数字电路与逻辑设计

2025-02-19

数字电路与逻辑设计(精选8篇)

1.数字电路与逻辑设计 篇一

中规模通用集成电路及其应用

教学内容:本节内容是针对上节组合逻辑电路分析的推广,主要介绍采用中、大规模集成电路组成数字系统的方法以及应用。包括使用最广泛的中规模组合逻辑集成电路有二进制并行加法器、译码器、编码器、多路选择器和多路分配器等。

教学重点:加法器和译码器的功能,设计应用的方法和技巧。教学难点:并行和串行集成电路的设计思想。

教学方法:课堂教学为主,辅以恰当的实验。紧密结合前面所学的基础内容,用丰富详尽的例题,让学生充分理解集成芯片设计方法,并通过课堂练习掌握学生学习情况。课后配套实验,让学生透彻理解课堂所学。

教学要求:了解集成电路的分类,重点掌握加法器和译码器的设计,以及其应用方法。

7.1常用中规模组合逻辑电路

教学内容:(1)熟悉常用中规模通用集成电路的逻辑符号、基本逻辑功能、外部特性和使用方法。(2)常用中规模通用集成电路作为基本部件,恰当地、灵活地、充分地利用它们完成各种逻辑电路的设计,有

效地实现各种逻辑功能。

教学重点:二进制并行加法器和译码器。

教学难点:二进制并行加法器和译码器功能、结构、外部特性及应用。

教学方法:课堂教学为主,通过提问和练习掌握中规模通用集成电路功能和应用。

采用中、大规模集成电路组成数字系统具有体积小、功耗低、可靠性高等优点,且易于设计、调试和维护。

使用最广泛的中规模组合逻辑集成电路有:

★ 二进制并行加法器

★ 译码器 ★ 编码器

★ 多路选择器 ★ 多路分配器等

7.1.1二进制并行加法器

一.定义

二进制并行加法器:是一种能并行产生两个二进制数算术和的组合逻辑部件.二.分类及典型产品 按其进位方式的不同,可分为串行进位二进制并行加法器和超前进位二进制并行加法器两种类型。

1.串行进位二进制并行加法器:由全加器级联构成,高位的进位依赖于低位的进位。典型芯片有四位二进制并行加法器T692。四位二进制并行加法器T692的结构框图如图7.1所示。

图7.1 T692的结构框图

串行进位二进制并行加法器的特点是:被加数和加数的各位能同时并行到达各位的输入端,而各位全加器的进位输入则是按照由低位向高位逐级串行传递的,各进位形成一个进位链。由于每一位相加的和都与本位进位输入有关,所以,最高位必须等到各低位全部相加完成并送来进位信号之后才能产生运算结果。显然,这种加法器运算速度较慢,而且位数越多,速度就越低。

为了提高加法器的运算速度,必须设法减小或去除由于进位信号逐级传送所花的时间,使各位的进位直接由加数和被加数来决定,而不需依赖低位进位。根据这一思想设计的加法器称为超前进位(又称先行进位)二进制并行加法器。

2.超前进位二进制并行加法器:由逻辑电路根据输入信号同时形成各位向高位的进位,又称为先行进位二进制并行加法器或者并行进位二进制并行加法器。典型芯片有四位二进制并行加法器74LS283。

四位二进制并行加法器74LS283构成思想如下:

第i位全加器的进位输出函数表达式为

Ci = AiBi+(Ai+Bi)Ci-1

令 Ai+Bi→Pi(进位传递函数)

AiBi→Gi(进位产生函数)

则有 Ci=PiCi-1+Gi 于是,当i=1、2、3、4时,可得到4位并行加法器各位的进位输出函数表达式为

C1=P1C0+G1

C2=P2C1+G2=P2P1C0+P2G1+GC3=P3C2+G3=P3P2P1C0+P3P2G1+P3G2+G3

C4=P4C3+G4=P4P3P2P1C0+P4P3P2G1+P4P3G2+P4G3+G4

由于C1~C4是Pi、Gi和C0的函数,而Pi、Gi又是 Ai、Bi的函数,所以,在输入Ai、Bi和C0之后,可以同时产生C1~C4。通常将根据Pi、Gi和C0形成C1~C4的逻辑电路称为先行进位发生器。采用先行进位发生器的并行加法器称为超前进位二进制并行加法器。

三.四位二进制并加法器的外部特性和逻辑符号 1.外部特性

74LS283、4008芯片的管脚排列图如图7.2(a)所示。图中,VCC B2 A2 S2 B3 A3 S3 C3 16 15 14 13 12 11 10 974LS283 1 2 3 4 5 6 7 8S1 B1 A1 S0 B0 A0 C0-1 GNDTTL加法器74LS283引脚图VDDB3C3 S3 S2 S1 S0 C0-1 16 15 14 13 12 11 10 94008 1 2 3 4 5 6 7 8A3 B2 A2 B1 A1 B0 A0 VSSCMOS加法器4008引脚图图7.2 74LS283,4008的管脚排列图和逻辑符号 A4、A3、A2、A1----------二进制被加数; B4、B3、B2、B1----------二进制加数; F4、F3、F2、F1----------相加产生的和数;

C0----来自低位的进位输入;FC4----向高位的进位输出。2.逻辑符号

四位二进制并行加法器逻辑符号如图7.2所示。

四.应用举例

二进制并行加法器除实现二进制加法运算外,还可实现代码转换、二进制减法运算、二进制乘法运算、十进制加法运算等功能。下面举例说明。

例1 用4位二进制并行加法器设计一个将8421码转换成余3码的代码转换电路。例2 用4位二进制并行加法器设计一个4位二进制并行加法/减法器。

例3 用一个4位二进制并行加法器和六个与门设计一个乘法器,实现A×B,其中A=a3a2a1,B= b2b1.例4 用4位二进制并行加法器设计一个用余3码表示的1位十进制数加法器。

7.1.2译码器和编码器

译码器(Decoder)和编码器(Encoder)是数字系统中广泛使用的多输入多输出组合逻辑部件。

一.译码器

译码器的功能是对具有特定含义的输入代码进行“翻译”,将其转换成相应的输出信号。

译码器的种类很多,常见的有二进制译码器、二-十进制译码器和数字显示译码器。

1.二进制译码器

(1)定义

二进制译码器:能将n个输入变量变换成2个输出函数,且输出函数与输入变量构成的最小项具有对应关系

n的一种多输出组合逻辑电路。

(2)特点

● 二进制译码器一般具有n个输入端、2个输出端和一个(或多个)使能输入端。

● 在使能输入端为有效电平时,对应每一组输入代码,仅一个输出端为有效电平,其余输出端为无效电平(与有效电平相反)。

● 有效电平可以是高电平(称为高电平译码),也可以是低电平(称为低电平译码)。

(3)典型芯片

常见的MSI二进制译码器有2-4线(2输入4输出)译码器、3-8线(3输入8输出)译码器和4-16线(4输入16输出)译码器等。书P231所示分别是74LS138型3-8线译码器的管脚排列图和逻辑符号。

n2.二-十进制译码器

二-十进制译码器的功能:将4位BCD码的10组代码翻译成10个十进制数字符号对应的输出信号。

例如,常用芯片T331是一个将8421码转换成十进制数字的译码器,其输入A3~A0为8421码,输出Y0~Y9分别代表十进制数字0~9。该译码器的输出为低电平有效。其次,对于8421码中不允许出现的6个非法码(1010~1111),译码器输出端Y0~Y9均无低电平信号产生,即译码器对这6个非法码拒绝翻译。这种译码器的优点是当输入端出现非法码时,电路不会产生错误译码。(该译码器的逻辑电路图和真值表见教材中有关部分)

3.数字显示译码器

数字显示译码器是不同于上述译码器的另一种译码器。在数字系统中,通常需要将数字量直观地显示出来,一方面供人们直接读取处理结果,另一方面用以监视数字系统工作情况。因此,数字显示电路是许多数字设备不可缺少的部分。

数字显示译码器是驱动显示器件(如荧光数码管、液晶数码管等)的核心部件,它可以将输入代码转换成相应数字,并在数码管上显示出来。

常用的数码管由七段或八段构成字形,与其相对应的有七段数字显示译码器和八段数字显示译码器。例如,中规模集成电路74LS47,是一种常用的七段显示译码器,该电路的输出为低电平有效,即输出为0时,对应字段点亮;输出为1时对应字段熄灭。该译码器能够驱动七段显示器显示0~15共16个数字的字形。输入A3、A2、A1和A0接收4位二进制码,输出Qa、Qb、Qc、Qd、Qe、Qf和Qg分别驱动七段显示器的a、b、c、d、e、f和g段。(74LS47逻辑图和真值表可参见教材中有关部分。)

七段译码显示原理图如图7.8(a)所示,图7.8(b)给出了七段显示笔画与0~15共16个数字的对应关系。

图7.8 七段译码显示原理及笔画与数字关系

4.译码器应用举例

译码器在数字系统中的应用非常广泛,它的典型用途是实现存储器的地址译码、控制器中的指令译码、代码翻译、显示译码等。除此之外,还可用译码器实现各种组合逻辑功能。下面 举例说明在逻辑设计中的应用。 例1 用3-8线译码器T4138和适当的与非门实现全减器的功能。例2 用译码器和与非门实现逻辑函数  F(A,B,C,D)=∑m(2,4,6,8,10,12,14) 

