中国高速铁路技术

2025-01-15|版权声明|我要投稿

中国高速铁路技术(精选11篇)

1.中国高速铁路技术 篇一

中国高速铁路发展之路
2011 年 07 月 25 日 22:28 铁路是人类社会文明进步的重要产物,也是促进世界经济社会发展的重要基础设施。建国以来,中 国铁路虽然取得了长足的进步,到 2002 年底,我国铁路运营里程已达 7.2 万公里,但按人均里程计算,仅为 5.5 厘米,不及一根香烟长,排名在世界百位以后。铁路货运需求满足率不足 35%,95%以上的运输 能力只能用于运输煤炭、石油、粮食等关系国计民生的国家重点物资。在客运方面,随着人民群众生活 水平的进一步提高,乘坐火车旅游的需求不断增加,对运输服务质量要求不断提高,每逢春运暑运、“五 一”、“十一”黄金周,全国各大车站人流如织,一票难求。中国铁路人清醒地认识到,铁路还远远不能满足我国经济社会快速发展的需要,必须加快发展,为 人民群众提供更加方便、快捷、优质、安全的公共服务产品。铁路发展的滞后,引起了党中央、国务院的高度重视。党的十六大以来,以胡锦涛同志为总书记的 党中央和国务院从落实科学发展观、实现国民经济又好又快发展的战略全局出发,作出了加快发展铁路 的重要决策。胡锦涛总书记明确指出,铁路作为国家重要基础设施、国民经济的大动脉和大众化交通工 具,在我国经济社会发展中具有重要作用,要求铁路系统广大干部职工认清使命,抓住铁路建设的黄金 机遇期,再接再厉,开拓进取,为加快我国铁路发展步伐,全面建设小康社会,加快推进社会主义现代 化作出新的更大贡献。2004 年 1 月,温家宝总理主持召开的国务院第 34 次常务会议批准了《中长期铁路网规划》,这是 新中国铁路历史上第一个中长期发展规划,确定到 2020 年我国铁路营业里程达到 10 万公里,其中时速 200 公里及以上的客运专线达到 1.2 万公里以上。2008 年 10 月,《中长期铁路网规划》(调整)经国 家批准正式颁布实施。根据调整规划,到 2020 年,全国铁路营业里程达到 12 万公里以上,其中客运专 线及城际铁路达到 1.6 万公里以上,复线率和电化率分别达到 50%和 60%以上,主要繁忙干线实现客货 分线。按照 2008 年世界高速铁路大会的定义,“高速铁路”必须同时具备三个条件:新建的专用线路、时速 250 公里动车组列车、专用的列车控制系统。因此,我国的客运专线和城际铁路就是高速铁路。高 速铁路在客运市场有四大优势:一是速度快。在旅行距离 1000 公里范围内,具有明显的竞争优势。二 是安全可靠。日本新干线自运营以来,几十年没有发生过列车颠覆和旅客伤亡事故,法国高速铁路 10 多年来始终保持安全运营的良好纪录。三是经济实惠

。选择高速铁路旅行比乘坐飞机和汽车更经济划算。四是运载量大。一条四车道高速公路年运量最大不超过 8000 万人,一条双线高速铁路年运量可达 1.6 亿人。特别是高速铁路在城际间开行高密度、公交化、编组灵活的动车组列车,其载客量是公路、民航 无法比拟的。我国人口众多、内陆深广,解决大规模人口流动问题,最安全、最快捷、最经济、最环保、最可靠 的交通方式是高速铁路。中国铁路决定把发展客运高速作为实现现代化的一个主要方向。但是,采取何 种模式尽快实现中国铁路的“高速梦”,尚需论证。经过审慎的分析、研究和论证,中国铁路的决策者认为,我国铁路已经掌握高速铁路线型精测精调、客站功能完善、路基沉降控制、长大梁制运架、大跨高桥长隧、无砟有砟轨道等设计与施工成套关键技 术,成功开展了工务工程、通信信号、牵引供电、调度指挥、旅客服务等各专业系统的集成创新,机车 车辆制造具有比较好的基础,但是在高速列车的设计制造方面与发达国家还有不少差距。基于这样一个 实事求是的判断,中国要发展高速铁路,既不能妄自菲薄、全盘引进,也不能盲目排外、闭门造车,而 要立足于经济和社会生活现代化的需要,综合考虑安全经济技术等各种因素,坚定不移地发展适合中国 国情的高速铁路。

这种发展高速铁路道路的特点就是:立足高起点、高标准,瞄准世界先进水平,坚持以我为主,自 主创新,把原始创新、集成创新和引进消化吸收再创新结合起来,全面掌握先进的核心技术,形成具有 中国自主知识产权的高速铁路技术体系。具体来说,线路、桥梁、隧道、涵洞等工程技术,以原始创新 为主,形成完全独立的技术标准和自主知识产权;通信、信号、牵引供电系统,坚持系统集成创新,形 成满足我国客运专线系统集成的标准和要求;运营调度和旅客服务系统,坚持自主创新,适应我国客运 专线运营要求;高速动车组,按照“引进先进技术,联合设计生产,打造中国品牌”的要求,通过引进 消化吸收再创新,实现具有世界先进水平的客运动车组的国产化。在高速铁路的工程建设中,实行项目法人责任制、招标投标制、建设监理制和合同管理制有机结合 的管理体制,充分运用现代科学管理方法,推行项目管理信息系统,实行“小业主、大咨询”管理模式。在高速动车组引进消化吸收再创新方面,坚持以政府为主导、以企业为主体、产学研相结合的技术 创新体系。铁道部充分发挥组织协调作用,将全国铁路形成一个拳头,促使国外厂家形成进入中国铁路 市场的竞争,以最低的

2.中国高速铁路技术 篇二

回顾高速铁路的发展, 共经历了三个阶段:第一阶段:1964年~1990年。1959年4月5日, 第一条真正意义上的高速铁路在日本破土动工, 5年后, 于1964年3月完成铺轨, 同年7月竣工, 1964年10月1日正式通车。东海道新干线全长515.4公里, 运营速度高达210公里/小时, 它的建成通车标志着世界高速铁路新纪元的到来。随后法国、意大利、德国得欧洲发达国家也纷纷修建高速铁路;第二阶段:1990年至90年代中期法国、德国、意大利、西班牙、比利时、荷兰、瑞典、英国等欧洲大部分国家, 大规模修建本国或跨国界高速铁路, 逐步形成了欧洲高速铁路网络;第三阶段:从90年代中期至今。在亚洲 (韩国、中国台北、中国) 、北美洲 (美国) 、澳洲 (澳大利亚) 世界范围内掀起了建设高速铁路的热潮。

虽然高速铁路发展的时间不长, 但是其以自己得天独厚的优势, 以惊人的速度飞速发展着高速铁路与传统的铁路相比, 具有如下优势:输送能力大, 输送能力大是高速铁路的主要技术优势之一。目前各国高速铁路几乎都能满足最小行车间隔4分钟的要求。这样, 其运输速度和运输频率都是相当惊人的;速度快, 高速铁路之所以被称为高速, 是因为速度是高速铁路技术水平的最主要衡量指标, 营运速率达到每小时两百公里以上的铁路才能称为高速铁路, 并且各国仍在不断提高列车的运行速度;安全性好, 铁路一直都被认为是最安全的交通工具, 并且, 高速铁路在全封闭环境中自动化运行, 有着一系列完善的安全保障系统, 所以其安全程度是任何交通工具无法比拟的;受气候变化影响小, 正点率高, 高速铁路全部采用自动化控制, 可以全天候运营。由于高速铁路系统设备的可靠性和较高的运输组织水平, 可以做到旅客列车极高的正点率。高速铁路之所以深受旅客的欢迎, 就在于其整点到达率高;舒适方便, 高速铁路一般每四分钟发出一趟列车, 旅客可以做到随到随走, 不需要候车。这是其他任何一种交通工具无法比拟的。高速铁路的列车布置非常豪华, 公共设施齐全, 宽敞舒适, 运行平稳, 几乎没有不便之感;能源消耗低, 高速铁路的人均每公里消耗能源是汽车的50%, 飞机的16%。另外, 环境影响轻, 经济效益好, 这些都是高速铁路的优势。正是因为高速铁路具有这么多的优势, 才使得高速铁路在短短的几十年之间有了跳跃性的发展。

