5年级数学期末测试卷

2024-08-22

5年级数学期末测试卷(共12篇)

1.5年级数学期末测试卷 篇一

东桥学区2013年秋季小学语文第九册期末测试卷

亲爱的同学们,我们愉快地学完了本学期的内容。相信大家的进步都很大。一学期收获了多少呢?让我们一起走进智慧乐园,把自己的收获展示给大家看!

第一部分积累运用 [ 52分]

一、看拼音写词语。(10分)

diāo sùhuī huánɡxiūkuìzūn rǒnɡfùxiâ()()()()()shǔyúwǔdǎozhìxùchónɡbàicōnɡ yù()()()()()

二、将下面词语补充完整。(6分)

莫()()妙()然有序粗制()造 落()而()失魂落()司空见()

围()救()一尘不()得意忘()

三、在括号里填上恰当的词语。(不能重复使用)(4分)

睡梦中的樱桃小丸子在()的阳光下捉蝴蝶,在()的月光中唱童谣,在()的星光下、()的烛光中听妈妈讲故事„„ 四.先把下列歇后语、谚语补充完整,再选择合适的填在横线上。(8分)(1)()过海——各显神通(2)千里送鹅毛——()(3)三个臭皮匠-——顶个()(4)台上三分钟,()(5)师傅领进门,元旦联欢会学校要举行文艺节目汇演,我们班出什么节目呢?几个班委在一块商量,不一会儿就有了主意,这正是。领到节目的同

学刻苦排练,因为他们知道的道理。元旦那天,节目既精彩又丰富,有的演课本剧,有的演小品,有的搞

诗歌朗诵„„正是。

五、按要求改写句子。(8分)

1、春节,美丽的礼花在蓝蓝的夜空中构成了一幅幅美妙的图画。(缩句)

2、我醒来就知道不早了。爸爸已经在吃早点。(用关联词把两个句子连接起来)

3、如果不细细体会是很难领略到的。(换个说法,不改变句意)

4、但小明那时只有六岁,他怎么懂?(改为陈述句)

六、修改病句。(用修改符号改在原句上)(4分)

1、祖国的主权需要我们来保卫。

2、五(1)和五(2)班正在进行接力跑比赛,我猜测五(1)班一定获得最后的胜利。

七、根据课文意思填空。(10分)

1、小群大群,大群在运动中,成为一片、、快速移动的集团冲锋!,,!(《巩乃斯的马》)

2、它使劳累者,它为失意者希望的火苗;对悲伤者它有如,比所有礼品都更。(《微笑》)

3、水光晴方好,山色雨亦奇。

4、暮去朝来淘不住,5、踏遍青山人未老,6、荷尽已无擎雨盖,八、语文实践活动。(2分)

希望小学正在举行“讲文明、促和谐”的主题活动,请你为此次活动写一条宣传标语。

第二部分快乐阅读[ 18 分](5+13)

九、阅读下面文章,按要求作答。

(一)推敲(片断)(5分)

贾岛就把自己写诗的事告诉了韩愈,并说自己正在犹豫不决,不知道是用“推”好,还是用“敲”好。韩愈也是一位著名的诗人,便很有兴致地思索起来。过了一会儿,他对贾岛说:“还是用‘敲’字更好些。月夜访友,即使友人家门没有闩,也不能莽撞推门,敲门表明你是一个懂礼貌的人。再说,用‘敲’字更能衬托出月夜的宁静,读起来也响亮些。”贾岛听了,连连点头。

后来,人们就把在写诗和作文时斟酌文字叫做“推敲”。

1.贾岛反复推敲《题李凝幽居》中的诗句是:

。(2分)

2.韩愈认为用“敲”字更好的理由:一是

二是(3分)

(二)那姐妹俩(13分)

去年春天,我去一个贫困山区采访。

那天,我走进一家昏暗的屋子里,看到了眼前的一切:破铜烂铁和废纸张残器具随处可见,一个小女孩低头忙着将各种各样的废品分门别类地码整齐,墙壁上贴满了奖状。那些奖状引起了我的注意:每一张奖状上,无一例外都写着两个名字:程思爱、程思晴,似乎每次表彰都是两个人同时获得。但仔细一看,就发现并非如此。每张奖状,最初只有一个名字,另一个名字的字迹歪歪斜斜,分明是后来添上去的。

小女孩发现我在打量奖状,主动说话了:“我叫程思晴,姐姐叫程思爱。” 我问:“你姐姐呢?”

思晴:“我姐姐去学校读书了。”

我找了个小板凳,坐下,问:“你干吗不去上学?”

思晴的脸瞬间红了,她低下头,将脑袋埋进两膝间:“我明天才去上学,今天该姐姐上学。”

我惊奇地问:“你们姐妹俩轮流去读书?”“嗯。”思晴的声音比蚊子哼得还低。我很吃惊,一边帮思晴整理废品,一边和她攀谈起来。

我很快知道,她家的生活很艰难:毫无收入的妈妈只能靠捡破烂维持全家人的日常生活,再供两个孩子读书就很困难了。这样一来,思爱和思睛这对10岁的双胞胎姐妹,只能轮流去学校读同一班级,真是一条奇特的“妙计”。

这对可怜的姐妹,每天只能有一个去学校读书,另一个要么随妈妈去拾荒捡破烂,要么待在家里清理废品并进行分类。到了晚上,去学校读书的那个就当“老师”,把当天学来的知识全部“教”给另一个。至于考试,赶上哪个去学校,哪个就当考生„„

思晴越说兴致越高,她指着满墙的奖状骄傲地说:“叔叔,你看,我和姐姐老考第一,又都是班干部,学习委员轮着当,同学们常把我俩当小老师,有不懂的就问我们„„”

我望着思晴那张沾着黑色泥渍却无比明媚的小脸,心里说不上是欣慰还是沉重。1.文中的姐妹分别叫和,请用横线画出表现她们家生活艰难的句子。(3分)

2、文中的“奇特的妙计”具体指的是“每张奖状最初只有一个名字,另一个名字的字迹歪歪斜斜”,这是因为。(4分)

3.“思晴的脸瞬间红了,她低下头,将脑袋埋进两膝间”,此时思晴心里可能在想(3分)4.读了这篇文章,请你用几句话写出自己的感受。(3分)

第三部分习作天地 [30分]

我有一个的家

家,就是天黑了有父母在灯下等你,并不浪漫却很温馨;家,就是冷了有衣服放在床头,不华贵却很温暖;家,就是„„请先把题目补充完整,再写一件发生在家里的表现家庭生活的事情。

要求:

1、在文题横线处填上恰当的词语,使文题完整。

2、记叙要内容具体,中心明确,详略得当,字数不少于450字。

3、书写要工整,标点要正确。

东桥学区2013年秋季小学语文第九册期末测试卷

(参考答案及评分标准)

第一部分积累运用 [ 52分]

一、10分。(每个字0.5分)

雕塑辉煌羞愧尊荣腹泻属于舞蹈秩序崇拜葱郁

二、6分。(每个字0.5分)

名 其井滥荒 逃魄魏 赵染形

1分)

三、4分。(每个词

四、8分。(每格1分)

明媚皎洁璀璨明亮

(1)八仙(2)礼轻人意重(3)诸葛亮(4)台下十年功(5)修行靠个人三个臭皮匠----顶个诸葛亮台上三分钟----台下十年功八仙过海----各显神通

五、8分。(每题2分)

1、春节,礼花构成了图画。

2、我醒来就知道不早了,因为爸爸已经在吃早点了。

3、只有细细体会才能领略到。

4、但小明那是只有六岁,他不懂。

3、龙飞凤舞鸡飞狗跳

六、4分。(每题2分)

1、把“保卫”改成“捍卫”

2、删掉“一定”

七、10分。(1-3题每格0.5分,4-6题每格1分)

1、汇成扩展喧叫纷乱争先恐后前呼后应披头散发淋漓尽致

2、疲劳顿消重燃太阳有效

3、潋滟空濛

4、遂令东海变桑田

5、风景这边独好

6、菊残犹有傲霜枝

八、2分。答案略

第二部分快乐阅读 [18分](5+13)

九、阅读下面文章,按要求作答。(5+13)

(一)(第一题每格1分,第二题每格1.5分)

1、鸟宿池边树,僧敲月下门

2、“敲”表明你是个懂礼貌的人“敲”更能衬托出月夜的宁静

(二)(3+4+3+3=13分)

1、程思爱程思晴破铜烂铁和废纸张残器具随处可见,一个女孩忙着将各种废品分门别类地码整齐

2、姐妹俩轮流上学奖状是两个人共同努力的结果,所以要补上另一个人的名字

3、略

4、略

第三部分习作天地 [30分]习作评分标准(供参考)

1.表达的意思清楚,内容具体,描写准确生动,语句通顺,条理清楚,基本没有错别字,正确使用标点符号。(27-30分)

2.表达的意思清楚,内容较具体,描写准确,语句通顺,条理清楚,错别字少,能正确使用标点符号。(24-26分)

3.表达的意思较清楚,内容还具体,描写基本准确,语句较通顺,条理也比较清楚,在字词、标点符号使用方面基本正确。(21-23分)

4.表达的意思基本清楚,内容不够具体,描写基本准确,语句基本通顺,条理也比较清楚,字词、标点符号错误比较多。(18-20分)

5.内容欠具体,用词不准确,条理性不强,有的语句不通顺,错别字及标点的应用错误多。(18分以下)

注意:习作中的错别字按每3个扣1分计算,重现不重扣,扣满3分为止。

2.5年级数学期末测试卷 篇二

1. 2m=8, 则4m的值为______.