二.编码器

编码器的功能恰好与译码器相反,它是对输入信号按一定规律进行编排,使每组输出代码具有其特定的含义。

编码器按照被编信号的不同特点和要求,有各种不同的类型,最常见的有二-十进制编码器(又称十进制-BCD码编码器)和优先编码器。

1.二-十进制编码器

(1)功能:将十进制数字0~9分别编码成4位BCD码。

(2)结构框图

这种编码器由10个输入端代表10个不同数字,4个输出端代表相应BCD代码。结构框图如图7.11所示。

图7.11 编码器结构框图

注意:二-十进制编码器的输入信号是互斥的,即任何时候只允许一个输入端为有效信号。

最常见的有8421码编码器,例如,按键式8421码编码器(详见教材中有关内容)。

2.优先编码器

(1)功能:识别输入信号的优先级别,选中优先级别最高的一个进行编码,实现优先权管理。

优先编码器是数字系统中实现优先权管理的一个重要逻辑部件。它与上述二-十进制编码器的最大区别是,优先编码器的各个输入不是互斥的,它允许多个输入端同时为有效信号。优先编码器的每个输入具有不同的优先级别,当多个输入信号有效时,它能识别输入信号的优先级别,并对其中优先级别最高的一个进行编码,产生相应的输出代码。

(2)典型芯片

书P238所示为常见MSI优先编码器74LS148的管脚排列图和逻辑符号。书P23874LS148

真值表。

3.应用举例

例 用优先编码器74LS148设计一个能裁决16级不同中断请求的中断优先编码器。

7.1.3多路选择器和多路分配器

多路选择器和多路分配器是数字系统中常用的中规模集成电路。其基本功能是完成对多路数据的选择与分配、在公共传输线上实现多路数据的分时传送。此外,还可完成数据的并-串转换、序列信号产生等多种逻辑功能以及实现各种逻辑函数功能。因而,属于通用中规模集成电路。

一.多路选择器

多路选择器(Multiplexer)又称数据选择器或多路开关,常用MUX表示。它是一种多路输入、单路输出的组合逻辑电路。

1.逻辑特性

(1)逻辑功能:从多路输入中选中某一路送至输出端,输出对输入的选择受选择控制量控制。通常,对于一个具有2路输入和一路输出的多路选择器有n个选择控制变量,控制变量的每种取值组合对应选中一路输入送至输出。

(2)构成思想: 多路选择器的构成思想相当于一个单刀多掷开关,即 n

2.典型芯片

常见的MSI多路选择器有4路选择器、8路选择器和16路选择器。

(1)四路数据选择器74153的管脚排列图和逻辑符号

书P240(2)四路数据选择器74153的功能表

四路数据选择器的功能表书P240。

(3)四路数据选择器74153的输出函数表达式

由功能表可知,当A1A0=00时,W=D0;当A1A0 =01时,W=D1;当A1A0 =10时,W=D2;当A1A0 =11时,W=D3。即在A1A0的控制下,依次选中D0~D3端的信息送至输出端。其输出表达式为

式中,mi为选择变量A1、A0组成的最小项,Di为i端的输入数据,取值等于0或1。 类似地,可以写出2路选择器的输出表达式 n

式中,mi为选择控制变量An-1,An-2,…,A1,A0组成的最小项;Di为2n路输入中的第i路数据输入,取值0或1。

3.应用举例

多路选择器除完成对多路数据进行选择的基本功能外,在逻辑设计中主要用来实现各种逻辑函数功能。

(1)用具有n个选择控制变量的多路选择器实现n个变量函数

一般方法:将函数的n个变量依次连接到MUX的n个选择变量端,并将函数表示成最小项之和的形式。若函数表达式中包含最小项mi,则相应MUX的Di接1,否则Di接0。

例1 用多路选择器实现如下逻辑函数的功能  F(A,B,C)=∑m(2,3,5,6)

(2)用具有n个选择控制变量的多路选择器实现n+1个变量的函数

一般方法:从函数的n+1个变量中任n个作为MUX选择控制变量,并根据所选定的选择控制变量将函数变换成如下形式:

以确定各数据输入Di。假定剩余变量为X,则Di的取值只可能是0、1或X,X四者之一。例2 假定采用4路数据选择器实现逻辑函数

F(A,B,C)=∑m(2,3,5,6) 上述两种方法表明:用具有n个选择控制变量的MUX实现n个变量的函数或n+1个变量的函数时,不需要任何辅助电路,可由MUX直接实现。

(3)用具有n个选择控制变量的多路选择器实现n+1个以上变量的函数

当函数的变量数比MUX的选择控制变量数多两个以上时,一般需要加适当的逻辑门辅助实现。在确定各数据输入时,通常借助卡诺图。

例3 用4路选择器实现如下4变量逻辑函数的功能  F(A,B,C,D)=∑m(1,2,4,9, 10,11,12,14,15)

例4 用一片T580双4路选择器实现4变量多输出函数。函数表达式为

F1(A,B,C,D)=∑m(0,1,5,7,10,13,15)

F2(A,B,C,D)=∑m(8,10,12,13,15) 

二.多路分配器

多路分配器(Demultiplexer)又称数据分配器,常用DEMUX表示。多路分配器的结构与多路选择器正好相反,它是一种单输入、多输出组合逻辑部件,由选择控制变量决定输入从哪一路输出。书P245为4路分配器的逻辑符号和功能表。

多路分配器常与多路选择器联用,以实现多通道数据分时传送。通常在发送端由MUX将各路数据分时送上公共传输线(总线),接收端再由DEMUX将公共线上的数据适时分配到相应的输出端。图7.21所示是利用一根数据传输线分时传送8路数据的示意图,在公共选择控制变量 ABC的控制下,实现Di-fi的传送(i=0~7)。

图7.21 8路数据传输示意图

以上对几种最常用的MSI组合逻辑电路进行了介绍,在逻辑设计时可以灵活使用这些电路实现各种逻辑功能。

例5 用8路选择器和3-8线译码器构造一个3位二进制数等值比较器。

解 设比较的两个3位二进制数分别为ABC和XYZ,将译码器和多路选择器按图 7.22所示进行连接,即可实现ABC和XYZ的等值比较。

图7.22 比较器逻辑电路图

从图7.22可知,若ABC=XYZ,则多路选择器的输出F=0,否则F=1。例如,当ABC=010时,译码器输出Y2=0,其余均为1。若多路选择器选择控制变量XYZ=ABC=010,则选通D2送至输出端F,由于D2=Y2=0,故F=0;若XYZ≠010,则多路选择器会选择D2之外的其他数据输入送至输出端F,由于与其余数据输入端相连的译码器输出均为1,故F为1。

用类似方法,采用合适的译码器和多路选择器可构成多位二进制数比较器。

3触发器

教学内容:本章开始进入时序电路分析设计,对于时序电路最基本元器件触发器要掌握常用的RS触发器、JK触发器、D触发器、以及钟控和边沿RS触发器、JK触发器、D触发器的功能、触发方式、外部工作特性。

教学重点:各种触发器的触发方式和功能。教学难点:触发器构成方式。

教学方法:课堂教学为主,辅以恰当的实验。紧密结合前面所学的基础内容,用丰富详尽的例题,让学生充分理解集成芯片设计方法,并通过课堂练习掌握学生学习情况。课后配套实验,让学生透彻理解课堂所学。

教学要求:重点掌握触发器的工作原理,掌握各种触发器的触发方式和功能以及应用场合的不同,了解触发器的外部工作特性。

3.4触

触发器是一种具有记忆功能的电子器件。它具有如下特点:

 ☆ 有两个互补的输出端Q和Q;

☆ 有两个稳定状态。通常将Q=1和Q=0称为“1”状态,而把Q=0和Q=1称为“0” 状态。当输入信号不发生变化时,触发器状态稳定不变;

☆ 在一定输入信号作用下,触发器可以从一个稳定状态转移到另一个稳定状态。通常把输入信号作用之前的状态称为现态,记作Qn 和Qn,而把输入信号作用后的状态称为触发器的次态,记作Q(n+1)和Q(n+1)。

为了简单起见,现态一般省略的上标n,就用Q 和Q 表示。显然,次态是现态和输入的函数。

触发器是存储一位二进制信息的理想器件。集成触发器的种类很多,分类方法也各不相同,但其结构都是由逻辑门加上适当的反馈线耦合而成。

下面从实际应用出发,介绍几种最常用的集成触发器,重点掌握它们的外部工作特性。

3.4.1基本R-S触发器

基本R-S触发器是直接复位置位触发器的简称,由于它是构成各种功能触发器的基本部件,故称为基本R-S触发器。

一.用与非门构成的基本R-S触发器

1.组成

由两个与非门交叉耦合构成,其逻辑图和逻辑符号分别见书P95。

图中,Q和Q为触发器的两个互补输出端;R和S为触发器的两个输入端,R称为置0端或者复位端,S称为置1端或置位端;

在逻辑符号输入端加的小圆圈表示低电平或负脉冲有效,即仅当低电平或负脉冲作用于输入端时,触发器状态才能发生变化(常称为翻转),有时称这种情况为低电平或负脉冲触发。

2. 工作原理

(1)若R=1,S=1,则触发器保持原来状态不变。

(2)若R=1,S=0,则触发器置为1状态。

(3)若R=0,S=1,则触发器置为0状态。(4)不允许出现R=0,S=0。

3.逻辑功能及其描述

由与非门构成的R-S触发器的逻辑功能如表3.5所示。表中“d”表示触发器次态不确定。

表3.5 基本R-S触发器功能表

R S 0 0 0 1 1 0 1 1

Q(n+1)d 0 1 Q

功能说明 不定 置0 置1 不变 触发器的次态方程: Q(n+1)= S + R·Q 因为R、S不允许同时为0,所以输入必须满足约束条件: R+S=1(约束方程)

3.4.2几种常用的时钟控制触发器

实际应用中,往往要求触发器按一定的时间节拍动作,即让触发器状态的变化由时钟脉冲和输入信号共同决定。因此,在触发器的输入端增加了时钟控制信号,这类触发器由时钟脉冲确定状态转换的时刻(何时转换),由输入信号确定触发器状态转换的方向(如何转换)。这种具有时钟脉冲控制的触发器称为“时钟控制触发器”或者“定时触发器”。

