind, 1965).39

Technical Terms

1.resistance 阻力 2.thrust 推力

3.propeller 推进器

4.skin friction resistance 摩擦阻力 5.wave-making resistance 兴波阻力 6.eddy-making resistance 漩涡阻力 7.appendage resistance 附体阻力 8.propulsive efficiency 推进效率 9.hull efficiency 船身效率

10.transmission efficiency 轴系效率 11.speed/length ratio 速长比 12.perfect fluid 理想流体 13.roughness 粗糙度 14.turbulence 紊动

15.boundary layer 边界层

16.spectacular sights 壮观景色 17.fluid shear 流体剪力 18.fluid viscosity 流体粘性

19.immersed body 浸没的船体部分 20.residuary resistance 剩余阻力 21.bow 船首 22.stern 船尾

23.divergent 分散的 24.submarine 潜水艇 25.aircraft 飞机 26.crest 波峰

27.hollow 凹陷,孔隙,波谷 28.parallel middle body平行中体 29.through 波谷

30.ship-form characteristics 船型特性

31.laws of dynamics similarity 动力相似定律 32.rudder 舵

33.bilge keel 舭龙骨

34.propeller bossing 推进器箍 35.streamline 流线型

36.reciprocating engine 往复式发动机 37.diesel/steam engine 柴油/蒸汽机 38.indicator card 示功图 39.indicated h.p.指示马达 40.brake 制动

41.crankshaft coupling 曲轴连轴器 42.mechanical efficiency 机械效率 43.thrust block 推力轴承 44.gearing 齿轮 45.shaft h.p.轴马达 46.brake h.p.制动马达 47.turbine 汽轮机

48.gas turbine 燃气轮机 49.stern tube 尾轴管 50.wake 伴流

51.astern 向(在)船尾 52.wake gain 伴流增益

53.thrust deduction 推力减额

54.effective horse-power(e.h.p.)有效马达

55.screw efficiency in the open(water)螺旋桨趟水效率

56.imaginary vessel 假想船

57.mechanism 作用原理(过程),机构 58.proposal 建议

59.statistical 统计分析 60.criterion 衡准

61.ship performance prediction 船舶性能预报 62.regression equation 回归方程 63.form parameter 形状参数

Additional Terms and Expression 1.2.3.4.5.6.7.service speed 服务航速 design speed 设计航速 cruising speed 巡航速度 trial speed 试航速度 endurance 续航力

admiralty coefficient/constant 海军系数 fouling 污底

8.hydrodynamics 水动力学 9.inflow 进流

10.angle of attack 攻角

11.lift 升力

12.circulation 环量

13.aspect ratio 展弦比

14.Reynolds number 雷诺数 15.Froude number 傅汝德数 16.momentum theory 动量理论 17.impulse theory 冲量理论 18.cavitation 空泡现象

19.adjustable-pitch propeller 可调螺距螺旋桨

controllable-pitch propeller 可调螺距螺旋桨 20.reversible propeller 可反转螺旋桨

21.coaxial contra-rotating propellers 对转螺旋桨 22.ducted propeller, shrouded propeller 导管螺旋桨 23.tandem propeller 串列螺旋桨

24.jet propeller 喷射推进器 25.paddle wheel 明轮

26.ship model experiment tank 船模试验水池 27.ship model towing tank 船模拖拽试验水池 28.wind tunnel 风洞

29.cavitation tunnel 空泡试验水筒 30.self propulsion test 自航试验 31.scale effect 尺度效应 32.naked model 裸体模型

1.2.3.4.5.6.Notes to the Text

the family tree of power for propulsion 推进马力族类表

For this reason the shape of a submarine or aircraft(in consideration of submerged performance only)is more easily related to the constant conditions under which it performs, in the dynamic sense, than is the form of a surface vessel.其中的主要句子the shape---is more easily---than---是一句带有比较状语从句的复合句。在than is the form of a surface vessel 中省略了 easily related to the variable conditions under which it performs,显然,to the constant conditions 和 to the variable conditions 实际上是不同的。严格说,这种省略方法是不正规的,但由于读者能从上下文联系中容易判断出种种不同,为了简便起见,作了省略。在英美科技文章中有此种现象。

the greater the speed the greater will be the height of the crest and its distance from the bow.The more developed the wave pattern the more energy is needed to maintain it.这两句都是“the+比较级---the +比较级”结构的句型。this is not the case 情况并非如此

and the like = and such like 以及诸如此类

The eventual link up with work now being done on the complete definition of hull shape in mathematical

Lesson Nine

Ship Motions, Manoeuvrability Ship motions Ship motions are defined by the movements from the equilibrium position of the ship‘s centre of gravity along the three axes shown in Figure 1 and by rotations about axes approximately parallel to these.The linear displacements along the horizontal(x), lateral(y), and veritical(z)

Fig.1 Coordinate axes of ship motions(see text)

axes are termed surge, sway, and heave, respectively.The rotations about the corresponding body axes are respectively termed roll, pitch, and yaw(veering off course).Roll, pitch, and heave are oscillatory because hydrodynamic forces and moments oppose them.Ship motions are important for many reasons.A ship should be able to survive any sea that may be Encountered and, in addition, to behave well and to respond to control.In brief, a ship should respond to the action of the sea in such a manner that the amplitudes of its motions and its position never become dangerous, and so that the accelerations it undergoes are kept within reasonable limits.Propulsive performance, or heaving.Hence these motions are made as small as possible.Ship motions are excited by waves, whose growth is governed by the wind velocity at the sea surface, the area of water, or distance, over which the wind blows(the ―fetch‖), and the length of time during which the wind has been blowing(the ―duration‖).Any seaway is always a complex mixture of waves of different lengths, as wind itself is a complex mixture of gusts.All wave components do not travel in the same direction, but the directions of most of them in a single storm lie within 30°of each other.Regular trains of waves of uniform height and length are rarely, if ever, encountered.Most seas are confused and can be considered as made up of many separate component waves that differ in height and length.Pitching, rolling, and heaving are all excited by the changing pattern of surface waves in relation to the speed and course of the ship.In practice, it is possible to damp one motion only---that of rolling.The fitting of bilge keels(finlike longitudinal projections along the part of the underwater body of a ship between the flat of the bottom and the vertical topsides)has this effect, and still more effective means are the activated for stabilizer(a device along the side of a ship activated by a gyroscope and used to keep the ship steady)and the passive or flume stabilizing tank, filled with water inside the ship.Manoeuvrability

Increases in the size and speed of ships bring problems of safe operation in congested waters and control at high speed in waves.Therefore, designs necessarily represent a compromise between manoeuvrability and course-keeping ability.Ship operators desire maximum manoeuvrability in port to minimize the need for assistance from tugs and to reduce delays in docking.They also desire a ship that can hold a steady course at sea with the minimum use of helm.These aims, however, are mutually conflicting.A ship is steered by means of one or more rudders arranged at the stern or, in rare cases, at the bow.There are many types and shapes of rudders, depending upon the type of ship, design of stern, and number of propellers.When a yaw---that is, a change of angle about a vertical axis through the centre of gravity---is started, a turning moment is set up and the ship swings off course unless the swing is corrected by rudder action.This turning effects arises because the hull′s centre of lateral resistance is much nearer the bow than the ship′s centre of gravity.Good course keeping demands directional stability.This is aided by design features that bring the centre of lateral resistance nearer to the ship′s centre of gravity.These measures, however, increase the diameter of the ship′s turning circle, requiring a design compromise.In warships, in vessels operating in confined water, and in tugs, a small turning circle is essential.In merchant ships, rapid manoeuvring is required only in port;accordingly, the everyday function of the rudder is to ensure the maintenance of a steady course with the minimum use of helm.In this sense, turning circle properties are of less practical significance than the effect of small rudder angles.(From ―Encyclopedia Britannica‖, Vol.16, 1980)

Technical Terms

1. manoeuvrability 操纵性 3. surge 纵荡 2. linear displacement 线性位移 4. sway 横荡

5. heave 垂荡 6. veer 变向

7. oscillatory 振荡

8. hydrodynamic 流体动力(学)的 9. Amplitude 振幅 10. acceleration 加速度 11. wind velocity 风速 12. fetch 风区长度,波浪形成区 13. duration 持续时间 14. seaway 航路(道)15. gusts 阵风(雨)16. storm 风暴 17. regular trains of waves 规则波系

