初三数学奥数题及答案

2024-11-20

初三数学奥数题及答案(9篇)

1.初三数学奥数题及答案 篇一

A、B、C、D四个同学猜测他们之中谁被评为三好学生。A说:“如果我被评上,那么B也被评上。”B说:“如果我被评上,那么C也被评上。”C说:“如果D没评上,那么我也没评上。”实际上他们之中只有一个没被评上,并且A、B、C说的都是正确的。问:谁没被评上三好学生?

答案与解析:A没有评上三好学生。

由C说可推出D必被评上,否则如果D没评上,则C也没评上,与“只有一人没有评上”矛盾。再由A、B所说可知:

假设A被评上,则B被评上,由B被评上,则C被评上。这样四人全被评上,矛盾。因此A没有评上三好学生。

2.六年级奥数题及答案 篇二

考点:简单的行程问题。

专题:行程问题。

分析:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇.即可求甲比乙每小时快多少千米.

解答:解:4×2÷4

=8÷4

=2(千米)

答:甲每小时比乙快2千米。

3.小学六年级奥数题及答案 篇三

工程问题

1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时? 解:

1/20+1/16=9/80表示甲乙的工作效率 9/80×5=45/80表示5小时后进水量 1-45/80=35/80表示还要的进水量

35/80÷(9/80-1/10)=35表示还要35小时注满 答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天? 解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。设合作时间为x天,则甲独做时间为(16-x)天 1/20*(16-x)+7/100*x=1 x=10 答:甲乙最短合作10天

3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时? 解:

由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。1/10÷2=1/20表示乙的工作效率。

1÷1/20=20小时表示乙单独完成需要20小时。答:乙单独完成需要20小时。

4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?

解:由题意可知

1/甲+1/乙+1/甲+1/乙+……+1/甲=1 1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)

1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)得到1/甲=1/乙×2 又因为1/乙=1/17 所以1/甲=2/17,甲等于17÷2=8.5天

5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个? 答案为300个

120÷(4/5÷2)=300个 可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。

6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵? 答案是15棵

算式:1÷(1/6-1/10)=15棵

7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完? 答案45分钟。

1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。

1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。

1/2÷18=1/36 表示甲每分钟进水 最后就是1÷(1/20-1/36)=45分钟。

8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天? 答案为6天 解:

由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:

乙做3天的工作量=甲2天的工作量 即:甲乙的工作效率比是3:2 甲、乙分别做全部的的工作时间比是2:3 时间比的差是1份 实际时间的差是3天 所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期 方程方法:

[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1 解得x=6

9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟? 答案为40分钟。解:设停电了x分钟 根据题意列方程

1-1/120*x=(1-1/60*x)*2 解得x=40

二.鸡兔同笼问题

1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只? 解:

4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。

400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?

4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)

372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只 100-62=38表示兔的只数

三.数字数位问题

1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少? 解:

首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。解题:1+2+3+4+5+6+7+8+9=45;45能被9整除

依次类推:1~1999这些数的个位上的数字之和可以被9整除

10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除

同样的道理,100~900 百位上的数字之和为4500 同样被9整除 也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;

同样的道理:1000~1999这些连续的自然数中百位、十位、个位 上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少***320042005 从1000~1999千位上一共999个“1”的和是999,也能整除; ***320042005的各位数字之和是27,也刚好整除。最后答案为余数为0。

2.A和B是小于100的两个非零的不同自然数。求A+B分之A-B的最小值...解:

(A-B)/(A+B)=(A+B2 * B/(A+B)前面的 1 不会变了,只需求后面的最小值,此时(A-B)/(A+B)最大。对于 B /(A+B)取最小时,(A+B)/B 取最大,问题转化为求(A+B)/B 的最大值。

(A+B)/B = 1 + A/B,最大的可能性是 A/B = 99/1(A+B)/B = 100(A-B)/(A+B)的最大值是: 98 / 100

3.已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少? 答案为6.375或6.4375 因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。

当是102时,102/16=6.375 当是103时,103/16=6.4375

4.一个三位数的各位数字 之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.答案为476 解:设原数个位为a,则十位为a+1,百位为16-2a 根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198 解得a=6,则a+1=7 16-2a=4 答:原数为476。

5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.答案为24 解:设该两位数为a,则该三位数为300+a 7a+24=300+a a=24 答:该两位数为24。

6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少? 答案为121 解:设原两位数为10a+b,则新两位数为10b+a 它们的和就是10a+b+10b+a=11(a+b)因为这个和是一个平方数,可以确定a+b=11 因此这个和就是11×11=121 答:它们的和为121。

7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.答案为85714 解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x 根据题意得,(200000+x)×3=10x+2 解得x=85714 所以原数就是857142 答:原数为857142

8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.答案为3963 解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9 根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察 abcd 2376 cdab 根据d+b=12,可知d、b可能是3、9;

4、8;

5、7;

6、6。

再观察竖式中的个位,便可以知道只有当d=3,b=9;或d=8,b=4时成立。先取d=3,b=9代入竖式的百位,可以确定十位上有进位。根据a+c=9,可知a、c可能是1、8;

2、7;

3、6;

4、5。再观察竖式中的十位,便可知只有当c=6,a=3时成立。再代入竖式的千位,成立。得到:abcd=3963 再取d=8,b=4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立。

9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.解:设这个两位数为ab 10a+b=9b+6 10a+b=5(a+b)+3 化简得到一样:5a+4b=3 由于a、b均为一位整数 得到a=3或7,b=3或8 原数为33或78均可以

10.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分? 答案是10:20 解:

(28799……9(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20

四.排列组合问题

1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()A 768种 B 32种 C 24种 D 2的10次方中 解:

根据乘法原理,分两步:

第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。

第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种

综合两步,就有24×32=768种。2 若把英语单词hello的字母写错了,则可能出现的错误共有()A 119种 B 36种 C 59种 D 48种 解:

5全排列5*4*3*2*1=120 有两个l所以120/2=60 原来有一种正确的所以60-1=59

五.容斥原理问题

1. 有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是()A 43,25 B 32,25 C32,15 D 43,11 解:根据容斥原理最小值68+43-100=11 最大值就是含铁的有43种

2.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是()A,5 B,6 C,7 D,8 解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。分别设各类的人数为a1、a2、a3、a12、a13、a23、a123 由(1)知:a1+a2+a3+a12+a13+a23+a123=25…① 由(2)知:a2+a23=(a3+ a23)×2……② 由(3)知:a12+a13+a123=a1-1……③ 由(4)知:a1=a2+a3……④ 再由②得a23=a2-a3×2……⑤

再由③④得a12+a13+a123=a2+a3-1⑥ 然后将④⑤⑥代入①中,整理得到 a2×4+a3=26 由于a2、a3均表示人数,可以求出它们的整数解: 当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22 又根据a23=a2-a3×2……⑤可知:a2>a3 因此,符合条件的只有a2=6,a3=2。

然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。

故只解出第二题的学生人数a2=6人。

3.一次考试共有5道试题。做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少? 答案:及格率至少为71%。假设一共有100人考试 100-95=5 100-80=20 100-79=21 100-74=26 100-85=15 5+20+21+26+15=87(表示5题中有1题做错的最多人数)

87÷3=29(表示5题中有3题做错的最多人数,即不及格的人数最多为29人)100-29=71(及格的最少人数,其实都是全对的)及格率至少为71%

六.抽屉原理、奇偶性问题 1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?