下面介绍四种最常用的时钟控制触发器。

一.时钟控制R-S触发器

时钟控制R-S触发器的逻辑图如图P100所示。

1.组成

它由四个与非门构成。其中,与非门G1、G2构成基本R-S触发器;与非门G3、G4组成控制电路,通常称为控制门。

2.工作原理

(1)无时钟脉冲作用(即时钟控制端C为0)时:控制门G3、G4被封锁。此时,不管R、S端的输入为何值,两个控制门的输出均为1,触发器状态保持不变。

(2)有时钟脉冲作用(即时钟控制端C为1)时: 控制门G3、G4被打开,这时输入端R、S的值可以通过控制门作用于上面的基本R-S触发器。具体如下:

    当R=0,S=0时,控制门G3、G4的输出均为1,触发器状态保持不变;

当R=0,S=1时,控制门G3、G4的输出分别为1和0,触发器状态置成1状态;

当R=1,S=0时,控制门G3、G4的输出分别为0和1,触发器状态置成0状态;

当R=1,S=1时,控制门G3、G4的输出均为0,触发器状态不确定(不允许)。

由此可见,这种触发器的工作过程是由时钟信号C和输入信号R、S共同作用的;时钟C控制转换时间,输入R和S确定转换后的状态。因此,它被称作时钟控制R-S触发器,其逻辑符号如图3.32(b)所示。

时钟控制R-S触发器的功能表、次态方程和约束条件与由或非门构成的R-S触发器相同。

在时钟控制触发器中,时钟信号C是一种固定的时间基准,通常不作为输入信号列入表中。对触发器功能进行描述时,均只考虑时钟作用(C=1)时的情况。

注意!时钟控制R-S触发器虽然解决了对触发器工作进行定时控制的问题,而且具有结构简单等优点,但依然存在如下两点不足:

  输入信号不能同时为1,即R、S不能同时为1;

可能出现“空翻”现象。

所谓“空翻”是指在同一个时钟脉冲作用期间触发器状态发生两次或两次以上变化的现象。引起空翻的原因是在时钟脉冲作用期间,输入信号依然直接控制着触发器状态的变化。具体说,当时钟C为1时,如果输入信号R、S发生变化,则触发器状态会跟着变化,从而使得一个时钟脉冲作用期间引起多次翻转。“空翻”将造成状态的不确定和系统工作的混乱,这是不允许的。因此,时钟控制R-S触发器要求在时钟脉冲作用期间输入信号保持不变。

由于时钟控制R-S触发器的上述缺点,使它的应用受到很大限制。一般只用它作为数码寄存器而不宜用来构成具有移位和计数功能的逻辑部件。

二.D

为了解决时钟控制R-S触发器在输入端R、S同时为1时状态不确定的问题,通常对时钟控制R-S触发器的触发器

控制电路稍加修改,使之变成如图3.33(a)所示的形式,这样便形成了只有一个输入端的D触发器。其逻辑符号如图P102所示。

修改后的控制电路除了实现对触发器工作的定时控制外,另外一个作用是在时钟脉冲作用期间(C=1时),将输入信号D转换成一对互补信号送至基本R-S触发器的两个输入端,使基本R-S触发器的两个输入信号只可能是01或者10两种组合,从而消除了状态不确定现象,解决了对输入的约束问题。

工作原理如下:

  当无时钟脉冲作用时,即C=0时,控制电路被封锁,无论输入D为何值,与非门G3、G4输出均为1,触发器状态保持不变。

当时钟脉冲作用时,即使C=1时,若D=0,则门G4输出为1,门G3输出为0,触发器状态被置0;若D=1,则门G4输出为0,门G3输出为1,触发器状态被置1。

由此可见,在时钟作用时,D触发器状态的变化仅取决于输入信号D,而与现态无关。其次态方程为

Q(n+1)= D

D触发器的逻辑功能可用表3.7所示的功能表描述。

表3.7 D触发器功能表

D 0 1

Q(n+1)0 1

上述D触发器在时钟作用期间要求输入信号D不能发生变化,即依然存在“空翻”现象。工作波形如下:

为了进一步解决“空翻”问题,实际中广泛使用的集成D触发器通常采用维持阻塞结构,称为维持阻塞D触发器。典型维持阻塞D触发器的逻辑图和逻辑符号分别如图3.34(a)和(b)所示。图中的D输入端称为数据输入端;RD和SD分别称为直接置“0”端和直接置“1” 端。它们均为低电平有效,即在不作直接置“0”和置“1”操作时,保持为高电平。

图3.34 维持阻塞D触发器

该触发器在时钟脉冲没有到来(C=0)时,无论D端状态怎样变化,都保持原有状态不变;当时钟脉冲到来(C=1)时,触发器在时钟脉冲的上升边沿将D输入端的数据可靠地置入;在上升沿过后的时钟脉冲期间,D的值可以随意改变,触发器的状态始终以时钟脉冲上升沿时所采样的值为准。由于利用了脉冲的边沿作用和维持阻塞作用,从而有效地防止了“空翻”现象。

工作波形如下:

例如,若输入D=1,在时钟脉冲的上升沿,把“1”送入触发器,使Q=1,Q=0。在触发器进入“1”状态后,由于置1维持线和置0阻塞线的低电平0的作用,即使输入端D由1变为0,触发器的“1”状态也不会改变;同理,若D=0,时钟脉冲的上升沿将使触发器的状态变为Q=0,Q=1。由于置0维持线和置1阻塞线为低电平0,所以,即使输入端D由0变为1,触发器的状态也维持0态不变。可见,该电路保证了触发器的状态在时钟脉冲作用期间只变化一次。

维持阻塞D触发器的逻辑功能与前述D触发器的逻辑功能完全相同。实际中使用的维持阻塞D触发器有时具有几个D输入端,此时,各输入之间是相“与”的关系。例如,当有三个输入端D1、D2和D3时,其次态方程是 : Q(n+1)= D1·D2·D3

由于维持阻塞D触发器的不存在对输入的约束问题,克服了空翻现象,抗干扰能力强。因此可用来实现寄存、计数、移位等功能。其主要缺点是逻辑功能比较简单。

三.J-K

为了既解决时钟控制R-S触发器对输入信号的约束问题,又能使触发器保持有两个输入端的作用,可将时钟触发器

控制R-S触发器改进成如图3.35(a)所示的形式。即增加两条反馈线,将触发器的输出Q和Q 交叉反馈到两个控制门的输入端,利用触发器两个输出端信号始终互补的特点,有效地解决了在时钟脉冲作用期间两个输入同时为1将导致触发器状态不确定的问题。修改后,把原来的输入端S改成J,R改成K,称为J-K触发器。其逻辑符号P103所示。

工作原理如下:

(1)在时钟脉冲未到来(C=0)时,无论输入端J和K怎样变化,控制门G3、G4的输出均为1.触发器保持原来状态不变。

(2)在时钟脉冲作用(C=1)时,可分为4种情况。

归纳起来,J-K触发器的功能表如表3.8所示。

表3.8 J-K触发器功能表

J K 0 0 0 1 1 0 1 1

其次态方程为 : Q

上述J-K触发器结构简单,且具有较强的逻辑功能,但依然存在“空翻”现象。为了进一步解决“空翻”(n+1)

Q(n+1)Q 0 1 Q

功能说明 不变 置0 置1 翻转

= J·Q + K·Q

问题,实际中广泛采用主从J-K触发器。主从J-K触发器的逻辑电路图及逻辑符号如图3.36(a)、(b)所示。

图3.36 主从J-K触发器

主从J-K触发器由上、下两个时钟控制R-S触发器组成,分别称为从触发器和主触发器。主触发器的输出是从触发器的输入,而从触发器的输出又反馈到主触发器的输入。主、从两个触发器的时钟脉冲是反相的。图中的RD和SD分别为直接置0端和直接置1端。逻辑符号中时钟端的小圆圈表示触发器状态的改变是在时钟脉冲的后沿(下降沿)产生的。

工作原理如下:

● 当时钟脉冲未到来时,主触发器被封锁,从触发器状态由主触发器状态决定,两者状态相同;

● 当时钟脉冲到来时,在时钟脉冲的前沿(上升沿)接收输入信号并暂存到主触发器中,此时从触发器被封锁,保持原状态不变。在时钟脉冲的后沿(下降沿),主触发器状态传送到从触发器,使从触发器输出(即整个触发器输出)变到新的状态,而此时主触发器本身被封锁,不受输入信号变化的影响。即该触发器是“前沿采样,后沿定局”。由于整个触发器的状态更新是在时钟脉冲的后沿发生的,因此解决了“空翻”的问题。

与前面所述J-K触发器相比,主从J-K触发器仅进行了性能上的改进,而逻辑功能完全相同。由于该触发器具有输入信号J和K无约束、无空翻、功能较全等优点,因此,使用方便,应用广泛。

四.T触发器

T触发器又称为计数触发器。如果把J-K触发器的两个输入端J和K连接起来,并把连接在一起的输入端用符号T表示,就构成了T触发器。相应的逻辑图和逻辑符号分别如图3.37(a)和(b)所示。

图3.37 T触发器

T触发器的逻辑功能可直接由J-K触发器的次态方程导出。J-K触发器的次态方程为

Q(n+1)= J·Q + K·Q

将该方程中的J和K均用T代替后,即可得到T触发器的次态方程:

Q(n+1)= T·Q + T·Q

根据次态方程,可列出T触发器的功能表如表3.9所示。

表3.9 T触发器功能表

T 0 1

Q(n+1)Q Q

功能说明 不变 翻转 由功能表可知,当T=1时,只要有时钟脉冲到来,触发器状态就翻转,或由1变为0或由0变为1,相当于一位二进制计数器;当T=0时,即使有时钟脉冲作用,触发器状态也保持不变。