18. damp 阻尼 19. bilge keel 舭龙骨 20. finlike 鳍状

21.projection 突出体,投影,规则

22.activated fin stabilitizer 主动式稳定(减摇)鳍 23.gyroscope(gyro)陀螺仪,回转仪 24.steady 稳定 25.flume 槽

26.congested waters 拥挤水域 27.course-keeping 保持航向 28.tug 拖船

29.docking 靠码头 30.helm 操舵,驾驶 31.swing 摆动

32.turning circle 回转圈 33.warship 军舰

34.confined water 受限制水域

Additional Terms and Expressions

1.2.3.4.5.6.7.8.9.10.11.seakeeping 耐波性 seaworthiness 适航性 course 航向 track, path 航迹 drift 横漂 side slip 横移 rudder effect 舵效 sea condition 海况 swell 涌

trochoidal wave 坦谷波 divergent wave 散波

12.13.14.15.16.17.18.natural period 固有周期 slamming 砰击

turning quality 回转性 turning circle 回转圈

turning circle test 回转试验 stopping test 停船试验

free running model test 自由自航模操纵性试验

19.rotating arm test 旋臂试验

20.planar motion mechanism平面运动机构

Notes to the Text

1.In brief, a ship should respond to the action of the sea in such a manner that the amplitudes of its motions and its position never become dangerous, and so that the accelerations it undergoes are kept within reasonable limits.in such a manner that the amplitudes---become dangerous

句为结果状语从句。原一位“以这样的方法,以至于------”,译成中文时可灵活些,例如可把前半句译为“简略说,船舶对海浪的响应方式应使其运动的幅值和所在的位置永远不处于一种危险状态”。

and so that 引出的也是结果状语从句。此句中的it undergoes 为省略了关系代词

that 的定语从句(that 在定语从句中作宾语时,让往被省略),用来修饰 the accelerations.2.of each other 中的of表示(相互间的)方位、距离。

The shipyard is within 5km of shanghai.43 这个船厂离上海5公里以内。

3.if ever 为if they are ever encountered 的简化形式。当从句内的谓语动词为to be,有其主语跟主句的主语相同时,从句中的主语和to be 就可省略。这类连接词除if外,还有when, while, once 以及as 等。

4.Most seas are confused and can be considered as made up of many separate component waves that differ in height and length。

其中的as made up of many separate component waves 是as引导的过去分词短语作为主语补足语。

that 引出的定语从句用来修饰waves.5.This turning effect arises because the hull‘s centre of lateral resistance is much nearer the bow than the ship‘s centre of gravity.because引出的原因状语从句中包含了一个比较级状语从句,than后面的从句中省略了与主句中相同的部分(is near the bow),这是科技文章中常见的情况。

6.These measures, however, increase the diameter of the ship‘s turning circle, requiring a design compromise.此句中的requiring a design compromise 为现在分词短语,作状语(表示结果)用(参见第七课注释

Lesson Ten The Function of Ship Structural Components The strength deck, bottom, and side shell of a ship act as a box girder in resisting bending and other loads imposed on the structure.The main deck, bottom, and side shell also form a tight envelope to withstand the sea locally.The remaining structure contributes either directly to these functions or indirectly by maintaining the main members in position so that they can act efficiently.The bottom plating is a principal longitudinal member providing the lower flange of hull girder.It is also part of the watertight envelope, and subject to the local water head.At the forward end, it must withstand the dynamic pressure associated with slamming and plating thickness is usually increased to provide the necessary strength.When fitted, the inner bottom also makes a significant contribution to the strength of lower flange.It usually forms a tank boundary for the double bottom tanks and is subject to the local pressure of the liquid contained therein.In addition, it must support the loads from above, usually from cargo placed in the holds.The strength deck forms the principal member of the upper flange, usually provides the upper water tight boundary, and is subject locally to water, cargo, and equipment loadings.The remaining continuous decks, depending on their distance from the neutral axis, contribute to a greater or lesser extent in resisting the longitudinal bending loads.Certain decks which are not continuous fore and aft and not contribute to the longitudinal strength.Locally internal decks are subject to the loads of cargo, equipment, stores, living spaces, and, where they form a tank boundary or barrier against progressive flooding, liquid pressure.The side shell provides the webs for the main hull girder and is an important part of the watertight envelope.It is subject to static water pressure as well as the dynamic effects of pitching, rolling, and wave action.Particularly forward, the plating must be able to withstand the impact of

the seas.Aft, extra plate thickness is beneficial in way of rudders, shaft structure and propellers for strength, panel stiffness, and reduction of vibration.Additional thickness is necessary at the waterline for navigation in ice.Bulkheads are one of the major components of internal structure.Their function in the hull girder depends on their orientation and extent.Main transverse bulkheads act as internal stiffening diaphragms for the girder and resist racking loads, but do not contribute directly to longitudinal strength.Longitudinal bulkheads, on the other hand, if extending more than about one-tenth the length of the ship, do contribute to longitudinal strength and in some ships are nearly as effective as the side shell itself.Bulkheads generally serve structural functions such as forming tank boundaries, supporting decks and load-producing equipment such as kingposts, and adding rigidity to produce vibration.In addition, transverse bulkheads provide subdivision to prevent progressive flooding.All applicable loads must be considered during design.The foregoing structural elements of a ship are basically large sheets of plate whose thicknesses are very small compared with their other dimensions, and which, in general, carry loads both in and normal to their plane.These sheets of plate may be flat or curved, but in either case they must be stiffened in order to perform their required function efficiently.The various stiffing members have several functions:(a)the beams support the deck plating;(b)the girder, in turn, support the beams, transferring the load to the stanchions or bulkheads;(c)the transverse frames support the side shell and the ends of the transverse deck beams and are, in turn, supported by decks and stringers;(d)the stiffeners support the bulkhead plating, and so on.As discussed in detail in section 4, the stiffening members are generally rolled, extruded, flanged, flat, or built-up plate sections with one edge attached to the plate they reinforced.Vertical plates often connect the bottom shell and inner bottom, stiffening both members.If oriented transversely, these plates are called floors, and if longitudinally oriented, center vertical keel or side girder, as appropriate.Stiffening members do not, of course, act independently of the plating to which they are attached.A portion of the plate serves as one flange of the stiffener, and properties such as section modulus and moment of the stiffener must reflect this.The American Bureau of Shipping(ABS)considers a width of plating equal to the stiffener spacing as effective, while Lloyd‘s Register of Shipping(LR)assumes 24 in.to be effective.Stiffening members serve two functions, depending on how they are loaded.In the cases of loads normal to the plate, such as water loading on a transverse bulkhead, the stiffeners assume the load transferred from the plate.In the case of in-plane loads, such as those included in the deck by longitudinal bending of the hull girder, the beams serve to maintain the deck plating in its designed shape.If the deck beams are longitudinally oriented, they will, of course, carry the same primary stress as the plating and may contribute substantially to the hull girder strength.Pillars are used to support deck girders, longitudinal or transverse.These supports, in addition to carrying local loads from cargo, etc, serve to keep the deck and bottom from moving toward each other as a result of longitudinal bending of the hull girder.(From ―Ship Design and Construction‖ by D‘Arcangelo, 1969)

