英文数字翻译(共8篇)
1.英文数字翻译 篇一
Actively participated in the activities organized by the school, participated in the new flying group held the Olympic cheer group selection activities, although failed to break through the last hurdle, but the focus on participation, understand the Olympic spirit, experience is wealth.
During school, as the campus postman, conscientiously perform their duties, instantly send and receive letters, access to teachers and students alike.
As a long hostel, self-discipline, wide to treat people, unite students, enthusiastic to solve the problem of roommate, and strive to do their own work. Do not live up to the trust of the big guy.
IT skills
Skill Description: computer level of operational capacity: skilled operation ms office, the use of multimedia teaching, production ppt teaching courseware.
2.英文数字翻译 篇二
一从民族性、通俗性、形象性三个原则谈起
1. 民族性原则
我们都深信不同的民族对相同事物的理解有偏差, 甚至是完全不同, 因此模糊数字的翻译都有民族性这个鲜明的烙印。译者应尊重不同民族的风俗习惯, 遵循各民族的表达习惯, 有必要在翻译创作中对数字进行改译转换, 便于读者更好地理解。
例如:过去在苏联视斯大林为一万丈高的人, 一下子把他贬到地下九千尺。我们国内也有跟随脚步的人。中共中央则认为斯大林是一个伟大的马克思主义者, 不过三分错误, 七分成绩。译文:In the Soviet Union, those who considered Stalin to be in the skies have now immediately consigned him to purgatory.Nowadays in China some people are following their step.The Central Committee indicated that Stalin was a indisputably great Marxist whose mistakes arrived at only 30percent of the whole and his achievements to 70 percent.
2. 通俗性原则
英汉两种不同的语言中, 不乏含有模糊语义的数字的成语、俗语、谚语和歇后语等, 为了便于读者的理解, 译者要适当运用翻译理论对译文进行处理, 多数以习惯为准则, 最忌对数字一一对应的翻译。
例如: (1) 接二连三。译文:another and yet another. (2) 一不做, 二不休。译文:stick to a thing once begun. (3) 一朝被蛇咬, 十年怕草绳。译文:Once bit, twice shy.
3. 形象性原则
在现实生活中, 不同的词与数字之间可以组合成千变万化的短语和句子, 当然被赋予了各种形象, 为了让不同民族、不同国家的人理解这些或有一些历史意义, 或有一些宗教意义的万千形象, 要求译者必须深刻了解这些不同形象的内涵, 并且在翻译的过程中能最大限度, 最忠实地将原文中所呈现的想象进行加工, 转化为读者易于理解的形象。
例如:一去二三里, 烟村四五家, 亭台六七座, 八九十枝花。译文:Miles two or three, Villages four or five, Towers six or seven, Flowers a lot we see.
二互相转换的处理方法
1. 直译法
有些语句翻译时可以保留原文中的数字, 不会对读者造成多少理解困难, 英汉两种语言固然不同, 但对含有模糊语义数字的理解也有部分共通的地方, 双方的读者可以自行消化。
例如:一片一片又一片, 两片三片四五片。六片七片八九片, 飞入芦花都不见。译文:A piece, a piece and another, Two pieces, three pieces and four or five pieces.Six pieces, seven pieces and eight or nine pieces, Flying into the flowers that we cannot see.
2. 改译法
毕竟汉英是两种不同的语言, 实际运用时, 要求译者要根据理解的需要适时适当地进行改译, 以符合对方语言表达的习惯, 便于读者理解。
例如:北国风光, 千里冰封, 万里雪飘。译文:North country scene, A thousand leagues locked in ice, A thousand leagues whirling snow.
3. 意译法
由于文化背景、表达习惯等的不同, 在实际翻译过程中不可能每一个表达都有对等的译文, 为了不要增加读者在理解上的困难, 同时也受到表达的限制, 有些翻译的译文只能放弃数字, 改为意译。
例如:那婆子们站了起来, 眉开眼笑, 千恩万谢的不肯受;见袭人执意不收, 方领了。 (曹雪芹《红楼梦》) 译文:The two women stood up, beaming, showing of declining and thanking her effusively;but on Xiren’s insistence they accepted the tip.
又如:“还有一位中国留学生更怪诞, ”沈老说, “大学毕业后没找到职业, 就在巴黎下层社会瞎混, 三教九流都认识, 连下等妓院的情况都了如指掌。” (余秋雨《文化苦旅》) 译文:“There is a fantastic story of another Chinese student, ”Mr.Shen continued.“He was not able to find a job upon graduation from university, and then he got quite familiar with people in various trades muddling among the lower strata in Paris all day.He even knew everything about the brothels of the lowest rank.
模糊数字的翻译一直都是数词英译的难点, 唯有孜孜不倦地学习研究其理论知识, 在实际翻译当中多对比、多体会, 才能理论与实践相结合, 提高自身的数词英译的水平。
摘要:在口语表达和多数文学作品中看到数字有时只是一个泛化概念, 不一定表示数量。这就是数的语义模糊现象。本文旨在分析英语中对模糊数字翻译的几个原则及方法。
关键词:模糊语义,数字,翻译原则,处理方法
参考文献
[1]古今明.英汉翻译基础[M].上海:上海外语教育出版社, 1997
[2]邵志洪.英汉语研究对比[M].上海:华东理工大学出版社, 1997
[3]冯庆华.实用翻译教程[M].上海:上海外语教育出版社, 1997
[4]刘宓庆.现代翻译理论[M].南昌:江西教育出版社, 1990
3.浅谈英文人名翻译 篇三
关键词:翻译;主体性;英文名字
一、翻译的主体性
译者作为整个翻译活动的策划者,一方面具有着许多的不依赖于作为客体的原作而存在的所谓的独立性,当然了要达到翻译的最终目的,也就是说必须要发挥自己的潜能,这样才能充分地施展出自己的能动性和创造性;而在另一个方面,主体性发挥也是有限度和范围的。首先,作为一个边缘的主体,原作者在其语言上的风格、审美情趣、目标读者的审美要求、期待等种种因素,对译者在翻译过程中翻译策略、翻译目的的确定以及翻译文本的选择等各个方面都会产生很大的影响。其次,就是在不同的语言系统中,译者的自身所处语言文化的范围以及原作所处在的语言文化规范等因素也会制约着译者主体性的发挥。同时,还有很重要的一点那就是译者自身的因素,在其认识的图示不同的价值标准不同的思维方式和每个人的情感、意志等方面都会介入到翻译者个人对于解读文本的整个过程中。这样译本就不可避免地带有了个人的主观想法。
英文名字的翻译,一直以来有一些的学者所持的观点就是认为:"人名或物名称都是独立于语言之外的存在,没有其内涵及意义,是不可译的。"如果根据这种理论的话,那最好的人名翻译方法则应该是最为简单的音译法。在一般的场合之下,尤其是在日常的交际和语言的使用中,外国人的名字的翻译往往采用的是直接音译的方法,即使他人的名字中有所包含的单词,但在通常都是有其他的含义。例如:Bill Gates(比尔·盖茨)、George Bush (乔治·布什)等,而不会翻译成比尔·大门或者乔治·灌木。但是,如果只是简单的如音译法本身,由于时代的不断变化和社会语言文化的发展,有了更多的是那些随着中外文化交流的增加和深入,也在经历着从归化音译到异化音译的变化。而通过对这些近期的通俗文学作品翻译的观察,我们就可以很轻易地发现,音译与意译相结合这样的人名翻译方法开始日趋流行。人的名字是社会语言的一个很重要的组成部分,也更是一种文化的载体,具有悠久深刻的形成历史和丰富的文化内涵,集中体现在了各个民族文化的特点上,语源多、典故多,在内容上容量大而且又变异纷繁,隐含了不同民族的历史、宗教、心里、语言、道德、习俗等各个方面的信息。
英文名字翻译过程中翻译主体性的体现上文提到,在一般的场合之下,尤其是在一些日常的交际和语言的使用中,外国人的名字的翻译往往采用的是直接音译的方法,即使这些人的名字中所包含的单词通常还有其他含义。音译的方法看似简单,其实很有斟酌的余地。而且,由于不同译者施展自己的能动性和创造性不同,而且译者自身所处的语言文化范围、自身因素的不同,所以同一原作翻译的结果却是不一样的。
汉字本身是有意义的。在选择文字上,不同的译者就会根据自己的喜好或者对原文的理解选择不同的文字。比如说,Emily,这是个典型的女性名字。有的人为了突出女性特点,就会译为“艾米莉”,但如果有的人译成“埃米利”,肯定不会有人说它是错误的。因此,汉语文字的选择充分体现了译者主体性。译者自身所处的语言文化范围影响着译者主体性的发挥,也会影响名字的翻译。我们汉语人名的特点是先说姓,而后说名。而英文的特点却正好相反。早期中国人翻译外国人名字的时候都习惯于将外国人名改变姓名的前后顺序,并根据读音给予相对应的中文名字。比如如明末清初着名的的外国传教士Mateus Ricci(利玛窦),美国大使Leighton Stuart(司徒雷登),外国学者John King Dairbank(费正清),英国作家 Bernard Shaw(萧伯纳),等等。由此可见,译者所处的年代决定了译者以目的语语言为归宿,选用一些符合目的语的语言文化规范,这样来译文传达源语文本的内容,并消解源语文化因素,才能更好地彰显目的语文化的价值观。
文学翻译中,人物的名字大多数被作者赋予了一定的内在含义。一位作家在其塑造作品人物时,往往会根据创作的意图,为了更深刻地刻画人物的性格,预示人物的命运和结局,精心而又慎重地为人物来选择名字,而并非是随心所欲地信手拈来。文学名字的翻译,要求译者必须熟练地贯穿于两种不同的文化之间,将隐藏在名字背后的典故、历史、宗教、习俗、道德、伦理等方面的信息尽其所能地表达出来。此时,译者翻译时,会大量地考虑到原作的一些语言上的风格、审美情趣和读者的审美关及期待等,并且考虑选取各种不同的翻译方法以及翻译策略。翻译过程中,不可避免地会造成文化缺失,而不同的译者造成的缺失程度又大不相同。因此,译者主体性的发挥对翻译过程中文化缺失有很大的影响。
二、名字翻译的对与错
现在总能听到有人会说名字翻译的对与错。本人认为,翻译的过程就是译者主体性的完全显现,不同的人的主体性发挥不同,必然会导致翻译的结果不同。但绝对不可用对与错来区分,尤其是名字的翻译。因为名字不包含语法成分,因此成分误译现象会大大减少。当音译或意译名字时,如果在译名后加上括号,里面加上源语言名字,即使前面音译或意译的有差异,那也应该是完全正确的。而且,我也认为,即使有些名字是约定俗成的,也要在后面加上括号,注明源语言名字。因为名字是个体的代表,本来就不应该因为译者的需求而改变其源语言的特点。
综上所述,我认为名字不翻译最好,保持源语言特点;如果翻译,需在后面加上括号,注明源语言名字。这样久而久之,随着人口素质的不断提高,大家就会自动地接受源语言名字了。这样不仅省去了翻译的烦恼,而且也留下了原名字的语言特点。
参考文献:
[1]陈奕.从文化角度看外国人名翻译方法的变化[J].湖北成人教育学院学报,2008,(2):58-60.