图3.37所示的T触发器也存在“空翻”现象,实际数字电路中使用的集成T触发器通常采用主从式结构,或者增加维持阻塞功能。集成T触发器的逻辑符号分别如图3.38(a)、(b)所示,它们除了在性能方面的改进外,逻辑功能与上述T触发器完全相同。

2.数字电路与逻辑设计 篇二

1系统设计

1.1系统功能

《数字电路应用》设计由振荡电路、计数器电路、译码显示电路、光敏电路组成。振荡信号由555定时器产生, 提供一定频率的方波信号;计数器是对振荡电路送来的信号进行计数;译码显示电路的作用是显示计数器的值;光敏电路是通过检测是否有光, 从而对其它电路进行电源的切换。其总体结构图, 如图1所示。

1.2芯片功能介绍

(1) 555定时器555定时器是8引脚集成器件, 其工作原理为:输出电压只有高电平及低电平两种状态。在555定时器的复位端R端为低电平的条件下, 无论阀值输入端TH和触发输入端TR取何值, 输出端Q输出低电平。当复位端R为高电平时, 如果阀值电压TH>2Vcc/3, 且触发电压TR>Vcc/3, 输出端Q输出低电平;如果阀值电压TH<2Vcc/3, 且触发电压TR>Vcc/3, 输出端Q保持原状态不变;只要触发电压TR<Vcc/3时, 输出端Q输出高电平。

(2) 二进制计数器CD4024 CD4024是14引脚集成器件, 其功能为:具有清零、计数功能, 当清零端MR为高电平时, 对计数器进行清零;当清零端MR为低电平时, 在CLK脉冲的下降沿到来时, 完成计数功能。

(3) 7段译码器CD4511 CD4511是16引脚集成器件, 其功能为:BI是消隐输入控制端, 当BI=0时, 不管其它输入端状态如何, 七段数码管均处于熄灭 (消隐) 状态, 不显示数字。LT脚是测试输入端, 当BI=1, LT=0时, 译码输出全为1, 不管输入DCBA状态如何, 七段均发亮, 显示“8”, 它主要用来检测数码管是否损坏。LE脚是锁定控制端, 当LE=0时, 允许译码输出。LE=1时译码器是锁定保持状态, 译码器输出被保持在LE=0时的数值。DCBA为8421BCD码输入端。a~g为译码输出端。

2电路设计与仿真

2.1振荡电路设计

本系统的振荡器采用由555定时器与RC组成的多谐振荡器来实现, 如图2中的标识所示。当按钮SW4抬起状态时, Q端输出信号经电阻R2和电容C2构成的RC选频后, 反馈至输入端, 形成振荡, 振荡周期与RC大小成正比;当按钮SW4按下状态时, 输入端口与输出端口断开, 电路处于触发状态, 通过按钮SW3给输入端触发信号时, 输出端就有响应。LED发光二极管可以看出相应的输出状态。

2.2计数电路及译码显示电路设计

计数电路如图2中的标识所示, 计数器的CLK与振荡器的输出端Q相连, 用来计算振荡脉冲脉冲的个数。2脚MR是复位脚, 当开关SW1正常状态弹起时, MR管脚为低电平, 处于计数状态, Q1~Q4从0000~1111加1变化, 输出信号波形如图3所示。当按下按钮时, MR管脚为高电平, 处于复位状态, Q1~Q4全部清零。

译码电路如图2中的标识所示, 译码器的输入端A~D与计数器的输出端Q1~Q4相连, 用来显示计数器的数值。此类译码器型号有74LS47 (共阳) , 74LS48 (共阴) , CD4511 (共阴) 等, 本设计采用CD4511, 驱动共阴极LED数码管。译码器输入输出关系如图4所示。

2.3光敏电路设计

光敏电路如图2中的标识所示, 光敏电路由光耦U4和继电器U5构成。

当开关SW2按下时, 光耦中的发光LED点亮, 模拟有光照的情况, 光耦中的非门工作, 6脚输出低电平, 三极管Q1截止, 继电器U5中的线圈无电流通过, 电源经X端进入Y端, 而Y端与其它电路的电源端相连, 这样, 振荡电路、计数器电路、译码显示电路开始工作。

当开关SW2抬起时, 光耦中的发光LED不亮, 模拟无光照的情况, 光耦中的非门不工作, 6脚输出高电平, 三极管Q1导通, 继电器U5中的线圈得电, 电源经X端进入Z端, 而与Y端断开, 这样, 振荡电路、计数器电路、译码显示电路停止工作, 从而达到控制效果。

3电路仿真

在完成总体电路设计的基础上, 用Proteus电子电路仿真软件完成电路的仿真与调试。首先对电路的各功能模块进行仿真设计, 并对其实现的功能进行调试与仿真, 所有的子系统都能够正常运行时, 把所有功能模块整合在一起, 进行综合仿真和调试, 最终完成整体电路的仿真设计。

整体电路的调试过程如下:

首先按下SW2, 模拟有光照的情况, 此时振荡电路、计数器电路、译码显示电路开始工作。按下SW4, 振荡器处于触发状态, 点按SW3一下, 计数器“加1”一次, 译码显示器显示“点按SW3”的次数;抬起SW4, 振荡器处于振荡状态, 计数器不断计算振荡脉冲的个数, 译码显示器自动译码并显示计数器的值。

其次抬起SW2, 模拟无光照的情况, 振荡电路、计数器电路、译码显示电路停止工作, 数码管无任何显示。从电路电路的仿真结果可知, 设计符合要求。

4结论

通过以上《数字电路应用》的仿真实例可以看出, 用Proteus电子电路仿真软件可以快速完成各种电路的设计与仿真, 且不受元器件种类、数量和测试仪表仪器的限制, 省去了用实际元器件安装调试电路的过程, 极大提高了电路设计效率和设计质量, 所以将它作为实践教学上的一种辅助手段, 可以对提高学生的综合分析能力和创新能力起到非常重要的作用。

参考文献

[1]吕思忠.数字电路实验与课程设计[M].哈尔滨:哈尔滨工业大学出版社, 2001.

[2]谢自美.电子线路设计-实验-测试[M].武汉:华中电子科技出版社, 2006.

[3]崔瑞雪.电子技术动手实践[M].北京:航空航天大学出版社, 2007.

[4]刘勇.数字电路[M].北京:机械工业出版社, 2007.

3.数字电路与逻辑设计 篇三

关键词:数字电路;交通灯控制器;电路仿真

前言:数字电路早在上世纪中后期就已经形成,其主要由组合逻辑电路以及时序逻辑电路所组成。就当前的实际情况来看,交通灯控制器的显示设计均采用单片机的原理,为了能够寻求一种更加简便的方法,设计者利用数字集成电路来完成交通灯控制器,并以此来实现十字路口交通信号灯的控制。通过一系列的仿真与修改,能够得知,和传统的设计方法相比,利用数字电路的技术,具有灵活性强、效率高以及成本低等特点。

1 交通灯控制器的设计要求

本次设计的交通灯控制器所工作的条件是由甲、乙两个交叉路口所构成,通过对交通灯控制器的设计,要求其控制的任务是:在甲路口绿灯亮的同时,要求乙路口红灯亮,这样的状态保持3s。在3s之后,甲路口绿灯停,黄灯亮,保持1s,1s之后甲路口的黄灯以及乙路口的红灯同时停止,甲路口红灯亮,乙路口绿灯亮,保持3s。3s之后乙路口的绿灯停,黄灯亮,保持1s,1s之后乙路口的黄灯灭,亮起红灯,同时甲路口绿灯亮起,并以此循环。

而这时的交通灯控制系统被分为控制器和受控电路两个部分,根据对交通灯控制器的具体设计要求,本次研究中需要设计出一个循环控制系统,并观察其控制的状态。在下文中,将重点介绍设计的具体方案。

2 交通灯控制器的具体设计方案

2.1主控制器的设计

根据实际情况来看,在十字路口,车辆通行主要有两种情况:一种是在交通事故条件下要求车辆禁行。在这种情况下,十字路口的两端均不通行,这是交通灯需要红灯亮,倒计时功能停止,并保持闪烁的状态;另一种就是无特殊情况的通行,主要包含四种情况:第一,最开始的时候,东西道路为通行状态,绿灯亮,南北道路为禁行状态,红灯亮;第二,十字路口的道路全部禁行东西道路黄灯亮,南北道路红灯闪烁;第三,东西道路禁行,红灯亮,南北道路通行,绿灯亮;最后,十字路口全部禁行,南北道路黄灯亮,且东西道路红灯闪烁。根据这种情况,主控制器要实现4种状态,并分别定义为S0、S1、S2、S3。要想实现这4种电路,可以应用到数字电路技术[1]。设计如下图所示:

在这个设计图当中,我们利用的是两块74LS192芯片,K0表示清零,由位置1切换到2,K1和K2是交通道路特殊状态的控制键,如果有特殊状态按K1,特殊状态处理后,再按K2,表示恢复了正常的通车控制。A、B、C三种信号均用于对信号灯的控制,同时C还兼做停止计时时的闪烁效果控制。

2.2状态译码器的设计

上文中提到,主控制器在实际应用中会产生四种状态,而状态译码器则要求分别控制十字路口上红、绿、黄灯的状态,而这3种灯的状态和主控制器的输出可以用R1来表示。与此同时,利用信号真值表能够设计出交通灯控制器状态译码器的电路。

在本次设计中的数字电路技术,共分为8个双向3态缓冲电路,在其输入和输出均为高阻态的状态。高阻态就是指在应用过程中相当于没有这个数字芯片。在本次研究的电路中,主要是实现红灯的闪烁,无论是在十字路口的主干道和支干道,都能够利用这个状态译码器来进行控制[2]。