Technical Terms 1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.structural components 结构构件 strength deck 强力甲板 box girder 箱形梁

tight envelope 密闭外壳

longitudinal member 纵向构件 hull girder 船体梁

lower/upper flange 下/上翼缘板 forward/aft end 首/尾端

dynamic pressure 动压力 slamming 砰击 inner bottom 内底 hold 货舱

double bottom 双层底 hold 货舱

neutral axis 中和轴

longitudinal bending 纵向弯曲 longitudinal strength 总纵(纵向)强度 barrier 挡板,屏障 web 腹板

static water pressure 静水压力 impact 冲击

shaft strut 尾轴架

panel stiffness 板格刚性 vibration 振动 bulkhead舱壁 diaphragm 隔壁

racking load 横扭载荷 kingpost 起重柱

29.30.31.32.33.34.35.36.37.38.39.40.41.42.43.44.45.46.47.48.49.50.51.52.53.rigidity 刚度 subdivision 分舱 sheet 薄板 stanchion 支柱 stringer 船侧纵桁 roll 辗轧 extrude 挤压

flange 拆边,法兰

built-up plate sections 组合型材 bottom shell 外底板 floor 肋板

center vertical keel 中内龙骨,中桁材 side girder 旁桁材,旁纵桁 stiffener 扶强材

section modulus 剖面模数 moment of inertia 惯性矩

The American Bureau of Shipping(ABS)美国验船局 spacing 间距

Lloyd‘s Register of Shipping 劳氏船级社

in-plane 面内 beam 横梁

primary stress 第一类应力

pillar 支柱

deck girder 甲板纵桁 support 支柱(构件)

Additional Terms and Expressions 1.main hull 主船体 12.longitudinal framing 纵骨架式 2.superstructure 上层建筑 13.transverse framing 横骨架式 3.deckhouse 甲板室 14.flat plate keel平板龙骨 4.bridge 桥楼 15.margin plate 内底边板 5.forecastle 首楼 16.bilge bracket 舭肘板 6.poop 尾楼 17.side plate 舷(船)侧板 7.stem 首柱 18.sheer strake 舷顶列板 8.sternpost 尾柱 19.stringer plate 甲板边板 9.rudder post 舵柱 20.shell expansion plan 外板展开图 10.shaft bossing 轴包架 21.bulwark 舷墙 11.framing 骨架 22.hatch coaming 舱口围板

30.hawse pipe 锚链筒 31.bulb plate 球扁钢 32.angle section 角钢 33.T section T型材 34.face plate 面板 35.butt 对接(缝)36.seam 边接(缝)

Notes to the Text 1.The remaining structure contributes either directly to these functions or indirectly by maintaining the main members in position so that they can act efficiently.句中含有either directly---or indirectly---两个并列成分,而在indirectly 后省略了to these functions.by maintaining the main members in position so that---是用来修饰后者的;其中so that they can act efficiently 为目的状语从句。

2.be subject to(n.)受------支配(易受,须经)

be subjected to(n.)受到,经受

Ships subject to the code should survive the normal effects of flooding following assumed hull damage caused by some external force.受本规则约束的船舶应能承受在外力作用下船体遭受假定破碎后正常进水的影响。

All full penetration butt welds of the shell plating of cargo tanks should be subjected to 100 per cent radiographic inspection.液货舱壳板所有全焊透对接焊缝应进行100%的射线照相检验。

课文中的be subject to 均可作为be subjected to 理解,翻译成“承受”,“经受”。

3.to a greater or lesser extent 在较大或较小程度上

4.Locally, internal decks are subject to the loads of cargo, equipment, stores, living spaces, and, where they form a tank boundary or barrier against progressive flooding, liquid pressure.句中的where they form---flooding 为地点状语从句,然而带有条件性质,可理解为承受liquid pressure 的条件。

5.As discussed in detail in Section 4, the stiffening members are generally rolled, extruded, flanged, flat or built-up plate sections with one edge attached to the plate they reinforce.句中的rolled, extruded, flanged, flat or built-up plate 都修饰sections.with one edge attached to the plate 是 with 后带主谓关系的复合短语。they reinforce 为省略关联词(从语中作宾语)的定语从句,修饰前面的the plate.6.If oriented transversely, these plates are called floor, and if longitudinally oriented, center vertical keel or side girder, as appropriate.两个if从句中省略主语及to be,参见第九课注3.在 center vertical keel or side girder 前面省略了these plates are called.As appropriate 可理解为as is appropriate 简化形式,关系代词as代替整个主句,并在从句中作主语,as appropriate, to passenger ships carrying dangerous goods.如第54条规则的要求适合于载运危险货物的客船,应照此办理。

7.The American Bureau of Shipping(ABS)considers a width of plating equal to the stiffener spacing as effective, while Lloyd‘s Register of Shipping(LR)assumes 24 in.to be effective.While 引出并列分句,表示同时存在两种事物的对比。前句的considers… as effective 与后句的assumes… to be effective 结构相似,其中的as effective 和 to be effective 均作宾语补足语。

23.24.25.26.27.28.29.cantilever 悬臂梁

intercostal member 间断构件 cant frame 斜肋骨 pant beam 强胸横梁 lightening hole 减轻孔 bracket 肘板 bracket 肘板 Lesson Eleven

Structural Design, Ship Stresses Structural design

After having established the principal dimensions, form, and general arrangement of the ship, the designer undertakes the problem of providing a structure capable of withstanding the forces which may be imposed upon it.The hull of a steel merchant ship is a complex structure, unique in the field of engineering structures in that it is primarily a plate structure, depending for its major overall strength on the plating of the shell, decks, and in most cases, also on the inner bottom and longitudinal bulkheads.The framing members, each of which has its own function to perform, are designed primarily to maintain the plate membrances to the planned contours and their positions relative to each other when subjected to the external forces of water pressure and breaking seas, as well as to the internal forces caused by the services for which the ship is designed.Unlike most other large engineering structures, the forces supporting the ship‘s hull as well as the loads which may be imposed upon it vary considerably, and in many cases, cannot be determined accurately.As a result, those responsible for the structural design of ships must be guided by established standards.Basic considerations

The problem of the development of a satisfactory structure generally involves the following considerations:

1.It is necessary to establish the sizes of, and to combine effectively, the various component parts so that the structure, with a proper margin of safety, can resist the major overall stresses resulting from longitudinal and transverse bending.2.Each component part must be so designed that it will withstand the local loads imposed upon it from water pressure, breaking seas, the weight of cargo or passenger, and other superimpose loads such as deckhouses, heavy machinery, masts, and so on, including such additional margins as sometimes may be required to meet unusually severe conditions encountered in operation.Rules of classification societies

The various classification societies have continued to modify and improve their rules to keep pace with the records of service experience, an increasing amount of research, and the constantly growing understanding of the scientific principles involved.In the modern rules of the societies, the designer has available to him formulas and tables of scantlings, dimensions of framing shapers, and thicknesses.These are directly applicable to practically all the ordinary types of sea-going merchant vessel being built today, and contain a flexibility of application to vessels of special types.The design of structural features of a merchant ship is greatly influenced by the rules of classification societies;in fact, the principal scantlings of most merchant ships are taken directly from such rules.Scantling are defined as the dimensions and material thicknesses of frames, shell plating, deck plating, and other structures, together with the suitability of the means for protecting openings and making them sufficiently watertight or weathertight.The classification society rules contain a great deal of useful information relating to the design and construction of the various component parts of a ship‘s structure.Scantling can be determined directly from the tables given in these publications.In many cases, a good conception of the usual ―good-practice‖ construction can also be gleaned from the sketches and descriptive matter available from the classification societies.(From ―McGraw-Hill Encyclopedia of Science and Technology‖, Vol.12.1982)Ship stresses

The ship at sea or lying in still water is being constantly subjected to a wide variety of stresses and strains, which result from the action of forces from outside and within the ship.Forces within the ship result from structural weight, cargo, machinery weight and the effects of operating machinery.Exterior forces include the hydrostatic pressure of the water on the hull and the action of the wind and waves.The ship must at all times be able to resist and withstand these stresses and strains throughout its structure.It must therefore be constructed in a

manner, and of such materials, that will provide the necessary strength.The ship must also be able to function efficiently as a cargo-carrying vessel.The various forces acting on a ship are constantly varying as to their degree and frequency.For simplicity, however, they will be considered individually and the particular measures adopted to counter each type of force will be outlined.The forces may initially be classified as static and dynamic.Static forces are due to the

Fig.1 Ship movement------the six degrees of freedom differences in weight and buoyancy which occur at various points along the length of the ship.Dynamic forces result from the ship‘s motion in the action of the wind and waves.A ship is free to move with six degrees of freedom—three linear and three rotational.These motions are described by the terms shown in Figure.1.These static and dynamic forces create longitudinal, transverse and local stresses in the ship‘s structure.Longitudinal stresses are greatest in magnitude and result in bending of the ship along its length.Fig.2 Static loading of a ship‘s structure