[2]曲文燕.翻译的主体性——谈翻译主体意识与翻译规范意识[J].北京第二外国语学院学报(外语版),2006,(6):7-10.
4.中英文翻译 篇四
and ap, fD,p, ϕp, and τp are the amplitude, the Doppler frequency, the phase, and the propagation delay, respectively, associated with path p, p = 0,..., Np − 1.The assigned channel transfer function is
The delays are measured relative to the first detectable path at the receiver.The Doppler Frequency
depends on the velocity v of the terminal station, the speed of light c, the carrier frequency fc, and the angle of incidence αp of a wave assigned to path p.A channel impulse response with corresponding channel transfer function is illustrated in Figure 1-2.The delay power density spectrum ρ(τ)that characterizes the frequency selectivity of the mobile radio channel gives the average power of the channel output as a function of the delay τ.The mean delay τ , the root mean square(RMS)delay spread τRMS and the maximum delay τmax are characteristic parameters of the delay power density spectrum.The mean delay is
Where
Figure 1-2 Time-variant channel impulse response and channel transfer function with frequency-selective fading is the power of path p.The RMS delay spread is defined as Similarly, the Doppler power density spectrum S(fD)can be defined that characterizes the time variance of the mobile radio channel and gives the average power of the channel output as a function of the Doppler frequency fD.The frequency dispersive properties of multipath channels are most commonly quantified by the maximum occurring Doppler frequency fDmax and the Doppler spread fDspread.The Doppler spread is the bandwidth of the Doppler power density spectrum and can take on values up to two times |fDmax|, i.e.,1.1.3Channel Fade Statistics The statistics of the fading process characterize the channel and are of importance for channel model parameter specifications.A simple and often used approach is obtained from the assumption that there is a large number of scatterers in the channel that contribute to the signal at the receiver side.The application of the central limit theorem leads to a complex-valued Gaussian process for the channel impulse response.In the absence of line of sight(LOS)or a dominant component, the process is zero-mean.The magnitude of the corresponding channel transfer function
is a random variable, for brevity denoted by a, with a Rayleigh distribution given by
Where
is the average power.The phase is uniformly distributed in the interval [0, 2π].In the case that the multipath channel contains a LOS or dominant component in addition to the randomly moving scatterers, the channel impulse response can no longer be modeled as zero-mean.Under the assumption of a complex-valued Gaussian process for the channel impulse response, the magnitude a of the channel transfer function has a Rice distribution given by
The Rice factor KRice is determined by the ratio of the power of the dominant path to thepower of the scattered paths.I0 is the zero-order modified Bessel function of first kind.The phase is uniformly distributed in the interval [0, 2π].1.1.4Inter-Symbol(ISI)and Inter-Channel Interference(ICI)The delay spread can cause inter-symbol interference(ISI)when adjacent data symbols overlap and interfere with each other due to different delays on different propagation paths.The number of interfering symbols in a single-carrier modulated system is given by
For high data rate applications with very short symbol duration Td < τmax, the effect of ISI and, with that, the receiver complexity can increase significantly.The effect of ISI can be counteracted by different measures such as time or frequency domain equalization.In spread spectrum systems, rake receivers with several arms are used to reduce the effect of ISI by exploiting the multipath diversity such that individual arms are adapted to different propagation paths.If the duration of the transmitted symbol is significantly larger than the maximum delay Td τmax, the channel produces a negligible amount of ISI.This effect is exploited with multi-carrier transmission where the duration per transmitted symbol increases with the number of sub-carriers Nc and, hence, the amount of ISI decreases.The number of interfering symbols in a multi-carrier modulated system is given by
Residual ISI can be eliminated by the use of a guard interval(see Section 1.2).The maximum Doppler spread in mobile radio applications using single-carrier modulation is typically much less than the distance between adjacent channels, such that the effect of interference on adjacent channels due to Doppler spread is not a problem for single-carrier modulated systems.For multi-carrier modulated systems, the sub-channel spacing Fs can become quite small, such that Doppler effects can cause significant ICI.As long as all sub-carriers are affected by a common Doppler shift fD, this Doppler shift can be compensated for in the receiver and ICI can be avoided.However, if Doppler spread in the order of several percent of the sub-carrier spacing occurs, ICI may degrade the system performance significantly.To avoid performance degradations due to ICI or more complex receivers with ICI equalization, the sub-carrier spacing Fs should be chosen as
such that the effects due to Doppler spread can be neglected(see Chapter 4).This approach corresponds with the philosophy of OFDM described in Section 1.2 and is followed in current OFDM-based wireless standards.Nevertheless, if a multi-carrier system design is chosen such that the Doppler spread is in the order of the sub-carrier spacing or higher, a rake receiver in the frequency domain can be used [22].With the frequency domain rake receiver each branch of the rake resolves a different Doppler frequency.1.1.5Examples of Discrete Multipath Channel Models Various discrete multipath channel models for indoor and outdoor cellular systems with different cell sizes have been specified.These channel models define the statistics of the 5 discrete propagation paths.An overview of widely used discrete multipath channel models is given in the following.COST 207 [8]: The COST 207 channel models specify four outdoor macro cell propagation scenarios by continuous, exponentially decreasing delay power density spectra.Implementations of these power density spectra by discrete taps are given by using up to 12 taps.Examples for settings with 6 taps are listed in Table 1-1.In this table for several propagation environments the corresponding path delay and power profiles are given.Hilly terrain causes the longest echoes.The classical Doppler spectrum with uniformly distributed angles of arrival of the paths can be used for all taps for simplicity.Optionally, different Doppler spectra are defined