解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后4个抽屉中还剩3只手套。再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)答:最少要摸出9只手套,才能保证有3副同色的。

2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样? 答案为21 解:

每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法.当有11人时,能保证至少有2人取得完全一样: 当有21人时,才能保证到少有3人取得完全一样.3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球? 解:需要分情况讨论,因为无法确定其中黑球与白球的个数。当黑球或白球其中没有大于或等于7个的,那么就是: 6*4+10+1=35(个)如果黑球或白球其中有等于7个的,那么就是: 6*5+3+1=34(个)

如果黑球或白球其中有等于8个的,那么就是: 6*5+2+1=33 如果黑球或白球其中有等于9个的,那么就是: 6*5+1+1=32

4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)不可能。

因为总数为1+9+15+31=56 56/4=14 14是一个偶数

而原来1、9、15、31都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一定还是奇数,不可能得到偶数(14个)。

七.路程问题

1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它? 解:

根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。

根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。可以得出马与狗的速度比是21x:20x=21:20 根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米

2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米? 答案720千米。

由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟? 答案为两人跑一圈各要6分钟和12分钟。解:

600÷12=50,表示哥哥、弟弟的速度差 600÷4=150,表示哥哥、弟弟的速度和

(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数 600÷100=6分钟,表示跑的快者用的时间 600/50=12分钟,表示跑得慢者用的时间

4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间? 答案为53秒

算式是(140+125)÷(22-17)=53秒

可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米? 答案为100米

300÷(5-4.4)=500秒,表示追及时间 5×500=2500米,表示甲追到乙时所行的路程

2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)答案为22米/秒 算式:1360÷(1360÷340+57)≈22米/秒

关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。

7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。

正确的答案是猎犬至少跑60米才能追上。解:

由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完

8. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟? 答案:18分钟

解:设全程为1,甲的速度为x乙的速度为y 列式40x+40y=1 x:y=5:4 得x=1/72 y=1/90 走完全程甲需72分钟,乙需90分钟 故得解

9.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米? 答案是300千米。

解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。因此360÷(1+1/5)=300千米

从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有()千米

10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?

解:(1/6-1/8)÷2=1/48表示水速的分率 2÷1/48=96千米表示总路程

11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。解:

相遇是已行了全程的七分之四表示甲乙的速度比是4:3 时间比为3:4 所以快车行全程的时间为8/4*3=6小时 6*33=198千米

12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米? 解:

把路程看成1,得到时间系数 去时时间系数:1/3÷12+2/3÷30 返回时间系数:3/5÷12+2/5÷30 两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时 去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75 路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)

八.比例问题

1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?快快快 答案:甲收8元,乙收2元。解:

“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。又因为“甲钓了三条”,相当于甲吃之前已经出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元。

而甲乙两人吃了的价值都是10元,所以 甲还可以收回18-10=8元 乙还可以收回12-10=2元 刚好就是客人出的钱。

2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几? 答案22/25 最好画线段图思考:

把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。增加的成本2份刚好是下降利润的2份。售价都是25份。所以,今年的成本占售价的22/25。

3.甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米? 解:

原来甲.乙的速度比是5:4 现在的甲:5×(1-20%)=4 现在的乙:4×(1+20%)4.8 甲到B后,乙离A还有:5-4.8=0.2 总路程:10÷0.2×(4+5)=450千米

4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少? 答案为64:27 解:根据“周长减少25%”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16。根据“体积增加1/3”,可知体积是原来的4/3。体积÷底面积=高

现在的高是4/3÷9/16=64/27,也就是说现在的高是原来的高的64/27 或者现在的高:原来的高=64/27:1=64:27

5.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。橘子正好占总数的13分之2。一共运来水果多少吨? 第二题:答案为65吨 橘子+苹果=30吨 香蕉+橘子+梨=45吨

所以橘子+苹果+香蕉+橘子+梨=75吨

4.小学六年级奥数题及答案 篇四

有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

解答

首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。

2、牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?

解答

这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进行分析。 如果设每个人每小时的淘水量为“1个单位”.则船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30. 船内原有水量与8小时漏水量之和为1×5×8=40。 每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量)。 船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量.3小时漏进水量相当于3×2=6人1小时淘水量.所以船内原有水量为30-(2×3)=24。 如果这些水(24个单位)要2小时淘完,则需24÷2=12(人),但与此同时,每小时的漏进水量又要安排2人淘出,因此共需12+2=14(人)。 从以上这两个例题看出,不管从哪一个角度来分析问题,都必须求出原有的量及单位时间内增加的量,这两个量是不变的量.有了这两个量,问题就容易解决了。

3、奇偶性应用:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

【题-004】整除问题:(中等难度)

用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?

解答

∵被除数=除数×商+余数,即被除数=除数×40+16。由题意可知:被除数+除数=933-40-16=877,∴(除数×40+16)+除数=877,∴除数×41=877-16,除数=861÷41,除数=21,∴被除数=21×40+16=856。答:被除数是856,除数是21。

4、灌水问题:(中等难度)

公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.

解答

如第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开1小时,恰好在打开丙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,应在打开甲管1小时后灌满一池水.不合题意. 如第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开1小时,恰好在打开乙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,应在打开丙管45分钟后灌满一池水;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,应在打开甲管后15分钟灌满一池水.比较第二周和第三周,发现开乙管1小时和丙管45分钟的进水量与开丙管、乙管各1小时加开甲管15分钟的进水量相同,矛盾. 所以第一周是在开甲管1小时后灌满水池的.比较三周发现,甲管1小时的进水量与乙管45分钟的进水量相同,乙管30分钟的进水量与丙管1小时的进水量相同.三管单位时间内的进水量之比为3:4:2.

5、队形:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?

解答

当扩大方阵时,需补充10+15人,这25人应站在扩充的方阵的两条邻边处,形成一层人构成的直角拐角.补充人后,扩大的方阵每边上有(10+15+1)÷2=13人.因此扩大方阵共有13×13=169人,去掉15人,就是原来的人数169-15=154人

6、分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?

解答

除得分88、85、80的人之外,其他人的得分都在30至79分之间,其他人共得分:8250-(88+85+80)=7997(分).

为使不低于60分的人数尽量少,就要使低于60分的人数尽量多,即得分在30~59分中的人数尽量多,在这些分数上最多有3×(30+31+…+59)= 4005分(总分),因此,得60~79分的人至多总共得7997-4005=3992分.

如果得60分至79分的有60人,共占分数3×(60+61+ …+ 79)= 4170,比这些人至多得分7997-4005= 3992分还多178分,所以要从不低于60分的人中去掉尽量多的人.但显然最多只能去掉两个不低于60分的(另加一个低于60分的,例如,178=60+60+58).因此,加上前三名,不低于60分的人数至少为61人.

7、行程:(中等难度)王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?

解答

汽车间隔距离是相等的,列出等式为:(汽车速度-自行车速度)×12=(汽车速度+自行车速度)×4得出:汽车速度=自行车速度的2倍. 汽车间隔发车的时间=汽车间隔距离÷汽车速度=(2倍自行车速度-自行车速度)×12÷2倍自行车速度=6(分钟).

8、跑步:(中等难度)狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?

解答

根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。根据“狗跑5步的时间马跑3步”,可知同一时间马跑3乘7x米=21x米,则狗跑5乘4x=20x米。可以得出马与狗的速度比是21x:20x=21:20根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米

9、排队:(中等难度)有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有( )

解答

根据乘法原理,分两步:第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种综合两步,就有24×32=768种

10、分数方程:(中等难度)

若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去。再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?

解答

设原来小球数最少的盒子里装有a只小球,现在增加了b只,由于小聪没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.

同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.

类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.现在变成:将42分拆成若干个连续整数的和,一共有多少种分法,每一种分法有多少个加数?

因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;又因为42=14×3,故可将42:13+14+15,一共有3个加数;又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子.

11、自然数和:(中等难度)在整数中,有用2个以上的连续自然数的和来表达一个整数的方法.例如9:9=4+5,9=2+3+4,9有两个用2个以上连续自然数的和来表达它的方法.