Longitudinal stresses

Static loading

If the ship is considered floating in still water, two different forces will be acting upon it along its length.The weight of the ship and its contents will be acting vertically downwards.The buoyancy or vertical component of hydrostatic pressure will be acting upwards.In total, the two forces exactly equal and balance one another such that the ship floats at some particular draught.The centre of the buoyancy force and the centre of the weight will be vertically in line.However, at particular points along the ship‘s length the net effect may be an access of buoyancy or an excess of weight.This net effect produces a loading of the structure, as with a beam.This loading results in shearing forces and bending moments being set up in the ship‘s structure which tend to bend it.The static forces acting on a ship‘s structure are shown in Figure 2(a).This distribution of weight and buoyancy will also result in a variation of load, shear forces and bending moments along the length of the ship, as shown in Figure 2(b)-(d).Depending upon the direction in which the bending moment acts, the ship will bend in a longitudinal vertical plane.The bending moment is known as the still water bending moment(SWBM).Special terms are used to describe the two extreme cases: where the buoyancy amidships exceeds the weight, the ship is said to ―hog‖, and this condition is shown in Figure 3, where the weight amidships exceeds the buoyancy, the ship is said to ―sag‖, and this condition is shown in Figure 4.Excess of buoyancy

Fig.3 Hogging condition

Excess of weight

Fig.4 Sagging condition Dynamic loading If the ship is now considered to be moving among waves, the distribution of weight will be the same.The distribution of buoyancy, however, will vary as a result of the waves.The movement of ship will also introduce dynamic forces.The traditional approach to solving this problem is to convert this dynamic situation into an equivalent static one.To do this, the ship is assumed to be balanced on a static wave of trochoidal form and length equal to the ship.The profile of a wave at sea is considered to be a trochoid.This gives waves where the crests are sharper than the throughts.The wave crest is considered initially at midships and then at the ends of the ship.The maximum hogging and sagging moments will thus occur in the structure for the particular loaded condition considered, as shown in Figure 5.Still water

Wave trough amidships

5.船舶与海洋工程认知实习日记 篇五

上午八点三十,我们乘车前往武汉青山船厂。大约九点十分,我们到达了位于长江边的青山船厂,这是中国长江航运集团骨干造船企业,已有40余年的造船历史。我们走入正门,巨大的车间映入眼帘。带队老师带领我们我们有序进入车间参观学习。车间里巨大的船体构件摆放在地上,焊花飞溅。根据学过的知识,我大概能分辨出地上的构件是船底构件或者舷侧构件。并能分辨出上面的肋骨,加强筋等结构。在车间的一侧,一台激光切割机在切割着钢板,发出耀眼的强光。

然后我们来到室外的船台边上。空地上嵌有一条条横竖交错的轨道,巨大的船体构件就是利用这些轨道从车间里移动到室外船台上。在其中一个船台上看到一段段已经焊接好的船体分段,在等待整体组合。在另一个船台上我看到一艘已经基本组装完成的船,整艘船已经基本成型。正在进行下水前的最后施工。

下午两点,我们来到教学楼听课,这节课的主题是船舶设计概论。老师给我们讲述了船舶设计的基本内容。船舶有不同的船型,不同的船型有不同的性能要求。船舶性能研究是十分重要的部分。我们一定要增强自己的主动性,创新能力。这对工程学科是十分重要的。培养求异思想,有自己的想法。发挥自己的能力。在课堂上所学的造船技术,只能是一个载体,用来学习基本方法。然后我们需要用自己的想法去丰富它。

今天是我们船舶与海洋工程认知实习的第二天。

上午,我们的内容是观摩录像。我们首先观看了一部关于船舶阻力的视频。在一个风洞中摆放着不同形状的物体,通过烟雾来显示空气经过它时的扰动情况。其中,矩形物体的阻力最大,圆柱形物体次之,而流线体的阻力最小。所以大多数的船舶水下形状都是流线形的。

然后我还了解到船舶在水中会有三个方向的摇动和三个方向的振荡,这些都是船舶设计中要尽量消除的情况。所以船舶上有各种各样的减摇装置。例如小型船舶有陀螺减摇器,大型船舶有舭龙骨和减摇鳍。船舶在海上航行需要动力装置,船舶主机类型有蒸汽机、柴油机、燃气轮机等。小型船舶的主机功率只有几百千瓦,大型船舶的主机功率可达数万千瓦。

船舶推进器也有不同的种类。有以前的明轮推进器,现代的螺旋桨推进,喷水推进,吊舱推进,空气螺旋桨推进等。船舶航行需要转向装置。一般有舵,侧推螺旋桨等方式。

6.船舶与海洋工程专业实习报告 篇六

江阴实习(1月9日至1月15日)

1月9日上午,笔者在澄西船厂开始了实习期间的第一堂课。首先是澄西船厂的介绍以及入厂教育,该厂兴建于1973年,后来并入了南方集团并且更名为中船澄西船舶修造厂。2009年左右澄西船厂的业绩曾经达到了顶峰,年收益达到了20亿元,但是近年来受到了金融危机的影响,世界船市低靡,澄西厂也因此亏损。

澄西船厂以修船、造船、非船钢结构为核心,其在修船领域的业绩不但在国内首屈一指,在国际上也是属于先进水平。位于江阴的厂区属于澄西船厂的原有厂区,是现在的三个厂区之一。江阴市毗邻上海、南通、张家港等重要沿海港口,水陆交通便利。公司现有员工2300人,各类专业人员有1000余人,厂区生产区域占地面积达77万平方米,沿江岸线长达2000多米,岸壁式舾装码头1630米并配有60吨、30吨、25吨门式起重机和600吨、100吨、60吨浮吊以及17万吨级、8万吨级、3万吨级浮船坞各一座、10万吨级浮船坞2座、7万吨级船台1座,另有钢结构制造场地6.5万平方米,喷涂房1.8万平方米。下午我们参观了厂区和企业文化展厅,见到了海上风机的制造场地。

在安全管理上澄西船厂实行“谁主管,谁负责;谁分管,谁负责”和安全生产“五同时”原则,层层交底,确保人员,责任,措施“三个到位”具体来讲主要有以下几点:进入生产区域,车间佩戴安全帽;高处作业,佩戴安全帽,安全带;非吸烟点禁止吸烟;特种作业,持证上岗;未批准,严禁烟火,涂装,重大件吊装,清仓驳油,脚手架搭拆;人员须从梯道上下,行走,禁止跨越攀爬;禁止高空抛掷物件。

1月10日是船体建造工艺的讲座。现在由于造船技术的更新,船舶建造工艺已经转变成为了壳舾涂一体化的造船模式,船舶的大型化使得涂装作业的工作量大幅度增加,因此涂装作业的重要性受到了越来越多的重视,并从传统的西装作业中分离开来。涂装作业分为两大部分,其一是车间底漆的喷涂,第二是分段涂装。车间底漆主要是用于在船舶建造过程中防止钢材锈蚀。它是在对钢板进行喷砂除锈后在表面喷涂保护漆。分段涂装则是在分段组装完成之后才进行,主要是为船体分段喷涂底漆与面漆。

船体的建造工艺主要分为船体放样与号料,船体构件加工,中间产品的制造以及船台总装4个部分。舾装工程是主船体和上层建筑以外的机电装置、营运设备、生活设施、舱室装饰系统等。涂装作业则是在船体内外表面和舾装件上按技术要求进行除锈和涂敷各种涂料,是金属表面与腐蚀介质隔开,达到防腐处理的目的。包括钢材预处理、分段涂装、总段涂装、船台涂装和码头涂装等制造级的生产作业系统。

船体放样是造船建造过程的首道工序。它的准确性影响船舶外观型线及整体质量。1995年之前还在用手工放样,由人对照设计单位提供的型值表,在放样间要工作2到3个月。欲达到三向光顺的曲线劳动强度大精度也差。很难达到2mm以内的精确度。而且需要大面积的工作台,一般需要超过船舶真实大小的三分之一的放样台。1995年后随着计算机的普及我们已经逐渐利用电子计算机辅助放样。