2. 用科学计数法表示0.000 000 406, 结果是______.

3. 如图, 要得到AB∥CD, 只需要添加一个条件, 这个条件可以是______. (填一个你认为正确的条件即可)

4. 如图a是长方形纸带, ∠DEF=25°, 将纸带沿EF折叠成图b, 再沿BF折叠成图c, 则图c中的∠CFE的度数是______°.

5. 一个多边形的每一个外角都是60°, 则这个多边形是______边形, 它的内角和是______°.

6. 如图:内、外两个四边形都是正方形, 阴影部分的宽为3, 且面积为51, 则内部小正方形的面积是______.

7. 如图所示, 两个正方形的边长分别为a和b, 如果a+b=10, ab=20, 那么阴影部分的面积是______.

8. 若a2+ma+36是一个完全平方式, 则m=______.

9. 如图, 将三角尺的直角顶点放在直尺的一边上, ∠1=30°, ∠2=50°, 则∠3的度数等于______.

10. 如图, △ABC中, ∠A=90°, AB=AC, BD平分∠ABC, DE⊥BC于E, 如果BC=10 cm, 则△DEC的周长是______cm.

二、选一选

11. 下列各式从左到右的变形, 是因式分解的是 () .

12.下列各组数中是方程4x+y=10的解的有 () .

A.1个B.2个C.3个D.4个

13. 下列计算, 正确的是 () .

14.用加减消元法解方程组时, 有下列四种变形, 其中正确的是 () .

15. 若等腰三角形的两边长分别是3和6, 则这个三角形的周长是 () .

A.12 B.15 C.12或15 D.9

16. 下列各式能用平方差公式进行计算的是 () .

A. (x-3) (-x+3) B. (a+2b) (2a-b)

C. (a-1) (-a-1) D. (x-3) 2

17. 画△ABC中AB边上的高, 下列画法中正确的是 () .

18.如图, 在△ABC中, ∠C=50°, 按图中虚线将∠C剪去后, ∠1+∠2等于 () .

A.230°B.210°C.130°D.310°

三、解答题

19.计算下列各式:

(1) (a+b) 2 (a-b) 2; (2) (a-3) (a+3) (a2+9) ; (3) (m-2n+3) (m+2n-3) .

20.化简求值: (2a+b) 2- (3a-b) 2+5a (a-b) , 其中

21.把下列各式分解因式:

22.已知关于x、y的方程组

(1) 若用代入法求解, 可由 (1) 得:x=______, (3)

把 (3) 代入 (2) 解得:y=______, 将其代入 (3) 解得:x=______, ∴原方程组的解为______.

(2) 若此方程组的解x、y互为相反数, 求这个方程组的解及m的值.

23.如图:已知∠B=∠BGD, ∠DGF=∠F, 求证:∠B+∠F=180°.

请你认真完成下面的填空.

证明:∵∠B=∠BGD ( 已知) ,

24.已知△ABC的三边a, b, c满足a2-b2=ac-bc, 试判断△ABC的形状.

25.如图, ∠1+∠2=180°, ∠DAE=∠BCF, DA平分∠BDF.

(1) AE与FC会平行吗?说明理由. (2) AD与BC的位置关系如何?说明理由. (3) BC平分∠DBE吗?说明理由.

26. 已知△ABC中, ∠A=x°.

(1) 如图1, 若∠ABC和∠ACB的角平分线相交于点O, 则用x表示∠BOC=______°;

(2) 如图2, 若∠ABC和∠ACB的三等分线相交于点O1、O2, 则用x表示∠BO1C=______°;

(3) 如图3, 若∠ABC和∠ACB的n等分线相交于点O1、O2、…、On-1, 则用x表示∠BO1C=______°.

27. 7年级 (1) 班的同学到水库调查了解今年的汛情.水库一共有10个泄洪闸, 现在水库水位已超过安全线, 上游的河水仍以一个不变的速度流入水库. 同学们经过一天的观察和测量, 做了如下记录:上午打开一个泄洪闸, 在2小时内水位继续上涨了0.06米;下午再打开2个泄洪闸后, 4小时内水位下降了0.1米.目前水位仍超过安全线1.2米.

(1) 求河水流入使水位上升速度及每个闸门泄洪可使水位下降速度;

(2) 如果共打开5个泄洪闸, 还需几个小时水位降到安全线?

3.5年级数学期末测试卷 篇三

基础知识百花园

3.成语填空并分类。

( )通( )大

大( )无( )

( )神( )主

若( )若( )

波( )壮( )

蹑( )蹑( )

描写人物的成语:__________

描写景色的成语:______________

4.下面两层意思,能够用“仍然”“果然”两个词中的哪一个连起来,写成一句话,并写下来。

我再次改变了实验步骤。

没有出现想要的现象。

5.写出句子的意思:孰为汝多知乎?

__________________

日积月累菜蜜园

按要求填空

1.名言警句:愿乘风_______ ,面壁_______。

2.歇后语:孔夫子搬家——_______;

3.对对联:上联:四海皆春_______,

下联:_______,

横批:_______ 。

4.把古诗中的千古名句补充完整:

(4)_______,要留清白在人间。

(2)千磨万击还坚劲,_______。

(3)_______,明月何时照我还。

(4)谁言寸草心,_______。

口语交际趣味园

丁丁和冬冬在打电话,请你发挥想象,写上冬冬的话,使他们的对话合理紧凑。

丁丁:你好,冬冬,我是丁丁。你找我有事吗?

冬冬:_____________

丁丁:噢!没问题!

冬冬:_____________

丁丁:还有什么要求?尽管说。

冬冬:_____________

丁丁:不客气,这是应该的。再见!

阅读思考大观园

1.根据课文《凡卡》写一段话,说明凡卡的不幸遭遇,试着用下面的词语,语句要通顺。

痛苦 幸福 欢乐 想念

2.用课文題目填空。

本学期我们学习了素有甲天下之称的《______》,跟随老舍游赏《______》,共同感受大兴安岭的亲切、舒服,又与巴金先生畅游了《______》领略了榕树的大,鸟儿的多。欣赏美景之后,我们的心情不能平静,因为这样的景致,有些已被破坏,看着满目疮痍的地球,我们不由得发自内心地要向全世界呼吁:“保护环境吧,我们人类的《_______ 》。”

请从上面这段话中的三处美景中选择一个,为其写一句保护环境的宣传标语。

3.阅读课文段,回答问题。

大雪整整下了一夜。早晨,天放晴了,太阳出来了。推开门一看,嗬!好大的雪啊!山川、树木、房屋,全部罩上了一层厚厚的雪,万里江山变成了粉妆玉砌的世界。落光叶子的柳树上,挂满了毛茸茸、亮晶晶的银条儿;冬夏常青的松树和柏树,堆满了蓬松松、沉甸甸的雪球。一阵风吹来,树枝轻轻地摇晃,银条儿和雪球儿簌簌地落下来,玉屑似的雪末儿随风飘扬,映着清晨的阳光,显出一道道五光十色的彩虹。

(1)“嗬!好大的雪啊!”这句话应读出怎样的语气?(答案不止一个。)()