for the individual taps in [8].The COST 207 channel models are based on channel measurements with a bandwidth of 8–10 MHz in the 900-MHz band used for 2G systems such as GSM.COST 231 [9] and COST 259 [10]: These COST actions which are the continuation of COST 207 extend the channel characterization to DCS 1800, DECT, HIPERLAN and UMTS channels, taking into account macro, micro, and pico cell scenarios.Channel models with spatial resolution have been defined in COST 259.The spatial component is introduced by the definition of several clusters with local scatterers, which are located in a circle around the base station.Three types of channel models are defined.The macro cell type has cell sizes from 500 m up to 5000 m and a carrier frequency of 900 MHz or 1.8 GHz.The micro cell type is defined for cell sizes of about 300 m and a carrier frequency of 1.2 GHz or 5 GHz.The pico cell type represents an indoor channel model with cell sizes smaller than 100 m in industrial buildings and in the order of 10 m in an office.The carrier frequency is 2.5 GHz or 24 GHz.COST 273: The COST 273 action additionally takes multi-antenna channel models into account, which are not covered by the previous COST actions.CODIT [7]: These channel models define typical outdoor and indoor propagation scenarios for macro, micro, and pico cells.The fading characteristics of the various propagation environments are specified by the parameters of the Nakagami-m distribution.Every environment is defined in terms of a number of scatterers which can take on values up to 20.Some channel models consider also the angular distribution of the scatterers.They have been developed for the investigation of 3G system proposals.Macro cell channel type models have been developed for carrier frequencies around 900 MHz with 7 MHz bandwidth.The micro and pico cell channel type models have been developed for carrier frequencies between 1.8 GHz and 2 GHz.The bandwidths of the measurements are in the range of 10–100 MHz for macro cells and around 100 MHz for pico cells.JTC [28]: The JTC channel models define indoor and outdoor scenarios by specifying 3 to 10 discrete taps per scenario.The channel models are designed to be applicable for wideband digital mobile radio systems anticipated as candidates for the PCS(Personal Communications Systems)common air interface at carrier frequencies of about 2 GHz.UMTS/UTRA [18][44]: Test propagation scenarios have been defined for UMTS and UTRA system proposals which are developed for frequencies around 2 GHz.The modeling of the multipath propagation corresponds to that used by the COST 207 channel models.HIPERLAN/2 [33]: Five typical indoor propagation scenarios for wireless LANs in the 5 GHz frequency band have been defined.Each scenario is described by 18discrete taps of the delay power density spectrum.The time variance of the channel(Doppler spread)is modeled by a classical Jake’s spectrum with a maximum terminal speed of 3 m/h.Further channel models exist which are, for instance, given in [16].1.1.6Multi-Carrier Channel Modeling Multi-carrier systems can either be simulated in the time domain or, more computationally efficient, in the frequency domain.Preconditions for the frequency domain implementation are the absence of ISI and ICI, the frequency nonselective fading per sub-carrier, and the time-invariance during one OFDM symbol.A proper system design approximately fulfills these preconditions.The discrete channel transfer function adapted to multi-carrier signals results in
where the continuous channel transfer function H(f, t)is sampled in time at OFDM symbol rate s and in frequency at sub-carrier spacing Fs.The duration
s is the total OFDM symbol duration including the guard interval.Finally, a symbol transmitted onsub-channel n of the OFDM symbol i is multiplied by the resulting fading amplitude an,i and rotated by a random phase ϕn,i.The advantage of the frequency domain channel model is that the IFFT and FFT operation for OFDM and inverse OFDM can be avoided and the fading operation results in one complex-valued multiplication per sub-carrier.The discrete multipath channel models introduced in Section 1.1.5 can directly be applied to(1.16).A further simplification of the channel modeling for multi-carrier systems is given by using the so-called uncorrelated fading channel models.1.1.6.1Uncorrelated Fading Channel Models for Multi-Carrier Systems These channel models are based on the assumption that the fading on adjacent data symbols after inverse OFDM and de-interleaving can be considered as uncorrelated [29].This assumption holds when, e.g., a frequency and time interleaver with sufficient interleaving depth is applied.The fading amplitude an,i is chosen from a distribution p(a)according to the considered cell type and the random phase ϕn,I is uniformly distributed in the interval [0,2π].The resulting complex-valued channel fading coefficient is thus generated independently for each sub-carrier and OFDM symbol.For a propagation scenario in a macro cell without LOS, the fading amplitude an,i is generated by a Rayleigh distribution and the channel model is referred to as an uncorrelated Rayleigh fading channel.For smaller cells where often a dominant propagation component occurs, the fading amplitude is chosen from a Rice distribution.The advantages of the uncorrelated fading channel models for multi-carrier systems are their simple implementation in the frequency domain and the simple reproducibility of the simulation results.1.1.7Diversity The coherence bandwidth of a mobile radio channel is the bandwidth over which the signal propagation characteristics are correlated and it can be approximated by
The channel is frequency-selective if the signal bandwidth B is larger than the coherence bandwidth.On the other hand, if B is smaller than , the channel is frequency nonselective or flat.The coherence bandwidth of the channel is of importance for evaluating the performance of spreading and frequency interleaving techniques that try to exploit the inherent frequency diversity Df of the mobile radio channel.In the case of multi-carrier transmission, frequency diversity is exploited if the separation of sub-carriers transmitting the same information exceeds the coherence bandwidth.The maximum achievable frequency diversity Df is given by the ratio between the signal bandwidth B and the coherence bandwidth,The coherence time of the channel is the duration over which the channel characteristics can be considered as time-invariant and can be approximated by