解答

(1) 请写出只有3种这样的表示方法的最小自然数.(2)请写出只有6种这样的表示方法的最小自然数.关于某整数,它的“奇数的约数的个数减1”,就是用连续的整数的和的形式来表达种数.根据(1)知道,有3种表达方法,于是奇约数的个数为3+1=4,对4分解质因数4=2×2,最小的15(1、3、5、15);有连续的2、3、5个数相加;7+8;4+5+6;1+2+3+4+5;根据(2)知道,有6种表示方法,于是奇数约数的个数为6+1=7,最小为729(1、3、9、27、81、243、729),有连续的2,3、6、9、10、27个数相加:364+365;242+243+244;119+120+…+124;77+78+79+…+85;36+37+…+45;14+15+…+40

六年级数学分数奥数题

1、把甲乙丙三根木棒插入水池中,三根木棒的长度和为 360 厘米,甲有 3/4 在水外,乙有 4/7在水外,丙有 2/5 在水外。水有多深?

【答案】

设水深x厘米,则甲长 4x,乙长 7x/3,丙长 5x/3

4x+7x/3+5x/3=360

x=45

水有 45cm 深

2、小刚有若干本书,小华借走一半加一本,剩下的书小明借走一半加两本,再剩下的书小峰借走一半加三本,最后小刚还剩下两本书,那么小刚原有还剩下两本书,那么小刚原有多少本书?

【答案】

考点:逆推问题.分析:本题需要从问题出发,一步步向前推,小刚剩的 2 本书加上 3 本就是小明借走后的一半, 那么就可以求出小明借走后的数量, 同理可以求出小华借走后的数量,进而可求小明原有的数量.解答:解:小峰未借前有书:

(2+3) ÷(1-1/2 )=10 (本),

小明未借之前有:

(10+2)÷(1-1/2 )=24 (本),

小刚原有书:

(24+1)÷(1-1/2 )=50 (本).

答:小明原有书 50 本.

故答案为:50.

3、甲数比乙数多 1/3,乙数比甲数少几分之几 ?

【答案】

乙数是单位“ 1”,甲数是:

1+1/3= 4/3

乙数比甲数少:

1/3÷4/3=1/4

4、有梨和苹果若干个 ,梨的个数是全体的 5/3 少 17 个,苹果的个数是全体的 7/4 少 31 个,那么梨和苹果的个数共多少?

【答案】

解:设总数有 35X 个

那么梨有 35X乘3/5-17=21X-17 个

苹果有 35X乘4/7-31=20X-31 个

20X-31+21X-17=35X

41X-48=35X

6X=48

X=8

所以梨有21×6-17=109 个,苹果有 20× 6-31=89个。

5、有一个分数,它的分母比分子多 4,如果把分子、分母都加上 9,得到的分数约分后是 9 分 之 7,这个分数是多少?

【答案】

设分子为 X ,分母为 X+4,

则(X+9)/( X+ 13)= 7/9;

解之,得 X=5

答:该分子为 5/9

6、把一根绳分别折成 5 股和 6 股, 5 股比 6 股长 20 厘米,这根绳子长多少米 ?

【答案】

这根绳子长 20÷( 1/5-1/6)=600cm

7、小萍今年的年龄是妈妈的 1/3,两年前母女的年龄相差 24 岁。四年后小萍的年龄是多少岁?

【答案】

解:设小萍今年 X 岁,则妈妈今年 3X 岁

3X-2=X-2+24

3X=X+24

2X=24

X=12

最终答案:12+4=16 (岁)

8、有一篮苹果,甲取一半少一个,乙取余下的一半多一个,丙又取余下的一半,结果还剩下一个。如果每个苹果值 1 元 9 角 8 分,那么这篮苹果共值多少元?

【答案】

丙又取其余的一半,结果还剩一个,说明丙取前是 1+1=2 个

乙取余下的一半多一个,则乙取前是 (2+1)x2=6 个

甲取其中的一半少一个,则甲取前时 (6-1)x2 = 10 个

因此,原来有 10 个

下面是解题过程:设这袋苹果原来 X 个,则

甲取走苹果的个数为 X/2-1

乙取走苹果的个数为( X-X/2+1)/2+1

丙取走苹果的个数(也是剩余的个数)为:总数 -甲取走 -乙取走,即

【X-X/2+1-(X-X/2+1)/2-1 】/2=1

解方程得 X=10

9、小辉乘飞机参加世界少年奥林匹克数学金杯赛。机窗外市一片如画的蔚蓝大海。他看到云海占整个画面的 1/2,并遮住一个海岛的 1/4,露出的海岛占整个画面的 1/4.求被遮住的海岛占应看见的整个海面的几分之几?

【答案】

设海岛为 x,整个画面为 y,遮住海面为 z,

根据题意,

3/4乘x=1/4乘y

y=3x

则海面为 3/4乘x

z=1/2乘3x-1/4乘x=5/4乘x

又海面为 2x …………y-x=3x-x=2x

所以比例为 5/8

除了不用 XY,只用算数,不行的话,只有 X 也行

海岛占整个画面 =1/4÷3/4=1/3

海面占整个画面 =1-1/3=2/3

遮住的海面占整个画面 =(1/2-1/4乘1/3)=1/2-1/12=5/12

遮住的海面占应看见的整个海面 =5/12÷2/3=5/8

即:被遮住的海面占应看见的整个海面的八分之五

10、一只猴子摘了一堆桃子:

第一天吃了这堆桃子的七分之一;

第二天吃了余下桃子的六分之一;

第三天吃了余下桃子的五分之一;

第四天吃了余下桃子的四分之一;

第五天吃了余下桃子的三分之一;

第六天吃了余下桃子的二分之一;

这时还剩下 12 个桃子,那么第一天和第二天猴子所吃桃子的总数是多少个?

【答案】

设桃子总数为 x

1/7x 乘以 6/7x 乘以 5/6x 乘以 4/x5 乘以 3/4x 乘以 2/3x 乘以 1/2x=12

1/7x=12

x=84

第一天 84X1/7=12

第二天 72X1/6=12

12+12=24

11、甲从 A 地到 B 地需要 5 小时,乙从 B 地到 A 地,速度是甲的 5/8.现在甲、乙两人分别从A,B 两地同时出发,相向而行。在途中相遇后继续前进。甲到 B 地后立即返后,乙到 A 地后也立即返回,他们在途中又一次相遇。如果两次相遇点相距 72 千米,则 A,B 两地相距多少千米?

【答案】

解:设 AB两地的距离是单位 1

则甲的速度是 1/5 ,乙的速度是( 1/5 )x(5/8 )=1/8

甲乙的速度比是 甲:乙 =(1/5 ):( 1/8 )=8/5

即第一次相遇时甲行了全程的 8/ (8+5)=8/13

乙行了全程的 5/13

第二次相遇时两人共行 3 个全程,

那么甲行了 3x8/13=24/13

离行完 2 个全程差 2-24/13=2/13

所以 AB两地相距 72/ (8/13-2/13 )=156

答:A、B两地相距 156 千米。

12、把 100 个人分成四队,一队人数是二队人数的 4/3 倍,一队人数是三队人数的 5/4 倍,那么四队有多少人?

【答案】

设第一队为 1,第二队为 3/4,第三队为 4/5,则三队和为 1+3/4+4/5=51/20 ,可知,第一队人数应为 20 的倍数。

第一队为 20 时,20+15+16+49=100 ;

第一队为 40 时,40+30+32>100 舍去。

所以, 20+15+16+49=100 为唯一解,即:第四队有 49 人。

ps:也可将第一队设为 k 人,三队之和 =51k / 20 ;显见, k 应为 20 的倍数。

只有 k=20 时有解。

13、足球赛门票 15 元一张,降价后观众增加了一半,收入增加了五分之一,每张门票降价多少元?

【答案】

观众增加一倍,即原来只有一个人来看,现在是两个人来看。收入增加 1/5 ,即现在两个人的总票价比原来一个人时单人票价多 1/5 ,为 15×(1+1/5 )=18元

平均每人 18/2=9 元

比原来降低了 15-9=6 元

降低了 6/15=40%

答:解:15-15 ×[ (1+1 /5 )÷( 1+1 /2 )

=15-15 ×[6 /5 ÷3 /2 ]

=15-15 ×[6/ 5 ×2 /3 ]

=15-15 ×4/ 5

=15-12

=3 (元)

5.初三数学奥数题及答案 篇五

班级

姓名

分数

1、计算:⑴ 454十999×999十545

⑵ 999十998十997十996十1000十1004十1003十1002十1001

2、数一数下面的图形.()条线段()个长方形

3、要使上下两排的小猫一样多,应该怎样移?