2.3倒计时计数器的设计

在这次的研究中,交通灯控制器的倒计时电路主要是利用数字芯片74LS192来进行设计。具体设计如下图所示:

在倒计时电路的脉冲信号和交通道路特殊情况控制信号C经过与非门U5:A后,被送入到个位片U2的DN端口,而十位片则被连接到另外的Q3端口当中。通过预置数的方式来实现任意进制下倒计时电路的设计,并且十位和个位片U1和U2的预置数据要按照下表来进行设计:

通过上表能够得知所预置的具体数值,由于U1和U2的预置时间是倒计时电路到0s时根据U1和U2的TCD信号经过或门U6:A之后才形成的,考虑到数字芯片的延迟特点,因此选择03s时就对主控制器当中的U11产生出驱动脉冲,以此来实现U1和U2的预置数据最终能顺利送达。

3 交通灯控制器的仿真结果

在本次研究设计完成之后,需要利用到Proteus的软件来进行仿真检测,这个软件是英国一家公司专门的EDA的工具软件。本次设计当中的所有数字集成芯片都可以在这个软件的元件库里找到[3]。在仿真检测中,设计人员画好仿真电路并修订出元件的具体参数就能够实现仿真。通过仿真,数字电路对于交通的灯的基本控制功能就能实现,同时还具有倒计时及时间设置功能,能够被广泛运用。

结论:本次研究设计是通过将数字电路的分析设计和电子设计自动化相互结合,能够完成交通灯控制器中各个单元电路以及整体信号电路的设计。为了能够进一步验证该设计的准确性,本次研究还通过Proteus软件来进行仿真观察,通过仿真检测,可以看出仿真的结果符合设计的具体要求,并达到了所预期的目的。本次设计的交通灯控制器是在数字电路的基础上完成的,相比于传统的单片机设计交通灯控制器,这种设计方法更加简单便捷,不需要再次进行软件的编程和调试,并且成本低廉,适合在实际应用中广泛推广。

参考文献:

[1]宋朝君.基于数字电路的交通灯控制器的设计与仿真[J].电子技术与软件工程,2013,11(20):96-97.

[2]刘建华,龚校伟,崔雅君.交通灯控制器数字电路的设计及仿真[J].数字技术与应用,2012,10(01):1-2+4.

[3]黄鸿锋.交通灯控制器的设计与实现[J].中国集成电路,2010,12(07):65-67.

作者简介:卢学燕(1991.5~),女,甘肃省临夏回族自治州,西北师范大学,2011级本科生,研究方向:电子信息工程

4.数字电路课程设计——数字钟 篇四

《模拟电子技术课程设计》任务书

一、课题名称:数字钟的设计

二、技术指标:

(1)掌握数字钟的设计、组装和调试方法。(2)熟练使用proteus仿真软件。(3)熟悉各元件的作用以及注意事项。

三、要求:

(1)设画出总体设计框图,以说明数字钟由哪些相对独立的功能模块组成,标出各个模块之间互相联系。(2)设计各个功能模块的电路图,加上原理说明。(3)选择合适的元器件,设计、选择合适的输入信号和输出

方式,确保电路正确性。

指导教师:廖俊东 学生:蔡志荷

电子信息工程学院

2018年1月 10日

课程设计报告书评阅页

课题名称:数字钟的设计 班级:15级电子信息工程4班 姓名:蔡志荷

2018年1月 10日

指导教师评语:

考核成绩:指导教师签名: 年月

目录

摘要..................................................................................................................................................1 第1章设计任务与要求...................................................................................................................2

1.1 设计指标数字钟简介.....................................................................................................2 1.2 具体要求.........................................................................................................................2 1.3 设计要求.........................................................................................................................3 第2章元件清单及主要器件介绍...................................................................................................4

2.1 元件清单.........................................................................................................................4 2.2 主要器件介绍.................................................................................................................4

2.2.1 74LS90计数........................................................................................................4 2.2.2 74LS47.................................................................................................................5 2.2.3 七段数码显示器.................................................................................................7

第3章设计原理与电路...................................................................................................................8

3.1 计时电路.........................................................................................................................8

3.1.1 计秒、计分电路.................................................................................................8 3.1.2 计时电路.........................................................................................................10 3.2 校时电路.......................................................................................................................11 3.2.1 报时锁存信号...................................................................................................13 3.2.2 报时...................................................................................................................13 第4章仿真结果及误差分析.........................................................................................................15 4.1 实验结果.......................................................................................................................15 4.2 实时分析.......................................................................................................................15 第5章设计总结.............................................................................................................................16 参考文献.........................................................................................................................................17

四川工业科技学院数字电路课程设计

摘要

本次课程设计的主题是数字电子钟。干电路系统由秒信号发生器、“时、分、秒”计数器、显示器、整点报时电路组成。秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,这里用多谐振荡器加分频器来实现。将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。“分计数器”也采用60进制计数器,每累计60分钟,发出一个“时脉冲”信号,该信号将被送到“时计数器”。“时计数器”采用24进制计时器,可实现对一天24小时的累计。译码显示电路将“时”、“分”、“秒”计数器的输出状态送到七段显示译码器译码,通过七位LED七段显示器显示出来。整点报时电路时根据计时系统的输出状态产生一脉冲信号,然后去触发蜂鸣器实现报时。

数字电子时钟优先编码电路、译码电路将输入的信号在显示器上输出;用控制电路和调节开关对LED显示的时间进行调节,以上两部分组成主体电路。通过译码电路将秒脉冲产生的信号在报警电路上实现整点报时功能等,构成扩展电路。本次设计由震荡器、秒计数器、分计数器、时计数器、BCD-七段显示译码/驱动器、LED七段显示数码管设计了数字时钟电路,可以实现:计时、显示,时、分校时,整点报时等功能。

关键词:数字时钟,振荡器,计数器,报时电路

四川工业科技学院数字电路课程设计

第1章 设计任务与要求

1.1 设计指标数字钟简介

数字钟电路是一款经典的数字逻辑电路,它可以是一个简单的秒钟,也可以只计分和时,还可以计秒、分、时,分别为12进制或24进制,外加校时和整点报时电路。

数字钟已成为人们日常生活中必不可少的生活日用品。广泛用于个人家庭以及车站、码头、剧场、办公室等公共场所,给人们的生活、学习、工作、娱乐带来极大的方便。由于数字集成电路技术的发展和采用了先进的石英技术,使数字钟具有走时准确、性能稳定、集成电路有体积小、功耗小、功能多、携带方便等优点。

因此本次设计就用数字集成电路和一些简单的逻辑门电路来设计一个数字式电子钟,使其完成时间及星期的显示功能。多功能数字钟采用数字电路实现对“时”、“分”、“秒”数字显示的计时装置。具有时间显示、走时准确、显示直观、精度、稳定等优点,电路装置十分小巧,安装使用也方便而受广大消费的喜爱。

1.2 具体要求

1、掌握组合逻辑电路、时序逻辑电路及数字逻辑电路系统的设计、安装、测试方法;

2、进一步巩固所学的理论知识,提高运用所学知识分析和解决实际问题的能力;

3、提高电路布局,布线及检查和排除故障的能力。

四川工业科技学院数字电路课程设计

1.3设计要求

1、设计一个有“时”、“分”、“秒”(23小时59分59秒)显示,且有校时功能的电子钟。

2、用中小规模集成电路组成电子钟,并在实验箱上进行组装、调试

3、画出框图和逻辑电路图、写出设计、实验总结报告。

4、整点报时。在59分51秒时输出信号,音频持续10秒,在结束时刻为整点。

四川工业科技学院数字电路课程设计

第2章 元件清单及主要器件介绍

2.1 元件清单 1、74LS90(6个)2、74LS47(6个)3、74LS00(6个)4、74LS20(6个)5、74LS04(6个)

6、共阳七段数码显示器(6个)

7、蜂鸣器(1个)

8、快关若干,电阻若干

2.2 主要器件介绍

2.2.174LS90计数

本题目核心器件是计数器,常用的有同步十进制计数器74HC160以及异步二、五、十进制计数器74LS90.这里选用的是74LS90芯片。

74LS90的引脚图如图2-1表示。

图2-1 74LS90内部是由两部分电路组成的。一部分是由时钟CKA与一位触发器Q0组成的二进制计数器,可记一位二进制数;另外一部分是由时钟CKB与三个触发器Q1、Q2、Q3组成的五进制异步计数器,可记五个数000~111.如果把Q0和CKB连接起来,CKB从Q0取信号,外部时钟信号接到CKA上,那么由时钟CKA和Q0、Q1、Q2、Q3组成十进制计数器。

R0(1)和R0(2)是异步清零端,两个同时为高电平有效;R9(1)和R9(2)是置

四川工业科技学院数字电路课程设计

9端,两个同时为高电平时,Q3Q2Q1Q0=1001,;正常计数时,必须保证R0(1)和R0(2)中至少一个接低电平,R9(1)和R9(2)中至少一个接低电平。

74LS90的功能表如表2-1所示。

表2-1 2.2.274LS47 74LS47的引脚图如图2-3表示。

图2-3 译码为编码的逆过程。它将编码时赋予代码的含义“翻译”过来。实现译码的逻辑电路成为译码器。译码器输出与输入代码有唯一的对应关系。74LS47是输出低电平有效的七段字形译码器,它在这里与数码管配合使用。

表2-2列出了74LS47的真值表,表示出了它与数码管之间的关系。

四川工业科技学院数字电路课程设计

表2-2 H=高电平,L=低电平,×=不定 74LS47译码器原理如图2-4.图2-4

74LS47是BCD-7段数码管译码器/驱动器,74LS47的功能用于将BCD码转化成数码块中的数字,通过它解码,可以直接把数字转换为数码管的显示数字,从而简化了程序,节约了 单片机的IO开销。因此是一个非常好的芯片!但是由于目前从节约成本的角度考虑,此类芯片已较少用,大部份情况下都是用动态扫描数码管的形式来实现数码管显示。