A.兴奋B.厌恶C.惊喜D.平静

(2)“蓬松松”给人一种像棉花一样松软、轻飘飘的感觉。“沉甸甸”给人一种像铁块一样沉重的感觉。用这两个词形容同一个事物——雪球,是否矛盾?选择正确答案填在括号里。()

A.矛盾。这两个词是一对反义词,不能同时用来形容同一个事物。

B.不矛盾。从外形上看,堆在松柏上的雪球显得很轻,但是他们堆得很厚,将树枝都压弯了,从这里更能看出雪下得大。

C.说不清楚,不了解作者的意图。

4.阅读短文,回答问題。

迷惑敌人的迷彩服

在现代战争中,侦察仪器越来越先进,部队的行动很容易被对方发现。为了迷惑敌人、保护自己,人们用一种特殊的颜料把军服染成黄一块绿一块的,制成了迷彩服。迷彩服上五颜六色的花纹和周围的自然景物色彩十分相近,反射红外光波的能力也与周围自然景物反射光波的能力相似,所以敌人用肉眼看不见,而且现代化的仪器也不容易发现。

现在,有些国家的军队还根据不同兵种设计了各种不同的迷彩图案,进一步增强了遂,惑敌人的能力。

(1)按要求改写句子。

①有些国家的军队还根据不同兵种设计了各种不同的迷彩图案。

缩句:_____________

②为了迷惑敌人、保护自己,人们用一种特殊的颜料把军服染成黄一块绿一块的,制成了迷彩服。

改成“被”字句:_____________

③敌人用肉眼看不见。

改成反问句:_____________

(2)回答问题:说说迷彩服为什么能迷惑敌人?

毛主席爱读书的故事

毛主席一生特别喜爱读书。

几十年来,毛主席日夜(操劳 操心)党和国家的大事,工作一直是很忙的。可毛主席总是挤出时间来读书,_______在出差的列车上,______不放过读书的机会。

有一年夏天,毛主席出差到武汉,在大“火炉”里,毛主席每天晚上坚持看书,汗水不断地顺着脸颊往下淌。他(有趣风趣)地对工作人员说:“读书、学习也要付出一定的代价,流下了汗水,学到了知识!”

毛主席在床上、办公桌上、饭桌上都放着书。一有(机会 空闲)就手不释卷地看起来,他总是一手拿着放大镜,一手按着书页。每当长时间沉浸在书中的时候,他就忘了吃饭。工作人员催促他。他总是笑着说:“还有一点儿,看完再吃。”

毛主席一生读了多少书,没法估计。除了读马列著作外,古代的和外国的许多哲学家的著作,他也都读过。文学方面的书,毛主席特别喜欢李白、李贺、李商隐的诗和辛弃疾的词。

毛主席有一部解放前出版的《鲁迅全集》,他从延安带到北京,1949年出国时还随身带着。从50年代到60年代,毛主席总是把鲁迅先生的著作放在床边,直到晚年病重,还在随时翻阅。

1.将文章( )里不恰当的词语划去。

2.在文中“_____”处填上合适的关联词。

3.联系上下文,回答问题:

(1)“在大‘火炉’里,毛主席每天晚上坚持看书。汗水不断地顺着脸颊往下淌。”这句话表现毛主席_____________

(2)“每当沉浸在书中的时候,他就忘了吃饭。”这句话说明毛主席_____________

4.读完文章,你有什么想说的?请写下来。

快乐习作园

4.六年级上册数学期末测试卷 篇四

一、走进岱庙,轻轻松松做计算(20分)

1.直接写得数(5分)

25 +12 = 3 +1.75= = 18 18 = 715 = - = 14 +15 = 0+3= (56 +16 )34 = =

2.脱式计算(能简算的要简算)(9分)

+ 2- 38 716 -17

3.解方程(8分)

+ = + =

二、逛逛红门,进入泰山,填空(22分,其中6-9题每空2分)

1.元旦联欢会,六年级一班出勤47人,事假1人,病假2人。出勤率是( )%。

2. = 20% =( ) 40 = 40∶( )= ( )[填小数]= ( )。

3.m与 互为倒数,m的分数单位是( ),它有( )个这样的分数单位。

4.0.8与 的最简整数比是( )

5.在○里填上﹤ 、﹥ 或﹦ 。

○ 3○ ○

6.如果2:7的前项加上6,要使比值不变,后项应加上( )。

7.小明的妈妈在自家的墙根下建了一个半圆形花坛(如图),

沿半圆形花坛围一圈篱笆,篱笆长( )米。(d=4m)

8.一个三角形,三个内角度数的比是1:1:2。已知其中的两条边分别长1厘米和1.4厘米,这个三角形是( )三角形,它的面积是( )平方厘米。

9.一桶油分两次用完,第一次用去 ,第二次用去 千克,这桶油一共有( )千克。

三、山道弯弯,景色迷人,看石刻文化。判断正误(5分)

1.圆规两脚间距离是5cm,用这个圆规画出的圆的周长是15.7cm。 ( )

2.一瓶纯牛奶,亮亮第一次喝了 ,然后在瓶里兑满水,又接着喝去 。亮亮第一次喝的纯奶多。 ( )

3.李师傅加工了101个零件全部合格,合格率是101% 。 ( )

4. 在左图中,可以画无数条对称轴。 ( )

5.五年级今天的出勤率是98%,六年级今天的出勤率是95%,五年级出勤的人数比六年级的`多。 ( )

四、游览中天门,俯看泰城新貌。选择(5分)

1. =86 + ,这是运用了( )运算律。

A、加法结合律 B、乘法交换律 C、乘法分配律

2.如果A:B = ,那么(A9):(B9)=( )。

A、1 B、 C、1:1 D、无法确定

3.用三张长3分米,宽2分米的长方形纸,分别剪出一个最大的圆、一个最大的正方形和一个最大的三角形。( )的面积最大。

A、圆 B、正方形 C、三角形

4.甲、乙两只相同的水杯,甲杯50克糖水中含糖5克;乙杯中先放入2克糖,再放入20克水,搅匀后,( )杯中的糖水甜些。

A.甲杯 B.乙杯 C.一样甜 D.不确定

5.两车从A地开往B地,甲车4小时行了全程的 ,乙车5小时行了全程的 ,两车的速度相比,( )。

5.四年级上期末数学测试卷 篇五

日期: 年 01 月 20 日

用时:

____

得分:

____

一、填空。

1、据人口统计,加拿大约30750000人,读作 ; 十一亿零五百八十万写作 。

2、用正负数表示下列温度。

零下18℃=℃ 零摄氏度=℃ 零上9℃ =℃。

3、前进800米记作+800米,后退68米记作 米。

4、横线里最大能填几

59× <481; 42× <245

5、一周角=平角= 直角= °。

6、过一点可以画 条直线, 条射线,过两点可以画 条直线。

7、在算式:□58÷46要使商是一位数,□中可以填 ;如果商是两位数,□中的数可以是 。

8、一个数由五个千万、六个十万、八个千、三个一组成.这个数是 。

二、判断。

1、315800省略万位后面的尾数约是302万…… √×

2、钟面上时针和分针成90度的角时可能是3点和9点…… √×

3、一个钝角只能分成一个直角和一个锐角…… √×

4、25(6×8)=25×8+25×6…… √×

5、三位数除以两位数商一定是两位数…… √×

三、选择。

1、△÷□=25,如果△扩大10倍,要使商不变,□应

B、扩大10倍

C、缩小10倍

D、无法判断

2、下面的数只读一个零的数是()

A、3206600

B、40800507

C、60907200

D、40103506

3、在□里可以填()个数字使565□350≈566万。

A、5

B、4

C、2

D、3

4、下面画线的`数中,()是准确数。

A、小军身高140厘米

B、我市大约有60万人

C、这棵树大约高10米

D、图书馆藏书约170000册

5、图中有()个角。

A、3

B、4

C、5

D、6

四、计算。

1、直接写出得数。

13×4=

2×87=

65×5=

5×89=

2×65=

6×72=

19×7=

6×40=

49×8=

64×1=

2×59=

71×9=

38×6=

5×69=

77×1=

2、列竖式计算。

928×28=

812÷58=

406÷25=

372×45=

3、用简便方法计算。

72×102=

42×98+2×42=

25×44=

400÷25=

4、脱式计算。

350×[(120-60)÷15]=

480÷(40+40)×2=

936÷[6×(18-5)]=

(1230+270)÷30×26=

五、按要求回答问题。

1、按要求完成下列各题。

(1)图上李庄的位置是( , ),赵庄的位置是( , ),王庄的位置是( , )。

(2)以赵庄为观测点,李庄的位置是 偏 北°,距赵庄 千米;王庄的位置是 偏 °,距赵庄 千米。

(3)小明骑自行车从赵庄到李庄需要3小时,那么他的速度是 千米/小时;小军骑自行车从赵庄到王庄需要4小时,那么他的速度是 千米/小时。

2、统计,下表是四(1)班同学参加课外兴趣小组活动的人数统计表。

(1)喜爱 运动的人最多,喜爱 运动的人最少。

(3)四(1)班一共 人,平均每个项目有 人参加。

六、应用题。

1、体育用品商店每个足球售价58元,王老师带了500元,买9个足球够吗?王老师最多可以买几个足球?还剩多少元?