4、按下面图形的排列情况,算出第24个图形是什么?(1)○○△□○○△□○○△□……第24个图形是()(2)☆◇◇△△☆◇◇△△☆◇◇△△……第24个图形是()

5、用火柴棍拼成的数字和符号如下图所示,那么用火柴棍拼成一个减法等式最少要用_____________根火柴

6、有学生若干人参加植树活动,如果每组12人,就多11人,如果每组14人,就少9人。问分成______组,共有______人。

7、村姑卖鸡蛋,第一次卖出一篮的一半又二个;第二次卖出余下的一半又二个;第三次卖出再剩下的一半又二个,这时篮里只剩下二个蛋,问这篮鸡蛋有多少个?

8、一个文具店中橡皮的售价为每块5角,圆珠笔的售价为每支1元,签字笔的售价为每支2元5角。小明要在该店花5元5角购买其中两种文具,他有___________种不同的选择。

9、一个书架上有数学、语文、英语、历史4种书共27本,且每种书的数量互不相同。其中数学书和英语书共有12本,语文书和英语书共有13本。有一种书恰好有7本,是_____________书。

10、下面两个算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么A+B+C+D+E+F+G=_____________。

+ A B C D E F G 2 0 0 7

+

D C B A

6.初三数学奥数题及答案 篇六

奥数精讲1

学员编号:

级:四年级

数:

学员姓名:

辅导科目:数学

学科教师:

授课目标

C数的整除

C找规律

C

数字迷

授课难点

整除

教学重点:找规律

——数的整除

计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

数的整除具有如下性质:

性质1

如果甲数能被乙数整除,乙数能被丙数整除,那么甲数一定能被丙数整除。例如,48能被16整除,16能被8整除,那么48一定能被8整除。

性质2

如果两个数都能被一个自然数整除,那么这两个数的和与差也一定能被这个自然数整除。例如,21与15都能被3整除,那么21+15及21-15都能被3整除。

性质3

如果一个数能分别被两个互质的自然数整除,那么这个数一定能被这两个互质的自然数的乘积整除。例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除。

利用上面关于整除的性质,我们可以解决许多与整除有关的问题。为了进一步学习数的整除性,我们把学过的和将要学习的一些整除的数字特征列出来:

(1)一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能被2整除。

(2)一个数的个位数字如果是0或5,那么这个数就能被5整除。

(3)一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。

(4)一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。

(5)一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。

(6)一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。

例题1

在下面的数中,哪些能被4整除?哪些能被8整除?哪些能被9整除?

234,789,7756,8865,3728.8064。

解:能被4整除的数有7756,3728,8064;

能被8整除的数有3728,8064;

能被9整除的数有234,8865,8064。

例题2

在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?

解:如果56□2能被9整除,那么5+6+□+2=13+□应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;

如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;

如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除。

例题3

从0,2,5,7四个数字中任选三个,组成能同时被2,5,3整除的数,并将这些数从小到大进行排列。

解:因为组成的三位数能同时被2,5整除,所以个位数字为0。根据三位数能被3整除的特征,数字和2+7+0与5+7+0都能被3整除,因此所求的这些数为270,570,720,750。

1.6539724能被4,8,9,24,36,72中的哪几个数整除?

2.个位数是5,且能被9整除的三位数共有多少个?

3.一些四位数,百位上的数字都是3,十位上的数字都是6,并且它们既能被2整除又能被3整除。在这样的四位数中,最大的和最小的各是多少?

——找规律

计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经见过“找规律”这个题目,学习了如何发现图形、数表和数列的变化规律。这一讲重点学习具有“周期性”变化规律的问题。什么是周期性变化规律呢?比如,一年有春夏秋冬四季,百花盛开的春季过后就是夏天,赤日炎炎的夏季过后就是秋天,果实累累的秋季过后就是冬天,白雪皑皑的冬季过后又到了春天。年复一年,总是按照春、夏、秋、冬四季变化,这就是周期性变化规律。再比如,数列0,1,2,0,1,2,0,1,2,0,…是按照0,1,2三个数重复出现的,这也是周期性变化问题。

例题1

节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接3盏黄灯,然后又是5盏红灯、4盏蓝灯、3盏黄灯、……这样排下去。问:

(1)第100盏灯是什么颜色?

(2)前150盏彩灯中有多少盏蓝灯?

分析与解:这是一个周期变化问题。彩灯按照5红、4蓝、3黄,每12盏灯一个周期循环出现。

(1)100÷12=8……4,所以第100盏灯是第9个周期的第4盏灯,是红灯。

(2)150÷12=12……6,前150盏灯共有12个周期零6盏灯,12个周期中有蓝灯4×12=48(盏),最后的6盏灯中有1盏蓝灯,所以共有蓝灯48+1=49(盏)

例题2

有一串数,任何相邻的四个数之和都等于25。已知第1个数是3,第6个数是6,第11个数是7。问:这串数中第24个数是几?前77个数的和是多少?

分析与解:因为第1,2,3,4个数的和等于第2,3,4,5个数的和,所以第1个数与第5个数相同。进一步可推知,第1,5,9,13,…个数都相同。

同理,第2,6,10,14,…个数都相同,第3,7,11,15,…个数都相同,第4,8,12,16…个数都相同。

也就是说,这串数是按照每四个数为一个周期循环出现的。所以,第2个数等于第6个数,是6;第3个数等于第11个数,是7。前三个数依次是3,6,7,第四个数是

25-(3+6+7)=9。

这串数按照3,6,7,9的顺序循环出现。第24个数与第4个数相同,是9。由77÷4=9……1知,前77个数是19个周期零1个数,其和为25×19+3=478。

例题3

下面这串数的规律是:从第3个数起,每个数都是它前面两个数之和的个位数。问:这串数中第88个数是几?

628088640448…

分析与解:这串数看起来没有什么规律,但是如果其中有两个相邻数字与前面的某两个相邻数字相同,那么根据这串数的构成规律,这两个相邻数字后面的数字必然与前面那两个相邻数字后面的数字相同,也就是说将出现周期性变化。我们试着将这串数再多写出几位:

当写出第21,22位(竖线右面的两位)时就会发现,它们与第1,2位数相同,所以这串数按每20个数一个周期循环出现。由88÷20=4……8知,第88个数与第8个数相同,所以第88个数是4。

【练习】

1.有一串很长的珠子,它是按照5颗红珠、3颗白珠、4颗黄珠、2颗绿珠的顺序重复排列的。问:第100颗珠子是什么颜色?前200颗珠子中有多少颗红珠?

2.将1,2,3,4,…除以3的余数依次排列起来,得到一个数列。求这个数列前100个数的和。

3.有一串数,前两个数是9和7,从第三个数起,每个数是它前面两个数乘积的个位数。这串数中第100个数是几?前100个数之和是多少?

4.有一列数,第一个数是6,以后每一个数都是它前面一个数与7的和的个位数。这列数中第88个数是几?