四川工业科技学院数字电路课程设计

2.2.3 七段数码显示器

共阳极七段数码管引脚图如图2-5表示。

图2-5 LED数码管中的发光二极管共有两种连接方法:

1、共阴极接法:把发光二极管的阴极连在一起构成公共阴极。使用时公共阴极接地,这样阳极端输入高电平的段发光二极管就导通点亮,而输入低电平的则不点亮。实验中使用的LED显示器为共阴极接法。

2、共阳极接法:把发光二极管的阳极连在一起构成公共阳极。使用时公共阳极接+5V。这样阴极端输入低电平的段发光二极管就导通点亮,而输入高电平的则不点亮,而输入高电平的则不点亮。

注:课设中使用的是共阳极数码管。

四川工业科技学院数字电路课程设计

第3章 设计原理与电路

3.1 计时电路

计时电路共分三部分:计秒、计分、计时。其中计秒和记分都是60进制,而计时为24进制。难点在于三者之间进位信号的实现。

3.1.1 计秒、计分电路

1、个位向十位的进位实现。

用两片74LS90异步计数器接成一个一步的60进制计数器。所谓异步60进制计数器,即两片74LS90的时钟不一致。各位时钟为1Hz方波来计秒,十位计数器的时钟信号需要从个位计数器来提供。

进位信号的要求是在十个秒脉冲中只产生一个下降沿,且与第十秒的下降沿对齐。只能从个位计数器的输出端来提供,不可能从其输入端来找。而计数器的输出端只有Q0、Q1、Q2、Q3四个信号,要么是其中一个,要么是它们之间的逻辑运算结果。

把个位的四个输出波形画出来,如图3-1所示。

图3-1 由于74LS90是在时钟的下降沿到来时计数,所以Q3正好符合要求,在10秒之内只给出一个下降沿,且与第19秒的下降沿对齐。Q2虽然也只产生一个下降沿,但产生的时刻不对。这样,个位和十位之间的进位信号就找到了,把个位的Q3(11端)连接到十位的CKA(14端)上。

四川工业科技学院数字电路课程设计

2、六十进制的实现

当几秒到59时,希望回00.此时个位正好计满十个数,不用清零即可自动从9回0;十位应接成六进制,即从0~5循环计数。用异步清零法,当6出现的瞬间,即Q3Q2Q1Q0=0110时,同时给R0(1)和R0(2)高电平,使这个状态变成0000,由于6出现时间很短,被0取代。接线如图3-2所示。

图3-2 当十位计数到6时,输出0110,其中正好有两个高电平,把这两个高电平Q2和Q1分别接到74LS90的R0(1)和R0(2)端,即可实现清零。一旦清零,Q2和Q1都为0,不能再继续清零,恢复正常计数,直到下次再同时为1。

计秒电路的仿真图如图3-2所示,计分电路和计秒电路是完全一致的,只是周期为1S的时钟信号改成了周期为60秒即1分钟的时钟信号。

3、秒向分的进位信号的实现

积分电路的关键问题是找到秒向分的进位信号。当秒电路计到59秒时,产生一个高电平,在计到60秒时变成低电平,来一个下降沿送给计分电路做时钟。计秒电路在计到59时的十位和个位的状态分别为0101和1001,把这四个1与起来即可,即十位的Q2和Q0,个位的Q3和Q0,与的结果作为进位信号。使用74LS20四入与非门串反相器构成与门,如图3-3所示。

四川工业科技学院数字电路课程设计

图3-3 计分电路与计秒电路一样,只是四输入与门产生的信号应标识为59分。

3.1.2 计时电路

用两片74LS90实现二十四进制计数器,首先把两片74LS90都接成十进制,并且两片之间连接成具有十的进位关系,即接成一百进制计数器,然后在计到24时,十位和个位同时清理。计到24时,十位的Q1=1,个位的Q2=1,应分别把这两个信号连接到双方芯片的R0(1)和R0(2)端。如个位的Q2接到两个74LS90的R0(1)清零端,十位的Q1接到两个74LS90的R0(2)清零端。

计时电路的个位时钟信号来自秒、分电路产生59分59秒两个信号相与的结果,如图3-4所示。

图3-4

四川工业科技学院数字电路课程设计

计分和计时电路可以先单独用秒脉冲调试,以节省时间。联调时,可把秒脉冲的频率加大。

图3-5是一个链接好的简单的没有校时和报时的数字时钟电路。

图3-5 图中为了把数显集中到一块,可以直接把时、分、秒的数码管拖动到一起。但为了仿真时使器件管件的逻辑状态显示不影响数显的效果,可以从主菜单中把逻辑显示去掉即可。

3.2 校时电路

接下来把校时电路加上,校时电路主要完成校分和校时。选择较分时,拨动一次开关,分自动加一;选择校时时,拨动一次开关,小时自动加一。校时校分应准确无误,能实现理想的时间校对。校时校分时应切断秒、分、时计数电路之间的进位连线。

如图3-6,红色线框内是校时电路,由去抖动电路和选择电路组成。

四川工业科技学院数字电路课程设计

图3-6 其中,计到59分的信号已有,如图3-6中所示。只需把它和计秒电路的十位中的Q2Q0相与作为开始报时的一个条件即可。见图3-7,U16:A和U10:D组成的与门输出即为报时开始信号。

图3-7

四川工业科技学院数字电路课程设计

3.2.1 报时锁存信号

用秒个位的计数器输出进行四高一低的报时锁存信号。现在来分析一下50~59秒之间秒个位的状态。

秒个位:Q3 Q2 Q1 Q0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1

结合题目要求,通过这些状态的观察发现,秒个位的Q3’和Q0逻辑与后,正好在秒个位计到1、3、5、7时产生高电平,0、2、4、6时产生低电平,可作低四声报时的锁存信号;秒个位的Q3和Q0逻辑与后,正好在秒个位为9时产生高电平,可做高音的报时锁存信号;这样就产生了两个报时锁存信号。

3.2.2 报时

把上述分析所得到的的报时开始信号分别和两个报时锁存信号相与,产生两路报时锁存信号,如图3-7,上面一路为高音报时锁存,下面一路为低音报时锁存。图中左面三个与非门实现的是与或逻辑,前面已介绍。

上下两路报时锁存信号分别与1kHz和500Hz的音频信号(20Hz~30kHz)相与或来驱动数字喇叭,实现整点报时功能。这里喇叭使用元件SOUNDER,它接收数字信号。

实验时,把59分50秒这个报时开始信号直接用高电平取代,这样比较省时。另外实际连接电路时,可用555定时器产生一个1kHz的方波,再经D触发器二

四川工业科技学院数字电路课程设计

分屏得到500Hz的方波信号。计时电路的1Hz方波也可由555定时器产生,但由于标准电阻和电容值的选择会带来一些积累误差,也可选用其他更精确的振荡电路来实现。

四川工业科技学院数字电路课程设计

第4章 仿真结果及误差分析

4.1 实验结果

成功设计一个有“时”、“分”、“秒”(23小时59分59秒)显示,有校时功能的电子钟。能够实现整点报时。在59分51秒时输出信号,音频持续10秒,在结束时刻为整点。且能够正常仿真。

如图4-1是完整的数字钟电路图。

图4-1 4.2 实时分析

本次课程设计电路完全按照仿真图所连的,在测试时,当开始进行时校时时,没有出现问题,但当进行到分校时时,发现计数电路的秒电路开始乱跳出错。因此,电路一定是有地方出错了,在反复对照后,发现是因为在接入校正电路时忘了把秒十位和分个位之间的连线拿掉而造成的,因此,在接线时一定要注意把不要的多余的线拿掉。

仿真时用的脉冲是用的软件里的时钟脉冲,没有使用555定时器,可能会造成一定的误差。

四川工业科技学院数字电路课程设计

第5章 设计总结

通过这次数字电子钟的课程设计,我们把学到的东西与实践相结合,深化了我对数字电路设计和模拟电路的设计,让我在设计的实践中获得了更多的知识,同时锻炼了我的动手能力。在这过程中对我们学的知识了更进一步的理解,而且更进一步地熟悉了芯片的结构及掌握了各芯片的工作原理和其具体的使用方法,也锻炼了自己独立思考问题的能力和通过查看相关资料来解决问题的习惯。

虽然这只是一次学期末的课程设计,但通过这次课程设计我们了解了课设计的一般步骤、方法和设计中应注意的一些问题。我觉得这次设计是很有重要意义的,它锻炼了同学们对待问题时的态度和处理事情的能力,了解了各个芯片能够完成什么样的功能,使用芯片时应该注意那些要点,同一个电路可以用那些芯片实现,各个芯片实现同一个功能的区别。

总之,这次课程设计让我学到了好多东西,这种课程设计对一个大学生是非常重要的。在此我要感谢我同组的搭档蔡西!然后,非常感谢廖老师的耐心指导!