If the duration of the transmitted symbol is larger than the coherence time, the channel is time-selective.On the other hand, if the symbol duration is smaller than , the channel is time nonselective during one symbol duration.The coherence time of the channel is of importance for evaluating the performance of coding and interleaving techniques that try to exploit the inherent time diversity DO of the mobile radio channel.Time diversity can be exploited if the separation between time slots carrying the same information exceeds the coherence time.A number of Ns successive time slots create a time frame of duration Tfr.The maximum time diversity Dt achievable in one time frame is given by the ratio between the duration of a time frame and the coherence time, A system exploiting frequency and time diversity can achieve the overall diversity
The system design should allow one to optimally exploit the available diversity DO.For instance, in systems with multi-carrier transmission the same information should be transmitted on different sub-carriers and in different time slots, achieving uncorrelated faded replicas of the information in both dimensions.Uncoded multi-carrier systems with flat fading per sub-channel and time-invariance during one symbol cannot exploit diversity and have a poor performance in time and frequency selective fading channels.Additional methods have to be applied to exploit diversity.One approach is the use of data spreading where each data symbol is spread by a spreading code of length L.This, in combination with interleaving, can achieve performance results which are given for
by the closed-form solution for the BER for diversity reception in Rayleigh fading channels according to [40]
Whererepresents the combinatory function,and σ2 is the variance of the noise.As soon as the interleaving is not perfect or the diversity offered by the channel is smaller than the spreading code length L, or MCCDMA with multiple access interference is applied,(1.22)is a lower bound.For L = 1, the performance of an OFDM system without forward error correction(FEC)is obtained, 9
which cannot exploit any diversity.The BER according to(1.22)of an OFDM(OFDMA, MC-TDMA)system and a multi-carrier spread spectrum(MC-SS)system with different spreading code lengths L is shown in Figure 1-3.No other diversity techniques are applied.QPSK modulation is used for symbol mapping.The mobile radio channel is modeled as uncorrelated Rayleigh fading channel(see Section 1.1.6).As these curves show, for large values of L, the performance of MC-SS systems approaches that of an AWGN channel.Another form of achieving diversity in OFDM systems is channel coding by FEC, where the information of each data bit is spread over several code bits.Additional to the diversity gain in fading channels, a coding gain can be obtained due to the selection of appropriate coding and decoding algorithms.中文翻译 1基本原理
这章描述今日的基本面的无线通信。第一一个的详细说明无线电频道,它的模型被介绍,跟随附近的的介绍的原则的参考正交频分复用多载波传输。此外,一个一般概观的扩频技术,尤其ds-cdma,被给,潜力的例子申请参考正交频分复用,DS对1。分配的通道传输功能是
有关的延误测量相对于第一个在接收器检测到的路径。多普勒频率
取决于终端站,光速c,载波频率fc的速度和发病路径分配给速度v波αp角度页具有相应通道传输信道冲激响应函数图1-2所示。
延迟功率密度谱ρ(τ)为特征的频率选择性移动无线电频道给出了作为通道的输出功能延迟τ平均功率。平均延迟τ,均方根(RMS)的时延扩展τRMS和最大延迟τmax都是延迟功率密度谱特征参数。平均时延特性参数为
有
图1-2时变信道冲激响应和通道传递函数频率选择性衰落是权力页的路径均方根时延扩展的定义为 同样,多普勒频谱的功率密度(FD)的特点可以定义
在移动时变无线信道,并给出了作为一种金融衍生工具功能的多普勒频率通道输出的平均功率。多径信道频率分散性能是最常见的量化发生的多普勒频率和多普勒fDmax蔓延fDspread最大。多普勒扩散是功率密度的多普勒频谱带宽,可价值观需要两年时间| fDmax|,即
1.1.3频道淡出统计
在衰落过程中的统计特征和重要的渠道是信道模型参数规格。一个简单而经常使用的方法是从假设有一个通道中的散射,有助于在大量接收端的信号。该中心极限定理的应用导致了复杂的值的高斯信道冲激响应过程。在对视线(LOS)或线的主要组成部分的情况下,这个过程是零的意思。相应的通道传递函数幅度
是一个随机变量,通过给定一个简短表示由瑞利分布,有
是的平均功率。相均匀分布在区间[0,2π]。
在案件的多通道包含洛杉矶的或主要组件除了随机移动散射,通道脉冲响应可以不再被建模为均值为零。根据信道脉冲响应的假设一个复杂的值高斯过程,其大小通道的传递函数A的水稻分布给出
赖斯因素KRice是由占主导地位的路径权力的威力比分散的路径。I0是零阶贝塞尔函数的第一阶段是一致kind.The在区间[0,2π]分发。
1.1.4符号间(ISI)和通道间干扰(ICI)
延迟的蔓延引起的符号间干扰(ISI)当相邻的数据符号上的重叠与互相不同的传播路径,由于不同的延迟干涉。符号的干扰在单载波调制系统的号码是给予
对于高数据符号持续时间很短运输署<蟿MAX时,ISI的影响,这样一来,速率应用,接收机的复杂性大大增加。对干扰影响,可以抵消,如时间或频域均衡不同的措施。在扩频系统,与几个臂Rake接收机用于减少通过利用多径分集等,个别武器适应不同的传播路径的干扰影响。
如果发送符号的持续时间明显高于大的最大延迟运输署蟿最大,渠道产生ISI的微不足道。这种效果是利用多载波传输的地方,每发送符号的增加与子载波数控数目,因此,ISI的金额减少的持续时间。符号的干扰多载波调制系统的号码是给予
可以消除符号间干扰由一个保护间隔(见1.2节)的使用。
最大多普勒在移动无线应用传播使用单载波调制通常比相邻通道,这样,干扰对由于多普勒传播相邻通道的作用不是一个单载波调制系统的问题距离。对于多载波调制系统,子通道间距FS可以变得非常小,这样可以造成严重的多普勒效应ICI的。只要所有子载波只要是一个共同的多普勒频移金融衍生工具的影响,这可以补偿多普勒频移在接收器和ICI是可以避免的。但是,如果在对多普勒子载波间隔为几个百分点的蔓延情况,卜内门可能会降低系统的性能显着。为了避免性能降级或因与ICI卜内门更复杂的接收机均衡,子载波间隔财政司司长应定为
这样说,由于多普勒效应可以忽略不扩散(见第4章)。这种方法对应于OFDM的1.2节中所述,是目前基于OFDM的无线标准遵循的理念。
不过,如果多载波系统的设计选择了这样的多普勒展宽在子载波间隔或更高,秩序是在频率RAKE接收机域名可以使用[22]。随着频域RAKE接收机每个支部耙解决了不同的多普勒频率。
1.1.5多径信道模型的离散的例子
各类离散多与不同的细胞大小的室内和室外蜂窝系统的信道模型已经被指定。这些通道模型定义的离散传播路径的统计信息。一种广泛使用的离散多径信道模型概述于下。造价207[8]:成本207信道模型指定连续四个室外宏蜂窝传播方案,指数下降延迟功率密度谱。这些频道功率密度的离散谱的实现都是通过使用多达12个频道。与6频道设置的示例列于表1-1。在这种传播环境的几个表中的相应路径延迟和电源配置给出。丘陵地形导致最长相呼应。
经典的多普勒频谱与均匀分布的到达角路径可以用于简化所有的频道。或者,不同的多普勒谱定义在[8]个人频道。207信道的成本模型是基于一个8-10兆赫的2G,如GSM系统中使用的900兆赫频段信道带宽的测量。造价231[9]和造价259[10]:这些费用是行动的延续成本207扩展通道特性到DCS1800的DECT,HIPERLAN和UMTS的渠道,同时考虑到宏观,微观和微微小区的情况为例。空间分辨率与已定义的通道模型在造价259。空间部分是介绍了与当地散射,这是在基站周围设几组圆的定义。三种类型的通道模型定义。宏细胞类型具有高达500〜5000米,载波频率为900兆赫或1.8 GHz的单元尺寸。微细胞类型被定义为细胞体积约300米,1.2 GHz或5 GHz载波频率。细胞类型代表的Pico与细胞体积小于100工业建筑物和办公室中的10 m阶米室内信道模型。载波频率为2.5 GHz或24千兆赫。造价273:成本273行动另外考虑到多天线信道模型,这是不是由先前的费用的行为包括在内。
CODIT [7]:这些通道模型定义的宏,微,微微蜂窝和室外和室内传播的典型案例。各种传播环境的衰落特性是指定的在NakagamiSS)的不同扩频码L是长度,如图1-3所示的系统。没有其他的分集技术被应用。QPSK调制用于符号映射。移动无线信道建模为不相关瑞利衰落信道(见1.1.6)。由于这些曲线显示,办法,AWGN信道的一对L时,对MC-SS系统性能有很大价值。
5.英文翻译 篇五
(翻译)
课 题 名 称
光子是物质的最基本粒子
学 生 姓 名
段 贤 苗
学
号
0740817007
系、年级专业
理学与信息科学系2007级物理学
指 导 教 师
曾 爱 华
职
称
教
授
2011年5月20日
摘要
利用熵增加原理、推导出组成物质的最基本粒子是光子,并进一步说明光子的物理特性、物理常量影响着宇宙的物理规律与物理常量。本文试图为基本粒子、大统一物理的研究提出一个方向。关键词:光子;基本粒子;信息;熵
目录:
1、前言
2、信息的量化
3、香农熵
4、熵和信息的一个守恒定律
5、宏观信息向微观信息的转换
6、光子是物质的最基本粒子
7、信息和静质量
8、整个宇宙的微观信息
9、光子的物理特性、物理常量影响着宇宙的物理规律与物理常量
1、前 言
当今物理学界仍在不断寻地找物质的基本粒子,但基本粒子是什么?人们现在仍难以作出正确的回答,在易经里,我们知道:太极生两仪,两仪生四象,四象生八卦,八卦生宇宙万物。而太极者,无极也。这不就是零物质吗?我们知道光子的静质量是零,若这零物质是光子,那么光子不就是“最基本粒子”吗?我们知道无限小的极限是0,那么基本粒子的极限不就是光子吗?
同时,现在物理学家们又正在努力寻找宇宙的物理规律、物理常量,努力寻找物理的大统一理论。若我们确定了什么是最基本粒子,那么这最基本粒子的物理规律、物理常量就应与宇宙的物理规律、物理常量有着必然的联系。
现在的超弦理论被部分人认为是大统一理论,一个能在单独的包罗万象的协和的数学框架下描写自然界所有力的理论。在弦理论看来,弦是宇宙物质组成的最基本单元,所有的基本粒子如电子、光子、夸克、中微子都是它的不同具体形态。到现在为止,弦理论还只是一种假说,人类尚未观测到基本的弦。超弦论的实验验证和证伪存在着极大的困难,由于那些额外维度的空间被卷曲得如此之小,必需建造一个尺度大如银河系的粒子速器才行。
基于数学领域的哥德尔不完备性定理,在任何公理化形式系统中,总存留着在定义该系统的公理的基础上既不能证明也不能证伪的问题。也就是说任何一个理论都有解决不了的问题。因此,大统一物理不是包含所有各分枝物理的理论,而是各分枝物理的共同部份、基础部份。他应是简单的、优美的。
现本人试图从光子的角度为基本粒子、大统一物理的研究提出一个方向。本文是建立在旧有的理论(相对论、热力学定律)基础上的一个新的推论,而不是建立在一个新的假设之上。
2、信 息 的 量 化
香 农(Claude E.Shannon)指 出,信 息是对体系的统计描述的一种性质,是体系的一种基本属性,即它们的组织化程度的度量。香农证明的一个基本定理表明,一个体系的信含量等于对该体系的完备的统计描述进行编码所需的二进位数最少位数。一个体系的信息所反映的是其可能的存在状态的量值。量度信息 的 单 位 是 比 特(bit);一 比 特 信 息 是两个相等的可能性之间决定一个所需的信 息 量。如 某 个 体 系 有2r 个 可 能 的 存 在状态,那它的信息就是 r 比特。对可能的存在状态的观测受测
不准原理、测量水平等所制约,不同测量水平所测量的信息记录是不同的。在一个完全封闭的系统里,可精确地描述出大量的态,我们常称之为微观态。在量子力学里,这就是系统可能的量子态。这些微观态根据粗粒化区分的不同性质,分 类 聚 集 到 一 块 儿(可 称 之 为 宏 观 态)。在一给定宏观态中的微观态可以看成是彼此等价的,所以我们通常只关心微观态的数目。