我国高速铁路的发展以惊人的速度发展, 近五年来, 我国高速铁路走完了国际上四十年高速铁路发展历程;集成了世界最先进的四种技术。2004年, 在中国引进高速列车技术时, 日本川崎重工总裁大桥忠晴曾这样耐心劝告中方技术人员:不要操之过急, 先用八年时间掌握时速两百公里的技术, 再用八年时间掌握时速三百五十公里的技术。在大桥忠晴看来, 这已经够快了。毕竟, 新干线从时速两百一十公里提升至三百公里, 日本人用了近三十年的时间。然而我们用了五年时间就做到了。从引进时速两百公里高速铁路技术, 到自主开发时速三百多公里“和谐号”动车组;从京津城际铁路、武广高铁运营, 到京沪高速铁路即将开通, 我国高速铁路的发展震惊了世界, 并迅疾跨入引领世界的“高铁时代”!各国舆论的评价是:我国高速铁路事业似乎在一夜之间完成华丽转身, 从一个不起眼的追赶者变成了世人关注的领跑者。到目前为止, 我国动车组已取得累计900余件高速铁路相关专利授权。新一代时速三百八十公里的动车组也将于今年上半年下线。目前, 中国是世界上高速铁路系统技术最全、集成能力最强、运营里程最长、运行速度最高、在建规模最大的国家。

虽然我国高速铁路的发展已经取得了一定成绩, 但是, 我们明确的知道, 我们要走的路还很长, 要经历的考验还很多, 我国高速铁路发展有着明确的目标, 在《中长期铁路网规划》中提出, 到2020年, 我国将建立省会城市及中大城市间的快速客运通道, 建成“四纵四横”铁路快速通道以及四个城际快速客运系统, 建设客运专线1.2万km以上, 构成我国高速铁路的基本框架, 以便解决我国主要干线铁路运力不足和, 满足社会经济发展的需要。

“四纵”客运专线:北京—上海、北京—武汉—广州—深圳—香港、北京—沈阳—哈尔滨 (大连) 、杭州—宁波—福州—深圳、北京—蚌埠—合肥—福州—台北;“四横”客运专线:徐州—郑州—兰州、杭州—南昌—长沙—昆明、青岛—石家庄—太原、上海—南京—武汉—重庆—成都。六大城际客运系统:环渤海地区:北京—天津, 天津—秦皇岛, 北京—秦皇岛, 天津—保定;环鄱阳湖经济圈地区:南昌—九江, 九江—景德镇, 南昌—鹰潭;长株潭地区:长沙—株洲, 长沙—湘潭;长江三角洲地区:南京—上海, 杭州—上海, 南京—杭州, 杭州—宁波;珠江三角洲地区:广州—深圳, 广州—珠海, 广州—佛山, 深圳—茂名;闽南三角洲地区:福州—厦门, 龙岩—厦门,

虽然我国高速铁路事业的发展取得的一定的成绩, 但也不能忽视问题的一面。至今我国铁路部门所面临的形势和任务, 依然十分严峻和艰巨。一直处于发展中的中国高速铁路, 还需要继续努力, 克服困难, 再创辉煌。

参考资料:

参考文献

[1]中国已开通的高铁——高速铁路改变经济版图http://www.chnrailway.com/new s/2010512/20105128575824669432_0.shtml

[2]中国铁道年鉴, 1999年版

3.中国高速铁路自主创新纵谈 篇三

1964年,世界第一条高速铁路在日本建成,当时的速度号称210公里。19g1、1991年,法国和德国相继建成高速铁路,其后又有十多个国家和地区建成了高速铁路,运营里程累计9100公里。目前,不包括中国,世界共有高速铁路3万公里。

中国高速铁路的发展经过了一个艰难历程。1993—2003年,铁路五次大提速,旅客列车时速从80公里提高到160公里,在高速技术方面做了大量探索和研究。2006年——2007年,中国铁路实施了第六次人提速,中国铁路系统掌握了既有线提速200—250公里的成套技术,现在运营的动车组已经有250公里。2005—2008年,京津城际高速铁路系统解决了制约速度的一系列技术难题,最高运营时速提高至350公里。2008—2011年,武广、郑西、哈大等客运专线持续运营时速350公里,京沪高速铁路最高运营时速380公里。2008年8月1日,我国第一条时速350公里的高速铁路——京津城际铁路开通运营,标志着我国系统掌握了时速350公里的高速铁路成套技术,我国高速铁路技术从此跨入了吐界的先进行列。

说到高铁,节能是它的一个重要特点。京津城际全长120公里,北京到天津每个旅客的平均耗电7.5度,由于采用以桥带路,大量节约了土地,这节约下的4500余亩土地采用小编组、高密度、多站点、公交化运输,运营一年来,共开行42000余列,安全发送旅客1870万人,正点率达到90%,取得了良好的社会效益和经济效益。

党的十六大以来,以科学发展观为指导,我国铁路坚持原始创新、集成创新、消化吸收再创新,组织企业、科研院所和高等院校,构建了产学研相结合的技术创新体系,开展了一系列科学探索和实践,在几代人不懈努力的基础上,发挥体制优势和后发优势,用6年左右的时间,跨越了世界铁路发达国家一般用30年才能走完的历程,并形成了拥有自主知识产权的高速铁路技术体系。

2003年,我国制订了铁路网规划,2008年做了调整,调整后的规划显示:再有三年,我国将建成客运专线42条,总里程1.3万公里,其中时速250公里的线路有5000公里,时速350公里的线路有8000公里。

即将建成的专线网,我们可以简称为“四纵、四横”。

南北方向我们称为“纵向”。哈大线,从哈尔滨到大连全长650公里,在沈阳过承德与北京接轨。京沪高速,全长1320公里,现在全线已经开工两年,到2011年可以开通运营。第三条线,长三角的杭州、宁波,沿东南沿海,经福州、厦门到深圳,9月28日,宁波到福州开通运营,宁波到福州的时间是2小时30分。第四条线,北京到广州,全长2200公里,今年年底武汉到广州将交付使用,全长980公里,武汉到广州的时间4小时以内。这就是“四纵”。

“四横”的第一条线是,已经建成的太原到石家庄向东,在德州与京沪高速接轨,再向东到胶东半岛。第二条线,已经建成西安到郑州,向东与京沪高速接轨,向西延到兰州。第三条线,武汉到合肥再到南京,现在已经开工运营,在南京与京沪高速接轨,武汉向西沿长江到重庆、成都,形成东西走向的沿江大通道。将来的成都、重庆到上海之间基本控制在7个小时左右。第四条线是长三角,从杭州沿浙赣线,经南昌、长沙继续向西,经贵阳到昆明,形成互通大通道。

这“四纵、四横”把我国东部、中部和中西部地区的大多数城市都纳入了铁路網规划。我们不但打通了南北东西的大通道,同时还形成了环渤海、长三角、珠三角三个城市群的轨道交通网。与此同时,形成了若干个城市比较集中的轨道交通网,其中包括城域、城镇群的轨道交通网。

以北京为例,到2012年我国将会形成1小时、2小时、3小时、4小时城市圈。一小时情况下,北京向东可以达到天津、唐山、秦皇岛一带,向南可以到石家庄一带,向西可以到张家口一带,向北可以到承德一带。2小时情况下,向东可以到济南一带,向南可以达到郑州,向西可以到达太原,向北可以达到沈阳。3个小时情况下,向东可以达到青岛、南京、合肥一带,向西可以达到包头一带,向北可以达到长春和大连一带。4小时情况下,向东可以达到杭州、向南可以达到武汉、向西可以达到西安、向北可以达到哈尔滨。7小时以内,大多数省会城市都可以到达。

到2012年,全国铁路的里程将达到11万公里以上,繁忙专线实现多轨对接,长期存在的“一车难求、一票难求”状况将有望得到基本消除。铁路促进了人类的文明与进步,高速铁路更是进一步改变了人们的生活方式,我相信,伴随着科学技术的发展,人类的明天将更加美好!