船体号料是指将展开后的外形复制到钢板以及型材上以方便下料。下料时分1扁钢下料,扁钢在船厂不作为型材只是从钢板上按照宽度裁切2板材下料分平直的手工下料及肘板或有线型的外板数控切割下料。3型材下料分球扁钢及角钢两种。号料还包括套料,数控切割需要先进行套料。即用专门的软件将板的尺寸、板位、切割顺序等信息还包括一些加工信息如切口、坡口型式、零件位置、编号等喷在板上并留出约10mm的切割缝。

船体加工分为切割加工、边缘加工和成型加工。切割加工的折角必须是钝角,直角需要用圆弧过渡。分光电跟踪和数控跟踪两种方法。数控跟踪还包括数控光电切割、数控等离子切割、激光切割及水势切割,应用都比较广泛。边缘加工包括板材边缘、型板边缘和扁钢边缘。成型加工中最复杂的为板材的成型加工,如折板折边用压成型、外板舭部平行中体处是圆弧型线用滚压法、槽型舱壁是折角线型、首尾弯板需热加工水火弯板、首尾肋骨用液压型材弯曲机或者数控肋骨冷弯机。船体装配包括部件的装配及分段装配。分段分为平面分段、曲面分段、半立体分段、立体分段及总装分段。焊接时多使用焊接机器人,焊接质量好焊缝无需再打磨。

船台装配是造船生产的最后一道工序。它是将分段、总段在船台、船坞装配的过程。先组成较大的环状总段在组装成整体。环状总段大约10个,每吊装一个环状总段需要大约一天的时间。

下笔者有幸遇到71900吨的自卸船采用涂油滑道下水,了解到了实际下水中的作业流程。

1月11日笔者听取了关于分段制造的工艺流程介绍,涉及了铆接技术的应用、焊接技术的应用、区域舾装模式、计算机的应用、随着并行工程。其中铆接技术的应用是采用整船散装法,就是先铺好整船的龙骨,再将一块块钢板拼接。它的优点是船体变形小,缺点是需要强体力劳动并且建造周期长、载货少。焊接技术的应用:是采用船体分段和总段建造法,就是把全船分成若干个分段,将制造好的不同分段合拢成整船船体,然后再安装设备、喷涂油漆等。它的优点是劳动强度减轻、缩短周期。缺点是变形量大。区域舾装的模式是成组技术和生产设计的应用,就是产生了分道建造,即在分段制造阶段把设备等安装上去涂装好。舾装作业不再是船体建造中的后续工作,而是这些工作在一个区域内就能完成,不需要跨车间中转作业。计算机的应用使造船告别了生产中靠1:1实尺度放样。板材切割、零部件装焊等工艺流程实现了自动化。随着并行工程是数理统计、综合标准化等技术的应用,模块化造船模式又开始在造船行业大行其道。壳、舾、涂一体化区域化造船的现代造船模式取而代之过去的造船模式,就是当今最先进的造船模式。

之后又讲到现代造船模式的三大要点:生产设计、区域舾装和托盘管理。生产设计其实就是一种事先的工程管理。俗称“纸上造船”在图纸上把船“造”一遍。区域舾装按船舶的系统功能的设计转化为按区域绘制综合安装图,可以表示出一个区域内所有的系统和设备,有一个综合多工种作业组织去完成区域内一切舾装作业。托盘管理是生产设计将舾装工程的总目标按区域、阶段、类型划分,分解成特定任务的具体目标。这些特定任务的体现形式称为“托盘”。

1月14日笔者听取了有关船舶焊接的讲座,焊接作为船厂里一项主要的工作,往往占整船工作量的40%左右。按照其焊接过程分可以分为熔化焊和压力焊,按照生产形势分可以分为手工焊,半机械化焊,全机械化焊,自动焊。而这其中现在使用的高效焊接材料有下列几种:铁粉焊条、埋弧焊、CO2气体保护焊、氩弧焊、垂直气体焊等采用的焊丝。使用的工艺方法主要有:手工焊条电弧焊、CO2气体保护焊、埋弧自动焊、垂直气电焊、钨极氩弧焊这几种,不同方法之间各有优劣,用途各有不同,比如手工焊方便,但效率低;二氧化碳气体保护焊效率高,并且节约能源,但它对焊接准备及设备维护的要求较高;氩弧焊焊接精度高,但对工人技能要求高等。因此,现代船厂常将多种焊接方式综合使用,效果会更好一些。

1月15日进行的是零件套料切割培训,这个过程在加工车间中进行,生产流程为1.原材料进场 2.下料加工 3.打磨 4.拼版 5.成型 6.预制结束 7.交付下道车间

用到的设备有卷板机、三芯辊、刨边机、数控弯管机、肋骨冷弯机、双桥起重机等。数切下料中要求有以下几点: 1.每班检测机器的行走对角线、喷粉切割同步性、割嘴垂直度等设备精度。2.3.不定期抽检数切零件尺寸。

所有有过桥接的零件均要求将过桥割除,割除时要保证切割质量。4.及时调换割嘴电极喷嘴等易碎零件,保证切割的垂直度和减少挂渣。5.下料前仔细核对钢板来料情况,包括材质厚度,表面质量,平整度确认后将产品批号移植到下料草图上。6.板厚超过20mm的板材不得在等离子机上切割,特殊情况例外。7.割缝补偿加放适当,首件必须三检,施工中随时校核。

上海实习(1月17日至1月21日)

1月17日是笔者在上海沪东中华造船厂的第一天实习。沪东中华造船(集团)有限公司于2001年4月由原沪东造船厂与原中华造船厂合并重组成立,是中国船舶工业集团公司旗下既建造军、民用船舶,又制造船舶和船用柴油机配套件、大型钢结构的综合型企业集团。控股和参股上海东鼎钢结构有限公司、上海沪东造船电器有限公司、上海沪东三造船舶配套有限公司、上海华润大东船务工程有限公司等多家企业公司。公司总部位于上海浦东新区,注册资本7.6094亿元。公司拥有360×92米大型船坞1座,配置700吨龙门吊2座;12万吨级和8万吨级船台各1座,2万吨级以下船台2座等一批先进设施和设备,具有年造船200万吨的生产能力。

公司具有雄厚的造船实力和丰富的造船经验,为国内外船东建造过LNG船、LPG船、大中型集装箱船、化学品船、滚装船、油船、散货船、军舰和军辅船等多类军、民用船舶。产品除满足国内用户需要外,还远销亚洲、欧洲、美洲、非洲、大洋洲等40多个国家和地区,深受国内外船东的好评。公司成功建造的中国第一艘14.7万立方米大型液化天然气(LNG)运输船、拥有完全自主知识产权的8530TEU超大型集装箱船,填补了国内空白,标志着公司的生产技术和能力达到国际一流水平。

公司拥有一流的国家级企业技术中心、博士后工作站以及大批中高级专业技术人员,科研开发力量强大。公司信息化技术先进,在普遍使用国际先进造船软件的基础上,自主研发了具有完全知识产权的SPD船舶设计软件,全面建立沪东中华HZ-CIMS技术。

公司具有可靠的质量管理体系,先后通过中国新时代质量认证中心GJB9001A-2001军品质量认证和中国CCS船级社、美国ABS船级社、挪威DNV船级社、英国LR船级社等主要船级社的ISO9001质量认证,具备并运行一套完整有效的质量保证体系。公司以先进的造船理念,全面推进“HSE(职业安全健康)”管理,通过了英国劳氏质量认证公司的GB/T24001-ISO14001环境管理体系、OHSAS18001职业健康安全管理体系的审核认证。

公司正进一步扩大生产基地,2010年8月,国家发改委已批文同意启动长兴二期工程一阶段的建设,对于沪东中华进一步优化船舶产品结构、提高高端船舶产品的生产能力和市场份额,以及提升本公司和中船集团公司在世界造船领域的地位,具有重要意义。

公司正全面实施“数字造船、绿色造船”发展战略,努力建设世界一流造船基地。

今天为笔者做讲座的是有着丰富经验的芮树祥老师傅,他为我们上了一堂生动而又有趣的焊接技术知识讲座。通常来说焊接占全船工作量的30%,所以说焊接在船厂里是一个非常重要的工艺。焊接是一门独立的学科,它同其它任何一门科学一样,有着自己特有的理论基础、研究对象、目的和方法。当代计算机、微电子、信息传感、机器人、激光、电子束、等离子等技术领域的最新成果广泛应用于焊接技术。