——数字迷

计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

例题1

把下面算式中缺少的数字补上:

分析与解:一个四位数减去一个三位数,差是一个两位数,也就是说被减数与减数相差不到100。四位数与三位数相差不到100,三位数必然大于900,四位数必然小于1100。由此我们找出解决本题的突破口在百位数上。

(1)填百位与千位。由于被减数是四位数,减数是三位数,差是两位数,所以减数的百位应填9,被减数的千位应填1,百位应填0,且十位相减时必须向百位借1。

(2)填个位。由于被减数个位数字是0,差的个位数字是1,所以减数的个位数字是9。

(3)填十位。由于个位向十位借1,十位又向百位借1,所以被减数十位上的实际数值是18,18分解成两个一位数的和,只能是9与9,因此,减数与差的十位数字都是9。

所求算式如右式。

由例1看出,考虑减法算式时,借位是一个重要条件。

例题2

在下列各加法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,求出这两个算式:

分析与解:(1)这是一道四个数连加的算式,其特点是相同数位上的数字相同,且个位与百位上的数字相同,即都是汉字“学”。

从个位相同数相加的情况来看,和的个位数字是8,有两种可能情况:2+2+2+2=8与7+7+7+7=28,即“学”=2或7。

如果“学”=2,那么要使三个“数”所代表的数字相加的和的个位数字为8,“数”只能代表数字6。此时,百位上的和为“学”+“学”+1=2+2+1=5≠4。因此“学”≠2。

如果“学”=7,那么要使三个“数”所代表的数字相加再加上个位进位的2,和的个位数字为8,“数”只能代表数字2。百位上两个7相加要向千位进位1,由此可得“我”代表数字3。

满足条件的解如右式。

(2)由千位看出,“努”=4。由千、百、十、个位上都有“努”,5432-4444=988,可将竖式简化为左下式。同理,由左下式看出,“力”=8,988-888=100,可将左下式简化为下中式,从而求出“学”=9,“习”=1。

满足条件的算式如右下式。

例题3

在□内填入适当的数字,使左下式的乘法竖式成立。

分析与解:为清楚起见,我们用A,B,C,D,…表示□内应填入的数字(见右上式)。

由被乘数大于500知,E=1。由于乘数的百位数与被乘数的乘积的末位数是5,故B,C中必有一个是5。若C=5,则有

6□□×5=(600+□□)×5=3000+□□×5,不可能等于□5□5,与题意不符,所以B=5。再由B=5推知G=0或5。若G=5,则F=A=9,此时被乘数为695,无论C为何值,它与695的积不可能等于□5□5,与题意不符,所以G=0,F=A=4。此时已求出被乘数是645,经试验只有645×7满足□5□5,所以C=7;最后由B=5,G=0知D为偶数,经试验知D=2。

右式为所求竖式。

此类乘法竖式题应根据已给出的数字、乘法及加法的进位情况,先填比较容易的未知数,再依次填其余未知数。有时某未知数有几种可能取值,需逐一试验决定取舍。

1.在下面各竖式的□内填入合适的数字,使竖式成立:

2.右面的加法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。问:“小”代表什么数字?

7.小学数学专业知识题及答案 篇七

一、填空。(每空

1分,共

20分)

1.

9

211275

2.从6时整到6时30分,分针旋转了(180)度;如果分针长6厘米,分针的针尖走过的路程是(6*3.14)厘米。(π取值3.14)

3.一种商品打七折后的售价是49元,它的原价是(70)元。4.如右图,一个正方体的顶面和侧面各画一条直线

AB和AC,则AB和AC间的夹角是(60)度。

5.两个正方体的棱长之比是2:3,它们的表面积之比是(4:9),体积之比是(8:27)。6.一个比例的两个内项互为倒数,一个外项是0.3,另一个外项是(10/3)。7.

+=9163+=46

=(37)

8.A÷B÷C=5A÷B-C=12A-B=84A=(90)

11111++++=(5/24)1220304256

1

10.水结成冰时,体积比原来增加,冰化成水时,体积比原来减少几分之几?(11/12)

11

1

11.如右图,把一个正三角形的两边各延长,

3

9.

连结延长线的端点,又形成一个三角形。新形成的大三角形的面积比原来增加了几分之几?(9/16)12.下面这个分数的分子、分母是由1~9九个数字组成的。

请把它约分:

5823

=(1/3)

17469

13.一个扇形和一个圆的半径相等,它们的面积比是2∶5。这个扇形的圆心角是(144°)。

14.一个数除197余5,除205则还差3就能整除。这个数最大是(16)。

15.一个四位数除以879,商是一位数,并且,整个算式中没有重复的数字。商是(4)。

二、选择正确答案的序号填在括号里。(每题2分,共10分)

1.a、b、c都是正整数,且a÷b=c;如果同时令a×6,b÷2;要保证原等式成立,那

么,c应(C)。

A:乘3B:除以3C:乘12D:除以122.19第一季度共有(B)天。

A:91B:90

3.任意平行四边形有(B)条对称轴。

A:2B:4C:0D:无数

4.如下图,阴影部分占大圆的

11

,占小圆的。小圆面积占大圆面积的(A)。86

A:

3423

B:C:D:

4332

5.一种农药原价每袋50元,连续两次降价10%后,售价应是(B)元。A:45B:40.5C:40D:38三、简算。(每题3分,共30分。要写出主要过程。)

1.41×1012.12×(=41*(100+1)=3+2-4=41*100+41*1=1=4100+41=41413.12.25-(=12+=12

111

+-)463

11

-)4.80×16×25×12549

1

=80*4*4*25*1259

1

=10000*4*1009

=4000000

34181818182182×64+×656.×77218218818181344

=(+)*64+=9*2*10101/1001*218×182*1001/9*9*10101

777

5.

=64

4

=182/9817

7.×2001-×8.70005+599998―30001―7=2001×(2000+1)-2000×2002=620005=2001-2000=1

9.×20042003-20032003×20042004=1000010.1÷(

1111+++??+)的商的整数部分是几?110111219

四、应用题。(每题5分,共40分)

1.食堂买来280千克大米,计划吃7天。实际每天比计划少吃5千克,这批大米实际吃

了多少天?280/7=40(kg)280/(40-5)=8(天)

2.甲、乙两列火车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米。甲车开出后1小时,乙车才开出,再过2小时两车相遇。两地间的铁路长多少千米?75+(75+69)*2=363(千米)

3.一个服装厂原来做一套制服用3.8米布。改进裁剪技术后,每套节省布料0.2米。原来做1800套制服用的布,现在可以做多少套?(用两种方法解,并画图揭示数量关系)1800*3.8/(3.8-0.2)=19001800*0.2/(3.8-0.2)+1800=1900

4.一团绳子长10米,捆扎一种礼品盒(如下图)。如果结头处的长为25厘米,这团绳子

最多可以捆扎几盒?还剩几米?

10/(0.3*2+0.2*2+0.15*4)=5(盒)??0.75(米)

5.您能把一个长9厘米、宽4厘米的长方形,用剪刀不拐弯儿地剪2次,把这个长方形

分成3部分,再把这3部分拼成一个正方形吗?(画图表示出您的剪法)6.一辆汽车从甲地开往乙地。上午行了全程的

3

还多96千米,下午行的路程是上午的5

1

,甲乙两地的路程是多少?(用算术方法解答)640千米3

7.明明和爸爸上山采了10千克鲜蘑菇,经测试得知这些蘑菇的含水量为99%,晾晒1

天后,再测试,发现含水量为98%。这时,这些蘑菇的重量是多少千克?(用算术方法解答)

8.如下图,正方形ABCD的面积是48平方厘米,E、F分别是AB和AD的中点,EG=2GC。求三角形FGD的面积。

10

小学数学教师招聘考试专业知识试题卷二(附参考答案)(1)

第一部分教育理论与实践

一、单项选择题(在每小题的四个备选答案中,选出一个符合题意的正确答案,,共5分)

8.初三数学奥数题及答案 篇八

1.凑整法

与整数运算中的“凑整法”相同,在分数运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数„„从而使运算得到简化.

例1(314+623+134+813)×(2-720).解:原式=[(314+134)+(623+813)]×(2-7

20)=(5+15)×(2-720)=20×2-20×720

=40-7=33.例2 4145×25+327÷4+0.25×124.解:原式=4×25+15×25+32÷4+47÷4+0.25×4×31 =100+5+8+117+31=1447.2.约分法

例3 1×2×32×4×67×14×211×3×52×6×107×21×35.33

解:原式=1×2×32×(1×2×3)7×(1×2×3)1×3×523×(1×3×5)73×(1×3×5)(1×2×3)×(12373)(1×3×5)×(12373)1×2×321×3×55.