同时,不知道一团物质的终极组成部分或其最深层次的结构,我们就无法计算其终极信息容量,也无法计算其香农熵。但是,我们可以找到能计算其信息容量的最深层次的结构。按照微型化技术目前这样快的发展速度,我们可以设想将来某日夸克能被用来存储信息,也许是一个夸克一比特。
3、香 农 熵
香农熵反映了在一个随机试验(或随机变量)的不确定性。一个随机试验可用:
表示。其中 1,2,„..,n为可能发生的结果,pi为i发生的概 率。X 的 不 确 定 性 大 小取决于 n 的大小与 pi 分 布 的 均匀 程 度。这 个 不 确 定 性 是(p 1 , p
一个 函 数,记 为 H,它 具 有 如 下 性 质 : 2 ,„ ,p n)的(1)对称连续性,即H(p1,p2,„,pn)是(p1,p2,„,pn)的对称连续函数;(2)H(0, 1)=0;
(3)如q=p n +p n + 1 则 H(p 1 ,p 2 ,„ ,p n ,p n + 1)=H(p 1 ,p 2 ,„ ,p n-1 ,q)+qH(p n /q ,p n + 1 /q)。通过数学的推导,得香农熵:
log 的 底 我 们 取 2,H(X)的 单
位 是 比 特(bit)。如(X,Y)为 二 元 随 机 变 量,取 值 为(x ,y),x=1 ,2,„,m,y=1 ,2 ,„,n ;联合概率分布为pij,则 联 合 熵 为 :
称 H(Y| X)= H(X,Y)- H(X)为 Y 关于 X 的条件熵,它表示条件不确定 性。当 Y 不 依 赖 于 X 时,即 X、Y 相 互独 立 时 H(Y| X)=H(Y),得 :
H(X,Y)= H(X)+H(Y)
从概念上来说,热力学熵和香农熵是等价的,当香农设法量化一条消息中的信息时,他自然而然地得出了一条和玻尔兹曼一样的公式。玻尔兹曼熵所代表的不同组成方
式的数目反映了为实现某种特定组成方式所必须知道的香农信息量。
4、熵 和 信 息 的 一 个 守 恒 定 律
熵和信息有一个守恒定律,就是一个体系的信息与熵的和保持守恒,并等于该体系的最大信息或最大熵。即:H+I=H m a x =I m a x =const
H 和 I 表 示 熵 和 信 息 的 值,Hmax 和
Imax表示熵和信息最大的可能值。
熵增加原理可描述为信息减少原理,即是一个孤立体系的信息一定能达到所能达到的最小信息。
熵是一种不确定性的量度。当信息被获得和记录下来,需要消耗能量,这时不确定减少了,而与此同时记录中的信息增加了。当记录被擦掉时,记录中的信息减少了,但整个封闭系统情形的不确定至少增加了相同的数量。
同 时,熵 与 粗 粒 化 有 关,即 与 被 描 述系统详尽的程度有关。的确,一个体系如果所有的细节都考虑了的话,那么在数学上就可以认为熵不会再增加,熵将保持不变。但事实上,一个分为许多部分的体系常常只用它的某些变量来描述,这些比较少的变量的有序性会随着时间而散失到其他变量中去,于是前者也不能再看成是有序的了。这就是热力学第二定律的真正意义。
无论是对信息熵的记录,都与测量水平、所考虑的变量有关。当我们用更准确的测量、考虑更多的变量,就会发现更微观的信息。
5、宏 观 信 息 向 微 观 信 息 的 转 换
概率的均匀分布和不均匀分布表示了一个体系的信息含量方面的一个质的差别。我们将空间分
2r 个“宏 相 格 ”,我们把宏观信息确定为这些宏相格所对应的一组概率所需的信息;确定概率在宏相格内部的分布所需的信息,则定义为微观信息;但实际上,我们可把每个“宏相格”分割成 2q“ 微 相 格 ”,我们可以把微观信息确定为所有这些微相格所对应的一组概率所需的信息。同时,我们可以把宏观信息看作是我们对体系的统计性质的知识,而把微观信息看作是对各个微观粒子的具体知识,具体来说就是微观信息代表了我们对各个粒子的速度之间的相互关联的了解。
我们设想一个假想实验,在空气完全静止的封闭空间的一角,放置一瓶密封 香水。瓶密封香水放在空间的一个“宏相 格 ”中,它 占 据 的 体 积 是 1/2 r,其 宏观 信 息 就 是 r; 随 着 时 间 的 推 移 我 们 看不到宏观信息的变化,这是由于它
在一个制约条件下(如瓶被密封等)。如把瓶盖打开,随着时间的推移,香水分子就会挥发,其宏观信息不断减少,直至全部宏观信息转变为微观信息,总的信息量并没有变化。我们还可以把微相格再细分下去,随着时间的继续推移,用更准确的测量、考虑更多的变量,就会发现微观信息就向着更微观的信息转变。
若我们把更微的相格的长度确定为Planck 长 度,根 据 测 不 准 原 理,我 们 知道,这将是最微观的信息。这时,若把这样的更微的相格再向下细分,那么,信息就消失在量子涨落中,因为我们不可以再测量了;或者说,根据信息减小原理,当这个最微观的信息继续减小时,信息就消失在量子涨落中了。同时,一个名义上孤立的体系同世界其余部份的不可避免的相互作用是以微小的随机扰动的方式来进行的,这的微扰破坏粒子之间的关联,能消耗微观信息。
宏观信息可转变为微观信息,反之亦然。从量子涨落中产生信息,产生有信息的基本粒子,通过这些粒子的相互作用、相互关联就产生了更多的信息,产生了宏观信息,但这个过程需要消耗能量。
6、光 子 是 物 质 的 最 基 本 粒 子
我们知道,电子有 22 个 可 能 的 存 在状态(它有两种电荷两种自旋状态,是现在的测量水平下所能测到的),要指定具体什么电子,需要 2 个二进位数,所 以 单 独 一 个 电子 的 信 息 是 2bit。对 于光子,自旋方向有平行与反平行于物质运动方向两种,他最少的可能存在状态 2 1 个,所 以 单 独 一 个 光 子 的 信 息 是应是1bit,这 是 现 在人 们 的 测 量 水平所 观 测得到的。对于由大量光子组成的一个孤立体系,左旋与旋相等混合并均匀地分 布,这 时 这 个 体 系 的 信 息 是 0bit。
基本粒子中信息容量最小的信息应该 是 1bit,现 在 我 们 来 看 看,在 测 不 准原理制约下,基本粒子中信息最小的粒子是不是光子。我 们 知 道 能 量 与 质 量 是 一 回 事。设 Q为热量、E 为能量、T 为绝对温标、m 为质量,S 为势力学熵。考虑在一个与外界没有作功的系统中,据热力学第一定律,得:
dQ=dE=dm
dS=dE/T 由能量均分原理
E/T=const
dE/E=d(lnE)若
dS≥ 0,则 : dm≥ 0
考虑一个非平衡的系统,它可以被分
成无限多个近似平衡的小系统,由于熵与
质量的可加性,我们完全可以相信存在 这 么 一 个 体 系,上 式 仍 然 成 立。而 且,在一个孤立的不可逆体系中,只要有足够的时间,熵一定能达到最大值,信息一定能达到最小值。在测不准原理制约下,我们可以找出能计算其信息容量的最深层次结构的最微观的信息。在这个最深层次的结构下,当系统信息达到 0时,微观系统的单一粒子就一定会存在基本粒子中信息最小的粒子。由相对论,得:dv≥ 0v 是组成这个特殊的孤立的不可逆体系 的基本粒子的速率。
这说明了熵增加的方向就是使组成这粒子的最基本粒子的速率最终达到光速,粒子最终分解成静质量为零的最基本粒子,也就是说,在一个完全孤立的没有给定任何制约条件的物理体系中,熵增加原理就是使其系统中的总静质量最终为零。从相对论可得知,一个静质量不为 0 的物质是不可能被加速到光速,但我们认为它可以分解为光速的光子。因而,光子是静质量为零、信息为bit 的 粒 子,它就 是 物 质 的 最 基 本 粒 子。也就是说作为速度极限的光子,也是信息最小的粒子,是基本粒子无限细分的极限。
另一方面,我们可以在光子建立参考系观测一个孤立的物理体系,据相对论,我们会发现,组成这物理体系的全是速度为光速的粒子,即光子。当然,一般地,人们不会在光子建立参考系来观测一个孤立的物理体系,因为这是极端的情况。但是,一个普适的物理定律若不可以在极端的情况下使用,又何以普适呢?
无论从信息减少原理、熵增加原理以及在光子建立参考系观测,我们都可得到结论:光子是物质的最基本粒子。
7、信 息 和 静 质 量
现 在 我 们 设 两 个 光 子 A、B,它 们 以光速运动着,设其动质量(总动能)为m A、m B。由 于 A、B 有 动 质 量,还 会 有 电磁 等 一 些 特 性,所 以 当 A、B 结 合 成 一 个基本粒子――具有“ 刚性” 的粒子时,光子之间存在着相互作用,这就产生了位能。这 时,我 们 设 A、B 的 位 能 为V A *、V B *,总 动 能 为 m A *、m B *,那 么 A、B 的总能量就是:V A *+ m A *、V B *+ m B *。把 A、B 作 为 一 个 总 体 M,那 么 M 的 总 静质量 m 为:m=V A *+ m A *+V B *+ m B *。由最基本粒子组成的物质的静质量即固有质量就是物质内部各粒子间的相互作用而产生的位能与物质内部各粒子间的相互运动而产生的总动能之和。
在一个完全孤立的没有给定任何制约条件的物理体系里,由信息减少原理,随 着 时 间 的 推 移,其 信 息 最 终 为 0bit,可以说是没有信息,这时,整个物理体系 的 总 静 质 量 亦 为 0。当 一 个 物 理 体 系有静质量时,就说明它内部存在光子及粒子间的相互作用,它产生了信息;反之 亦 然,物 理 体 系 存 在 信 息(>1bit)也说明它有静质量;物质信息和静质量都是由其内部的各光子及粒子间的相互作用产生的。如一个电子,它有信息(2bit),亦 有 静 质 量。但 到 现 在 为 止,我们仍不能说有多少信息就有多少静质量,而这需要进一步的研究。
光子通过一定的方式组成物质,通过光子之间的相互作用(可以通过力的作 用)、通 过 转 化 而 成 为 一 个 有 静 质 量的粒子,这时候,亦就产生了位能,产生了新的息,产生了静质量,但也许我们已不能观测到其内部的单一光子了。电子--反电子对可以湮灭转化为一对光子,同样,若干个光子是可以转化为电子的。
8、整 个 宇 宙 的 微 观 信 息
首先,我们把宇宙表示为一条无限长的“ 直 线 ”模 型。为 了 体 现 测 不 准 原 理,我们必须把一维直线分割成长度相等的小段,小段的长度代表单个粒子的位置所能做到的精确度。如果我们又确定占据 每 个 小 段 的 粒 子 数 目,那 么,这 个“ 直线”宇宙就可以用一个由“占有数”构成的、两端都开放的无限数列来表示。于是微观信息就可以这样定义:它使我们能够区分两列具有相同统计性质的(这样的占有数数列即宏观)。现在我们来试图证明这两具数列是相同的。我们从一列占有数数列中选出任意长度的一个子数列,在一个无限数列中,任何有限长度的子数列都将重复出现无限多次。大数定律保证我们经过有限次尝试之后就一定能找到相同统计(即宏观)性质的这样的占有子数列,而且,不管我们选出的子数列有多长,只要长度有限,我们就一定能找到。
我们把上述论证推广到三维无限宇宙中去,只要满足强宇宙原理和局部宇宙结构的大小是有限的要求,那么,把宇宙作为一个整体来看其性质全是统计性(即宏观)的,它的微观信息根本不存在。
9、光 子 的 物 理 特 性、物 理 常 量 影 响 着宇宙的物理规律与物理常量
光子具有量子化,它的能量为:m=hv/c 2其 中 h 是 Planck 常 数,v 是 频 率。由 光 子 的 量 子 化,我 们 认 为 光 子 是 可以合并和分解的。但无论如何,只
要静质量为零就是光子。就单一粒子而言,光子都具有相同的物理特性,只有在不同的场里才表现不同的物理特性。
光 子 具 有 量 子 性、电 磁 特 性 等 等,光速是它的物理常量。宇宙是由光子组成的,所以光子的物理特性、物理常量影响着宇宙的物理规律与物理常量。若整个宇宙由很多个小宇宙组成,那么每个小宇宙中光子的物理特性、物理常量影响着这个小宇宙的物理规律与物理常量。无论是何种情形,宇宙中的任何事物似乎都是根据科学定律的演化所确定的,而这些则由光子的物理特性、物理常量影响着。对光子物理特性、物理常量的研究应是现代物理的方向。
Photon Is the Ultimate ElementaryParticle of Matter Abstract: According to the entropy increasesprinciple, I make a deduction that photon is ultimate elementary particle of matter and further more, itshows photon’s physical characteristic and physicalconstants affect the physical law and physicalconstants of the whole universe.In this essay, I try totake a lead for the study of elementary particles andthe grand unified physics.Key words: photon, elementary particle, information,entropy, rest mass, grand unification.directory
1.Preface 2.Quantization of information 3.Shannon entropy 4.A conservation law for entropy and information 5.The transfer from macro information into micro information 6.Photon is the ultimate elementary particle of matter 7.Information and rest mass 8.The micro information in the whole universe 9.The physics character and physics constant of photon affect the universe’s physics law and physics constant
1.Preface
Physicists have been searched for elementary particleof matter.Bat what is elementary? People find it hard toanswer this question.From china ancient books--TheBook of Changes, we know that Taiji produces two Yi.Two Yi produce four quadrant, four quadrant produceeight diagrams.Eight diagrams produce all the things inthe universe.Grand means endless.But the taiji is thegreat void, isn’t it that ZERO matter? We know thatphoton’s rest mass is zero.If the ZEROmatter is photon,isn’t it that photon is “the ultimate elementary particle ofmatter”? We knowthat infinitesimal limit is zero.If so,isn’t it that ultimate elementary particle of matter isphoton?