4.中国高速铁路技术 篇四

编者按:铁道部近日获得财政部、发改委和银监会等中央部委的融资方案支持,涉及2000亿人民币资金,用作偿还已停工的铁路工程款项。中国高速铁路建设的融资困难由来已久,7月23日是一个节点,甬温线动车追尾事故的发生导致了全国范围内高铁项目的安全大检查,高铁建设因为资金困难停工几乎成了普遍现象。本文整理了其他国家的发展经验,结合国内现状,对我国高速铁路建设投融资模式提出了相关政策建议,供参阅。

一、国外高速铁路建设主要投融资模式

目前世界上有9个国家建成了城际高速铁路。纵观国外城际高速铁路建设,以资本市场融资为主、政府援助为辅、适度利用外资是国外铁路投融资的普遍方式。尤其对于较大规模铁路系统的建设,在资本市场上通过股票、债券融资占据重要地位。

(一)美国铁路投融资模式。美国铁路大部分是私营企业,自负盈亏,绝大多数没有得到政府补贴,但是在铁路建设早期,联邦政府制定了非常优惠的政策,给铁路建设提供各种形式的援助,有效地调动了民间资本参与修建铁路的积极性,从而使得地方政府和私营企业成为铁路建设的主要筹资者和承担者。美国铁路的主要融资途径有:①银行贷款。虽然美国政府不直接投资于铁路建设项目,但是每年都会提供一定额度的贷款担保。此外,铁路也可以向银行做抵押贷款。②发行股票和债券融资。美国 I 类铁路都是上市公司,可以通过发行、出售股票和债券来募集资金。③租赁。铁路公司可以通过租赁设备维持运营,特别是在业-1-

务不稳定的线路上,这样能够节约大量的设备购臵资金,降低设备维护成本。

(二)日本高速铁路投融资模式。日本铁路新干线的资金来源包括国家和地方出资、银行贷款、铁路整备基金,以及日本国有铁路发行的各种铁路债券。铁路民营化后,日本政府提出了新干线的建设费用按照公司、国家和地方共同分担的原则来支付,并且把新干线转让给东日本、东海、西日本等区域性客运公司,从而获得了大量转让收入,这样有利于新干线运营和管理市场化。新干线融资模式是典型的 PPP 模式:由中央政府、地方政府、国内铁路公司三方共同出资建设,由运输设备整备事业团管理资金,由铁路建设公团负责新干线的建设、管理、租赁或转让。

(三)德国高速铁路投融资模式。从1990年开始,德国铁路运营机制从原来单一的国有国营模式转变为国有民营的公司化运营,铁路系统的授权和监管大多由政府控制。政府对联邦铁路负责,各州对非联邦铁路也就是私有铁路负责。私有化改造之后,德国铁路设立了自己的融资机构积极拓宽融资渠道。目前其融资方式主要是:政府补贴、银行无息贷款和低息贷款、发行债券、发行股票、融资租赁和售后回租等。

二、中国高速铁路融资现状及存在困难

目前,全国范围内停工的铁路项目里程在1万公里以上,其中隧道里程约占5400公里。据初步估算,恢复停工的1万公里和保住在建的13000公里,大致需要万亿资金。尽管近年来铁路

主管部门通过银行贷款、发行债券等方式不断加大融资力度,但铁路建设资金短缺的问题仍然没有得到根本解决。

(一)投资主体单一。目前绝大多数铁路建设项目还是中央政府投资。包括地方政府在内的其他投资主体的投资额虽有增长,但所占比重太小,基本没有民营资本及外商直接投资于铁路基础设施建设。

(二)融资方式单一。铁路建设资金的来源,主要是铁路建设基金和国家开发银行的政策性贷款,此外,尚有少量的铁路系统自筹资金、企业债券和地方政府投入,社会资本并没有得到有效利用。

(三)巨额债务缠身。高速铁路建设大跃进的同时,也带来铁路高达2万亿的负债。审计署历年的报告显示,尽管铁道部的负债水平,仅从2005年的37.53%升至2010年的57.44%,但债务融资比例却从2005年的44.87%飙升至2010年的81.24%。2011铁道部拖欠33家铁路相关企业的应付账款达2261亿元,11月份到期的各种利息和超短期融资券达423亿元。

(四)融资模式过度依赖政府支持。根据铁道部规划,解决当前铁路建设资金紧张危机主要还是靠中央政府的支持。在国务院的协调下,财政部、发改委和银监会正在发起一场拯救铁道部的“输血”行动,并出台“铁路建设债券利息收入企业所得税减半征收”、“明确铁路建设债券为政府支持债券”等政策,试图维护铁路建设的顺利推进,但是这种单纯依赖政府支持的发展模式

已经显得难以为继。

(五)投资管理方式落后。过去几十年,国家铁路建设项目主要由铁道部直接负责筹措资金、组织建设,并承担还贷责任;企业的投融资主体地位尚未确立起来,缺乏内在的投资控制机制和滚动发展机制,不能充分发挥国有资本对社会资金的引导和带动作用。

三、改进我国高速铁路建设投融资模式的对策分析

高速铁路建设项目具有公益性和经营性双重属性,宜采用铁道部、沿线地方政府以及战略投资者共同投资的方式,实现融资方式的多元化。根据我国目前的实际情况,提出以下建议:

(一)在资金的筹措上坚持政府的主导作用,明确投资责任。高速铁路作为铁路新的产品,既具有商业性也具备基础设施公共事业的特性,其社会效益远大于经济效益,政府的大力支持是高速铁路快速发展的必要前提。政府应当理顺和铁路的关系,承担起铁路发展的主要职责,主要措施有:财政出资投资铁路建设、补贴铁路公益性运输、减轻铁路历史债务、提供税收优惠等。

(二)争取银行贷款支持。要在风险可控,预期收益稳定的前提下,积极争取银行业金融机构的资金支持,尤其是以基础设施建设为投向的政策性贷款。高铁建设资金以银团贷款为基础,根据铁道部与铁路建设公司的具体要求,同时考虑资金市场的状况和可能,采用银行贷款、企业债券、出口信贷、国外银行或银团贷款等各种方式,努力降低融资成本。

(三)积极推进股权融资。权益性融资是西方发达国家高速铁路建设的重要经验之一。从长远看,扩大权益性融资比例,将债券融资规模控制在一定范围,能够为高速铁路股份制公司运营创造良好的财务环境。在高速铁路建设融资渠道的多元化过程中,资本市场是不可忽视的一个重要渠道。针对中国铁路目前的高资产负债率(接近60%),股权融资是比较理想的融资渠道。因为股权融资可以降低负债率、在同等负债率水平下加大融资规模,还有助于建立现代企业制度和提高企业国际知名度。

(四)合理推动项目融资。项目融资是基础设施投资建设的重要方式,典型的项目融资方式有 BOT、PPP、ABS等。项目融资属于非公司负债型融资,具有灵活、多样的信用结构,可获得较长期限及较大额度的贷款。采用项目融资,鼓励私人资本的参与,引入竞争,可以充分调动民间资本参与铁路建设的积极性,最大程度地利用国内民间资本和外资,并且可以引进高效先进的投资管理模式。此外,私人资本参与高速铁路建设,也体现了高速铁路市场化融资的突破。

5.中国高速铁路技术 篇五

1、图2,炮眼参数见表1。第 2 页 共 8 页 2

1隧道上台阶光面爆破炮孔布置图 图2隧道下台阶光面爆破炮孔布置图 表2隧道光面爆破各类炮孔药量填装表 序号 炮孔类型 孔径 孔深 孔距 药卷直径 药卷长度 药卷单位重 单孔装药 mm m cm mm cm g/节 Kg/节 1 周边孔 40 4.0 50 32 20 200 0.8/4 2 内圈孔 40 4.0 60 32 20 200 1.6/8 3 辅助孔 40 4.0 80 32 20 200 2.2/11 4 辅助孔 40 4.0 90 32 20 200 2.4/12 5 辅助孔 40 4.0 110 32 20 200 2.4/12 6 底板孔 40 4.0 55 32 20 200 2.8/14 7 掏槽孔 40 4.5 70~74 32 20 200 2.8/14 3.1光面爆破参数选定 第 3 页 共 8 页 3

6.高速铁路路基过渡段施工技术 篇六

高速铁路路基过渡段施工技术

本文通过对路基过渡段施工介绍,了解过渡段施工的方法、步骤及关键工艺措施,充分认识到过渡段是从路基本体到桥涵构筑物过渡的.关键环节,是控制路基与结构物之间差异沉降的重要手段,为今后列车高速、安全运营打下坚实基础.

