苏科版数学第12章证明(精选4篇)
1.苏科版数学第12章证明 篇一
苏科版七年级上册数学第6章小结与思考活动教案
【学习目标】
1.回顾、思考本所学的知识及思想方法,并能进行梳理,使所学知识系统化.
2.丰富对平面图形的认识,能有条理地、清晰地阐述自己的观点.
【导学提纲】
梳理本知识:
1. 基本概念
2.位置关系 .
3.相关图形的性质.
(1)线段和直线的有关性质:
(2)余角、补角、对顶角的有关性质:
(3)平行和垂直的有关性质:
4.基本作图.(尺规作图)
(1)作一条线段AB等于线段a;
(2)作 等于 .
5.分类思想.
【反馈矫正】
1.完成本p172页复习题第1、2、3、4、5、7、8题
2.8°44′24″用度表示为_______,110.32°用度、分、秒表示为_______.
3.如果 与 互补, 与 互余,则 与 的关系是( )
A. = B.
C. D. 与 互余
4.在1点与2点之间,时钟的时针与分针成直角的时刻是1时______分.
5.如图,OE是∠AOD的平分线,OF⊥OD,垂足为O,
∠EOF=19°,求∠AOD的度数.
【迁移拓展】
完成本p172页复习题第9、11、14题
【堂作业】本p172页复习题第6、10题
整式
题2.1 整式时本学期
第 时日期
型新授主备人复备人审核人
学习
目标(1)了解单 项式 及单项式系数、次数的概念;
(2)会准确迅速地确定一个单项式的系数和次数。
重点
难点重点:单项式及单 项式的系数、次数的`概念;
准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立
流程师生活动时 间复备标注
一、导入新
回顾:先填空,再请说出你所列式子的运算含义。
1、边长为x的正方形的周长是 。
2、一辆汽车的速度是v千米/小时,行驶t小时所走过的路程为 千米。
3、如图正方体的表面积为 ,体积为 。
4、设n表示 一个数,则它的相反数是
看前图,尝试回答3 个问题
在小学,我们学过 用字母表示数。我们 可以用这种方法回答上面的问题。在本还会看到,我们不仅可以用字母 或含有字母的式子表示数和数量关 系,而且还可以将这样的式子进行加减运算。这些内容将为下一一元一次方程的学习打下基 础
二、新授
1、自学第54--55页,回答下列问题
完成思考的4个问题
什么是单项式,单项式的系数,次数?举例说明
归纳小结:数或字母的积的式子叫做单项式,单项式中数字因数叫做单项 式的系数,一个单项式中,所有字母的指数的和叫做这个单 项式的次数。
注意:单项式表示数字与字母相乘时,通常数字写在前面 ;系数、指数为1时,常省略不写。
完成56页练习1
2、自学第55页例题,回答 下列问题
独立完成例题,后订正答案
同一个式子表示的意义是否相同?
归纳小结:用字母表示数后,同一个 式子可以表示不同的含义。
3、完成56页练习2
三、堂达标练习
59页习题1
四、堂小结
1、单项式、单项式系数、单项式次数的概念
2、在找单项式系数、次数 时需注意什么 问题?在写单项式时需注意什么问题?