列式:

答:王老师带了500元,买9个足球;王老师最多可以买个足球,还剩元。

2、英才幼儿园买来334千克瓜,平均每天吃48千克,这些西瓜可以吃多少天?

列式:

答:这些西瓜可以吃天,还剩千克。

3、商店运来112箱香皂,每箱25块,每块卖4元,这些香皂一共可以卖多少元?

列式:

答:这些香皂一共可以卖元。

6.小学三年级数学上册期末测试卷 篇六

一、认真思考,细心填空(共25分)

1.填上合适的单位:

一节课要上40( ) 飞机每小时飞行800( )

蓝鲸的体重可达200( ) 小雨身高1( )29( )

2.361+362+363+364+365+366+367=( )( )=( )

3.一张长方形纸长10厘米,宽7厘米,如果要剪下一个最大正方形,正方形的周长是( )厘米,剩下的小长方形周长是( )厘米。

4.一根绳子32米,对折3次,每段是这根绳子的( )(填分数),是( )米;

5.三位数乘一位数,积最多( )位数,最少( )位数;

6.这次语文期末考试,从今天上午9:00开始,到10:40结束,一共进行了( )分钟。

7.在 里填上、或=

6000克 6千克 4分 400秒

49厘米 5分米 700毫米 70厘米

8.2个 是( ), 里面有( )个 。

9.三(2)班有52人,参加排球队13人,参加足球队18人,有5人既参加排球队又参加足球队,其余参加合唱队,合唱队有(

10.两个长是8厘米,宽是4厘米。可以把它们拼成一个长方形,周长是( )厘米;也可以把它拼成一个正方形,周长是( )厘米。

二、请你判一判。(正确的在括号里画,错的画)(5分)

1.一个苹果分成3份,每份是它的`三分之一。 ( )

2.针走半圈需要半小时; ( )

3.吨铁比1吨棉花重; ( )

4. 23 4,要使积是四位数, 里最小填3 ; ( )

5.两个三位数相加,和可能是三位数,也可能是四位数;( )

三、快乐ABC,请你选一选。(5分)

1.一个因数的中间有0,积的中间( )有0。

A.一定 B.可能 C.不可能

2.三位数 23乘3,积仍是一个三位数, 里大可以填( )

A.2 B.3 C.4

3.一根铁丝正好围成一个长10厘米,宽8厘米的长方形,如果把这根铁丝围成正方形,这个正方形的边长是( )

A.8厘米 B.9厘米 C.10厘米

4.同学们排队做操,小明从前数是第6,从后数是第7,这一列共有( )人;

A.13人 B. 14人 C.12人

5.下图中,图1和图2的周长比,结果正确的是( )

A.甲乙 B.乙甲 C.相等

四、细心计算(27分)

1.直接写出得数(15分)

49+24= + = 248= 3900=

7006= 800-310= 437= 640+90=

137= 1- = 5095 2973

357+15= 89-32= 5+46=

2.竖式计算小高手,带※号的要进行验算。(12分)

7.期末考试测试卷(一) 篇七

1.抛物线y=mx2的准线方程为y=2,则m的值为    .

2.若函数f(x)=a-x+x+a2-2是偶函数,则实数a的值为    .

3.若sin(α+π12)=13,则cos(α+7π12)的值为   .

4.从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是    .

5.已知向量a的模为2,向量e为单位向量,e⊥(a-e),则向量a与e的夹角大小为    .

6.设函数f(x)是定义在R上的奇函数,且对任意x∈R都有f(x)=f(x+4),当x∈(-2,0)时,f(x)=2x,则f(2012)-f(2013)=    .

7.已知直线x=a(0

8.已知双曲线x2a2-y2=1(a>0)的一条渐近线为y=kx(k>0),离心率e=5k,则双曲线方程为   .

9.已知函数f(x)=ax(x<0),

(a-3)x+4a(x≥0)满足对任意x1≠x2,都有f(x1)-f(x2)x1-x2<0成立,则a的取值范围是    .

10.设x∈(0,π2),则函数y=2sin2x+1sin2x的最小值为    .

11.△ABC中,C=π2,AC=1,BC=2,则f(λ)=|2λCA+(1-λ)CB|的最小值是

12.给出如下四个命题:

①x∈(0,+∞),x2>x3;

②x∈(0,+∞),x>ex;

③函数f(x)定义域为R,且f(2-x)=f(x),则f(x)的图象关于直线x=1对称;

④若函数f(x)=lg(x2+ax-a)的值域为R,则a≤-4或a≥0;

其中正确的命题是    .(写出所有正确命题的题号).

13.在平面直角坐标系xOy中,点P是第一象限内曲线y=-x3+1上的一个动点,以点P为切点作切线与两个坐标轴交于A,B两点,则△AOB的面积的最小值为    .

14.若关于x的方程|ex-3x|=kx有四个实数根,则实数k的取值范围是    .

二、解答题

15.已知sin(A+π4)=7210,A∈(π4,π2).

(1)求cosA的值;

(2)求函数f(x)=cos2x+52sinAsinx的值域.

16.在四棱锥PABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.

(1)求四棱锥PABCD的体积V;

(2)若F为PC的中点,求证PC⊥平面AEF;

(3)求证CE∥平面PAB.

17.某企业有两个生产车间分别在A、B两个位置,A车间有100名员工,B车间有400名员工.现要在公路AC上找一点D,修一条公路BD,并在D处建一个食堂,使得所有员工均在此食堂用餐.已知A、B、C中任意两点间的距离均有1km,设∠BDC=α,所有员工从车间到食堂步行的总路程为s.

(1)写出s关于α的函数表达式,并指出α的取值范围;

(2)问食堂D建在距离A多远时,可使总路程s最少.

18.已知点P(4,4),圆C:(x-m)2+y2=5(m<3)与椭圆E:x2a2+y2b2=1(a>b>0)有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.

(1)求m的值与椭圆E的方程;

(2)设Q为椭圆E上的一个动点,求AP·AQ的取值范围.

19.幂函数y=x的图象上的点Pn(t2n,tn)(n=1,2,…)与x轴正半轴上的点Qn及原点O构成一系列正△PnQn-1Qn(Q0与O重合),记an=|QnQn-1|

(1)求a1的值;

(2)求数列{an}的通项公式an;

(3)设Sn为数列{an}的前n项和,若对于任意的实数λ∈[0,1],总存在自然数k,当n≥k时,3Sn-3n+2≥(1-λ)(3an-1)恒成立,求k的最小值.

20.已知函数f(x)=(x2-3x+3)·ex定义域为[-2,t](t>-2),设f(-2)=m,f(t)=n.

(1)试确定t的取值范围,使得函数f(x)在[-2,t]上为单调函数;

(2)求证:n>m;

(3)求证:对于任意的t>-2,总存在x0∈(-2,t),满足f′(x0)ex0=23(t-1)2,并确定这样的x0的个数.

附加题

21.[选做题] 本题包括A,B,C,D四小题,请选定其中两题作答,每小题10分,共计20分.

A.选修41:几何证明选讲

自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.

B.选修42:矩阵与变换

已知二阶矩阵A=1a

34对应的变换将点(-2,1)变换成点(0,b),求实数a,b的值.

C.选修44:坐标系与参数方程

椭圆中心在原点,焦点在x轴上.离心率为12,点P(x,y)是椭圆上的一个动点,

若2x+3y的最大值为10,求椭圆的标准方程.

D.选修45:不等式选讲

若正数a,b,c满足a+b+c=1,求13a+2+13b+2+13c+2的最小值.

[必做题] 第22、23题,每小题10分,计20分.

22.如图,在底面边长为1,侧棱长为2的正四棱柱ABCDA1B1C1D1中,P是侧棱CC1上的一点,CP=m.