Meanwhile, nowadays physicists are trying hard tosearch for the physics law, the physical constants and thetheory of grand unification.If we have defined what theultimate elementary particle is, we’re then sure that thephysics law and the physical constants of the ultimateelementary particle have certain relation with thephysics law and the physical constants in the universe.The modern superstring theory is considered as grandunification by some people, a theory which includeseverything and describes every natural power under themathematical framework..In the view of superstringtheory, string is the most basic unit and all the elementalparticle which formed the universe, for example,electron, photon, quark and neutrino are its specific states.Up till now, the string theory is only a scientifichypothesis.The human being haven’t observed the basicstring, yet.The superstring theory is very hard to beproved through experiment, since the extra dimensionspace is curled so limited, people have to build a particleaccelerator as enormously as the galaxy to do theexperiment.According to Kurt Friedrich Göde’s un-completenesstheorem on math field, in any self-evident axiom formsystem, there always exits a problem which could not beproved right or wrong of its definition.That’s to say anytheory has some unsolved problems.Therefore, thegrand unification doesn’t include all the branch physicstheories, while it becomes a common andbasic part ofall the branch physics.So it must be the most simple and elegant one.I try to take a lead for the study of elementary particleand the grand unification.This essay is based on theexisting theories(e.g.theory of relativity,thermodynamics law)and then it forms a new theory.After all, it isn’t built on a new hypothesis.2.Quantization of information
Claude E.Sannon pointed out information is a kind ofcharacteristic which describes the statistics of a system,is also a basic attribute of the system that they’re theorganized measurement.Shannon’s basic theorem showthat a system’s containing information equals to thefewest digits of binary system in which we code theperfect describing statistics.The information of a systemreflects its possible existing state magnitude.The unit ofinformation measurement is bit.Abit of information istwo equal possibilities but chosen one amount ofrinformation.Forexample,one certain system has 2possible states.Then its amount of information is r bits.To observe the possible states is restricted by theHeisenberg uncertainty principle and people’s measuringlevel.Different measuring levels lead to differentrecords of information.In a completesealed system, wecan describe lots of states precisely.We often call themmicro states.In the field of quantum mechanics, weconsider them as the possible system quantum states.These micro states gather together on different kinds dueto different sorts of coarse granulating(which could becalled macro states).In a defined macro state, microstates could be considered as equivalence, so we oftencare the numbers of micro states.At the same time, if we don’t know the finalcomponents of a matter or the deepest layer of structure,we could not count the amount of the information and could not calculate their Shannon entropy of thestructure.But we can find deeper layer structure inwhich we could calculate the information amounts.By the development of micromation technique, we canimagine that in the future quarks could be used to store information.May be a quark could store a bit of information.3.Shannon entropy
Shannon entropy reflects an uncertainty of a randomexperiment(or random variable).A random experimentcan be expressed as:
In the formula, 1, 2 ,…, n express the possible result,while pn shows i’s probability.X’s uncertain value is decided by n’s value and pn’s distributing even rate.The uncertainty is a function of(p1,p2,…,pn)and is marked as H.it has the next qualities:(1)Symmetric continuity.Viz.H(p1,p2,…,pn)is the symmetrical continuous function of(p1,p2,…,pn);(2)H(0,1)=0;(3)If q=qn+qn+1, then H(p1,p2,…,pn,pn+1)= H(p1,p2,…,pn,q)+ qH(pn/q,pn+1/q).Through the math deduction, we get the Shannon entropy: bit.log’s base is 2, and the unit of H(X)is If(X,Y)are the duality random variables, valued as(x,y), x=1,2,…,m , y=1,2,…,n.The unitedprobability distribution is pij, then their united entropies are:
We call H(Y|X)=H(X,Y)-H(X)as Y for X,s conditional entropy.It shows the conditional uncertainty.When Y doesn’t depend on X, Viz.X and Y are separately independent, H(Y|X)=H(Y).we get: H(X,Y)=H(X)+H(Y)
As is known from the concept, thermodynamics entropy has the same equipollence with the Shannon entropy.When Shannon tries to quantify the information from a information, he naturally gets a same formula as Boltzmann’s.Boltzmann entropy which represents different forming numbers reflects the amount of Shannon information which is ready for meeting a certain compound mode.4.A conservation law for entropy andinformation Entropy and information have a conservation law that in a information and entropy keep conservative, and equal to the biggest information or the biggest entropy.Viz.: H+I=Hmax=Imax=const
H and I refer to the values of entropy and information.Hmax and Imax refer to the most possible values of entropy and information.The entropy increase principle can be described as
the information decrease principle.Namely the information in a sole system can get to its smallest information.Entropy is an uncertainty measurement.When information is obtained and recorded, energy was used up.In this circumstance the uncertainty decreases.At the same time the recorded information increases.When the record is cleaned, the recorded information decreases.But the uncertainties in the whole closed system increase by the same amounts.At the same time, entropy has some relation with coarse granulating, Viz.it has something to do with the extent of the described system.Surely, if all the details of a system are considered, we think that their entropy won’t increase in the view of math again.So the entropy keeps constant.But in fact, if a system has many parts, we only use some variables to describe it.These smaller variables will add up to other variables due to their orderliness with the running of time.And then the former ones no longer become orderly.This is the concept of the second law for thermodynamics.Not only the record of information but also the record of entropy, its result has something to do with people’s measuring level and people’s considering variables.When we measuring more accurately and consider more variables, we will find out more micro information.5.The transfer from macro information intomicro information
Whether the probability scatters evenly or not shows that a system has distinguished information.We divide the space into 2 r “macro phases”.We look on the macro phase information as the needed informations by a group of probabilities which are corresponding with these phases.The probabilities which are distributed in the macro phases can be defined as micro information.In fact, we divide each “macro phase” into 2 q “microphase”.We look on the micro information as a group of corresponding messages needed by the probabilities.Meanwhile, we look on the macro information as the knowledge by which we understand the quality of the whole system.Then we look on the micro information as the knowledge by which we concretely understand every micro particle.In other words, micro information shows that we understand every particle’s related speed.Let’s imagine an experiment that in a corner of a close space we place a sealed bottle of perfume in it.The bottle of the perfume was then placed onto a “macrphase” of a certain space.And its cube is 1/2 of which the macro information is r with the running of time, we couldn’t see the changes of macro information, because it is under a restricted condition(e.g.the bottle is sealed.).If we take off the lid, with the time gone, the molecules of the perfume will escape from the bottle.And we know that the macro information is decreasing till all the macro information change into micro information.But the total amounts of information haven’t changed at all.We still can go on dividing the micro phases.With the time gone, we may use more accurate measuring method, and we may consider more variables.At last we can find that micro information will change into even more micro information.If we define the length of even more micro information as Plank length, according to the uncertainty principle, we know that these will become the most micro information.By now if we go on dividing the even more micro information, the information will disappear in the quantum fluctuation, because we couldn’t go on doing the measuring any more.In other words, according to the information decreasing principle, when the most micro information goes on decreasing, all the information will disappear in the quantum fluctuation.At the same time, a nominal sole system and the rest parts of the world will interact and they come to action by the way of random disturbances.These perlur batives will damage the relationship among the particles.Further more, they will consume the micro information.Macro information can change into micro information and vice versa.Information comes from quantum fluctuation and produces elementary particles with information.By the interaction and relation of these elementary particles, they will produce more information, and then produce macro information.But in this process, energy will be consumed.6.Photon is the ultimate elementary particle of matter
As we know an electron has 22 possible existing states(it has two electric charges and two spinning states, which is measured by people now).If you want to specify what electron it is, you need 2 digits of binary.So a sole electric, information is 2 bits.As for the photon’s spinning, it has two ways of motion which parallels the matter’s moving direction or opposite of it.Its least possible existing states are 2 1.So a sole photon, information is 1 bit which is measured by people now.For a sole system which is formed by lots of photons, their left and right spins are equal and scattering evenly.The whole system information is 0 bit.The least capacity of the information in an elementary particle is 1 bit.Under the
uncertainty law, among the elementary particles isn’t the least information particle photon?