2.苏科版数学第12章证明 篇二
(一)测试题
答题时间120分钟,满分120分
一、选择题(每小题3分,共30分)
1.下列语句中,是命题的是()
A、两点确定一条直线吗?B、在线段AB上任取一点
C、作∠A的平分线AMD、两个锐角的和大于直角
2.下列命题中,假命题是()
A、垂直于同一条直线的两直线平行B、已知直线a、b、c,若a⊥b,a∥c,则b⊥c,C、同位角相等,两直线平行D、一个角的补角大于这个角
3.如图,直线a,b被直线c所截,现给出下列四个条件:⑴∠1=∠2,⑵∠3=∠6,⑶∠4+∠7=180°⑷∠5+∠8=180°,其中能判定a∥b的条件是()
A、⑴ ⑶B、⑵⑷C、⑴ ⑶ ⑷D、⑴ ⑵ ⑶ ⑷
4.如图,AB∥CD,则下列结论成立的是()
A.∠A+∠C=180°B∠A+∠B=180° C∠B+∠C=180°D∠B+∠D=180°
5.如图,AB∥CD,∠C=110°,∠B=120°,∠BEC等于()
A.110°B.120°C.130°D.150°
6.如图,AB∥CD,AD∥BC,则下列各式中正确的是()
A∠1+∠2>∠3 B.∠1+∠2=∠3 C.∠1+∠2<∠3D.∠1+∠2与∠3大小无法确定
7.如图,下列推理正确的是()
A.∵MA∥NB, ∴∠1==∠3,B.∵∠2=∠4,∴MC∥ND,C.∵∠1=∠3∴MA∥NBD.∵MC∥ND,∴∠1=∠
38.如图,在梯形ABCD中,AD∥BC,AB=DC,∠C=60°BD平分∠ABC,如果这个梯形的周长为30,则AB的长是()
A.4B.5C.6D.7
9.如图,将一个等腰三角形纸片△ABC,沿直线DE剪开,得到∠1与∠2,若底角∠A=50°,则∠1+∠2的大小为()
A.130°B.230°C180°D.310°
10.如图是跷跷板的示意图,支柱0C与地面垂直,点O是横板AB的中点,AB可以绕着点O上下转动,当A端落地时,∠OAC=20°,横板上下可转动的最大角度(即∠A′OA)是()
A.80°B.60°C.40°D.20°
二、填空题(每小题3分,共30分)
11.如图,∠1+∠2+∠3+∠4=________度
12.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则∠B=______
13.把“等角的余角相等”改写成“如果„„,那么„„”的形式是______________________________________
14.如图,已知∠1=20°,∠2=25°,∠A=35°,则∠BDC的度数为_______
15.如图,AB∥CD,∠1=100°∠2=120°则∠α=_______
16.在△ABC中,已知∠A+∠C=2∠B,∠C-∠A=80°,则∠C的度数是________
17.如图,AB∥CD,EG⊥AB,垂足为G.若∠1=50°,则∠E=_______度.18.如图,一张宽度相等的纸条,折叠后,若∠ABC=120°,则∠1的度数为________
19.如图,三个正方形连成如图所示的图形,则x=______
20.如图,将一直角三角板与两边平行的纸条如图所示放置,下列结论:⑴∠1=∠2;⑵.∠3=∠4;⑶.∠2+∠4=90°⑷.∠4+∠5=180°,其中正确的是_________(填写结论序号).三、解答题(21—24每题11分,25题16分,共60分)
21.如图,△ABC中,∠B=∠C,FD⊥BC,垂足为D ,DE⊥AB,垂足为E,∠AFD=158º,求∠EDF的度数.22.已知,如图:AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.23.把一条直的等宽纸带,如图折叠,∠CAB等于多少度?
24.如图,∠1=∠2,能判断AB∥DF吗?为什么?若不能判断AB∥DF,你认为还需要再添加的一个条件是什么呢?写出这个并说明你的理由.25.如图,直线AC∥BD,连结AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分,当动点P落在某个部分时,连结PA,PB,构成∠PAC,∠APB,∠PBD三个角。(提示:有公共端点的两条重合的射线所组成的角是0°角)⑴当动点P落在第①部分时,求证:∠APB=∠PAC﹢∠PBD;
⑵当动点P落在第②部分时,求证:∠APB=∠PAC+PBD是否成立(直接回答)?
⑶当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论,选择其中一种结论加以证明。
③③③
②①
②①
②①
④④④
第六章证明
(一)测试题参考答案
一、1—
5、DDDCC6—
10、BBCBC
二、11、280°12、60°
13、如果两个角大小相等,那么它们的余角也相等14、80°15、40°16、100°17、40°18、60°19、65°
20、(1)(2)(3)(4)
三、21、68°
22、省略23、75°
24、不能,应添加:CBDBDE(或BC//DE)
理由:内错角相等,两直线平行
25、解(1)过P作AC的平行线即得
(2)不成立
(3)分三种情况:
a、当P在BA延长线上时,APB0°,PACPBD
b、当P在BA延长线右边时,PBDPACAPB
3.苏科版数学第12章证明 篇三
例1 把下面式子中的一元一次方程找出来,写在下面的括号里. 2+3=5,2x51,x30,2x3,2x0 4一元一次方程:{ } 例2 根据下列条件列方程:(l)某数的3倍比7大2;(2)某数的1比这个数小1; 3(3)某数与3的和是这个数平方的2倍;(4)某数的2倍加上9是这个数的3倍;(5)某数的4倍与3的差比这个数多1.
例3 据2001年中国环境状况公报,我国水蚀和风蚀造成的水土流失面积达356万平方公里,其中风蚀造成的水土流失面积比水蚀造成的水土流失面积多26万平方公里,问水蚀与风蚀造成的水土流失面积各是多少平方公里?请列出解决这个问题的方程.