(1)试确定m,使直线AP与平面BDD1B1所成角为60°;

(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q⊥AP,并证明你的结论.

23.(本小题满分10分)

已知,(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n,(其中n∈N*)

(1)求a0及Sn=a1+a2+a3+…+an;

(2)试比较Sn与(n-2)2n+2n2的大小,并说明理由.

参考答案

一、填空题

1. -18

2. 2

3. -13

4. 0.75

5. π3

6. 12

7. 710

8. x24-y2=1

9. (0,14]

10. 3

11. 2

12. ③④

13. 3324

14. (0,3-e)

二、解答题

15.解:(1)因为π4<A<π2,且sin(A+π4)=7210,

所以π2<A+π4<3π4,cos(A+π4)=-210.

因为cosA=cos[(A+π4)-π4]

=cos(A+π4)cosπ4+sin(A+π4)sinπ4

=-210·22+7210·22=35.所以cosA=35.

(2)由(1)可得sinA=45.所以f(x)=cos2x+52sinAsinx

=1-2sin2x+2sinx=-2(sinx-12)2+32,x∈R.因为sinx∈[-1,1],所以,当sinx=12时,f(x)取最大值32;当sinx=-1时,f(x)取最小值-3.

所以函数f(x)的值域为[-3,32].

16.解:(1)在Rt△ABC中,AB=1,

∠BAC=60°,∴BC=3,AC=2.

在Rt△ACD中,AC=2,∠CAD=60°,

∴CD=23,AD=4.

∴SABCD=12AB·BC+12AC·CD

=12×1×3+12×2×23=523.则V=13×523×2=533.

(2)∵PA=CA,F为PC的中点,

∴AF⊥PC.∵PA⊥平面ABCD,∴PA⊥CD.

∵AC⊥CD,PA∩AC=A,

∴CD⊥平面PAC.∴CD⊥PC.

∵E为PD中点,F为PC中点,

∴EF∥CD.则EF⊥PC.

∵AF∩EF=F,∴PC⊥平面AEF.

(3)取AD中点M,连EM,CM.则EM∥PA.

∵EM平面PAB,PA平面PAB,

∴EM∥平面PAB.

在Rt△ACD中,∠CAD=60°,AC=AM=2,

∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.

∵MC平面PAB,AB平面PAB,

∴MC∥平面PAB.

∵EM∩MC=M,

∴平面EMC∥平面PAB.

∵EC平面EMC,

∴EC∥平面PAB.

17.解:(1)在△BCD中,

∵BDsin60°=BCsinα=CDsin(120°-α),

∴BD=32sinα,CD=sin(120°-α)sinα,

则AD=1-sin(120°-α)sinα.

s=400·32sinα+100[1-sin(120°-α)sinα]

=50-503·cosα-4sinα,其中π3≤α≤2π3.

(2)s′=-503·-sinα·sinα-(cosα-4)cosαsin2α=503·1-4cosαsin2α.

令s′=0得cosα=14.记cosα0=14,α0∈(π3,2π3);

当cosα>14时,s′<0,当cosα<14时,s′>0,

所以s在(π3,α0)上单调递减,在(α0,2π3)上单调递增,

所以当α=α0,即cosα=14时,s取得最小值.

此时,sinα=154,

AD=1-sin(120°-α)sinα=1-32cosα+12sinαsinα

=12-32·cosαsinα=12-32·14154=12-510.

答:当AD=12-510时,可使总路程s最少.

18.解:(1)点A代入圆C方程,得(3-m)2+1=5.

∵m<3,∴m=1.

圆C:(x-1)2+y2=5.

设直线PF1的斜率为k,则PF1:y=k(x-4)+4,即kx-y-4k+4=0.

∵直线PF1与圆C相切,∴|k-0-4k+4|k2+1=5.解得k=112,或k=12.

当k=112时,直线PF1与x轴的交点横坐标为3611,不合题意,舍去.

当k=12时,直线PF1与x轴的交点横坐标为-4,

∴c=4,F1(-4,0),F2(4,0).

2a=AF1+AF2=52+2=62,a=32,a2=18,b2=2.

椭圆E的方程为:x218+y22=1.

(2)AP=(1,3),设Q(x,y),AQ=(x-3,y-1),

AP·AQ=(x-3)+3(y-1)=x+3y-6.

∵x218+y22=1,即x2+(3y)2=18,

而x2+(3y)2≥2|x|·|3y|,∴-18≤6xy≤18.

则(x+3y)2=x2+(3y)2+6xy=18+6xy的取值范围是[0,36].

x+3y的取值范围是[-6,6].

∴AP·AQ=x+3y-6的取值范围是[-12,0].

19.解:(1)由P1(t21,t1)(t>0),得kOP1=1t1=tanπ3=3t1=33,

∴P1(13,33),a1=|Q1Q0|=|OP1|=23.

(2)设Pn(t2n,tn),得直线PnQn-1的方程为:y-tn=3(x-t2n),

可得Qn-1(t2n-tn3,0),

直线PnQn的方程为:y-tn=-3(x-t2n),可得Qn(t2n+tn3,0),

所以也有Qn-1(t2n-1+tn-13,0),得t2n-tn3=t2n-1+tn-13,由tn>0,得tn-tn-1=13.

∴tn=t1+13(n-1)=33n.

∴Qn(13n(n+1),0),Qn-1(13n(n-1),0),

∴an=|QnQn-1|=23n.

(3)由已知对任意实数时λ∈[0,1]时,n2-2n+2≥(1-λ)(2n-1)恒成立,

对任意实数λ∈[0,1]时,(2n-1)λ+n2-4n+3≥0恒成立

则令f(λ)=(2n-1)λ+n2-4n+3,则f(λ)是关于λ的一次函数.

对任意实数λ∈[0,1]时,f(0)≥0

f(1)≥0.

n2-4n+3≥0

n2-2n+2≥0n≥3或n≤1,

又∵n∈N*,∴k的最小值为3.

20.(1)解:因为f′(x)=(x2-3x+3)·ex+(2x-3)·ex=x(x-1)·ex

由f′(x)>0x>1或x<0;由f′(x)<00<x<1,所以f(x)在(-∞,0),(1,+∞)上递增,在(0,1)上递减

欲f(x)在[-2,t]上为单调函数,则-2<t≤0.

(2)证:因为f(x)在(-∞,0),(1,+∞)上递增,在(0,1)上递减,所以f(x)在x=1处取得极小值e

又f(-2)=13e2<e,所以f(x)在[-2,+∞)上的最小值为f(-2)

从而当t>-2时,f(-2)<f(t),即m<n.

(3)证:因为f′(x0)ex0=x20-x0,所以f′(x0)ex0=23(t-1)2即为x20-x0=23(t-1)2,

令g(x)=x2-x-23(t-1)2,从而问题转化为证明方程g(x)=x2-x-23(t-1)2=0

在(-2,t)上有解,并讨论解的个数.

因为g(-2)=6-23(t-1)2=-23(t+2)(t-4),g(t)=t(t-1)-23(t-1)2=13(t+2)(t-1),所以

①当t>4或-2<t<1时,g(-2)·g(t)<0,所以g(x)=0在(-2,t)上有解,且只有一解.

②当1<t<4时,g(-2)>0且g(t)>0,

但由于g(0)=-23(t-1)2<0,

所以g(x)=0在(-2,t)上有解,且有两解.

③当t=1时,g(x)=x2-x=0x=0或x=1,所以g(x)=0在(-2,t)上有且只有一解;

当t=4时,g(x)=x2-x-6=0x=-2或x=3,

所以g(x)=0在(-2,4)上也有且只有一解.

综上所述,对于任意的t>-2,总存在x0∈(-2,t),满足f′(x0)ex0=23(t-1)2,

且当t≥4或-2<t≤1时,有唯一的x0适合题意;当1<t<4时,有两个x0适合题意.

(说明:第(2)题也可以令φ(x)=x2-x,x∈(-2,t),然后分情况证明23(t-1)2在其值域内,并讨论直线y=23(t-1)2与函数φ(x)的图象的交点个数即可得到相应的x0的个数)

附加题

21.(A)解:因为MA为圆O的切线,所以MA2=MB·MC.

又M为PA的中点,所以MP2=MB·MC.

因为∠BMP=∠BMC,所以△BMP∽△PMC.

于是∠MPB=∠MCP.