例4 99×(1-1)×(1-123)×(1-114)ׄ×(1-99).解:原式=99×1×3ׄ×982×23499=1.

3.裂项法

根据d1n×(nd)=n-1nd(其中n,d是自然数),在计算若干个分

数之和时,若能将每个分数都分解成两个分数之差,并且使中间的分数相互抵消,则能大大简化运算. 例5 1112+16+12+20+130+142.解:原式=1+1+1+11

1×22×33×44×5+15×6+6×7.=1-111112+2-13+3-14+4-155116617

=1-17=67.例6 1111×3+3×5+5×7+„+197×99.=122×(2+2+„ +2

解:原式1×33×55×7+ 97×99)=12×(1-1111„ +13+3-5+5-17+ 97-199)1

=2×(1-112×984999)=99=99.例7 在自然数1~100中找出10个不同的数,使这10个数的倒数的和等于1.分析与解:这道题看上去比较复杂,要求10个分子为1,而分母不

同的分数的和等于1,似乎无从下手.但是如果巧用“11n-1n1=n(n1)”

来做,就非常简单了.

因为1=1-1112+12-3+13-4+114-5+15- „,所以可根据

题中所求,添上括号.此题要求的是10个数的倒数和为1,于是做成:

1=(1-111111112)+(2-3)+(3-4)+(4-5)+(15-6)+(11

6-17)+(17-18)+(11118-9)+(9-10)+10=11×2+12×3+13×4+14×5+15×6+116×7171×88×99×10110

=1112612120113042156172190110.所求的10个数是2,6,12,20,30,42,56,72,90,10.

本题的解不是唯一的,例如由1+11030=1+1945推知,用9和45

替换答案中的10和30,仍是符合题意的解.

4.代数法

例8(1++++)-23451111(1++++)×(++).23452342131411+1+1)×(1111

分析与解:通分计算太麻烦,不可取.注意到每个括号中都有

12+13+14,不妨设12+13+14=A,则

原式=(1+A)×(A+)×A55111122=A++A+A-A-A-A=.55551)-(1+A+1

例2 计算:

分析与解 题中的每一项的分子都是1,分母不是连续相邻两个自然数之积,而是连续三个自然数的乘积.下面我们试着从前几项开始拆分,探讨解这类问题的一般方法.因为

这里n是任意一个自然数.利用这一等式,采用裂项法便能较快地求出例2的结果.例3 计算:

分析与解 仿上面例

1、例2的解题思路,我们也先通过几个简单的特例试图找出其规律,再用裂项法求解.这几个分数的分子都是2,分母是两个自然数的积,其中较小的那个自然数正好等于分母中自然数的个数,另一个自然数比这个自然数大3.把这个想法推广到一般就得到下面的等式:

连续使用上面两个等式,便可求出结果来.因为第一个小括号内所有分数的分子都是1,分母依次为2,3,4,„,199,所以共有198个分数.第二个小括号内所有分数的分子也都是1,分母依次为5,6,7,„,202,所以也一共有198个分数.这样分母分别为5,6,7,„,199的分数正好抵消,例4 求下列所有分数的和:

分析与解这是分数求和题,如按异分母分数加法法则算,必须先求1,2,3,„,1991这1991个数的最小公倍数,单是这一点就已十分麻烦,为此我们只好另找其他的方法.先计算分母分别为1,2,3,4的所有分数和各等于多少.这四个结果说明,分母分别为1,2,3,4的上述所有分数和分别为1,2,3,4.如果这一结论具有一般性,上面所有分数的求和问题便能很快解决.下面我们来讨论一般的情况.假定分数的分母是某一自然数k,那么分母为k的按题目要求的所有分

9.小学及初中奥数题及解析答案 篇九

2、一班有学生45人,男生2/5和女生的1/4参加了数学竞赛,参赛的共有15人,男女生各几人 解:设男生有x人,则女生有(45-x)。

2/5x+1/4(45-x)=15

2/5x + 4/45-4/x =15

x=25

女生:45-25=20(人)

3、一列火车长200米,通过一条长430的隧道用了42秒,以同样的速度通过某站台用25秒,这个站台长多少米?(200+430)÷42×25-200 =375-200 =175米

4、一项工作,甲单独做需15天完成,乙单独做需12天完成。这项工作由甲乙两人合做,并且施工期间乙休息7天,问几天完成?

解:设完成工作要X天,所以甲乙一起工作(X-6)天,甲单独工作6天。根据题意可得甲单独一天可完成1/15.乙1/12,由此得式子:

(1/15 +1/12)(X-6)+1/15*6=1 解得X=10

5、本骑车前往一座城市,去时的速度为x,回来时的速度为y。他整个行程的平均速度是多少?(答案是2xy/x+y,为什么?)

解:设总路程为S,则去时用的时间为S/X,回来的时候用的时间为S/Y 那么平均速度为2S/(S/X+S/Y)=2/(1/X+1/Y)=2XY/(X+Y)

6、游泳池里,参加游泳的学生,小学生占30%,又来一批学生后,学生总数增加20%,小学生占学生总数的40%,小学

7、将37分为甲、乙、丙三个数,使甲、乙、丙三个数的乘积为1440,并且甲、乙两数的积比丙数多12,求甲、乙、丙各是几? 解:把1440分解质因数:

1440= 12×12×10 =2×2×3×2×2×3×2×5 =(2×2×2)×(3×3)×(2×2×5)=8×9×20 如果甲、乙二数分别是8、9,丙数是20,则: 8×9=72,20×3+12=72 正符合题中条件。

答:甲、乙、丙三个数分别是8、9、20。

8、在800米环岛上,每隔50米插一面彩旗,后来又增加了一些彩旗,就把彩旗的间隔缩短了,起点的彩旗不动,重新插后发现,一共有四根彩旗没动,问现在的彩旗间隔多少米? 800米环岛每隔50米插一面彩旗,共插800÷50=16根,重新插完后,有4根没动,而这4根中的任意相邻的两根间的距离为50×(16÷4)=200米,重新插完后每相邻的两根彩旗间的距离与50的最小公倍数是200,并且这个距离一定小于50米.现在间隔为40米。

9、小学组织春游,同学们决定分成若干辆至多可乘32人的大巴车前去。如果打算每辆车坐22个人,就会有一人没有座位;如果少开一辆车,那么,这批同学刚好平均分成余下的大巴。那么原来有多少同学?多少辆大巴?

少开一车 那么这车上的22个人就下车了 其他车上的人不动

就多余22+1=23个人

本来多余一个人,这剩下的23个人要刚好分配给剩下的车辆 应为 人是个体的不能分开 所以这23人刚好平均分配

注意 只平均分配 就是说 每车都分到相同人数 而23是一个奇数 能让23整除的只有1和23这2个数

1排除掉 只有23 所以: 22+1=23 <人>

23+1=24 <辆>

23*23=529<人> 答:原先租了24辆客车.学校师生共529人.10、一块正方体木块,体积是1331立方厘米。这块正方体木块的棱长是多少厘米?(适于六年级)

解:把1331分解质因数:

1331=11×11×11

答:这块正方体木块的棱长是11厘米。

11、李明是个集邮爱好者。他集的小型张是邮票总数的十一分之一,后来他又收集到十五张小型张,这时小型张是邮票总数的九分之一,李明一共收集邮票多少张 先找出不变量:不是小型张的邮票 原来小型张是 不是小型张的1/10 现在小型张是 不是小型张的1/8 不是小型张:15/(1/8-1/10)=600张 小型张:600*1/8=75张 共:600+75=675(张)

12、两堆沙,第一堆25吨,第二堆21吨。这两堆中各用去同样多的一部分后,第二堆剩下的是第一堆的3/4,每堆用多 设用去x吨

(25-x)3/4=21-x x=9 用去9吨

13、幼儿园买来的苹果是梨的3倍,吃掉10个梨和6个苹果后,还有苹果正好是梨的5倍。原来买来苹果和梨共多少个?