例4 判断下列各式是不是方程,如果是指出已知数和未知数;如果不是,说明为什么?(1)3x20;(2)xy10;(3)2534;(4)xy1;(5)3x2x1;(6)x13x2.例5 己知x2是方程3x12xm的解,求m的值. 例6 根据下列条件列出方程
(1)某数的平方比它的5倍小-3,求这个数;(2)某数的223与15的差的一半比这个数大20%,求这个数; 5(3)一根铁丝,第一次用去了它的一半,第二次用了剩下的一半多1米,结果还剩2.5米,求这根铁丝的长;
(4)有两个运输队,第一队32人,第二队有28人,现因任务需要,要求第一队人数是第二队人数的2倍,需林第二队抽调多少人到第一队?
例7 某工程队每天安排120人修建水库,平均每天每人能挖去5m或运土3m,为了使挖出的土及时运走,问应如何安排挖土和运土的人数?
1 例8 若x2是关于x的方程xkxk50的一个解,则常数k____.2
参考答案
例1 分析 判断是否是一元一次方程应注意以下几个方面:(1)必须是等式;
(2)等式中必须含有一个未知数,且未知数的指数是1. 解 一元一次方程:2x51,x30,2x0 4说明:2+3=5和2x3,都不是一元一次方程,因为前者无未知数,后者不是等式. 例2 分析 要列方程,首先要认真审题,明确未知数,并设未知数,然后根据题中的条件,找出相等关系,列出方程,解(1)设某数为x,则有:3x72;或 3x72;或3x27;
(2)设某数为x,则有:
111x1x;或 xx1;或xx1;333222(3)设某数为x,则有:x32x;或x2x3;或x2x3;
(4)设某数为x,则有:2x93x;或 2x3x9;或 3x2x9;
(5)设某数为x,则有 4x3x1;或 4x31x;或 4xx13 说明:此题条件中的大(小)、多(少)、和(差)、倍等实际上说的是相等关系:
大数-小数=差; 小数十差=大数; 大数一差=小数.
例3 分析 根据已知条件,我们可以知道,我国水蚀与风蚀造成水土流失的总面积,又知道,风蚀造成的水土流失面积比水位造成的水土流失面积多,那么即使我们没学过本节知识,利用小学学过的关于和差问题的公式,我们仍然能够计算出本题的正确答案.
风蚀造成的水土流失面积=(风蚀、水蚀造成的水土流失之和+风蚀、水性造成的水土流失之差)+2 水蚀造成的水土流失面积=(风蚀、水蚀造成的水土流失之和-风蚀、水蚀造成的水土流失之差)÷2
但是,和差公式需要死记硬背。
如果利用这一节学过的知识来解本题,要简便很多.
(1)水蚀与风蚀造成的水土流失总面积为356万平方公里,即水蚀造成的水土流失面积+风蚀造成的水土流失面积=356万平方公里.(2)可以设水蚀造成的水土流失面积为x平方公里,又知“风蚀造成的水土流失面积比水蚀造成的水土流失面积多26万平方公里”,所以风蚀造成的水土流失面积为(x26)万平方公里.
(3)把x与(x26)代入①中的等式并省略不参与计算的单位名称,就得到方程。解 设水蚀造成的水土流失面积为x平方公里,则有
x(x26)356
说明:(1)这个方程并不难解,同学们在学习下一节之后,将会有更深的体会。(2)对题目中出现的表示同一种量的数(在本题中是表示水土流失面积的数)要注意分清哪个数大、哪个数小,要仔细分析列式时该用加号、还是该用减号。初学者要尽量避免在这些地方发生错误。
例4 分析 判断一个式子是不是方程,主要根据方程的概念;一是等式,二是含有未知数,二者缺一不可。
解(1)是。3,-2,0是已知数,x是未知数。(2)是:-1,0是已知数,x、y是未知数。(3)不是。因为它不含未知数。
(4)是。-1,0是已知数,x、y是未知数。(5)不是。因为它不是等式。
(6)是。-1,3,2是已知数,x是未知数。
说明: 未知数的系数如果是1,这个省略是1也可看作已知数,但可以不说,已知数应该包括它的符号在内。
例5 分析 欲求m的值,由己知条件x2是方程3x12xm的解,也就是将x2代入方程后左、右两边的值相等,即左边321,右边22m。
∵ 左边=右边,∴32122m,即可求出m. 解 ∵x2是方程3x12xm的解,∴ 将x2代入方程得:
32122m
∴ m1.例6 解(1)设某数为x,根据题意,得5xx3.2(2)设某数为x,根据题意,得13(x15)x20%x.25(3)设这根铁丝的长为x,根据题意,得 x111xxx12.5.222(4)设需从第二队抽调x人到第一队. 根据题意,得32x2(28x).说明:本题要求根据条件列方程,解题关键在于找到数量之间的有关运算和等量关系.列式时要根据不同的问题,适时添加括号以体现运算的顺序.对没有给出未知数的问题,列方程前先要正确设出未知数.