We know that energy and mass are the same things.If Q for heat quantity, E for energy, T for Kelvin scale, for mass, S for thermodynamics entropy, we consider a system which has no power with the outer world, according to the first law of thermodynamics, we then get:
Obey the principles of energy’s equipartition, we get:
If >0,them dm > 0
Suppose a special in-equilibrium sole system, it can be divided into limitless approximate equilibrium small systems.Due to the fact that entropy and mass can be summarized, we absolutely believe there is such a system, the above formulas are acceptable.Further more, in a sole in-reversible system, if given enough time, the entropy must get to its maximum value and the information must get to its minimum value.Under the restriction of uncertainty law, we can find deeper layer structure in which we could calculate the information amounts.In the deepest layer of structure, when the system information gets to zero, the micro system’s single particle must have the fewest information particles among the elementary particles.Form the theory of relativity, we get: dv >0 v stands for the speed of elementary particles in the special in-reversible sole system.It shows that the direction of entropy adding up is to make the particle’s ultimate elementary particles come to the speed of light.The particle at last will break up into the ultimate elementary particle whose rest mass is zero.That’s to say in a completely sole and no restriction physics system, entropy increase principle makes the system’s total rest mass zero.Form the theory of relativity, a rest mass which is not a zero matter couldn’t be accelerated to light speed.But we think it can be broken up into light speed photon.So photon’s rest mass is zero and its information is 1 bit particle.It is the ultimate elementary particle of matter.Namely the fastest speed is photon which is also the fewest information particle.Photon is the limit while dividing the elementary.On the other hand, we can use photon to form a coordinate in order to survey a sole physics system.Based on theory of relativity, we will find those which form the physics system are all light speed particles, Viz.photon.Generally speaking, people won’t build a photon coordinate to survey a sole physics system, because it is the extreme condition.But if a common physics law could not apply to an extreme condition, what is the common?
Either using information decrease principle, or entropy increase principle or photon coordinate principle to survey matter, we can draw a conclusion that photon is ultimate elementary particle of matter.7.Information and rest mass
Suppose there are two photons A, B.They are moving in light speed.Their moving mass(total kinetic energy)are mA, mb.Since A,B are owning moving mass, they also have some magnetic characteristic.A and B combine into an elementary particle------a particle which has “strong character”, when photons interact with each other, and produce position energy.Now, we suppose the position energy of A, B are VA , VB*.The total moving energies are mA*, mB*.Then the total energy of A and B is: VA*+ mA*,VB*+ mB* Considering A, B as a general M, then M’s total rest mass m is: M=VA*+ mA*+VB*+ mB*
The rest mass(Viz.proper mass)which consists of the ultimate elementary particles is the total value of position energy produced in the circumstance that the matter’s inner particles interact with each other and total moving energy produced in the circumstance that matter’s inner particle are moving towards each other..In a completely sole and no restriction physics system, following the information decrease principle, with the time going, its ultimate information is 0 bit.We can say that it has no information.At that time, the total rest mass in the whole physics system is also zero.When a physics system owns rest mass, it proves that the inner interaction between photons and particles.So it produces information and vice versa.If the physics system exists nformation(>1 bit), it shows that it owns rest mass.The matter’s information and rest mass are produced by the interactions between photons and particles.If an electron owns information(2 bit), it also owns mass.But by now, we couldn’t come to a conclusion that how much information there is decide how much rest mass there is.What we need is a further study.Photon form matter by a certain way.By the interaction between the photons(or by the effect of power)or by transformation it will form a rest mass particle.At the same time, it will produce position energy and then produce new information and the next produce rest mass.Perhaps we can no longer survey a certain photon of the matter inner.Electron and anti electron can die into a pair of photon.Similarly, several photons could change into an electron.8.The micro information in the wholeuniverse
Firstly, let’s consider the universe as an endless “straight line” model.In order to stress the uncertainty principle, we must divide the one dimension line into line segments.Each length of the line segments stands for the position of the particle and its possible accuracy.If we can confirm the numbers of the particles in each segment, then, about the “straight line” universe, we can use limitless sequence of the particles to express the universe which is formed by “occupation numbers” and open at both ends.The micro information is defined as: it helps us to distinguish two same statistics(macro)character occupation number sequences.Now we try to prove the two sequences are same.We will chose a subsidiary sequence from a occupation number sequence.In a limitless sequence, any length-limited subsidiary sequence will repeat to appear endless times.According the large numbers law after finite times of attempt, we could find out some possessing same characteristic occupation subsidiary sequence.Moreover, despite the length of the chosen subsidiary, so long as the length is finite, we can find that kind of sequences.We extend the above proof to the three-dimension endless universe.So long as it meets the condition that the strong universe principle and the part universe structure are limit, the whole universe character is all statistics(macro)and its micro information does not exist at all.9.The physics character and physics constant of photon affect the universe’s physics law and physics constant
Photon has the character of quantization.Its energy is: he is the Plank constant, v is frequence.Due to the quantization of photon, we think photon can be compounded and broken down.Nevertheless, if its rest mass is zero, it is a photon.For separate particles, they all have the same
6.英文句子翻译 篇六
1、Good morning,sir.Can I help you.早上好,老师。我有什么可以帮到你?
2、Good evening ,miss.Do you want to buy something here? 晚上好。小姐。您想在这里买东西吗?
3、Welcome to our shop.欢迎来到我们的店.4、What kind of book would you like to read.你喜欢读什么样的书
5、Paper is made from wood.纸是由木材制成的6、We have many in stock.我们有很多的股票
7、What a clever boy!多么聪明的一个男孩
8、You look perfect in this coat.你穿这件外套非常好看
9、Tomatoes are rich in vitamines.西红柿含有丰富的维生素
10、May I ask what size you wear? 我可以问你穿什么尺寸?
11、Do you think a blue one will do ? 你认为蓝色的行吗?
12、This collar is the latest thing.]这衣领是新事物。
13、This coat is modern and elegant in fashion.这件外套是现代和优雅的时尚。
14、This sort ofhat is out of fashion.]这种帽子很流行
15、This one is of the highest quality.这是最高的质量
16、It is water-proof,shock-resistant and anti-magnetic.它是防水,抗震和抗磁性。
17、You’d better wash it by hand instead of in a washing-machine.你们最好自己种水果种菜代替买它们。
18、They must be stored in the refrigerator.他们必须存放在冰箱中
19、How often do you write home? 你多久写信回家?