船舶焊接主要方法

一、手工焊条电弧焊(Shielded Metal Arc Welding)

优点是设备简单维护方便、操作灵活、应用范围广、对焊工要求高,缺点是生产效率低、劳动条件差。

沪东船厂如今取消了这种方法,按照送丝方式以及行进方式分为手工焊条电弧焊、半自动焊条电弧焊和自动焊条电弧焊。

二、药芯焊丝CO2气体保护焊(Flux-cored Arc Welding)优点是生产效率高和节约能量、综合焊接成本低、焊接变形小、操作简单、容易掌握,缺点是对焊接准备及设备维护的要求较高。其中FCAW工艺是目前世界上造船应用最广的工艺。

沪东船厂如今90%以上的焊接都是用这种二氧化碳气体保护焊操作的。分九种焊接工艺1 CO2半自动焊(全位置,对、角接缝)这种焊接方法已经百分之百的替代了焊条电弧焊;2 CO2自动角焊(横角焊),用低合金钢焊丝;3 CO2半自动单面焊(全位置,对接缝),利用陶制成型槽可以一面焊两面成形,多用于拼板对接缝;4 CO2气电垂直自动焊(立、对接缝),也可以一面焊两面成型,舷侧和舱壁的大接缝多用这种方法。5 CO2单丝单面MAG焊(平对接)6 CO2双丝单面MAG焊(平对接)7 CO2横对接单面自动焊(横对接)8 CO2双丝气电垂直自动焊(立对接)9 CO2双丝自动角焊(横角焊)

三、埋弧自动焊(Submerged Arc Welding)焊剂铜垫单面埋弧自动焊(FCB法)

优点是生产效率高、焊接质量好、节省材料和电能、劳动条件好,缺点是一般只适用于平焊、焊接设备较为复杂、机动灵活性差、且多适用于长焊缝焊接。使用3丝时焊接变形更小了。

四、垂直气电焊(Electro-gas arc welding)

优点是生产效率高是手工焊的10倍以上、工艺过程稳定、焊缝质量优良,缺点是设备较复杂、而且对焊前准备工作要求高。

五、钨极氩弧焊(TIG)(Tungsten inert gas arc welding)

优点是氩气为惰性气体,不参与化学反应,容易获得高质量接头;钨极电弧稳定,电流可以工作在10A以下;焊丝无电流通过,焊接无非溅,焊缝成形美观;热输入易控制,可以全位置焊接。缺点是焊接成本高,效率较低,适用船用管系打底焊及有色金属薄壁管的焊接。

船用结构钢分ABDE级,民用船舶钢才是碳素结构钢。军用舰艇全是低合金高强度钢,它在满足强度条件下相对的厚度和重量很小,可以是航速大幅上升。驱逐舰艇上最后的外板才12mm。

芮老接着又讲到了焊接变形的问题,提到了在焊接过程中焊接变形必会发生。

而操作者能做的就是尽量控制其变形的程度。

方法有先焊对接缝,后焊角接缝。或先焊立角焊,后焊横角焊。要判定各板是否处于最大自由收缩状态。关于构架焊接的方法,芮老讲了三种。1.逐步退焊法2.分中逐步退焊法3.对称焊法而变形的种类,也可分为三种。1.总向弯曲变形2.角变形3.扭曲变形。其中,针对角变形的措施是使用反变形法,针对扭曲变形的措施是安装假隔板。而“以变治变”的过程就是用两台焊机,同规范同预热同方向同层次同时焊。

焊接变形大小预热输入量有关。热输入量越多,变形就越大。而热输入量的大小与焊接方法有关。取同一张板为例使用焊条电弧焊时焊角大小4mm,焊接电流160~180A,变形最大,因为焊接速度特别低77mm/10分钟;使用CO2气体保护焊时,使用1.2的焊丝,焊接电流仍是160~180A,产生的焊接变形最小,因为焊接速度快660~700mm/分钟;使用埋弧自动焊时,使用4mm的焊丝,焊接电流为500~600A,变形大小一般。而且使用单丝或双丝焊接方法时相差了6mm的焊接间隙,产生的焊接变形也不一样。

焊接顺序对于焊接产生的变形的影响也很大。正确的焊接顺序是先焊对接缝,后焊角焊缝;先焊立角焊,后焊横角缝。拼板时欲达到对接焊缝最小的变形必须先焊处于最大的自由收缩状态的焊缝。

1月18日是有关生产设计的讲座。他是船舶设计阶段的最后部分,又生产管理部造船事业部和设计部三个部门承担。

生产管理部负责编制建造大纲,造船事业部主管编制施工要领,设计部要根据建造方针,施工要领展开生产设计。

1月21日,今天是实习的最后一天。笔者在上午参观了沪东船厂的船坞及船台。船坞可以建造30万吨的巨轮,长397m宽100m深12m,配有两台700t的龙门吊和350t的小吊车,内有再造的一艘LNG船和一艘护卫舰,另外还有半条民船。之后见到的10万吨船台上有24颗滚珠滑道,上有一艘在造的76000t散货船正在进行抛丸除锈以便于之后的涂装作业。

下午的讲座笔者听取了造船业的当今现状以及南北两大集团的大体盈亏状况。另外主管培训的缪老师还为我们讲解的本科生毕业后在船厂的发展情况以及相关的一些建议。

心得体会

本次实习虽然只有短短两周的时间,但是作为一次毕业实习却让笔者有着深刻的感触。与之前的专业认识实习不同,这次实习中笔者作为一名即将毕业的大四学生在四年的时间里已经学习了专业内各方面的专业知识,这使得笔者能够更进一步理解实习中老师所讲的内容,让笔者明白实习中所见的生产过程,这也让笔者更深刻的理解了这个行业的现状以及自己未来的道路。

这次实习让笔者深刻的感觉到实际工作经验的重要性,无论是去现场部门还是设计部门,要想成为一名合格的职工都必须去在实际工作中经受历练。虽然这个积累的过程十分辛苦,但是却正是这个漫长的过程给与了笔者蜕变的时间。在于船厂工作的师兄们的交谈中我深刻的感到,即便是刚毕业不久的师兄们我们也远远无法与之相提并论,他们在工作中磨练出来的都是真本领、真功夫。都是在实际工作中所必须的技能,而笔者还停留在纸上谈兵的阶段,空有理论而不懂得实践。“空谈误国,实干兴邦”是习总书记对我们的告诫,作为一名大学生,我们应当也有必要身体力行的投入到工作中去,身体力行的去把我们所学到的知识化为力量。

其次,通过这次的实习笔者感受到所学知识的不足。知识是工作中发挥个人力量的根本,没有足够的知识储备就无法在未来的工作中得心应手的处理面临的问题,没有足够的专业知识就无法做好自己的工作。我们学校一直以来都是船舶领域的名校,作为其中的一份子笔者不止要完成好课内的学习内容,还要不断进取,多涉猎专业前沿,在毕业之后也不可松懈。在实习中已经工作的学长之所以会受到公司的重视也是因为他们能够不满足于现状,不断锐意进取的结果,而我们在即将毕业之际也应当做好走上社会的准备,不论是从知识上、能力上还是心理上都做好工作的准备。

7.船舶与海洋工程相关 篇七

关键词:船舶维修,环保,节能,评价体系

一、船舶修造业节能环保现状

1、关于船舶修造业

船舶修理业既属于工业又具有服务业的特征, 它是维持现有营运船舶进行正常营运的简单再生产的最基本的手段。船舶进行修理的主要目的有两条:一是船舶经过修理以满足船舶的入级要求;二是经过船舶修理, 保证船舶具有良好的营运技术状态。全世界每年平均运输商船的保有量约为6.5亿载重吨, 承担着世界70%以上货物运输量, 可见, 船舶修理业在促进国民经济发展中, 具有极其重要的作用和地位。船舶修理包括年度维修保养、坞修等定期修理及事故损坏性维修等, 对船舶的继续有效使用和航运业的持续发展至关重要。