例7 解 设安排x人挖土,则运土人数为(120x)人,依题意得
5x3(120x).解得x45,则120x75.答:应安排45人挖土,75人运土.
说明:本题中有一句重要的话体现了等量关系,即“使挖出的土及时运走”,这就是说挖土与运土的总数应相等.本例中人数分配的目的是使挖土与运土的体积相同,实际上隐含的是人数分配中挖土人数:运土人数=3:5,依据这个等量关系也可以列出方程来.
2例8
解
因为x2是关于x的方程xkxk50的一个解,所以222kk50,即9k0,故k9,填9.
4.苏科版数学第12章证明 篇四
学习目标: 1.理解有理数减法法则, 能熟练进行减法运算.2.会将减法转化为加法,进行加减混合运算,体会化归思想.活动过程: 活动一 情境引入
1.昨天,国际频道的天气预报报道,南半球某一城市的最高气温是5℃,最低气温是-3℃,你能求出这天的日温差吗?(所谓日温差就是这一天的最高气温与最低气温的差)
2.珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8848米和-155米,问珠穆朗玛峰比吐鲁番盆地高多少? 活动二 探索新知
(一)有理数的减法法则的探索
1.我们不妨看一个简单的问题:(-8)-(-3)=? 也就是求一个数“?”,使(?)+(-3)=-8 根据有理数加法运算,有()+(-3)=-8 所以(-8)-(-3)= _____ ①
2.这样做减法太繁了,让我们再想一想有其他方法吗? 试一试 :做一个填空:(-8)+(______)=-5 容易得到(-8)+(___________)=-5 ② 思考: 比较 ①、②两式,我们有什么发现吗?
(二)有理数的减法法则归纳
1.说一说:两个有理数减法有多少种不同的情形?
2.议一议:在各种情形下,如何进行有理数的减法计算? 3.试一试:你能归纳出有理数的减法法则吗?
由此可推出如下有理数减法法则:_____________________________。字母表示:aba(_____).由此可见,有理数的减法运算可以转化为_______运算。注意:(1)被减数可以小于减数。(2)差可以大于被减数。(3)有理数相减,差仍为有理数;(4)大数减去小数,差为_____数;小数减大数,差为____数;(填“正”或“负”)。你能上述情况分别举例说明吗? 活动三 尝试运用
例3.计算:①0-(-22)②(-8.5)-(-1.5)
③(-4)-16 ④()121 43少多少? 457(2)从-1中减去-与-的和,差是多少?
128例4.(1)-13.75比5
活动四 巩固练习
1.、课本P 32练习1、2、3、4 2.求出数轴上两点之间的距离:(1)表示数10的点与表示数4的点;(2)表示数2的点与表示数-4的点;(3)表示数-1的点与表示数-6的点。活动五 提炼总结
1.有理数减法法则 2.有理数减法运算实质是一个转化过程 活动六 检测反馈
1.下列说法中正确的是()A减去一个数,等于加上这个数.B零减去一个数,仍得这个数.C两个相反数相减是零.D在有理数减法中,被减数不一定比减数或差大.2.下列说法中正确的是()A两数之差一定小于被减数.B减去一个负数,差一定大于被减数.C减去一个正数,差不一定小于被减数.D零减去任何数,差都是负数.3.下列计算中正确的是()
【苏科版数学第12章证明】推荐阅读:
苏科版初中数学说课10-22
苏科版九年级数学期中10-13
2016-2017学年度苏科版九年级(上册)数学教学计划11-10
苏科版8年级(上)《光学》经典试题08-08
八年级物理下册 力弹力教案 苏科版08-28
苏科版八年级二次根式09-06
苏科版8年级(上)《光学》经典试题一09-08
苏科版《3.4平面镜》教学设计07-08
苏科版八年级上 第三章 光现象 教案10-20
苏科版八年级上 第一章 声现象 章节测验12-13