设买来梨x只,则苹果3x只 5(x-10)=3x-6 x=22 所以梨为22只,苹果66只。共88只。

14、在一个圆里画一个最大的正方形,已知圆的面积是628平方厘米,求正方形的面积。解:用圆的面积除以π就是r的平方,即正方形面积的1/4,用r的平方乘4为正方形的面积。

列式:

628÷3.14=200平方米

(r的平方,也是正方形面积的1/4)

200*4=800平方米

答:正方形的面积是800平方米。

注:在一个圆里画一个最大的正方形,正方形的对角线是直径。

15、在一个正方形内画一个最大的圆,已知正方形的面积是20平方厘米,圆的面积是多少?

16、小明看一本故事书,第一天看的页数与总页数的比是3:7,如果再看15页,正好是这本书的一半,这本书有多少页?

设总页数位X:3x/7+15=x/2

解x得:7x/14-6x/14=15

x/14=15

x=210(页)

17、某服装店出售某种服装,已知售价比进价高20%以上才能出售。为了获得更高的利润,该店老板以高出进价80%的格标价。若你想买下标价360元的这种服装,店老板最多降价多少元? 标价为360元的衣服,实际进价为:360÷(1+80%)=200元。最低出售价格为:200×(1+20%)=240元,最低可以降的价格为:360-240=120元。

18、李大爷靠墙围了一个半径是10米的半圆形养鸡场,用了多长的篱笆?面积是多少解:圆的周长计算公式c=πd,π=3.14

因为是半圆那就是1/2 πd,(d=2r)

由公式可求出用了多长的篱笆:2*3.14*10*0.5=31.4平方米

根据圆的面积计算公式,S=πR²可以求出圆的面积,又因为是半圆,那么面积就是整圆的一半。

S=3.14×10²×0.5=157平方米!

19、甲书架上的书是乙书架上的5分之4,从这两个书架上各借出112本后,甲书架上的书是乙书架上的7分之4,原来甲、乙两个书架各有多少本书?(解方程,要有过程)

甲书架上的书是乙书架上的4/5,所以设原来甲、乙两个书架上各有4x,5x本书(4x-112)/(5x-112)=4/7 4(5x-112)=7(4x-112)x=42 4x=168 5x=210 原来甲、乙两个书架上各有168,219本书

20、六1班订阅数学报,订窗报纸人数占年级人数的百分之四十,订数学报人数占订阅人数的百分之四十订语文报人数 的四分之三,两报都订的有15人,全年级有几人 订阅语文和数学报的人数是:15÷(40%+3/4-1)=15÷15%=100(人)全年级有:100÷40%=250(人)

21、六年级有三个班,一班占全年级的1/3,二班和三班的比是1:13,二班比三班少8人,三个班各有几人?

原题应该是二班和三班的比是11:13 8/(13-11)=4

4*11=44(人)4*13=52(人)1-(1/3)=2/3(44+52)/(2/3)*(1/3)=48(人)

答:一班48人,二班44人,三班52人。

22、张叔叔家种月季花36棵,种菊花的棵树是月季花的5/12,种兰花的棵树是菊花的3/8,张叔叔家种了多少棵兰花(40棵)23、4吨葡萄在新疆测得含水量是99%,运抵南京后测得含水量是98%,问葡萄运抵南京后还剩几吨?

×(1-99%)=0.04吨

0.04÷(1-98%)=2吨

24、一块长方形试验田,长和宽各增加3米,它的面积就增加99平方米。现在要在扩建后的试验田四周围上一圈篱笆,这道题需要检查计算是否正确 需要准备多长的篱笆? 周长=(99-3×3)÷3×2=60米

原长宽x y 题意得(x+3)(y+3)-xy=99>>>x+y=30>>>2*(x+3+y+3)=72

25、三角形三条边分别是3厘米.4厘米.5厘米。这个三角形斜边上的高是多少厘米?

这是一个直角三角形(3和4是底和高),它的面积是4×3÷2=6平方厘米 利用面积不变:

根据三角形面积公式反推回去,它斜边上的高是:6×2÷5=2.4平方厘米

26、一辆汽车每小时行40千米,自行车每行1千米比汽车多用2.5分钟,自行车速度是汽车速度的百分之几? 60/40÷(60/40+2.5)=

27、比例尺1:5000000的地图上,量得甲乙两地距离9厘米,客车和货车同时从甲乙两地相向开出,6时相遇。客车和货车的速度比是8:7,客车的速度是多少? 两地距离9÷1/5000000=45000000厘米=450千米 客车速度是 450÷6×8/(8+7)=75×8/15 =40千米/小时

28、一个圆柱形油桶的容积是60立方分米,底面积是7.5平方分米,装了五分之三桶油,油面高多少分米? 解:油面高:60×3/5÷7.5=4.8分米

30、用五个长10厘米,宽5厘米,高4厘米的长方体拼成一个表面积最大的长方体,它的表面积是多少? 解:5×4=20平方厘米

﹙5-1﹚×2=8

20×8=160平方厘米

﹙10×5+10×4+5×4﹚×2×5=1100平方厘米 1100-160=940平方厘米。

31、用3个厂5厘米、宽3厘米、高2厘米的长方体拼成一个表面积最小的长方体,要使表面积最小,拼的时候把最大的面(5×3)叠起来 得到长方体长5厘米,宽3厘米,高6厘米 表面积:(5×3+5×6+3×6)×2=126平方厘米 体积:5×3×6=90立方厘米

32、同学们从学校去公园,走了全程的百分之八十时,正好到达少年宫;沿原路返回时行了全程的四分之一就过了少年宫0.3千米,学校离公园多少千米? 1/4=25% 25%-(1-80%)=5% 0.3÷ 5%=6千米

33、一列客车长200m,一列货车长280m,它们在平行的轨道上相向行驶,从相遇到车尾离开需18s.已知客车与货车的速度为5:3,求两车每秒各行多少千米? 速度和=(200+280)÷18=80/3米/秒 客车速度=80/3÷(5+3)×5=50/3米/秒 货车速度=80/3-50/3=10米/秒 34、5名同学一个组去参观少年宫,正好分成4组,每组一位教师带队,参观少年宫的一共有多少人?

35、六年级(1)班原来有学生54人,男生占全班人数的5/9,后来男生转走了几人,这时男生占全班的13/25,问男生转走了几人? 54-54×(1-5/9)÷(1-13/25)=4(人)

(此题利用的是不变量)

36、小猴子扒了50个香蕉,它很贪吃,每走1米就吃一个,猴子家离树林50米,最多能运回家多少根香蕉?

(0根)

37、五年级一班有学生45人,其中男生人数比女生多1/7,后来又转来男生若干人,这时男生和女生人数的比是9:7,现在全班有学生多少人?

38、有一张宽6厘米,长12厘米的长方形铁皮,用它做成一个长方形无盖的盒子,盒子的容积可能是多少?(长、宽、高均为整厘米)设高取1厘米:1×4×10=40立方厘米 设高取2厘米:2×2×8=32立方厘米

39、将 1、2、3、4、5.......等自然数相加得到2012,结果发现漏算了一个数,请问那个是? 设有n个数,拿走的是a,由(1+2+。。+n)=2012+a(n+1)n=4024+2a=63*64=4032

∴a=(4032-4024)/2=4

40、一列客车长200m,一列货车长280m,它们在平行的轨道上相向行驶,从相遇到车尾离开需18s.已知客车与货车的速度为5:3,求两车每秒各行多少千米? 速度和=(200+280)÷18=80/3米/秒 客车速度=80/3÷(5+3)×5=50/3米/秒 货车速度=80/3-50/3=10米/秒

41、一本书的中间被撕掉了一张,佘下的各页码数的和正好是1200。这本书有()页,撕掉的一张上的页码是()和()解:设这本书有n页,撕掉的一张上的页码是m,由于一张2页,所以n是2的倍数,得 n(n+1)/2=1200+x+(x+1),解得n=50,x=37 所以这本书有(50)页,撕掉的一张上的页码是(37)和(38)。

42、有3个非零数字,能组成的所有的三位数之和是3108,这3个数字的和是()方法一:

设三个数字分别是X、Y、Z 则可组成的三位数的数值分别是 100X+10Y+Z 100X+10Z+Y 100Y+10Z+X 100Y+10X+Z 100Z+10X+Y 100Z+10Y+X 6个数值相加

222(X+Y+Z)=3108

X+Y+Z=14

43、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙是共用8小时,水速每小时3千米,它从乙地返回甲地用()小时?