7.浅谈英文影视翻译 篇七
近年来, 随着大批优秀国外影片的引入, 越来越多的英语学习者和影视爱好者乐于通过观看原版电影学习英语, 比如:模仿地道的英语发音, 跟进生活中的习语用法, 以及对照中英字幕提高翻译水平。贴切的翻译能够传达原剧的精髓, 贴近时代气息, 对英语学习大有裨益, 但遗憾的是英文影视翻译质量良莠不齐, 极差的翻译却也能化神奇为腐朽, 误导学习者的理解。所以本文将优秀翻译和劣质翻译进行简单分类说明, 并主要以英译中为主进行讨论, 希望给英语学习者以一定启示, 分辨优劣影视翻译, 以免贻误英语学习。
一、贴切的翻译
贴切的翻译能够传达原剧的精髓, 令人回味无穷, 早年的一些翻译便是很好的例子:将美国电影《滑铁卢》译为《魂断蓝桥》, 闻者销魂, 总想看看是怎样一段断肠的故事。
首先欣赏几个优秀的片名翻译。我们熟知的金凯瑞的《变相怪杰》, 若按字面意思“M ask”直译为《面具》, 则显得毫无吸引力, 而“怪杰”听上去联想到路见不平的江湖大侠, 使人未看情节便兴致盎然。“Rock”被译成《石破天惊》/《勇闯夺命岛》, 前者含蓄写意, 后者通俗易懂, 再以精彩的剧情加以配合, 孰优孰劣难以定夺。“Top Gun”《壮志凌云》、“Safe House”《无处藏身》, 还有《末路狂花》、《乱世佳人》等脍炙人口的经典影片, 片名极好的达到信、达、雅的和谐, 令人叹为观止。
中译英的片名翻译也有优秀的例子, 比如《东邪西毒》译为”Ashes of Time”, 《甲方乙方》译为Dream Factory, 这样翻译及没有局限于中文的字面意思, 又入乡随俗, 形神兼备。
除了片名翻译之外, 很多贴近时代气息的台词翻译也是可圈可点。休杰克曼的《铁甲钢拳》 (2012) 是一部标准娱乐电影, 不仅故事进程和节奏畅快淋漓, 国内的翻译也颇具娱乐精神, 为影片增添了不少神采。影片中一个日本机器人的名字叫做“Noisy Boy”, 其主人条新的看着对手说:“看好了, 这可是日本最新型号, 叫做‘大声公’!”鉴于Noisy Boy巨大的躯壳和笨重的外表, 译为“大声公”比上译版的“吵闹男孩”更加贴切。当两个机器人之间的较量开始, 主人公查理的机器人一拳直捣对方胸口, 旁边的查理紧握双拳吼道:“Fighting!”这时的字幕显示:黑虎掏心。“大声公”一记钩拳甩在查理机器人的脸上, 对手开心的回敬“Fighting!”字幕显示的则是“如来神掌”。战斗间隙, 查理的儿子像父亲示意, 问道“Are you OK?”这时字幕恰如其分的显示为:“给力不?”这种翻译风格符合影片题材, 将汉语口语同影片的口语保持一致, 同时又体现了汉语的时代特点, 相对于刻板守旧的书面语翻译风格, 更加值得思考。
二、劣质的翻译
优秀的翻译贴切传神, 劣质的翻译却能化神奇为腐朽, 或者化腐朽为更腐朽, 尤其是片名的翻译, 起着提纲挈领的作用, 如果片名译名离题, 那么整部电影都被连累减分。
李连杰曾在好莱坞拍过的两部片子, 其中文译名便令国人莫名其妙。一部是“The One”, 故事讲到未来社会的科学家发现宇宙中存在100个平行世界, 也就是每个人都有99个镜像。这时李连杰扮演的犯罪分子发现只要干掉自己的其余99个镜像, 就能成为世界上最强的人, 后来在杀最后一个镜像时阴谋失败, 受到应有的惩罚。此片在内地译为《救世主》, 但观众看完了影片也没找到救世主, 而港台则译为《最后一强》, 简单而通俗, 更加合适, 因为片中李连杰扮演的犯罪分子并没有想要去拯救世界。
而一些中译英的片名也让人哭笑不得。张艺谋导演的《英雄》发行到美国, 一个简单的字面直译“Heroes”令美国人莫名其妙, 他们自己的《英雄大联盟》暂时才仅拍了超人、蜘蛛侠、钢铁侠等英雄, 更不用说好莱坞泛滥的科幻片, 哪有精力关注东方来的英雄, 其实英文版片花开头语“这是一个刺客的故事……”, 片名如果译为《刺客》, 更贴切更易被西方接受。周星驰的《国产零零七》, 介绍到国外译成了“From Beijing With Love”, 贻笑大方。周润发的《英雄本色》则含蓄如大家闺秀, 被译为“A Better Tomorrow”, 乍一看还以为是红色剧目。国产经典影片《刘三姐》, 则译为“The Third Sister Liu” (姓刘的第三个姐姐) 。
第一部分提到《铁甲钢拳》的台词翻译恰到好处, 但在国内字幕组的无私奉献中, 也有很多奇葩的作品。老片《冒牌天神Ⅱ》中, 摩根弗里曼版的黑人上帝一出场, 一脸坦然地对金凯瑞说, “I’m God. (我就是上帝) ”令人诧异的是下面字幕竟赫然写着, “我的天啊!”也许译者习惯了美国人的感叹, God前必然加着My, 于是想当然的如此翻译。在影片中段, 弗里曼交给金凯瑞一个任务:“I want you build an Ark.”字幕显示为“我要你打一口箱子。”于是在接下来的一小时里, 金凯瑞竭尽全力全力去打造一口箱子, 能够装下世界上所有的动物, 以便躲过这场灭世的大洪水。虽然Ark (方舟) 确实也有箱子的意思, 只是译者真的没有听说过西方40天大雨和鸽子的故事吗?看来译者对《圣经》中挪亚方舟的典故一无所知, 难怪会在翻译中出现如此可笑的失误。
结语
本文以英译中为主将优秀影视翻译和劣质翻译进行简单分类说明, 通过比较分析, 显然贴切的翻译能够传达原剧的精髓, 贴近时代气息, 对英语学习大有裨益, 但遗憾的是英文影视翻译质量良莠不齐, 极差的翻译却也能化神奇为腐朽, 误导学习者对影片内涵的理解。所以希望本文能给英语学习者以一定启示, 分辨优劣影视翻译, 学习优秀影视翻译的技巧, 吸取劣质翻译的教训, 取其精华, 弃其糟粕, 在鉴别的学习中提高英语水平。
摘要:本文以英译中为主将优秀影视翻译和劣质翻译进行简单分类说明, 第一部分分析贴切的翻译, 优秀的翻译能够传达原剧的精髓, 贴近时代气息。第二部分对比分析极差的翻译, 误导学习者对影片内涵的理解。希望本文能给英语学习者一些启示, 分辨优劣影视翻译, 学习优秀影视翻译的技巧, 吸取劣质翻译的教训, 在鉴别的学习中提高英语水平。
关键词:影视翻译,英译中,中译英,片名,贴切
参考文献
[1]姚晓华:《人一生要看的60部电影》, 光明日报出版社, 2010年1月第2版。
8.浅谈英文广告翻译策略 篇八
关键词:英汉广告;特点;翻译策略
自全球化的时代到来之后,各个领域均使用广告这一形式来宣传自己的产品或是服务。广告时代的来临也对广告翻译提出了更高的要求。为了让产品更具吸引力,译者需要译出让消费者感兴趣的广告语。这也对译者提出了更高的要求。本文主要介绍了英文广告的特点及翻译策略。
一、英文广告的特点
(一)多用小词
英文广告语中经常使用小词,以此来拉近同观众之间的距离。而且这些词汇都是人们日常生活中常见的,增加观众与广告语之间的亲近感。例如:
The new digital era.数码新时代。
例句中用era 表示“时代”而不是用period,体现了英文广告语简洁的特点。
(二)使用简单句
与商务英语不同,英文广告语中通常使用简单句。简单句结构简明,让顾客能够很快把握核心内容。例如:
Fresh-up with seven-up. 提神醒脑喝七喜。(七喜广告)
例句意思简单明确,直接阐明了这款饮料的最大好处,吸引消费者购买。
(三)使用祈使句、疑问句
广告语中经常使用祈使句或是疑问句。祈使句广告语直奔主题,使用疑问句广告语这种别样的方式来吸引顾客的注意力。
① Ask for more. 渴望无限。(百事流行鞋)
② Hungry? Why wait?(餐馆广告)
(四)使用主动语态
商务英语以及外贸英语中常用被动语态陈述事实,体现其客观性。而英文广告语中则常用主动语态,让消费者也能把握主动权。例如:
① We integrate, you communicate. 我们集大成,您超越自我。(三菱电工)
② Let’s make things better. 让我们做得更好。(飞利浦电子)
二、英文广告的翻译策略
英文广告词的翻译策略有直译、意译和改译三种方法。
(一)直译法
在翻译广告语时采用直译法,就是要保持原句的基本句法特点。例如:
The world has a big backyard. Our planet is filled with hidden Places. Dramatic examples of earth’s evolution. Witness seven Of the world’s most diverse landscapes. Come out and play in The Greatest Places.
世界有个大后院。我们的星球到处都有不为人知的地方。它们是地球演化的生动例证。目睹世界上七种完全不同的自然景观。来吧,在最壮观的地方畅游吧。
这是一则介绍美国名达州科学博物馆的广告。译文保留了原文的风格,直接翻译,内容真实准确,完全符合博物馆的形象。
(二)意译法
意译法就是要对原文的句式做出改变的翻译方法。有的英文广告语不适合直译,或是直译不能更好体现广告的吸引力,这是就需要采用意译的翻译方法。例如:
A diamond lasts forever. (De Bierres) 钻石恒久远,一颗永流传。(戴比尔斯)
该例句的直译是“一颗钻石是永恒的。”如果采用这种译法就完全丧失了广告语的有效性,不能吸引消费者。相反,例句中的意译方法读起来朗朗上口,而且也符合东方人的语言表达习惯,贴近消费者,让消费者有欲望购买产品。
(三)改译法
有些广告语的翻译采用直译和意译方法都不能体现其广告的有效性,这时就要根据商品的特性,采用改译的方法进行翻译。例如:
① Connecting People.(Nokia)科技以人为本。(诺基亚)
这是诺基亚手机最经典的广告语,译文并没有仅仅局限于原文的词义,而是将手机与科技之间的关系展现出来,让消费者有耳目一新的感觉,过目不忘。
②My moment. My love.牛奶香浓,丝般感受(德芙巧克力)
德芙巧克力广告语的汉语翻译,没有按照原文的含义,而是将巧克力给人的感受最为其广告语的核心内容,这样勾起了消费者的好奇心,让消费者也有想要一尝究竟的冲动。
三、结语
英文广告语的翻译对译者提出了更高的要求。译文不但要精炼,还要有创新点,能够吸引消费者的眼球,让消费者有购买产品的欲望,所以译者要掌握更多的翻译策略,努力将产品的价值在译文中体现出来。
参考文献:
[1]李江春.论英语广告的翻译策略[J].云梦学刊,2010(06).
[2]马婷.英汉广告翻译策略研究[J].神州,2014(18).
[3]孙葛佳.浅谈英汉广告翻译的策略[J].经济研究导刊,2010(27).