交通运输主管部门要求, 要深入研究公路运输、水路运输温室气体排放对气候变化的影响, 提出相应的对策措施;开展进一步降低营运船舶污染物排放及能耗的可行性研究;重点抓好船舶防污染、防泄漏及港口防污能力设施建设。

2、船舶修理带来的污染危害

(1) 油类 (船舶油污水、残油、油泥等油性污染物质)

油类主要成分是碳氢化合物, 其中多环芳香类碳氢化合物是对环境有害的, 且难于降解。此种化合物进入水体将造成鱼类、鸟类死亡, 影响养殖业及岸滩植被, 破坏生态环境。在船舶的油舱、机舱、油箱、油柜、油管、液压系统中剩余的和残存的原油、燃油、润滑油、液压油和其它油料, 以及含油压载水、舱底水, 洗舱水、油泥等都是此类污染物。油类污染水域的现象较为常见, 即使将油泥等移到岸上处置, 因雨水影响, 仍会污染水域。冲洗带有油污的甲板, 也会产生油性污染物质入江污染水体。

(2) 船舶压载水及生活污水

一是可能含有上述油性污染物质;二是来自疫区的压载水带来病菌等, 污染水体;三是来自其他地区的水体生物 (动物和植物) , 会对本地水体造成影响和危害, 甚至给当地经济和环境造成灾难性的结果。船舶生活污水主要污染物为COD等, 也包括其他有害细菌、寄生虫和病毒。

(3) 氟利昂

氟利昂是无毒、不燃、化学稳定的制冷剂。氟利昂会破坏大气层上层的臭氧层, 从而使地球表面上紫外线照射量增强, 这将导致皮肤癌人数上升。

(4) 船舶垃圾和其他固体废弃物

一是船舶生活垃圾。船员生活垃圾和扔弃的衣服、被褥、床垫等生活用品经常带有会引起人与海洋生物感染的细菌、寄生虫和病毒, 弃入水中会引起水体富营养化和含氧量的减少, 降低净化能力, 造成水污染。

二是废电池。废电池含有汞、锻、锈、镍等重金属, 对人体及生态环境有不同程度的危害。若将废旧电池混入生活垃圾一起填埋, 或者随手丢弃, 渗出的汞及重金属物质就会渗透于土壤、污染地下水, 进而进入鱼类、农作物中, 破坏人类的生存环境, 间接威胁到人类的健康。

二、推进船舶修理工程节能环保的对策

1、海事船舶维修节能环保对策

(1) 使用轻重油转化设备

海事船舶上安装轻重油转化装置后不会影响船舶的结构, 也不会影响主机的性能。轻重油转化设备由多种部件组成, 其中过滤器是特制的, 在使用中应定期更换。轻重油转化的基本原理是, 低质燃油通过加热、搅拌、过滤后其流动性提高, 达到充分燃烧的目的。轻重油转化设备所占机舱空间很小, 操作简单, 安装方便, 只需将原有燃油管系靠近柴油机的部分截开, 连接到轻重油转化装置的出入口即可。

(2) 加强维护保养

机电设备是船舶油料最直接的消耗者, 抓好机电设备的维护保养, 确保机电设备的工况, 充分挖掘节能降耗潜力, 最重要的是使柴油机保持良好的工作状态, 主要从以下几个方面着手:保持进排气系统的通畅, 定期调整气阀间隙;调整最佳喷油提前角;保持润滑系统的顺畅;保证足够的新鲜空气供给量;定期检查调整供油定时和喷油压力, 确保其在规定范围内;保持燃烧室组件之间的适宜间隙;保持操作系统和传动系统处于良好技术状态, 将大大提高机械效率, 从而降低油耗。

(3) 推广玻璃钢船型

玻璃钢是由合成树脂和玻璃纤维经复合工艺制作而成的一种功能型的新型材料, 相对密度小、冲击韧性好、表面光滑、耐腐蚀、成型简单。采用玻璃钢材料制造的船舶, 自重轻、阻力小、航速快、维修费用低、节约能源, 玻璃钢是建造小型船舶理想的节能材料。

2、从管理政策方面推进船舶维修工程节能环保

综合分析以上船舶修理工程节能环保现状, 政府以及相关部门应该采取以下对策。

(1) 加强专项立法

建立健全完善防治船舶污染的法规体系。应调动全海事系统的力量和地方政府资源, 在防治船舶油类作业污染、船舶垃圾污染、船舶废水及生活污水污染、船舶载运危险货物污染、船舶造成大气污染、船舶噪声污染等方面也制定统一的规定和标准, 并使之成为完善的防治船舶污染的法规体系。

立法规范船舶修理规定修船企业在接收修理船舶前应向当地环境保护、海事等部门申请, 说明拟修理的船舶种类、吨位, 涉及的污染物质等情况, 取得同意后船舶方可进厂。

立法规定污染物质清除及去向。其规定船舶进厂修理前预洗清除有关污染物质, 以减少污染物质在国际社会间的转移。避免假借修船名义转移污染物质。采取修船基地选择论证接施, 要求统筹规划, 合理布局, 在环境敏感区 (资源保护、风景旅游、取水口等区域) 采取特别保护措施。

(2) 行业加强自律

首先, 实行修船企业交纳防污染保证金等制度, 通过保证金制度提高企业自律意识, 同时可以提高对污染控制、清除的投入。透过经济杠杆, 确立企业环境保护意识。其次, 加强修船从业人员管理。对企业业主、作业人员实行特种行业许可制度, 强制加强培训教育, 从修船防污染技能和环境保护意识上提高人员素质。再次, 实行环境保护投入制度。督促企业加大环境保护设备设施的投入, 采取围油栏布设等预防措施, 购置防污染设备设施应对污染事故。

(3) 执法部门监督管理

一是消除地方保护主义。在环境保护执法中, 尤其是外国籍船舶修理防污染管理中, 宜采取中央垂直管理体制, 将有利于提高执法的威信。二是实施审批会签制。地方政府部在审批修船企业资质、审核环境影响报告书等时, 向海事等其他部门征求意见, 完善审批行为。三是严格实施三同时制度, 实行环境保护一票否决制。督促企业及时建设、投入使用防污染设备设施;对不具备污染防治要求的企业责令停产整顿。四是跟踪污染物质动态。修船企业在经审核的《建设项目环境影响报告表》中, 涉及的污染物质一般要实现了零排放。但实际作业中污染物质的真正去向, 有待进一步跟踪检查。

(4) 海事监管措施

一是加大宣传力度。向修船企业宣传防止船舶污染法律法规。提高企业工作人员环保意识, 督促厂方建立防止修船污染措施和应急预案。向到港船舶宣传, 督促船方遵守我国有关法律法规和国际公约, 对需要进行任何排放作业的, 必须事先按规定向海事部门申报, 并应做好排放现场的监控, 禁止任何污染物质排入水体。

二是建立社会防污染网络。健全防污监督网络, 扩大防污宣传和监控谣, 及时查处污染事故, 保护长江水域环境。建立社会防污染网络, 组织防污网络员学习相关法规, 通报船舶污染事故, 提高广大群众的环保意识, 充分发挥大家的环保积极性, 加强船舶防治污染工作的群众基础。

三是严格船舶进港前污染物质申报审批制度。开展船厂污染物接收处理情况跟踪调查, 了解接收处理能力, 控制辖区污染源。对抵港修理船舶实行船舶污染物申报制度, 船舶抵港前将船存污染物质填报海事机构, 经审核批准后方可进港。对化学品运输船要事先向船方了解清楚该船曾运载过何种化学物质, 且必须彻底清洗货舱, 不得夹带化学品残留物。海事、厂方对船舶污染物的种类、数量、位置心中有数, 便于接收处理和监管。

四是规范船舶垃圾、油污水等的接收处理。首先做好接收单位的资格审核和日常监督, 船坞下潜前, 先清理垃圾, 并向海事机构报告, 接受检查。定期检查核实作业单位船舶垃圾和油污水接受处理台账, 跟踪检查其油污水接收后的处理过程, 防止出现二次污染。其次加强对船舶防污设备、文书的监督检查, 督促船舶按规定排放处理。

五是加强船舶违章处罚。加强船舶违章排放的处理, 能起到警示作用, 提高海事执法威慑力。同时, 也可采取措施, 对每条在港船留取油样, 一旦发生污染事故, 便于取样化验比对, 能对船方提高防污染意识, 杜绝违章排放, 加快污染事故的调处起到积极的作用。

我国能源总量稀缺、消耗大、利用效率低, 节能工作面临巨大的压力。船舶节能减排是一项系统工程, 在注重技术节能的同时还应加强船舶管理, 把节能减排的基础性工作做好。目前, 推动海事船舶节能工作, 迫切需要加大政策执行力度, 加大投入, 加快节能技术的推广和应用, 促进海事船舶节能减排工作迈上一个新的台阶。

参考文献

[1]杨新昆:浅析中国修船业的现状[D].中国造船工程学会修船技术学术委员会2002年年会船舶维修理论与应用论文集, 2002.