作 者:王年超 作者单位:中铁大桥局集团,430080刊 名:中国科技博览英文刊名:CHINA SCIENCE AND TECHNOLOGY REVIEW年,卷(期):“”(11)分类号:U215关键词:路基 过渡段 沉降观测 施工技术

7.中国高速铁路技术 篇七

就全球范围而言, 中国是拥有第三大国土面积的国家, 我国国土辽阔、地大物博, 人口的极剧增加无形中就加大了我国交通压力, 交通不畅等一系列问题直接影响了城市经济的发展, 因此我国加大了高速铁路事业的发展, 高速铁路在实际发展的过程中存在成本较低、节能环保等巨大优势, 已经被广泛应用于交通运输事业, 同时它也成为广大居民楚翔的首选方式, 尤其是在带动城市经济外部发展方面发挥了积极作用[1]。现阶段, 我国高速铁路已经逐渐成为全球范围内发展速度最快、应用规模最大的国家, 形成了以“四纵四横”的高速铁路新格局, 高速铁路的广泛应用不仅带动了我国城市经济的飞速发展, 同时还为国民经济的增长贡献出一份力量。据相关资料统计显示, 人们使用高速铁路作为日常出行方式高达85%, 由此可见, 高速铁路已经成为人们日常出行的主要方式, 并且在其中发挥了不可替代的作用, 高速铁路在方便人们出行的同时也改善了人们的出行方式, 从而提高了城市经济的发展。

二、高速铁路对中国城市经济的外部影响

(一) 高速铁路对人们日常出行的影响

现阶段, 随着互联网技术的飞速发展, 人们之间的交流与沟通越来越强, 交通事业的飞速发展, 使距离的人们能够进行面对面交谈, 无论是人们日常生产生活还是商业的发展, 都离不开高速铁路这种便捷的交通工具。人们日常出行方式主要包括空运、水路、以及陆路三种方式, 但是最为广泛应用的就是陆路, 这主要是因为其成本较低、方便快捷, 受外界因素的影响较小, 因此受到人们的青睐, 高速铁路作为陆路交通的最重要组成部分, 在其中发挥了十分重要的作用, 由于其自身成本低、环保节能、运输运载能力强等优势已经广泛被应用于社会各界[2]。据国家铁路局公布的数据表明, 高速铁路运行量已经达到了5亿人次, 因此高速铁路的发展和应用变革了人们日常出行方式, 它不仅方面了人们的日常出行, 同时还为中国城市经济的发展起到了促进作用。

(二) 高速铁路对城市经济发展的影响

高速铁路的优势不仅在于缩短了人们的出行时间, 方便了人们的日常生活, 同时还在于其推动了城市经济的发展, 具体表现在以下几个方面:第一, 高速铁路的发展带动了城市GDP的增长, 同时还促进了房地产事业的蓬勃发展, 高速铁路的通车, 让原本两个相隔距离较远、毫无贸易交流的城市紧密的链接在一起, 从而由城市中心向周边地带扩展, 逐步形成一个城市群体, 在这样一个城市群中, 每个城市都可以发挥自身优势, 取长补短、优势互补, 从而提高城市与城市之间的经济贸易往来与交流, 使城市GDP指数得到提高, 高速铁路的发展还推动了城市周边房地产事业的蓬勃发展[3]。第二, 高速铁路的发展极大的推动了周边沿线的城市旅游观光业的发展, 它为旅游业的发展提供了较大的空间, 例如:京沪线高速铁路发展后, 沿线的南京、北京、济南、苏州等城市的旅游业发展都迎来了黄金时期, 以旅游业带动城市经济的发展, 其优势是显而易见的。第三, 高速铁路的发展实现了城市系统化、一体化发展, 高速铁路的发展对周边城市的产业结构产生了十分巨大的影响, 例如:我国沿海城市密集地区, 由于高速铁路的开通, 实现了产业结构的系统化、一体化发展, 从而为我国城市经济的发展提供了广阔的发展空间和便利, 从根本上实现了城市化目标, 为人们的日常生产生活提供一个良好的环境[4]。

(三) 高速铁路对城市经济贸易的影响

高速铁路的开通使很多原本闭塞的城市逐渐转变为对外开放的城市, 由于其巨大优势, 加强了城市与城市之间的发展, 同时也为城市经济贸易的发展带来了新的发展途径, 高速铁路的发展让很多企业能够选择更加合适的商品, 将廉价商品生产地作为发展的重点, 通过高速铁路运输, 满足全国各地人们的不同需求。例如:网购事业的发展, 离不开高速铁路的发展。由此可见, 高速铁路对城市经济的影响不仅局限于周边沿线产业, 同时还包括了远距离的经济贸易往来, 只有创新高速铁路运行方式, 真正做到与时俱进、开拓创新, 在实践的基础上创新, 在创新的基础上实践, 才能促进我国城市经济贸易持续健康发展[5]。

8.高速铁路通信系统技术浅谈 篇八

关键词:高速铁路 通信系统 技术

1 高速铁路通信需求分析

随着我国交通技术的进步和发展,高速铁路的出现和普及大大方便和便捷了大众的交通出行,成为可我国交通运输体系中的重要组成部分,有效地调整了我国交通运输体系的结构方式。而出行的旅客享受了高速铁路带来的快捷与舒适后对在旅途过程中的通信系统的要求也水涨船高。旅途是单调的,也是劳累的,旅客需要在列车上与他人进行语音、数据、图像、视频等信息交流,而互联网的普及也使更多的乘客需要在列车上接入互联网,享受数字化和智能化的通信服务。因此,为了满足乘客的通信需求,构建一个稳定、先进的高速铁路通信系统迫在眉睫。另外,为了实现有效的人机控制,同时保障列车的行车安全,提高运输效率,铁路通信网的建立也需要先进的科学技术支持,使其功能更加完善,安全更有保障。

2 我国高速铁路通信系统现存的问题

目前,我国高速铁路通信系统仍然存在较多问题。与普通的有线通信或无线通信相比,甚至与一般的公共移动通信系统相比,高速铁路通信仍存在较大区别。无论是在系统组成还是使用环境,对高速铁路通信系统的技术和设备需求均较高。一般而言,我国高速铁路通信系统主要存在三方面的问题。一是多普勒频移。多普勒频移是指接收器的移动引发的信号频移现象。一般的列车多普勒频移现象不太明显,而高速列车由于在高速运动中,列车与基站之间的距离会频繁改变,多普勒频移现象非常严重。多普勒频移过大会导致高速移动通信的通话质量下降,同时高速列车在高速移动时产生的高频次深度快衰落现象对正常通信也有很大程度的影响,这将导致通信系统的解调性能大幅下降。第二是小区尺寸问题。一般而言,在高速列车上使用WiFi、WiMAX等通信机制时,将通信的小区尺寸进行缩小至直径100m以内,就能为列车上实现有效的宽带连接服务。而随着列车的速度越来越快,导致小区尺寸出现过小、引发小区切换过于频繁的问题,加上信号的快速衰落现象存在,高速铁路通信系统对用户的小区切换以及功率控制提出了更高要求。三是隧道通信问题。由于隧道在铁路的组成中占据非常重要的地位,隧道通信问题严重影响铁路通信覆盖问题,不同隧道方式对通信系统的覆盖方式和信号源的选取要求均不相同,造成铁路通信系统的整体兼容性较差的局面。因此,如何对高速铁路通信系统进行改进,寻找出科学合理的系统方案成为现今铁路通信部门亟待解决的难题。

3 高速铁路通信系统技术分析

根据高速铁路对通信系统的要求以及我国高速铁路通信系统现存的问题,作者对多种通信系统技术进行了阐述和分析,以期建立一个高效先进的高速铁路通信系统,满足大众对通信系统的需求。

3.1 通信传输及线路

现代高速铁路通信传输系统由骨干层传输和接入层传输两部分组成。骨干层传输主要为链型MSTP 1+1复用段骨干层多业务传输系统,它是通过利用铁路正线线路两侧不同物理径路的两条光缆中的各两芯光纤,开通10G骨干光同步数字传输系统,利用两条光缆中的各四芯组成环状光纤局域网,传送列控信息。接入层传输系统的主要由车站汇聚设备、站内接入设备、站间接入设备等构成。通常情况在车站汇聚节点设MSTP STM-16 ADM的汇聚设备,而站间接入层节点采用STM-4 ADM或者STM-16 ADM设备,以完成各基站、信号、牵引及供电等节点的业务接入。也可利用铁路两侧光纤组成环实现对各接入层站点的保护。