在△MCP中,由∠MPB+∠MCP+∠BPC+∠BMP=180°,得∠MPB=20°.

(B)解:∵0

b=1a

34-2

1=-2+a

-6+4,

∴0=-2+a

b=-2,即a=2,b=-2.

(C)解:离心率为12,设椭圆标准方程是x24c2+y23c2=1,

它的参数方程为x=2cosθ

y=3sinθ,(θ是参数).

2x+3y=4ccosθ+3csinθ=5csin(θ+φ)最大值是5c,

依题意tc=10,c=2,椭圆的标准方程是x216+y212=1.

(D)解:因为正数a,b,c满足a+b+c=1,

所以,(13a+2+13b+2+13c+2)[(3a+2)+(3b+2)+(3c+2)]≥(1+1+1)2,

即13a+2+13b+2+13c+2≥1,

当且仅当3a+2=3b+2=3c+2,即a=b=c=13时,原式取最小值1.

22.解:(1)建立如图所示的空间直角坐标系,则

A(1,0,0),B(1,1,0),P(0,1,m),C(0,1,0),D(0,0,0),

B1(1,1,1),D1(0,0,2).

所以BD=(-1,-1,0),BB1=(0,0,2),

AP=(-1,1,m),AC=(-1,1,0).

又由AC·BD=0,AC·BB1=0知AC为平面BB1D1D的一个法向量.

设AP与面BDD1B1所成的角为θ,

则sinθ=cos(π2-θ)=|AP·AC||AP|·|AC|

=22·2+m2=32,解得m=63.

故当m=63时,直线AP与平面BDD1B1所成角为60°.

(2)若在A1C1上存在这样的点Q,设此点的横坐标为x,

则Q(x,1-x,2),D1Q=(x,1-x,0).

依题意,对任意的m要使D1Q在平面APD1上的射影垂直于AP.等价于

D1Q⊥APAP·D1Q=0x+(1-x)=0x=12

即Q为A1C1的中点时,满足题设的要求.

23.解:(1)取x=1,则a0=2n;取x=2,则a0+a1+a2+a3+…+an=3n,

∴Sn=a1+a2+a3+…+an=3n-2n;

(2)要比较Sn与(n-2)2n+2n2的大小,即比较:3n与(n-1)2n+2n2的大小,

当n=1时,3n>(n-1)2n+2n2;

当n=2,3时,3n<(n-1)2n+2n2;

当n=4,5时,3n>(n-1)2n+2n2;

猜想:当n≥4时,3n>(n-1)2n+2n2,下面用数学归纳法证明:

由上述过程可知,n=4时结论成立,

假设当n=k,(k≥4)时结论成立,即3k>(k-1)2k+2k2,

两边同乘以3得:3k+1>3[(k-1)2k+2k2]=k2k+1+2(k+1)2+[(k-3)2k+4k2-4k-2]

而(k-3)2k+4k2-4k-2=(k-3)2k+4(k2-k-2)+6=(k-3)2k+4(k-2)(k+1)+6>0,

∴3k+1>((k+1)-1)2k+1+2(k+1)2

即n=k+1时结论也成立,∴当n≥4时,3n>(n-1)2n+2n2成立.

综上得,当n=1时,Sn>(n-2)2n+2n2;当n=2,3时,Sn<(n-2)2n+2n2;

8.三年级上册数学的期末测试卷 篇八

一、想一想,填一填。

1、我今年( )岁了,我的身高是( ),体重是( )。我每天背着重约3( )的书包, 7:20从家出发, 大约( )分钟后到达学校,我到学校的时间是( )

2、一套《少儿百科》294元,买5套大约需要( )钱。

3、一条绳子长12分米,绕着桌子的四周正好可以围两圈,桌子的周长是( )分米。

4、要使□233的积是四位数,□里最小应填( )。

5、妈妈买来9个苹果,小明吃了3个,姐姐吃了2个。小明吃了总数的( ),姐姐吃了总数的( ),剩下的留给妈妈吃,妈妈吃了总数的( )。

6、三位数乘一位数的积可能是( )位数,也可能是( )位数。

7、把16个面包,每5个装成一包,可以装成( )包,还剩( )个; 如果每( )个装成一包,就可以正好装完,正好可以装成( )包。

8、在里填上><=

70毫米()7厘米

100分()1时

8分米()100厘米

4吨()4000克

千克()2吨

二、请你来当小裁判,正确的画,错的画。

1、3千克的铁块比3千克的棉花重。 ( )

2、一个数除以8,商是9,如果有余数,这个数最大是79。 ( )

3、每只船限坐4人,25人只要租6只船就可以一次过河。 ( )

4、四条边都相等的四边形一定是正方形。 ( )

5、把1米长的木材锯成四段每段是( ) 米。 ( )

三、快乐A BC。

1、妈妈每天工作8( ),我吃饭要花20( ),跑30米用5( )。

A 、时 B、秒 C、分

2、□4=△○,○最大是( )。

A、2 B、3 C、4

3、钟面上,分针和时针成一条线是( )。

A、9时 B、12时 C、6时

4、4个小朋友互通电话,每两人通一次话,一共要通( )次电话。

A、10 B、8 C、6 D、4

5、一个正方体3面涂黄色,2面涂绿色,1面涂红色,掷一下落在地上后,朝上的面( )色的`可能性最大。

A、黄色 B、绿色 C、红色

四、我会口算得很快。

486=

507=

3005=

407=

=

2083

475

3958

五、笔算我最拿手。

135+937

978-497

455

367

2287

2606

六、列式计算。

1、一个数减去385,差是273,这个数是多少?

2、137的5倍是多少?

3、把70平均分成9份,每份是多少?余几?

4、从 里减去 ,再减去 ,差是多少?

七、应用题。

1、在今年的献爱心活动中,三年级6个班共捐书900本,其中5个班各捐了145本,另一个班捐了多少本?

2、学校操场是一个长方形,长35米,宽15米,如果每天早上围着操场跑5圈,李大爷每天至少要走多少米?

3、两名老师带领32名学生去郊游,每辆车限坐9人,至少需要租几辆这样的车?

4、一张长方形纸的 涂上红色, 涂上黑色,剩下的不涂色。涂色的是这张纸的几分之几?不涂色的占这张纸的几分之几?

5、元旦这天,黄帝故里上午有游客472人,中午有273人离去,下午又来了209人,这时园内有多少游客?这一天一共来了多少游客?

6、小明今年15岁,爸爸年龄是小明的3倍,爸爸比小明大几岁?

7、(1)上半场用了多长时间?

(2)中场休息用了多长时间?

9.小学五年级的数学下册期末测试卷 篇九

一、“神机妙算”对又快: (40分)

1、直接写出得数:10分

① + +      ② — =      ③1— =      ④ — =      ⑤ — =

⑥4+        ⑦ — =       ⑧ — =     ⑨3— =       ⑩ + =

2、计算下面各题,能简算的要简算。24分

① +   —        ② — +        ③ + + +        ④ — +

⑤2— —       ⑥ —( + )      ⑦ +( — )         ⑧ + +

3、解方程。6分

①x+ =2              ② —X=                 ③ —X=

二、“认真细致”填一填。20分(每小题2分)

1、   =                            =                6÷5= — = 1—

2、 的分数单位是(     ),再加上(    )个这样的单位就是最小的质数

3、12和18的最大公因数是(     ),最小公倍数是(     )。

4、把5 m长的绳子平均分成9段,每段占这条绳子的(    ),每段长(     )m。

5、一个两位数既是5的.倍数,也是3的倍数,而且是偶数,这个数最小是(          ),最大是(          )。

6、一个正方体的棱长总和是24 dm,它的表面积是(    ),体积是(        )。

7、在一次投篮训练中,8名同学投中的个数如下:

4个、5个、4个、6个、10个、9个、8个、10个

这组数据的平均数是(         ),众数是(          ),中位数是(          )。

8、小明、小李和小凯三人读同一篇文章,小明用了     小时,小李用了   小时,小凯用了0.2小时,(          )的速度最快。

9、有12个苹果,其中11个一样重,另有一个质量轻一些,用天平至少称(         )次才能保证找出这个苹果。

10、一个长方体,长、宽、高分别是8 cm、5 cm和4 cm,从中截去一个最大的正方体后,剩下的体积是(           )。

三、“对号入座”选一选。(选出正确答案的编号填在括号里)10分

1、一个水池能蓄水430 m3,我们就说,这个水池的(       )是430 m3。

A.表面积      B.重量      C.体积      D.容积

2、下例字母是对称图形的是    (     )。

A.J        B.H     C.N      D.Q

3、下面正确的说法是(   )。

A.体积单位比面积单位大。  B.若  是假分数,那么a一定大于5。

C.只有两个因数的自然数一定是质数。  D.三角形是对称图形。

4、10以内既是奇数又是合数的数有(    )个。

A.0           B.1         C.2          D.3

5、 的分子加上8,如果要使这个分数的大小不变,分母应该(   )

A.加上30      B.加上8        C.扩大2倍      D.增加3倍

四、图形及统计知识8分

1、计算下例图形的表面积、体积、棱长和

2、下面是甲乙两个城市去年7~12月份月平均气温统计表。

(1)根据上面数据,完成下面折线统计图。(4分)

(2)从图中你得到哪些信息?(至少写出两条)(2分)

五、走进生活,解决问题。20分

1.一个正方体形状的玻璃鱼缸,棱长3分米,制作这个鱼缸时至少需要玻璃多少平方分米(鱼缸的上面没有盖)

2、一种小汽车的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

3、有32支龙舟队参见了今年龙舟比赛,最后有6支队进入决赛,进入决赛,进入决赛的队占所有参赛队的几分之几?