甲乙两地距离为8(15+3)=144 则逆水需要时间为144/(15-3)=12小时

从上游甲地开往下游乙速度为15+3=18千米/小时,用了8小时 则路程为18×8=144千米

从下游乙地开往上游甲速度为15-3=12千米/小时 时间为144÷12=12小时

44、圆锥形容器中装有2升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?(8-1)x2=14

注:在这种情况下体积的比永远是8:1

45、修一条路,第一天修了全长的1/2多2千米,第二天修了余下的1/3还少1千米,第三天修了全长的1/4多1千米,这时还剩20千米,求公路总长。倒推还原

第三天后,剩余20千米 第二天后,剩余(20+1)÷(1-1/4)=28千米 第一天后,剩余(28-1)÷(1-1/3)=81/2千米 第一天前,即原来(81/2+2)÷(1-1/2)=85千米 答:这条路的长度是85千米。

46、一对孪生姐妹今年的年龄的和、差、积、商相加的和为100,她们今年多少岁? 年龄为X,则: 2X+0+X*X+1=100 解得X=9

47、将14拆成几个自然数的和,再求出这些数的乘积,可以求出的最大乘积是多少?

[解析]利用“核心法则”可知:14=3+3+3+3+2,最大乘积为3×3×3×3×2=162。

48、只布袋中装有大小相同,但颜色不同的手套若干只。已知手套的颜色有黑白灰三种。最少要取多少只手套才有保证有3副手套是同色的? 4+3+3=10只

最坏的取法是三种手套分别拿 4只3只3只,取10只就能保证有两副相同

手套只有3种,题目要我们要相同,我们就不让他相同,抽屉原理就是这样的 最坏的取法是先每样三只,这样就只有一副黑或白或灰的,3x3=9只 再拿 一只随便加到那,都有4只相同的,也就是两副相同的。

49、一个时钟的时针长20厘米,如果走一昼夜,那么它的尖端所走过的路程有多长?时针所扫过的面积有多大?

路程:2*3.14*20*2=251.2厘米

面积:3.14*20*20*2=2512平方厘米

50、参加数学竞赛的男生比女生多28人,女生全部优胜,男生的3/4得优胜,男女生各优胜的共42人,求男女生参加竞赛的各多少人? 方程:

解:设男生参赛有x人 x+(x+28)×3/4=42 解得x=12 12+28=40

算术:

(42-28)/(1+3/4)=21*4/7 =12(人)

12+28=40(人)

答:女生参赛有40人。过桥问题(1)

1.一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?

分析:这道题求的是通过时间。根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。路程是用桥长加上车长。火车的速度是已知条件。

总路程:(米)

通过时间:(分钟)

答:这列火车通过长江大桥需要17.1分钟。

2.一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?

分析与解答:这是一道求车速的过桥问题。我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。

总路程:(米)

火车速度:(米)

答:这列火车每秒行30米。

3.一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?

分析与解答:火车过山洞和火车过桥的思路是一样的。火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程。

总路程:

山洞长:(米)答:这个山洞长60米。

和倍问题

1.秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁? 我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)

(2)秦奋的年龄:40÷5=8岁

(3)妈妈的年龄:8×4=32岁

综合:40÷(4+1)=8岁

8×4=32岁

为了保证此题的正确,验证

(1)8+32=40岁

(2)32÷8=4(倍)计算结果符合条件,所以解题正确。

2.甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少?

已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和。看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度。

甲乙飞机的速度分别每小时行800千米、400千米。

3.弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍? 思考:(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么?

(2)要想求哥哥给弟弟多少本课外书,需要知道什么条件?

(3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍?

思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书。根据条件需要先求出哥哥剩下多少本课外书。如果我们把哥哥剩下的课外书看作1倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2倍,也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3倍,而兄弟俩人课外书的总数始终是不变的数量。

(1)兄弟俩共有课外书的数量是20+25=45。

(2)哥哥给弟弟若干本课外书后,兄弟俩共有的倍数是2+1=3。

(3)哥哥剩下的课外书的本数是45÷3=15。

(4)哥哥给弟弟课外书的本数是25-15=10。

试着列出综合算式:

4.甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?

根据甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,可求出这时甲、乙两库共存粮多少吨。根据“这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1倍,那么甲、乙库所存粮就相当于乙存粮的3倍。于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨。最后就可求出甲库原来存粮多少吨。

甲库原存粮130吨,乙库原存粮40吨。

列方程组解应用题

(一)1.用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?

依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数,一个是制盒底的铁皮张数,这样就可以用两个未知数表示,要求出这两个未知数,就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组。

两个等量关系是:A做盒身张数+做盒底的张数=铁皮总张数

B制出的盒身数×2=制出的盒底数 用86张白铁皮做盒身,64张白铁皮做盒底。

奇数与偶数

(一)其实,在日常生活中同学们就已经接触了很多的奇数、偶数。

凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。

因为偶数是2的倍数,所以通常用 这个式子来表示偶数(这里 是整数)。因为任何奇数除以2其余数都是1,所以通常用式子 来表示奇数(这里 是整数)。

奇数和偶数有许多性质,常用的有:

性质1 两个偶数的和或者差仍然是偶数。

例如:8+4=12,8-4=4等。

两个奇数的和或差也是偶数。

例如:9+3=12,9-3=6等。

奇数与偶数的和或差是奇数。

例如:9+4=13,9-4=5等。

单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。

性质2 奇数与奇数的积是奇数。

偶数与整数的积是偶数。

性质3 任何一个奇数一定不等于任何一个偶数。

1.有5张扑克牌,画面向上。小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?

同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。

5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数。

所以无论他翻动多少次,都不能使5张牌画面都向下。

2.甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒。那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?

不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子。

如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个。否则甲盒子中的黑子数不变。也就是说,李平每次从甲盒子拿出的黑子数都是偶数。由于181是奇数,奇数减偶数等于奇数。所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子。

奥赛专题--称球问题

例1 有4堆外表上一样的球,每堆4个。已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。

解 :依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。解 :第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。

第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。

第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。

例3 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。

解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。把A、B两组分别放在天平的两个盘上去称,则

(1)若A=B,则A、B中都是正品,再称B、C。如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。如B<C,仿照B>C的情况也可得出结论。

(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。

(3)若A<B,类似于A>B的情况,可分析得出结论。奥赛专题--抽屉原理

【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么? 【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。

【例 2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么?

【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?

【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。

两只粗细不同的蜡烛,粗蜡烛的长度是细蜡烛的50%,细蜡烛的燃烧时间是粗蜡烛的三分之一。现在同时开始燃烧两根蜡烛,多长时间后,细蜡烛剩下的是粗蜡烛的四分之三? 设:粗蜡烛原长1份,细蜡烛为2份 烧完时间:粗的3份,细的1份

所以相同时间里所烧长度之比(1/3):(2/1)=1:6 设:粗的烧X份后,细的要烧6X份

细的剩下粗的3/4 则有:(1-X)*3/4=2-6X

解得X=5/21 所以:当粗蜡烛烧掉5/21时,细蜡烛剩下的是粗蜡烛的四分之三

上一篇:电力机车乘务员培训大纲下一篇:高一作文:遗忘的角落