3.2 综合业务接入系统

高速铁路的传输系统需要将各个旅客服务业务系统纳入其中,为高速车站旅客服务、电话接入等系统提供专用的音频、监视图像等接口。在沿线区间中设立信息采集点,接入传输设备,构成区间信息接入系统,将信息在区间、车站和综合调度中心之间传播。另外还可在站内及沿线区间信息接入点等地设置光网络单元和局端OLT等设备,构成一体化的综合业务接入网络,以满足高速铁路站内及区间多种用户的综合业务需求。

3.3 综合无线通信GSM-R系统

GSM-R是为满足铁路应用而开发的数字无线通信系统,作为铁路无线通信平台已成为趋势。高速铁路GSM-R系统包括交换子系统(SSS)、基站子系统(BSS)、通用分组无线业务系统(GPRS)、移动智能网系统(IN)、运行与维护子系统(OMC)、移动终端子系统等6个子系统,可提供无线列调、编组调车通信、应急通信、养护维修通信等语音通信功能。对铁路沿线进行GSM-R组网及信号覆盖,可以满足现代铁路构建地面调度中心与移动体之间的信息交换与传输通道的需求。

3.4 专用调度通信系统

专用调度通信系统是全线专用通信网和承载综合调度信息系统的组成部分,是供高速铁路调度、车站运营部门及维修单位进行行车指挥和业务联系的专用通信系统,可对全线进行高可靠、高安全的行车控制及统一的调度指挥,性能可靠、功能先进,具有话音功能数据和图像等多媒体通信功能,综合造价较经济,是高速铁路现代化通信的重要保证。

3.5 数据通信系统

数据通信系统可提供数字数据服务、电台广播、电视网等模拟数据。高速数据通信网设立独立的OSPF 自治域,在整个骨干承载网上使用独立的路由设备,路由器间形成部分网状连接,兼顾路由冗余与合理利用传输带宽,管理区直接接入核心路由器。

4 结束语

为了满足现时人们对高速铁路通信系统的需求,我们需要正视高速铁路通信系统存在的问题及解决方案,提高其科学技术水平,建设一个为高速铁路运输服务的专用通信网络,推动高速铁路快速发展。

参考文献:

[1]徐淑鹏.高速铁路专用通信系统技术介绍[J].铁路通信信号工程技术,2010(01).

[2]张昊.高铁车地通信系统级仿真平台设计与多基站协作技术的研究[D].西南交通大学,2013.

9.中国高速铁路技术 篇九

1、国内外线路养护维修概况

(1)日本。日本的线路维修养护全面贯彻预防性修理的指导思想,设定预防性维修极限值,在该阶段内实施修理,对特殊情况进行事后修理。新干线由日本客运公司进行管理,公司设立线路检查中心,采用综合试验车来检查线路的状态。检查结果直接输入综合数字通信网(ISDN),以及指导有关部门实施维修。

(2)法国。法国铁路将轨道、车辆及其相互作用与轨道维修作为一个系统来考虑。轨道状态通过步行和驾驶室目视检查,用MOZAN轨检车动态检查线路几何状态,检查结果作为制定短期和中期维修作业计划的依据。

(3)德国。德国对高速铁路线路的日常检查以轨检车为主,只是对道岔和需对轨检车的检查结果做复核的地段进行人工检查。同时采用先进的轨道维修管理技术,根据轨道实际状态制定维修计划,进行日常保养、预防性计划维修和紧急补修。

(4)中国。我国铁路线路养护维修主要是贯彻“预防为主,防治结合,修养并重”的维修原则,按照设备技术状态的各种变化不同程度地进行相应的维修工作。线路检测以人工每月检查为主,轨道检查车主要负责线路的动态检查。铁路线路的养护维修按周期有计划地进行,分为综合维修、经常保养和临时维修。

2、国内外线路养护维修差异性分析

2.1线路养护维修核心内容

高速铁路线路养护维修的主要特点是按设备的状态进行必要的适度维修,即“状态修”。线路“状态修”是以线路设备运用状态为基础,通过监测手段来掌握线路设备的工作状态,对照状态标准分析确定线路设备是否处于正常状态,在线路设备状态临近失效控制线但尚未出现故障时,进行适当和必要的维修,做到既不失修也不过剩修,避免养护维修中的盲目性,使设备始终处于可靠受控状态。

维修和更换。线路的修程主要是指线路的修理类型、修理周期和具体的修理内容。由于国内外线路在基本结构、运行状态等方面存在差异,所以在修理类型和具体的施工作业方法上也有所不同,但是在养护维修基本的内容和维修的周期上差异不大。应用“状态修”维修模式是客运专线线路养护维修工作中应重点考虑的问题。目前国内外“状态修”在线路养护维修方面的应用还不是很成熟。因此,结合“状态修”的特点,借助现代化的技术手段,使“状态修”在线路养护维修方面的技术日趋成熟。

2.4线路养护维修体制

目前,我国线路养护维修是铁道部—铁路局—基层站段的三级运营管理模式,线路的养护维修的组织管理可分为“修养分开”和“修养合一”两种形式。“修养分开”主要有三种组织形式:一是机械化线路维修段负责综合维修,工务段配合,负责经常保养和临时补修;二是工务段直接领导的机械化维修队负责综合维修,养路领工区配合;三是养路领工区下设的机械化工队负责综合维修,保养工区配合。“修养合一”与“修养分开”最主要的区别就是“修养合一”由机械化工队或养路工区负责全面线路养护维修工作。国外的“修养分开”与我国在工作组织上存在很大不同。日本新干线的维修工作均是由非铁路部门的专业承包商以承包的方式进行作业。主要维修设备产权属各铁路客运公司,租借给承包商,小型维修机具由承包商自行购置。因此铁路客运公司基层养护维修部门的主要业务是工程发包管理、维修检查等。这种管理模式为提高维修质量以及发展维修技术提供了一个良好的平台。我国线路养护维修组织管理应该以实现彻底的“修养分开”为目标,鼓励专业维修公司的发展,注重线路维修质量以及维修新技术的应用,以适应客运专线的养护维修。

3、国外高速铁路工务维修模式

从1964年日本修建了世界上第一条高速铁路起,德国和法国的高速铁路也得到快速发展,发达国家高速铁路的运营、维护和管理的成套经验为我国高速铁路运营维护管理体系模式的建立提供了重要参考。

4、中国高速铁路工务维修管理模式

目前,我国既有铁路线路、接触网、通信信号的养护维修体制主要按专业分类,集“管、检、修”于一身,铁道部设置各专业管理部,铁路局下设相应的各业务处和各专业站段,各专业站段又下设车间或领工区,领工区下设各专业工区的5级管理机构。这种体制对加强线路养护维修、保持基础设施稳定和维持一个相对较好的运输安全状况起到较大作用,但同时也带来维修管理机构庞大、运营成本较高、经济效益低下的弊端,这种“大而全、小而全”的维修方式与观念,已不适应高速铁路基础设施维修的要求。

4.1工务维修体制的基本模式

铁路基础设施的养护维修一般涉及管理、检测、养护和修理4部分工作。我国高速铁路基础设施养护维修体制依照作业内容的不同可以分为管理维护、检测和修理(简称“管、检、修”)。将“管、检、修”作为基础设施维修体系的3个基本环节。总结国外高速铁路管理经验可以看出,“检、养、修”分开的管理方式具有专业性强,分工明确,管理经验成熟的特点,有利于高速铁路的检养修管理,也有利于新技术、新材料、新工艺的推广应用。

借鉴国外高速铁路维修经验,结合我国实际情况,研究适合我国高速铁路的基础设施养护维修的几种模式。

1)管检修合一模式。指管、检、修高度集中,高速铁路基础设施的技术状态全部由一个部门负责。此种模式优点是检修工作的协调性强,可避免不同管理机构间的利益冲突,同时此种模式与既有线的管理模式基本类似,有现成的管理人员和经验可以借鉴;缺点是大型设备的利用率较低,缺乏必要的监督机制,公正性难以保证。