4.有李明用一根1米的铁丝围成一个三角形,亮的三角形的一条边是 米,另一边 米,第三边长多少米?它是什么三角形?

10.5年级数学期末测试卷 篇十

Ⅰ.单词辨音(共5小题,每小题1分,满分5分)

从A、B、C、D中找出其划线部分与所给单词的划线部分读音相同的选项。

1. oceanA. pleasantB. pleasureC. pressureD. professor

2. existA. excellentB. example

C. expression D. explain

3. courageA. shoulderB. pronounce

C. southernD. anxious

4. thusA. arothmeticB. thread

C. mathematicsD. mouths

5. magazineA. seizeB. realC. medicine D. build

Ⅱ.语法和词汇知识(共15小题,每小题1分,满分15分)

1. I’d appreciate ____ if you could lend me a hand with my homework.

A. soB. itC. thatD. you

2. Mary is a top student in the class. You cannot speak ____ highly of

her.

A. veryB. wellC. muchD. too

3. ——Would you care for tea or coffee?

——Neither, ____. I’ve just had some tea.

A. thank youB. of course, please

C. yesD. no, please

4. His father ____ a soldier in World War Ⅱ, didn’t he?

A. wasB. would beC. must beD. used to be

5. He made a mistake, but then he corrected the situation ____ it got

worse.

A. untilB. whenC. beforeD. as

6. He is such a great scientist ____ all the people in the world show

respect for.

A. thatB. asC. soD. who

7. I hate ____ when someone calls me up in the middle of night.

A. oneB. thatC. itD. which

8. ____ either of your parents come to see you in the last two weeks?

A. HasB. HaveC. HadD. Will

9. You can’t imagine that rats eat 40 to 50 times ____.

A. in weightB. by weightC. of weightD. their weight

10. Jane had a high fever. Tom felt ____ his duty to look after her.

A. thatB. itC. thisD. /

11. The kidnapper threatened ____ his only son if Tom didn’t manage to

send him one million dollars in a week.

A. to killB. killing

C. and killedD. to have killed

12. It was midnight ____ I finished ____ the book.

A. when, to readB. that, reading

C. at which, readingD. when, reading

13. We reached the seaside at 6, ____ the sun began to set.

A. whereB. whenC. tillD. from which

14. ——What’s wrong with the man?

——____ from school for nothing has made him mad.

A. His son is absentB. His son being absent

C. His son’s being absentD. His son’s being absence

15. The boy was caught ____ in the examination room and he was later

punished for doing so.

A. cheatB. cheatedC. cheatingD. to cheat

Ⅲ.完形填空(共20小题,每小题1.5分,满分30分)

Mr. Gray travelled a lot on business. He sold machines of different kinds to farmers.

He had a big car, and usually __1__ driving it long distances, but he was quite satisfied to go by __2__ sometimes too, especially when the __3__ was bad.He was a little afraid of driving in rain or snow, and it was __4__ tiring to sit comfortably in a train and looked out of the window without being worried about how __5__ was going to get to the next place.

One of Mr. Gray’s problems was often __6__ to stay when he reached some small place in the country. He did not __7__ great comfort and wonderful food, but he found it annoying(使恼火) when he was given a cold room, and there was no hot water or food after a long and __8__ day.

Late __9__ winter evening, Mr. Gray arrived at a small railway station. The __10__ by train that day had not been at all interesting, and Mr. Gray was cold and tired and __11__. He was looking forward to a simple __12__ satisfying meal by a brightly burning fire. And then a hot bath and comfortable bed.

__13__ he was walking to the taxi rank, he said to a local man who was also __14__ there. “As this is my first visit to this __15__ of the country and I was in too much of a hurry to __16__ about hotels before I left home, I would very much like to know __17__ you have here.”

The local man answered, “We have __18__.”

“And which would you __19__ me to go to?” Mr. Gray asked him.

The local man thought for a while and then answered, “Well, it’s like this: Whichever one you go to, you’ll be __20__ you didn’t go to the other.”

1. A. consideredB. practisedC. imaginedD. enjoyed

2. A. trainB. carC. himselfD. plane

3. A. businessB. conditionC. roadD. weather

4. A. leastB. mostC. lessD. more

5. A. ifB. oneC. thatD. she

6. A. whereB. howC. whatD. when

7. A. knowB. needC. expectD. like

8. A. comfortableB. tiringC. niceD. special

9. A. thatB. oneC. theD. a

10. A. journeyB. experienceC. travelD. distance

11. A. unhappyB. sleepyC. angryD. hungry

12. A. butB. andC. orD. however

13. A. UntilB. AfterC. BeforeD. While

14. A. walkingB. looking onC. waitingD. visiting

15. A. townB. stationC. landD. part

16. A. talkB. thinkC. moveD. find out

17. A. whatB. which oneC. how manyD. how

18. A. threeB. oneC. noneD. two

19. A. wantB. allowC. adviseD. expect

20.A. sorryB. satisfiedC. amusedD. comfortable

Ⅳ.阅读理解(共20小题,每小题2分,共40分)

(A)

A good teacher is many things to many people. In my own experience, the people I respect the most and think about the most are the teachers who demanded(要求) the most discipline(纪律) from their students.

I miss one teacher in particular that I had in high school. I think she was a good teacher because she was a very strict person. I remember very vividly (清晰地) a sign over her classroom door. It was a simple sign that said, “Laboratory—in this room the first five letters of the word was emphasized(强调), not the last seven.” In other words, I guess, labor for her was more important than oratory, which means making speeches.

She prepared her work very carefully and demanded us to do the same. We got lots of homework from her. Once she had broken her arm, and everybody in the class thought that maybe the homework load would be reduced, but it continued just the same. She checked our work by stamping her name at the bottom of the papers to show that she had read them.

I think sometimes teachers who demand the most are liked the least. But as time goes by, this discipline really seems to benefit(有益于) the students.

1. Which of the following is considered a good teacher by the writer?

____.

A. A patient teacherB. An honest teacher

11.五年级数学优等生期末测试卷答案 篇十一

1、能被15整除的数一定还能被(1、3、5)整除。[写出所有可能]

2、从0、2、3、7、8中选出四个不同的数字,组成一个有因数2、3、5的四位数,其中最大的是(8730),最小的是(2370)。解:有0,3,7,8和0,2,3,7两种可能

3、六个连续偶数的和是210,这六个偶数是(30、32、34、36、38、40)。

4、在15、19、27、35、51、91这六个数中,与众不同的数是(19),因为(只有19是质数,其它都是合数)。

5、两个质数的积是46,这两个质数的和是(25)。

解:因为46是偶数,因此它必是一个奇质数与一个偶质数的积,而偶质数只有2,另一个质数为46÷2=23,所以2与23的和是25。

6、1992所有的质因数的和是(88)。

解:1992=222383,所以1992所有的质因数的和是2+2+2+3+83=92。

7、有两个数都是合数,又是互质数,它们的最小公倍数是90,这两个数是(9和10)。

8、几个数的最大公因数是最小公倍数的(因)数,几个数的最小公倍数是最大公因数的(倍)数。

9、几个数的(最大公因)数的所有(因)数,都是这几个数的公因数;几个数的(最小公倍)数的所有(倍)数,都是这几个数的公倍数。

10、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是(A),最大公因数是(B),C是(A)的因数,A是B的(倍)数。

11、甲数=2×3×5×A,乙数=2×3×7×A。如果甲、乙两数的最大公因数是30,A应该是(5);如果甲、乙两数的最小公倍数是630,A应该是(3)。

12、自然数A=B-1,A、B都是非零自然数,A和B的最大公因数是(1),最小公倍数(AB)。

13、长180厘米,宽45厘米,高18厘米的木料,至少能锯成不余料的同样大小的正方体木块多少块?