四川工业科技学院数字电路课程设计

参考文献

5.数字逻辑电路学习总结 篇五

号:

、姓

名:

院:

业:

数字逻辑电路学习总结

经过一学期的学习,我对数字逻辑电路这门课程总结如下: 一:数字逻辑电路绪论及基础

1.数字信号与模拟信号的区别(数值和时间的连续性与不连续性)2.数字电路特点:电路结构简单,便于集成化;工作可靠,抗干扰能力强;信息便于长期保存和加密;产品系列全,通用性强,成本低;可进行数字运算和逻辑运算。

3.数制转换(二进制、八进制、十六进制、8421BCD码)

十~二:右→左,每三位构成一位八进制,不够补0

二~八:右←左,每一位构成三位二进制

八~二:右→左,每四位构成一位十六进制,不够补0

十六~二:右 →左,每一位构成一位二进制

十~8421BCD:每一位组成8421BCD码 4.二进制运算(0+0=0,0+1=1,1+1=1 0)

5.基本逻辑门(与门、或门、非门、与非门、或非门、异或、同或)

与门:F=ABC

或门:F=A+B+C

非门:F|

与非门:(AB)| 或非门:F=(A+B)| 异或门:F=A|B+AB|=A(+)B 同或门:F=AB+A|B|=A(*)B 6.逻辑代数基本公式及定理

7.最大项与最小项(为互补关系)8.逻辑函数化简(代数法和卡诺图法)卡诺图包围圈尽量大,个数尽量小,要全部包围,包含2^n个方格

二:组合逻辑电路

1.组合逻辑电路的分析与设计

任一时刻的输出只取决于同一时刻输入状态的组合,而与电路原有的状态无关的电路

分析:写出表达式,列出真值表,根据化简函数式说明逻辑功能 设计:列出真值表,写出逻辑函数,化简,画逻辑图 2.半加器与全加器的区别(考虑是否进位)

3.编码器(二~十进制编码器P120、优先编码器P134)8-3优先编码器

10-4优先译码器

4.译码器(二进制编码器P140、二至十进制译码器P143)3-8译码器

5.数据选择器

4选1数据选择器 8选1数据选择权

三:触发器

1.触发器 逻辑功能可分:

RS触发器 D触发器 JK触发器 T触发器 T’触发器 触发方式可分:

电平触发器 边沿触发器 主从触发器 电路结构可分:

基本RS触发器 同步触发器 维持阻塞触发器 主从触发器 边沿触发器 2.触发器的转换

公式法和图形法(了解触发器的逻辑符号,对比表达式的特性,画出逻辑图)

说明:真值表

表达式

约束条件

CP脉冲有效区

实现的功能

各触发器的转换波形图的画法 四:时序逻辑电路

1.同步时序逻辑电路的分析与设计

分析:确定电路组成→写出输出函数和激励函数的表达式→电路的次态方程→作状态表和状态图→做出波形图→功能描述→检查电路是否能自启动

设计:确定输入、输出及电路状态来写出原始状态表和原始状态图化简原始状态表(可用卡诺图化简)→进行状态赋值(写出真值表)→选择触发器

2.异步时序逻辑电路分析

写出激励函数表达式→写出电路的次态方程组→作状态表→做时序图,说明电路功能

3.计数器

同步计数器:同CP

异步计数器:不同CP 写出时序方程、输出方程、驱动方程→次态方程→状态计算,列出状态表→画出状态图

功能描述:其实数字电路在我们生活中有很大的作用,在人们的日常生活中,常用的计算机,电视机,音响系统,视频记录设备,长途电话等电子设备或电子系统,无不采用数字电路或数字系统数字电子技术的应用。关于数制和码制学习,主要涉及进制之间的变换,转换等。当然也强调了二进制的各种运算,以及源码反码补码运用等。几种常用的编码,我们主要学的是BCD码,还有余3码。

如果说关于数制和码制学习还看不出和数字电路有何关系,接下来的逻辑代数基础这章更加靠近我们之后的数字电路学习了,对于数制仅仅只是工具。各种真值表,门电路,逻辑方程等等都全面。本章也有很多需要去记忆的公式定理,比方说基本公式,常用公式以及逻辑代数的基本定理等等。

逻辑函数的表示方法有这几种:

1、逻辑真值表

2、逻辑函数式

3、逻辑图

4、波形图,这些表示方法之间是可以互相转换的。

逻辑函数的两种标准形式,最小项和最大项,我们用最小项用的是最多。由于随着课程学习的深入我们遇到的逻辑函数表达式越来越复杂,自然需要化简来实现公式的简化,电路的简化,于是我们学习到了卡诺图化简法,用卡诺图化简法大大提高了我们化简的效率和准确率。

在一些实际电路中我们并不需要一些变量,这些变量或许会影响我的结果或者也不影响,这些变量统称为无关项,在函数表达式中我们称之为约束项和任意项。对于无关变量的作用,通常用于化简以及之后的消除竞争——冒险现象等。

我们有了逻辑代数这一直接数字电路基础,之后的组合逻辑电路和时序逻辑电路的分析和设计,便更加明确和逻辑。

组合逻辑电路学习我们才真正意义上开始接触逻辑电路。组合逻辑电路的逻辑功能是任意时刻的输出仅仅决定于该时刻的输入;电路结构则是不含有记忆器件。逻辑功能的描述和之前学习表示方法一致,真值表,逻辑方程,逻辑图和波形图。对于组合逻辑电路分析方法则是:①逐条写出电路输入到输出的逻辑函数式;②用公式化简法和卡诺图化简法让函数式化简;③为了更加直观可以转换为真值表形式;④最后分析结果。组合逻辑的设计方法步骤:先逻辑抽象,再写逻辑函数式,然后选择器件类型,转化适当形式。

主要的基本组合逻辑电路不多,比如:普通编码器,优化编码器,译码器,显示译码器,数据选择器,加法器(全加器,半加器,一位加法器,多位加法器,多元加法器,超前进位加法器),数值比较器等等。这些都是我们很常用而且很基本的组合逻辑电路。

6.数字集成电路设计简历 篇六

数字集成电路设计简历在求职中您知道要怎样写吗?如果你不会写那么看看大学生个人简历网为您提供的机械设计制造个人简历表格为参考,为了让您了解更多相关专业简历与写作技巧www.yjsjl.org推荐一份电气电力工程师简历表格为写简历时参照,那么在求职时个人简历与求职信又是怎样写的呢,请望下看看这篇节能技术工程师简历表格为模板。大学生个人简历网特别提示,一切请按自己的真实情况填写求职简历。

   
简历编号:   更新日期:    
姓 名:   国籍: 中国
目前所在地: 天河区 民族: 汉族
户口所在地: 湖北 身材: 183 cm? kg
婚姻状况: 未婚 年龄: 26 岁
培训认证:   诚信徽章:  
求职意向及工作经历
人才类型: ?
应聘职位:  
工作年限:   职称:  
求职类型: 均可 可到职日期: 随时
月薪要求: 1500-- 希望工作地区: 广州 天河区 海珠区
个人工作经历:
公司名称: 起止年月:-07 ~ -09台湾强茂电子(无锡)有限公司
公司性质: 外商独资所属行业:电子技术/半导体/集成电路
担任职务: FAE 现场应用工程师
工作描述: 根据客户要求,针对于客户在产品设计以及应用等方面给出合理化建议或者解决方案。

 

对于客户投诉,第一时间去实地了解掌握情况,并协调业务,QA等部门对客户给出合理的.解释报告和解决方案

 

离职原因:  
 
公司名称: 起止年月:-07 ~ -09台湾强茂电子(无锡)有限公司
公司性质: 外商独资所属行业:电子技术/半导体/集成电路
担任职务: FAE 现场应用工程师
工作描述: 根据客户要求,针对于客户在产品设计以及应用等方面给出合理化建议或者解决方案。

 

对于客户投诉,第一时间去实地了解掌握情况,并协调业务,QA等部门对客户给出合理的.解释报告和解决方案

 

离职原因:  
教育背景
毕业院校: 北京航空航天大学
最高学历: 硕士 毕业日期: -03-01
所学专业一: 数字集成电路设计 所学专业二:  
受教育培训经历:
起始年月 终止年月 学校(机构) 专 业 获得证书 证书编号
-09 2007-07 湖北大学 电子科学与技术    
 
起始年月 终止年月 学校(机构) 专 业 获得证书 证书编号
-09 2007-07 湖北大学 电子科学与技术    
语言能力
外语: 英语 良好    
国语水平: 优秀 粤语水平:  
 
工作能力及其他专长
  熟悉电路、FPGA架构,以及相关开发工具。

 

能用verilog进行编码和验证。

工作积极主动,有责任心。具有良好的沟通协能力和团队精神。

热爱体育和音乐,在校期间是院篮球队主力队员。

国家二级裁判员(篮球项目)

全国乐器演奏等级考试(手风琴) 七级

 

 
详细个人自传
  可全职实习,实习期可以长达1.5——2年
 

7.数字电路与逻辑设计 篇七

L O G O!是西门子公司生产的通用可编程逻辑控制模块,主要是用来替代传统的继电器逻辑控制电路,以获得对工业现场设备和过程的集中控制,其内部集成各种控制功能,包括开关量的输入/输出、模拟量输入、通断延时控制、周定时器、加/减计数器、RS触发器、脉冲继电器、异步脉冲发生器、阈值触发器、多功能开关、文件/参数显示等[1]。由于LOGO!产品自身具有的功能及所提供的配套软件特点,文章提出了将LOGO!用于数字电路设计的观点:其自带的基本功能模块(GF)可建立任意组合逻辑电路;软件自带较为完善、简单形象仿真程序,非常适合组合逻辑电路仿真;特殊功能模块(SF)中有触发器、计数器和寄存器等,可以进行简单时序逻辑电路设计及分析。本文主要讲述用LOGO!编程软件来设计与仿真典型数字电路,达到了电路设计简便、仿真形象清楚的预期效果。

2 组合逻辑电路设计与仿真

设计一个满足下列要求的组合逻辑电路:有一个车间,有红、黄两个故障指示灯用来表示3台设备的工作情况。如一台设备出现故障,则黄灯亮;如两台设备出现故障,则红灯亮;如三台设备同时出现故障时,则红灯和黄灯都亮[2]。