2)检与管修分离模式。管修合一、检与管修分离模式是把检测工作独立出来,委托外部公司独立承担检测工作,管修仍由同一个部门负责。此种模式的优点是大型检测设备的利用率较高,有利于行业标准的统一管理,有利于监督机制

5.1“管、检、修”系统分离模式特点

基础设施的管、检、修子系统分开的本质主要体现在维修体系中实现各系统的部门化和专业化。从经济管理学的角度分析,管、检、修是否分开主要考虑管、检、修各系统部门设置的规模经济性和工作的相依性。

1)高速铁路基础设施的管、检、修专业规模经济性

高速铁路基础设施的日常维护工作同既有线一样,作业项目繁多,每项工作的重复性低,工作内容受外界环境的影响较大,标准化程度低。因此,在技术体系上具有单件生产特征,不具有专业规模经济性,但同区域的各专业综合一起可以利用共有资源,因此适合按区域组织生产。

高速铁路基础设施的检测与既有线差别很大。既有铁路基础设施的建设标准和维修标准较低,对检测的要求也低,在检测上以工区的手工静态检查为主,检测工具落后,标准不高;高速铁路养修标准提高、“天窗”修的限制和运营时间对检测提出了更高的要求,要求检测必须动态、高效、精确,传统分散的检测方式已不能适应新设备、新技术的要求,必须进行高速综合检测。高速综合检测车自动进行数据采集和输出,一次性投入大,作业效率高,对专业人员的要求较高,属于连续生产的技术体系,因此具有专业规模经济的特征。

高速铁路基础设施的修理工作与既有线差异较大。既有线路修理作业以手工或小型机械为主,作业分散,本专业聚合在一起,效率提高并不明显。由于工具的技术含量不高,需要的专业技术人员不多,在专业上没有规模优势。由于作业标准的提高,只有大型养路机械才能适应高速铁路基础设施维修作业的需要,而大型养路机械必须具备一定的规模成本较多的技术和后勤支持,因此具有规模经济的效应。

2)高速铁路基础设施的管检修具有相依性

在高速铁路基础设施维修系统中,管、检、修三个子系统分工各不相同,但管、检、修系统属于一个基础设施维修系统,各子系统之间存在着大量的物质和信息的交换,交互相依,只有既分工又合作才能很好地完成任务。同时高速铁路

技含量等方面也进行了多方面的论证,在此基础上,对于高速铁路的运营维护管理,工务部门应树立“安全、舒适、有序、经济”的理念,坚持“预防为主、防治结合、重检慎修”的维护原则,保持工务设备的高可靠性、高平顺性和高稳定性。

通过对已开通运营的京津城际、武广、郑西、沪宁、沪杭、京沪、合宁和合武等高速铁路工务维护管理经验的探索和总结,为日后我国高速铁路建立与之适应的基础设施综合维修管理体系提供了宝贵经验和参考依据。

5.3高速铁路工务维修管理

针对我国高速铁路工务维修管理现状,高速铁路工务运营维护应实行属地化管理和“管、检、修”分开的管理体制,工务机构设置和人员生产设施配备应遵循以下基本原则:

1)属地化管理工务设施由铁路局按就近管辖的原则实行属地化管理,工务段属地化延伸管理。

2)专业强化工务电务和供电分专业管理,工务线路和路基、桥梁、隧道分专业管理。

3)管理集中。高速铁路的工务设备集中管理。管辖高速铁路的铁路局和工务段设专门管理机构。

4)资源综合。工务、电务和供电专业管理分开,但办公生活等后勤保障设施集中管理、综合使用。

5)精干高效。应按精干高效原则配备高速铁路工务管理技术人员和技能骨干,并纳入定编,主要负责线桥设备检查、影响安全和秩序的临时补修和故障处理工作,辅助和后勤保障等适应性工作由辅助和后勤人员负责。计划维修、专业性强的修理和其他辅助工作由工务段成立专业队伍按合同或预算受托修理,必要时委托其他有资质的单位进行修理。

“管、检、修”分开与资源整合工作相结合,做强做大车间,完善各项管理制度,实现检查与维修的异体监督。

1)基础设施的专业化维修。

当今社会发展的一个重要特点就是社会分工越来越细,铁路运输也是如此。专业化生产可以提供专业的服务和精细的作业品质。因此,线路维修走专业维修的道路,是适应铁路提速重载运输的必然方向

2)三维精确定位系统的建立。

线路速度的提高,传统手工的作业方式已不能适应高速铁路的养护维修的需要,作业的测量精度成为制约提升高速铁路线路质量和提高作业效率的瓶颈。要做到精养细修,线路平纵断面精准的定位是首要前提,通过采用线路三维精确定位系统,将工务系统传统的测量相对误差变为测量绝对误差,达到对线路平纵断面的精确定位,线路养护由经验过渡到精确。三维精确定位系统的建立,为工务精检细修提供了数据依据。

3)大机精确作业。

大型养路机械是有砟轨道线路维修、病害整治的主要手段,但如果没有在大机作业前对线路平纵断面进行精确测量、没有对线路存在问题进行认真分析和调查,这样的大机作业等于无效劳动,顽症依旧存在,质量不会持久。因此,大机作业前要认真分析线路平纵断面定期观测数据、曲线道岔三维精确定位系统观测数据,以及各种综合检测、专业检测、车载式检查的检查数据,为大机作业制订详尽的作业方案提供准确依据。大机作业过程中,要加强对大机作业的控制,捣固车作业时要严格控制夹持时间,限制捣固频次,对薄弱区段应采用双插双捣,低速重稳。要发挥大型养路机械自检系统的作用,将每次作业后自检系统检测的数据作为验收依据。

4)“状态修”和“天窗修”的推广运用。

10.中国高速铁路技术 篇十

根据铁路局《关于举办高速铁路新技术培训办的通知》要求,电务学习班在经过一个月的北京交通大学理论学习,为确保此次高速铁路新技术培训学习起到良好的学习效果和质量,组织全体学员在合肥电务段进行跟班作业学习,力争将理论学习的效果与实践作业相结合,确保此次学习取得预期的目的,作为此次跟班作业学习的组织管理人员,我本着为铁路局负责,为合肥电务段负责,为学员负责的原则,安排好此次学习的组织,学习的内容,学员的食宿安全等各项工作,为此我主要完成以下主要工作:

1、为确保学习的质量和效果,以及利于学习人员的管理组织,同时考虑到合肥电务段的实际情况,首先对学员分为4个学习小组,分别在合肥电务段管内的全椒、六安两站,每站各分派两组人员进行跟班作业学习,做到人员精,管理到位,避免出现现场作业人多,不仅危机学员安全同时给合肥电务段现场工区造成工作负担,从而减少对于正常生产秩序的干扰。

2、为保证学员现场跟班作业人身安全,每组由组长负责组织人员,作业前进行人身安全设备安全教育,并在到达学习地点后联系合肥电务段安全科人员,进行现场安全教育,首先了解高铁条件下检修作业、现场巡视注意事项,根据合肥电务段管内高铁夜间检修的特点,我们在电务段已设立班组防护员的基础上,为克服语言沟通不畅的弊端,建立学员现场作业安全员,督促每名现场跟班作业人员按要求穿着带有反光膜的安全服,注意夜间现

场作业安全。

3、根据每日跟班作业后的学习内容,组织学员进行总结当日学习效果、经验,高速铁路作为一种新的运输方式,保证铁路运输安全稳定,信号设备起到至关重要的作用,此次跟班学习对于高速铁路信号联锁,自动闭塞,和室外设备有了更为深刻的认识,如何进行设备维护,如何克服施工对于运输的影响,如何确保作业人员的安全等问题,成为我们此次学习的重点,为此依据铁路局对本次学习的要求,我们成立课题组对以上问题进行了分类整理总结,根据高速铁路对列控技术,轨道电路、道岔等设备提出了更高的要求,对于列控地面设备的维护,由于增加了大量的高新技术也是我们学习的重点,列控的原理结构,功能特点需要我们全面掌握,此次学习的地点处于合武线,全线采用CTCS-2级列控技术,车站增加了列控中心,LEU,应答器等设备,对于设备的基本维护操作,简单故障处理都有了进一步的认识;轨道电路采用ZPW-2000站内轨道电路,从结构原理与25HZ轨道电路有了明显区别,我们所关注的高速运行下如何保证站内轨道电路的可靠性有了一定的提高,如何提高轨道绝缘的使用寿命,需要我们结合实际进行解决;道岔为确保高速运行要求采用大号道岔,由此造成道岔必须采用多机牵引,同时增加密贴检查装置确保动车高速通过安全,如何进行以上设备的检修维护故障处理,还需要我们在今后的工作中根据现场实际情况,进行不断的学习改进,但对于基本的要求经过此次学习已经有了更加深刻的认识。