[2]陈建平:船舶修理生产资源的合理分配[J].中国修船, 2009 (10) .

[3]赵福波、马海石:对海事船舶节能减排的一点认识[J].中国海事, 2008 (11) .

[4]魏安:船舶设备维修[J].天津航海, 2004 (2) .

8.船舶与海洋工程相关 篇八

【关键词】船舶与海洋工程 结构力学 课程改革

【中图分类号】G642.0 【文献标识码】A 【文章编号】2095-3089(2016)36-0021-02

《结构力学》是船舶与海洋工程学科的两大力学支撑之一,是船舶与海洋工程专业的重要学科基础必修课程,它既是对前期学习的理论力学、材料力学课程的延续与深入,同时也为后续的船体强度与结构设计、钢结构设计基本原理等课程打好基础,因此在整个专业的教学和人才培养计划中具有相当重要的作用。

随着教育部“卓越工程师教育培养计划”的出台,工科专业对学生的工程能力和创新能力有了更高的要求,本专业按照新要求制定了卓越工程师培养方案,修订了本科教学大纲,并且在教学过程中大力推进改革创新,着力培养适应未来行业发展要求的应用型、创新型复合技术人才。下面我就结合《结构力学》课程的教学改革工作,就如何培养应用型、创新型的复合人才谈谈自己的看法。

一、教学内容改革

1.合理搭配专业教材,突出船舶与海洋特点

目前,工科结构力學的教材主要是针对土建、水利、道桥、力学等专业编写的,教材中对通用的理论知识讲解非常透彻,但是例题和延伸知识中却缺乏和船体结构相关的内容,因此本课程在教材选取上,采用了由高等教育出版社出版的龙驭球教授、包世华教授主编的《结构力学》以及上海交通大学出版社出版的陈铁云教授、陈伯真教授主编的《船舶结构力学》两本书组合的形式。这样既包含了结构力学传统的基础知识,又增加了针对船舶与海洋专业特点内容的拓展,保证了教学内容上的丰富多彩。

2.适当结合工程背景,突出专业知识应用性

部分学生到了毕业设计或是工作阶段会感觉学习的专业知识无法应用到实际工作中,这主要是由于理论知识的学习和工程背景脱节造成的。因此,对船舶与海洋工程专业学生分析和解决实际问题能力的培养,必须在专业基础课程中就予以重视。在结构力学课程的教学工作中,需要将力学知识的讲解和具体工程背景下的力学模型结合起来,在进行计算分析时应多给学生介绍船体结构中板材、骨架的结构形式,使学生对工程实际中各种构件、支座的简化形式、载荷传递的简化方法熟悉掌握,这样才能将理论知识通过简化计算模型同船舶与海洋工程的实际结构联系起来,突出结构力学知识的应用性。

3.增加软件培训教学,贴近工程应用实际

传统的结构力学教学内容,主要是采用手算方法对比较简单的结构形式进行计算分析,旨在培养学生对工程结构进行校核分析的基本方法。而目前在船舶与海洋工程工业领域,已经有很多成熟的计算软件,使用专业软件对工程实例进行计算分析已经是行业内对毕业生基本的技能要求。因此,在结构力学的教学工作中,在打牢理论基础的前提下有必要培养学生使用软件建模、计算分析以及编程二次开发的能力,这样能够提高学生的综合素质、拓宽学术视野,为其后续的学习研究以及参加工作奠定扎实的专业基础。

二、教学方法改革

1.合理搭配板书教学和多媒体教学方法

结构力学是一门实践性很强的理论课程,要想达到良好的教学效果,首先必须坚持黑板板书的传统教学方法。口头讲解配合板书的教学方法逻辑清晰,重点突出,在教学速度上更容易被学生接受,特别是在公式推导和理论计算时,板书教学法对过程的分析更加细致,更容易被学生理解,因此,在教学过程中一定要坚持板书教学。

其次,应当利用多媒体教学手段提高教学质量。结构力学是一门与工程实践联系紧密的应用性学科,一些工程实例特别是复杂的结构形式无法通过语言和板书给学生进行描述,这就需要充分发挥多媒体教学手段的优势,通过图片、视频资料将实际结构形象的展现出来,这有助于学生将枯燥的理论简化模型同生动的工程结构实物联系起来,加深对所学知识的理解并能够学以致用。

2.充分发掘实习环节的教学作用

船舶与海洋工程专业的本科教学非常注重实践环节,安排了大量的现场实习教学工作,如认识实习、生产实习、毕业实习等。实习过程不仅能够使学生了解船舶设计和生产的原理、流程和工艺等实践知识,还可以发挥对专业课程的辅助教学作用。例如对结构力学课程中涉及的船体结构计算分析,就可以在实习工作中进行现场教学,直观生动的教学环境能够加深学生的理解和印象,起到事半功倍的效果。此外,还可以在实习过程中与经验丰富的技术人员进行交流,收集与结构力学专业课相关的生产实践知识,以及拍摄视频和图像资料,用以后续课程中作为补充内容进行授课,进一步拓展学生的视野,并将课程内容与生产实际相结合。

三、考核方式改革

1.考核成绩计入参加相关竞赛的成绩

参加结构力学专业相关的各级竞赛活动,不仅能巩固结构力学专业知识,还可以提高学生的综合能力,因此很有必要进行引导和支持。例如对于参加校级结构设计大赛表现优异的团队和个人,可以在课程考核中合理设置加分,通过加分奖励制度鼓励学生多参加相关竞赛,通过竞赛来检验学生的学习成果,不仅有利于课程教学效果的提高,也能够激发学生将理论知识应用于实际工程设计的创新潜质,推动教学工作和竞赛活动的互相促进。

2.考核成绩计入参加相关科研项目的成绩

教学和科研工作是相辅相成的,要提高专业课的教学质量,可以从鼓励科研入手。本科学习阶段,部分成绩优异且对科研活动感兴趣的学生很早就开始了科研工作的起步,而通过考核成绩中计入参加相关科研工作的方式来引导和鼓励学生参加科研,是提升教学质量的好办法。例如本校的本科生研究发展计划(SRDP)吸引了大量本科生的参与,对于结构力学课程教学而言,可以通过在最终考核成绩中计入相关专业SRDP项目成绩的方式来对学生进行引导,鼓励学生在达到结构力学课程本科要求水平的基础上,进一步深入学习专业知识,为后续的研究和工作提前打好基础。

随着船舶与海洋工程行业的发展和技术进步,对于本专业的结构力学课程教学要求也在不断提高,为了培养适应未来行业发展要求的应用型、创新型复合技术人才,结构力学课程的教学改革工作必须持续推进,而只有通过教学内容、教学方法和考核方式的改革将教学、科研、竞赛等活动有机的结合起来,才能推动结构力学课程教学质量的进一步提升。

参考文献:

[1]龙驭球,包世华.结构力学[M].北京:高等教育出版社,2000.

[2]罗广恩.“船舶结构力学”教学改革探讨[J].职业教育,2013(11):240-241.

[3]周臻,陆金钰,尹凌峰,缪志伟.面向卓越土木工程师培养的结构力学教学改革与实践[J].高等建筑教育,2012(4):74-77.

上一篇:另一种看开美文下一篇:我的希望我的梦想作文