2.1 电路真值表和逻辑表达式

设三台设备的工作情况分别用三个输入信号I3、I2、I1表示,数字0代表无故障,数字1代表有故障;红、黄两个故障指示灯分别用两个输出信号Q2、Q1表示,数字0代表灯不亮,数字1代表灯亮,根据题意,可列出真值表如表1所示。

经过化简,得到下列输出与输入的与非—与非表达式:

2.2 用LOGO!软件设计与绘制逻辑电路

L O G O!的硬件接线比较简单,本文不讨论,接线图略去,只介绍软件的应用。

首先进入SIEMENS LOGO!SOFT软件编程环境,LOGO!Soft Comfort随即打开FBD编辑器(或在工具/选项/编辑器下指定的默认编辑器),便可以在编程界面的新窗口中创建新电路程序。单击新建文件图标右侧的小箭头也可打开LAD或FBD编辑器。新建一个功能块图(FBD),利用其常量/连接器工具、基本功能块工具等,结合上述的逻辑表达式,再经过版面布局的调整、优化,相应地重新放置插入的块和线。即可得到如图1所示的组合逻辑电路图。

2.3 用LOGO!软件对逻辑电路进行仿真

LOGO!软件不需接具体的LOGO!产品,它提供了实验室仿真与验证功能,本电路仿真图如图2所示,仍在LOGO!图形编程环境下,通过工具选项:仿真启用,或按下仿真工具按钮即可对组合逻辑电路进行仿真分析并可用于观察和控制电路程序的行为。逻辑电路未进行仿真时,逻辑门轮廓及数据流呈黑色轮廓,如图1所示;仿真开始后,带颜色的指示可以识别连接线的“1”或“0”状态。从图2可直观地看出,传送“1”信号的连接线的默认颜色为红色。传送“0”信号的连接线的默认颜色为蓝色。在仿真区域内,输入信号以开关按键凹下或凸起指示1或0,输出信号以指示灯亮或灭代表1或0。如图2中所示,直观演示为I1=I2=I3=1(即三个开关按键均为凹下,三台设备均有故障),此时可见Q 1和Q2灯均亮,满足设计要求。由此可见,LOGO!软件可对逻辑电路进行直观地仿真,轻松完成对所设计电路程序的正确性的验证。

3 时序逻辑电路设计与仿真

设计一个满足下列要求的时序逻辑电路:要求每周一、三、五的18:00~23:59时间段内,1)按下启动命令后,能手动控制绿灯的亮熄;2)能自动控制绿灯定时闪烁(即先亮4秒后再熄4秒,如此反复);3)黄灯在红灯亮延时2秒后才亮。

3.1 用LOGO!软件设计与绘制时序逻辑电路

分析上述电路要求,只有三个输入量信号,故LOGO!的硬件接线比较简单,接线图略去,只介绍软件的应用。该电路主要用到L O G O!软件中的特殊功能模块(S F)中的异步脉冲发生器、锁存继电器、脉冲继电器、接通延时定时器、周定时器等。

进入L O G O!软件编程环境,新建一个功能块图(FBD),利用其常量/连接器工具、特殊功能模块(SF)等,再经过版面布局的调整、优化即可得到满足设计要求的如图3所示的时序逻辑电路及参数设置图。

3.2 用LOGO!软件对时序逻辑电路进行仿真

仍在LOGO!图形编程环境下,可对时序逻辑电路进行仿真分析,仿真方法与步骤基本同组合逻辑电路,不再赘述,经过仿真验证,完全符合设计要求。电路仿真图,如图4所示。

4 结束语

可见,利用LOGO!对数字电子技术电路进行模拟设计与仿真,比较简单实用、仿真结果形象清楚,相信L O G O!软件在数字电路中的应用会越来越广泛深入。

摘要:由于LOGO!产品自身具有的功能及所提供的配套软件特点,文章提出了将LOGO!用于数字电路设计的观点,进一步拓展了LOGO!的使用范围,也使数字电子技术电路的设计更为简便、仿真更为直观。

关键词:LOGO!,数字电路设计,仿真

参考文献

[1]LOGO!手册[Z].SIEMENS,2003.6.

8.数字电路与逻辑设计 篇八

关键词:高职院校;数字电路;课程设计;改革

数字电路课程设计是保证教学效率的重要措施,随着教学改革不断深入,以及社会各行业对实用技能型人才的的要求越来越高,高职院校的学生需要具有较强的工作岗位的的能力,这也加大了教师对该门课程的总体教学难度。为了更好地实现“因材施教”,高职院校的相关专业教师应当立足实践,优化课程设计、创新教学方法,并科学分析判断“数字电路”课程教学目标和现状,制定完善的课程教学计划,进而为培养应用型人才创造优质资源。

一、“数字电路”课程改革教学现状

学以致用是教育的最终目标,课程改革是完善教学质量、提升教学水平的重要措施。课程教学改革对学生和教师提出了新的要求和希望,由于目前高职院校普遍对课程改革存在认识错误,导致教学现状不容乐观。主要体现在:落后的教学模式、单一的教学方式、不健全的教学设施等因素。这些都严重影响课程教学质量,不利于课程改革计划的同步实施,制约了课程教学改革的可持续发展。

(一)教学模式落后

“数字电路”课程教学作为电子专业以及通信自动化等专业的专业基础课程,要求学生充分掌握并理解里面的理论知识。进一步来说,也是一门理论与实践相结合的学科,除了掌握扎实的理论基础,还要具备较强的实践动手能力,比如设计一些简单的数字逻辑功电路等,这对以后的工作有非常大的帮忙。但目前大多数高职院校依然沿用传统的教学模式,不管是理论还是实验实训,很多教师只是根据教材进行讲授,且所使用的课本教材几年不变,授课方式也主要以单一的说教模式为主,缺乏创新意识,导致课堂教学氛围枯燥乏味,大大降低了学生的学习积极性。

(二)教学方法单一

教学方法在一定程度上决定了教学的效果。数字电路属于理科范畴,对学生逻辑思维和理解能力要求较高。目前,高职院校“数字电路”课程教学以课本教学为主,以实验教学为辅,受课程教学目标限制,相对于普通本科教学来说对教学内容有所压缩,导致学生在实验操作中,大多是以样画瓢,没有真正领悟并正确应用理论知识,造成虚有其表的现状[1]。同时,由于教学方法相对单一,实践课程与理论课程分配严重不均,难以实现高效教学。

(三)教学资源匮乏

教学资源是优化教学水平的垫脚石,教学资源匮乏直接导致教学设备破旧、教学条件落后、师资力量薄弱等现状。高职院校重在培养一线岗位应用型人才,粗制滥造的教学资源,无法满足社会发展对岗位人才的高标准要求。进而形成教学质量与岗位需求质量不成比例,从而造成高职院校学生无法适应社会发展节奏,最终迫使其转变工作类型,造成严重的教学资源浪费。

二、高职院校“数字电路”课程改革对策分析

改革是推动发展,促进教学进步的重要途径。教学改革是时代进步发展的必然趋势,是应对社会稳定发展的前提。高职院校肩负着培养社会应用型人才的重要使命,其教学任务“任重而道远”。面对“数字电路”课程改革现状,高职院校需要制定高标准、高要求、高质量教学计划,进而为全面实现高效教学奠定基础。

(一)创新教学方法

教学方法直观体现在教学水平上,创新教学方法有利于实现高效教学。首先,学校应制定完善的教学计划,按照课程标准和内容以年度为单位。其次,完善各项教学措施,包括教学质量考核、教师能力考核、教学监督管理等制度。同时,针对“数字电路”课程改革要求,督促教师自我学习、自我完善,鼓励教师一教学大纲为基础大胆创新,包括开设多媒体教学、强化实验教学、尝试开放式教学,例如:双师教学模式的尝试,将理论与实践进行独立教学,进而充分发挥课程改革实践价值。

(二)优化教学内容

“数字电路”教学课程是一门综合性学科,包含组合逻辑电路、时序逻辑电路及相应测试信息,需要教师多渠道、多领域搜集教学资源[2]。因此,教师可以尝试定期跟新教学内容,以便于与时俱进。例如:将理论教学与实验教学进行同步,便于学生形象记忆更好地“学以致用”;融入创新教学特色,开设开放式课堂教学,以学生为主体,还可以通过开展模型、实验竞赛等形式,促进学生相互学习。同时加强教与学的融合,传统教学成分离现状,加强融合能够巩固基础知识;另外,教师在教学过程中应立足实践多引用案例,并鼓励学生自主探究学习,从而更好地适应社会发展要求。

(三)完善教学资源

教学资源是巩固教学质量的关键,教学资源包括硬件设设施、软件设施及师资力量。目前,高职院校普遍存在师资力量匮乏现象。“数字电路”课程作为应用型课程教学,对硬件设备及实验器材的消耗较大,学校应加强完善[3]。对于软件设备包括科研资金及师资力量的投入,应加强重视,并优化师资队伍建设。包括建立人才储备战略、提高教师应聘门槛等。在教学中,定期对教学设备进行质量验收,便于提高高职院校整体教学水平。

三、结语

综上所述,高职院校“数字电路”课程设计教学改革受众多客观因素影响依然存在许多现实性问题,严重阻碍了改革的步伐,不利于高职院校的可持续发展。随着教学改革的深入,高职院校要想健康稳定发展,必须要制定完善的课程改革应对措施,并进行课程教学评估,便于更好地改善高职院校落后的发展现状。总的来说,高职院校课程设计改革是一项长远的工作任务,需要制定明确的工作计划,才能最大限度发挥高职院校的实践教学价值。

【参考文献】

[1]施丽莲.应用型人才培养中“数字电路”课程教学模式改革[J].中国电力教育.2012,(8):51-51.

[2]王洪亮.高职《数字电路》课程设计教学改革的探索与实践[J].统计与管理.2013,(6):187-188.

上一篇:紧张而又“刺激”的一幕作文450字下一篇:报纸广告分析