4、基于学员对于此次跟班作业情况结合前阶段理论学习,我们组织全体学员对于课题组成果进行了初步讨论交流,通过此次讨论交流使学员理论水平,现场作业经验有了更进一步的理解,同时对于课件提出了改进性的意见,把握重点提出可行性意见,根据此次学习的内容有几点我认为在今后的工作中我们必须得到加强:

(1)如何确保信号联锁的绝对正确,在CTC大量运用的现场如何保证信号联锁的安全,消除安全网络故障对联锁的影响,必要的操作规章制度的完善势在必行。

(2)如何在高速铁路情况下减少现场作业,但同时要更加确保信号设备的可靠性,这样我们就要利用先进可靠的监控手段,故障分析手段,远程诊断等高科技手段来确保信号设备得到实时维护监控将故障发生几率降到最低。

(3)如何减少天窗、巡视对于行车的干扰,天窗、巡视作业内容是否科学、安全、合理,应划分轻重及重点检修项目,以监控手段的可靠数据作为重点检修的依据,提高检修效率,特别是夜间天窗的检修质量,是减少对于行车干扰的重点,切实可行规章制度需要重新建立规范,并通过实施不断地进行改进完善。

11.高速铁路移动通信系统技术与发展 篇十一

关键词:高速铁路;移动通信系统技术;列车通信系统

移动通信技术的发展在现阶段可以说相当的完善了,基本上移动通信工具已经到了人人都有的情况了。而高速铁路在运行过程中,由于本身的速度极快,这样的情况就会对于无线电信号产生一定的延迟和干扰。这不仅对于旅客的移动通信使用造成了一定的困扰,对于列车本身来说,同样是如此。因此高速铁路移动通信技术的改善已经势在必行,并以此来推动和提高高铁本身的运行质量。

1 高速铁路通信系统技术简介

1.1 高速铁路移动通信系统技术的概念

高速铁路的发展本身是非常迅速的,一般来说其含义也正如名字所说的那样,是指时速超过一般列车速度比较多,而且通过专线运行的铁路运营方式。现阶段的高速铁路运行速度一般都在200km/h以上。

而列车的移动信息通信系统,则是以高速铁路列车作为核心载体,通过无线设置和有线的接入,从而形成一个有效的接收和发送的网络。可以说通过计算机系统的控制,进行数据接收储存传输,然后有效地控制一个系统工程。移动通信信息系统本身是可以作用于列车控制,也能够作用于旅客服务的。因而就实际应用来说,是可以对于整个高速铁路列车系统而起作用的,也是通信系统所需要改善和加强的重要部分。

1.2 高速铁路移动通信系统技术的发展背景

就发展背景来说现阶段的铁路系统本身就是朝着高速化的方向来发展的,通过对于列车技术的改善以及铁路配置的强化,再加上能源效能的加强,可以说快速化的发展就成为了必然的趋势,对于铁路系统的提速而言,经过若干年的试验之后,必然的会出于对于流量速度的要求而进行提速,从而在技术和需求方面给予高速铁路发展的空间和基础。

而高速铁路的移动通信系统技术的出现,则是信息技术运用到高速铁路上面的重要突破,对于高速铁路的列车运行来说,本身的需求就有通信方面的联系需要,而且对控制方面的需求可以说是比较多的。而另一方面来说由于移动通信工具的普及,因而在高速铁路列车方面的使用也成为了经常的事例。然而高速环境下对于这方面的干扰是有一定的程度的,因而并不能够非常顺畅地进行利用,从而也给工作人员和旅客带来了些许的不便。需要承认如果列车的运行速度超过了300千米每小时,那么移动设备运行在正常状况下会受到很大的影响,对于使用效果来说不可不谓破坏性,因而就改善的需求来说,从各个方面都是面对列车提速所必须解决的问题。

1.3 高速铁路移动通信系统技术的意义

从我国高速铁路运行的现状来看,移动通信系统的问题可以说已经制约到了高速铁路继续提速的步伐,而且就现阶段的运行来说,可以认为已经出现了一些困扰的因素,只是因为还在能够接受的范围之内才没有什么异议出现。无论是出于继续发展的需要,还是出于改善管理的目的,在移动通信技术方面都有需要进行加强的地方的。

此外,從另一个角度来看,铁路行业本身就是服务业的一种,因而服务质量的加强本身也是其改善管理的一个重要方式。高速铁路本身的发展,也可以说必然面临着改善服务的强烈需求,因而高铁移动通信系统建设本身就要求能够对于客户需求进一步满足并且加强自身的服务体系建设,从而对于业务有着更加完善的反映。

2 我国高速铁路移动通信技术的现状

高速铁路的发展已经成为我国现阶段经济发展的一个带头因素,某种程度上已经普及了我国中东部的大部分地区,并且通过高速铁路的带动,使得相关服务业的发展也有了一定的进步。而高速铁路通信技术服务也日益成为高铁服务的一个重要部分,通过对于通信需求的满足,以及高铁本身的信息调控能力的提高,还能够对于旅客的需求进一步的满足和完善。而且,由于移动技术的发展和普及,列车的移动通信系统技术也需要随着高速铁路本身的发展而进一步进步,从而避免被限制的困境。

现阶段我国使用的主要的移动通信系统技术是GSM-R系统,即为铁路系统专用数字移动通信系统,主要功能包括无线列调,以及无线通信和隧道通信等功能。应当说相对之前的列车通信系统而言,该系统实现了更进一步的升级,对于寻址的定位功能进一步的强化,也可以通过主从同步方式从附近的相关设备中获取电信号,并且通过无线转换设备进行信号的转换和协调,从而能够实现对接功能。从这个角度来说,也可以认为这也是对于通信技术的运用和发展,保证了本身的服务质量的程度。

3 高速铁路移动通信技术的构成因素

从需求来说,高速铁路移动通信技术首要需求就是信息管理方面的,无论是环境状况或者是自身状况,都是对通信有一定要求的。同时,对于旅客信息的检测也自然更加依赖迅捷的信息技术的帮助,因而实际上这也是移动通信系统技术所能够做到的。从储存和调度的准确性和快捷性来说,必然的对于移动通信技术有其需求。

其次,列车控制也是对信息和联通有着很高的需求,就现阶段来说由于高速铁路实际上进一步强化了指挥的要求,而移动通信技术本身也能够方便对于整个列车的统筹控制,有利于及时地进行管控,来提高列车运行的效率。

另一方面,列车通信的需要也对于移动通信技术的发展是有一定的需求的,由于现阶段的移动设备的普及程度很高,因而能够在相应的地方使用也就成为了一种使用的需要。而且列车在运行中本身就有进行通信的必要性,无论是站内通信的快捷,或者是在通信系统故障的情况下需要临时应急处理,都是离不开的。因而从任何一个方面来说,实际上都是如此。

最后,在基础设施方面,整个高速铁路移动通信系统是需要从来源、转换以及接收方面同时做好,从而形成一个完善的系统来完成配合工作。并且通过无线系统的引导对整个列车的各方面需求进行满足。

4 高速铁路无线通信覆盖理论研究

本文将详细对高速铁路覆盖理论中存在的种种问题进行研究,主要从车体损耗、多普勒效应、小区切换等方面进行了阐述,为高速铁路的移动通信覆盖规划提出了问题,也初步做出了一些理论性的解决方案,并对实际覆盖中某些方面指出方向,其中很多地方也为实际勘测指明了重点,是高速铁路移动通信覆盖研究不可或缺的内容。

4.1 高铁通信网络面临的挑战

高速铁路通信网络面临的挑战也是巨大的,主要集中在这几个方面:

①车厢损耗大,主要是传输损耗大,以CRH1型车厢为例,静态时损耗25db,高速运行时就更高了。

②车速快,对切换和重选非常不利。目前国内高铁时速最快能达300km/h以上,多普勒效应非常明显。

③高速铁路通信对SNR要求高,还有很多乘客网上看视频、下载等业务同时进行,这种业务集中度高。

④铁路的地形地貌复杂多样性。

在这些挑战下,针对多普勒频偏,必须加入纠偏算法,对频偏纠正和补偿,来提高解调的性能。

4.2 多普勒效应的影响

什么是多普勒效应?当终端在高速运动中通信情况下,终端和基站都有直视信号,接收端的信号频率会发生变化,称为多普勒效应。

事实上个人认为多普勒效应可以看成是频域上的多径效应,多径效应是“时延”,而多普勒效应是“频延”,由此可以得到多径和多普勒相结合的信号的一个核心的式子:

H(ω,t)=ane

在多普勒的情况下,造成频延不同的原因其实也是信号多径传输,不同路径到达时的角度不同,因此相对速度就不同。

高铁覆盖中的多普勒频移也可以用以下公式来表示:FR=FT×(1±v/c),其中FR是收信机接收频率,FT是发信机发射频率,V是移动台移动速度,C为电波传播速度。值得注意的是,多普勒频移引起上行信道的偏移量是下行信道偏移量的两倍。以GSM900MHz和GSM1800MHz为例,在表1中可以看出不同车速下的最大频移。

表1 最大频移

[\&\&\&\&\&\&\&\&\&\&\&\&][列车行驶速度(km/h)

150

200

250

300

350

400][下行信道

125

167

208

250

292

333][上行信道

250

333

417

500

583

667][下行信道

250

333

417

500

583

667][上行信道

500

667

833

1000

1167

1333][900MHz最大频移(Hz)][1800MHz最大频移(Hz)]

总之,随着车速的不断提高,多普勒频移的影响也越来越明显,在高铁覆盖中首先考虑的是多普勒频移效应。在仿真环境中,瑞丽衰落时的多普勒效应对信道影响很大很明显,在直视范围内的莱斯衰落环境下的多普勒效应对无线信道的影响大大减少,所以,尽量保证发射天线和列车经过的铁路沿线保持在直视范围内。天线方位角的规划,最好在相邻站点间的2/3的距离来规划,保证高铁覆盖强度和站间重叠覆盖距离。然后切换时延,就X2口来说,控制面平均时延大概0.06s,用户面UL/DL0.057s。车速250km/h时,切换区域在69m;车速300km/h时,切换区域在83m。

4.3 单站覆盖距离

Okumura/Hata模型是应用较为广泛的覆盖预测模型,它是以准平滑地形的市区作基准,其余各区的影响均以校正因子的形式出现。Okumura/Hata模型市区的基本传输损耗模式为:

Lb=69.55+26.16lgf-13.82loghb-α(hm)+(44.9-6.55lghb)lgd

其中:Lb为市区准平滑地形电波传播损耗中值(dB);f为工作频率(MHz);hb为基站天线有效高度(m);hm为移动台天线有效高度(m);d为移动台与基站之间的距离(km);α(hm)为移动台天线高度校正因子;s(a)为建筑物密度因子。

由此式就可以计算出天线高度和覆盖距离的相关数据。

4.4 相邻基站重叠覆盖问题

由于高铁多以同频组网方式,来提高频谱效率,但同频组网存在着小区间的同频干扰问题。现实中我们通常是通过管理无线资源使小区间干扰得到控制,也就是小区中资源和负载的情况来进行的多小区无线资源商量着来解决的,就是我们常常所说的ICIC(inter cell interference cacellation)。

从资源协商来讲,频率服用分为软频率复用(SFR,soft frequency reuse)、部分频率复用(FFR, fractional frequency reuse)和全频率复用(Full frequency reuse)三类。

软频率复用,是把所有的频段分成2组子载波,一组是主子载波,一组是辅子载波,主子载波可以在小區的任何地方使用,权利大的很,辅子载波只能在小区中心被使用,不同小区间的主子载波相互正交,在小区边缘有效地抑制了干扰。部分频率复用是把所有的频率分成4个组,对于小区中心的用户,给他频率复用因子1,固定分配到1组频段。对于小于边缘的用户,就只能用剩余的3组频率了,复用因子是3,保证和其相邻的小区边缘用户的频段相互正交,互不干扰。全频率复用就是所有的频点可放在小区的任何位置使用。

总的来看,三种频率复用,其实FFR和SFR可以算作一边,全频率复用算另一边。FFR和SFR是使用联系多个RB来组成子频带,全频率复用是使用单个RB,这是很大的区别!第二个区别是在小区中心资源和边缘资源的不同,换句话说就是使用的复用系数不同,全频率复用由于无小区中心和边缘区域资源划分;也就是说,在频率划分上,FFR和SFR的不同小区边缘用户使用相互正交的子载波,而全频率复用在不同小区用户使用相互正交的RB,或者干脆就结合功控来使用同一RB。

4.5 天线选择

由于铁路属于狭长地形场景覆盖,并且专网小区基站根据实际地理条件与铁路沿线可能有一定距离,因此根据实际情况需要选择不同的天线。

以铁路专网基站与铁路沿线的垂直距离S作为参考来选择天线,说明如下:

①当垂直距离S小于100m时,优先采用32°窄波束天线(如ODP-032R18dB),并且每个小区使用两副天线对铁路实施覆盖,这样还可以避免越区覆盖,见图1。此外为了保证一定的覆盖距离(暂定为1000m),在基站中心两侧总长度L为240m的范围内将主要通过天线的副瓣进行主力覆盖。

图1 天线覆盖方式示意

②当垂直距离在100~300m范围内时,可采用65°波束天线(如ODP-065R15dB)。覆盖方式同上,但整个覆盖范围内基本上依靠天线主瓣对铁路沿线进行主力覆盖。

③当垂直距离大于300m时,建议重新进行站址规划。

此外,对于波瓣过窄,导致出现天线零点的地方信号深度衰落,需要采用零点填充的特型天线或者在两小区正中间增加一面天线,天线增益优先选取为18dBi。

5 高速铁路移动通信新技术

由于铁路通信网络基站一般是平均分布的,而列车的运行又不是非常频繁,因此在利用率方面存在一定的浪费状况。针对这样的情况,采用分布式网络云结构在一定程度上是可以缓解这些问题的,通过集中的储存和收集,并且在需要的时候进行分配使用,可以在基带资源的使用率方面做出一定的改善。

近年,全球掀起了一轮云数据中心建设的浪潮,云计算技术帮助传统数据中心进行业务迁移、在单数据中心内实现资源调度和弹性扩容,一定程度解决了单个数据中心IT资源利用率不足、业务部署周期长、管理效率低下的问题。

分布式云系统就可以将分散、分层、异构的单一数据中心架构改造为全扁平式、点到点互联、统一资源管理的分布式云数据中心架构,可以实现多个不同地域、不同阶段、不同规模数据中心上百万台服务器资源的逻辑集中管理调度、统一呈现、统一运营,在保护原有投资的前提下更高效的提升整体数据中心资源利用率和管理效率,敏捷响应企业对IT的核心需求。

可见分布式网络云架构可以有效地优化使用效率,提高利用率。

6 结语

总体来看现阶段的铁路移动通信系统技术在世界层面的发展已经有一段时间了,不断地在向成熟化进步。同时,随着云计算技术的快速发展和应用,高速铁路移动通信技术也有一些新的变化和发展,这方面也需要尽可能的保持跟进的趋势,从而使得高铁移动通信技术不会受到短板的约束和限制。

参考文献:

[1]方旭明,崔亚平,闫莉,宋昊.高速铁路移动通信系统关键技术的演进与发展[J].电子信息学报,2015(1).

[2]莊光平.破解京津高速铁路移动通信建设难题[N].经济日报,2008-10-30(11).

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:iwenmi@163.com

上一篇:施工项目审计管理办法下一篇:卓越医师培养建设计划

付费复制
学术范例网10年专业运营,值得您的信赖

限时特价:7.99元/篇

原价:20元
微信支付
已付款请点这里联系客服
欢迎使用微信支付
扫一扫微信支付
微信支付:
支付成功
已获得文章复制权限
确定
常见问题