解:180、45、18的最大公因数是9,当锯成的正方体木块的棱长是9厘米时,锯出的正方体木块块数最少,是(180÷9)×(45÷9)×(18÷9)=20×5×2=200块。

14、用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块多少块?

解:9、6、7的最小公倍数是126,即叠成的正方体棱长最小是126厘米,至少需要(126÷

9)×(126÷6)×(126÷7)=14×21×18=5292块这样的长方体木块才能叠成一个正方体。

15、同学们进行队列训练,如果每排8人,最后一排6人;如果每排10人,最后一排少4

人。参加队列训练的学生最少有多少人?

解:根据题意,学生人数除以8余6,除以10也余6,所以是8和10的最小公倍数40的倍数加6,学生最少是40+6=46人。

16、小红、小兰、小刚和小华,他们的年龄恰好一个比一个大一岁,他们的年龄相乘的积是5040。那么,小红、小兰、小刚和小华各是多少岁?

解:5040=2×2×2×2×3×3×5×7=7×(2×2×2)×(3×3)×(2×5),分别是7、8、9、10岁。

长方体和正方体:

17、写出长方体的侧面积计算公式:长方体的侧面积=()×()。

18、一个正方体的棱长扩大到原来的3倍,则这个正方体的表面积扩大到原来的(9)倍,体积扩大到原来的(27)倍。

19、用若干个完全一样的小正方体,拼成一个较大的正方体,至少需这样的小正方体(8)个,此时所拼成的较大正方体的表面积是原来每个小正方体表面积的((2×2×6)÷(1×1×6)=4)倍。

20、一个底面是正方形的长方体,高2分米,侧面展开后恰好是一个正方形。这个长方体的体积是多少立方分米?

解:长和宽都是2÷4=0.5分米,体积0.5×0.5×2=0.5立方分米。

21、一间教室长8米,宽6米,高4米,教室里有32个学生,平均每人占有多少空间? 解:8×6×4=192立方米,192÷32=6立方米。

22、一个无盖的木盒,从外面量长10厘米,宽8厘米,高5厘米,木板厚1厘米。这个木盒的容积是多少?

解:长10-1×2=8厘米,宽8-1×2=6厘米,高5-1=4厘米,容积8×6×4=192立方厘米。

23、把一个长、宽、高分别是5分米、3分米、2分米的长方体截成两个小长方体,这两个小长方体表面积之和最大是()平方分米。

解:原长方体的表面积是5×3×2+5×2×2+3×2×2=62平方分米,截成两个小长方体后表面积最多增加5×3×2=30平方分米,这两个小长方体表面积之和最大是62+30=92平方分米。

24、有一个长方体,如果把它的长减少2分米,那么它就变成一个正方体,表面积就会减少48平方分米。求这个长方体的体积。

解:横截面是正方形,即宽与高相等。长方体的宽与高都是48÷4÷2=6分米,长是6+2=8分米,体积是8×6×6=288立方分米。

25、把一个棱长6厘米的正方体切成棱长2厘米的小正方体,可以得到多少个小正方体?表

面积增加了多少平方厘米?

解:切成了(6÷2)×(6÷2)×(6÷2)=27个小正方体,表面积增加了6×6×4×3=432平方厘米。

26、两个完全一样的正方体拼成一个长方体,长方体的表面积是40平方厘米,每个小正方体的表面积是多少平方厘米?

解:小正方体的一个面是40÷(5×2)=4平方厘米,每个小正方体的表面积是4×6=24平方厘米。

27、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。

解:6升=6000毫升,底面积是6000÷15=400平方厘米,苹果的体积是400×(16.5-15)=600立方厘米。

分数的意义和性质:

28、271的分数单位是(),它有(37)个这样的分数单位,再加上(23)个这样1515的分数单位等于最小的合数。

29、有分母都是7的真分数、假分数和带分数各一个,它们的大小只差一个分数单位。这三个分数分别是(30、一个分数的分子缩小到原来的的3倍)。

31、一辆小汽车6分钟行驶9千米,行驶1千米要(米。

671,1)。77711,分母缩小到原来的,分数的值就(扩大到原来5152)分,1分钟能行驶(1.5)千3

59<<1,□里可以填的自然数有()。[写出所有可能] 7□

454545解:<<,5□=50、55、60,□=10、11、12。635□4532、33、某工厂有煤5吨,如果每天烧

天烧这些煤的34、五(1)班女生占全班人数的11吨,这些煤可烧(5÷=5÷0.2=25)天;如果每551,这些煤可烧(5)天。53,那么,男生人数占全班人数的(),女生人7

数比男生人数少()。

12.5年级数学期末测试卷 篇十二

(共10题;

共20分)1.(2分)()时整,时针和分针组成的角是周角. A.6     B.12     C.9     2.(2分)1千克铁与1千克棉花比较,()重。

A.铁     B.棉花     C.一样重     D.不一定     3.(2分)小明的身高()A.6米     B.135厘米     C.135米     D.400厘米     4.(2分)五环学校英语班人数是日语班的3倍,日语班人数是法语班的2倍,日语班有108人,英语班和法语班分别有()人. A.324,54     B.36,54     C.324,216     D.36,216     5.(2分)把一个长方形木框拉成一个平行四边形,它的()不变. A.面积     B.周长     C.周长和面积     6.(2分)在下面图形中,不容易变形的是()A.正方形     B.平行四边形     C.三角形     7.(2分)下面哪个图中阴影部分不可以用分数 表示?()A.B.C.8.(2分)把一根绳子剪成两段,第一段长 米,第二段占全长的,这两段绳子相比()。

A.第一段长     B.第二段长     C.长度相等     D.无法确定长度     9.(2分)5+0和下面哪个算式的数相等。()A.2+1     B.2+2     C.5-0     10.(2分)把 的分子加上4,要使分数值不变,分母应()。

A.也加上4     B.乘4     C.乘2     二、填空题。

(共7题;

共17分)11.(1分)新华书店一天营业_______小时. 12.(3分)362÷6的商是_______位数,商的最高位是_______位,商大约是_______。

13.(5分)下面是学校举行“4×100”接力赛五年级的成绩,请根据成绩排出名次。

班级 五①班 五②班 五③班 五④班 五⑤班 时间 180秒 150秒 2分10秒 2分35秒 2分45秒 名次 第_______名 第_______名 第_______名 第_______名 第_______名 14.(1分)3只老虎的体重与一头牛的体重相等,一只老虎的体重是180千克,一头牛的体重是_______千克. 15.(2分)看图计算 求长方形面积和周长. 面积是_______平方米.周长是_______米 16.(2分)如果一个平行四边形的四个角都变成直角,就变成了_______或_______。

17.(3分)把下图中绿色部分用分数表示出来。

(1)_______        ;

(2)_______        ;

(3)_______。

三、判断题。

(共3题;

共6分)18.(2分)2小时=20分。

19.(2分)夏天午睡大约1分。()20.(2分)1吨铁比1吨棉花重。()四、计算题。

(共2题;

共16分)21.(1分)64×15+40=_______ 22.(15分)竖式计算。(1)86×75(2)49×12(3)60×64 五、操作题。

(共1题;

共5分)23.(5分)把钟面和相应的时间连起来 六、解答题。

(共3题;

共11分)24.(1分)航天展的开放时间是7∶00~18∶00. _______ 25.(5分)计算下面图形的周长 26.(5分)水果店卖出96箱水果,每箱水果重25千克,水果店一共卖出水果多少千克? 参考答案 一、选择题。

(共10题;

共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题。

(共7题;

共17分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、判断题。

(共3题;

共6分)18-1、19-1、20-1、四、计算题。

(共2题;

共16分)21-1、22-1、22-2、22-3、五、操作题。

(共1题;

共5分)23-1、六、解答题。

(共3题;

上一篇:王的盛宴影评及观后感下一篇:同济大学博士几年毕业