《最大公约数最小公倍数》教学反思

2024-08-07

《最大公约数最小公倍数》教学反思(精选4篇)

1.《最大公约数最小公倍数》教学反思 篇一

教学用具:教具:小黑板,投影片。

教学过程设计:

(一)复习准备

1、什么叫最大公约数和最小公倍数?怎样求最大公约数和最小公倍数?

2、求下面各题的最大公约数和最小公倍数?(口答)

8和16,13和26,2和9,7和15

教师:对上面几道题你是怎么想的?各有什么特点?

明确:①两个数有倍数关系,最大公约数最较小数,最小公倍数是较大数。

②两个数互质,最大公约数是1,最小公倍数是两个数乘积。

(二)学习新课

1.出示例4。

求30和45的最大公约数和最小公倍数。(要求学生独立完成。)

学生口述教师板书。33045

51015

23

30和45的最大公约数是:3×5=15

33045

51015

23

30和45的最小公倍数是:3×5×2×3=90

教师:观察上面两道题,谁能说出求最大公约数和求最小公倍数有什么地方相同?什么地方不同?(讨论)

在讨论的基础上,总结出下面的结论。

求两个数的`最大公约数

求两个数的最小公倍数

相同点

都要用短除法分解质因数

不同点

只要把除得的除数相乘

把除得的除数和商都相乘

教师:为什么求最大公约数只要把所有除数乘起来,而求最小公倍数就要把所有除数和商都乘起来呢?

明确:求最大公约数是两个数公有质因数的积;求最小公倍数既要包含两个数公有质因数,又要包括各自独有的质因数。

教师:既然求两个数的最大公约数和最小公倍数的短除过程是相同的,那么,我们就可以用一个短除式来表示。例4怎样做简便?(由学生完成。)

2.出示做一做。

根据下面的短除,你能很快说出42和56的最大公约数和最小公倍数吗?

24256

72128

34

(三)巩固反馈

1.求下面各组数的最大公约数和最小公倍数。

30和18,75和35,16和72

9和31,20和12,100和30

2.判断正误并说明理由。

①互质的两个数没有最大公约数;

②两个数的最小公倍数,是这两个数的最大公约数的倍数;

③a与b的最大公约数是1,那么a与b的最小公倍数是ab;

④用短除法求两个数的最小公倍数时,可以用这两个数的公约数连续去除。

⑤17和51的最大公约数是17,

最小公倍数是:17×51=867。

3.选择正确答案的序号填在里。

(1)已知甲、乙两个数互质,那么甲、乙最大公约数是,最小公倍数是。

①1,②甲,③乙,④甲×乙

(2)已知a=2×3×2,b=2×3×5,那么a,b的最大公约数是,最小公倍数是。

①2×3②2×3×2③2×3×5④2×3×2×5

(四)课堂总结(学生总结)

1.求两个数的最大公约数,最小公倍数用一个短除式。

2.求最大公约数把所有的除数乘起来,求最小公倍数把所有的除数和商乘起来。

(五)布置作业:课本65页练习十一,11、12

课堂教学设计说明

本节新课教学分为两部分。

第一部分,教学例4,由学生独立求出最大公约数和最小公倍数。

第二部分,对比例4中最大公约数,最小公倍数的求法,讨论它们有什么异同点,结合算理找出解法不同之处的内在原因,从而总结出结论。

教学反思:知其然且知所以然――摆脱纯技能的训练

本节课教学是在学生学习分别求最大公约数和最小公倍数的基础上进行的,目的是让学生能够区分并深入理解求最大公约数和最小公倍数的方法。在掌握方法时还需要多问一个为什么。比如求30和45的最大公约数和最小公倍数中,为什么3×5=15是两数的最小公倍数,3×5×2×3=90是两数的最小公倍数?对于这一点,应该让学生透过题目表面的理解,寻求对它本质的掌握。教学中在安排学生独立完成例题后,分组讨论此题求最大公约数和最小公倍数有什么异同点,由学生列表得出结论。进一步引发学生思考为什么求最大公约数是把所有除数相乘,而求最小公倍数是把所有除数和商相乘?使学生深入、透彻地理解求最大公约数和最小公倍数的方法。

或许,这样的题目经过机械的训练,也能达到会做类似的题目的效果,但是如果换成12=2×2×3,30=2×3×5,求12和30的最大公约数和最小公倍数,你还能保持高的正确率吗?恐怕很难。甚至还会有这样的题目:m=a×b×c,n=a×c×c,求m和n的最小公约数和最小公倍数,恐怕这次做对的就更少了。所以只有学生明白了算理:两数最大公约数是两数的所有公有的质因数的乘积,两数最小公倍数是两数所有公有的质因数和独有的质因数的乘积,才能有效正确地解答。

所以,在进行技能训练的时候,还要多问一个为什么,让学生搞清楚算理,有助于学生对知识的迁移。同时培养了学生严谨治学、独立思考的学习习惯及比较的能力。

2.《最大公约数最小公倍数》教学反思 篇二

(一)教学例5  求28和42的最大公约数和最小公倍数

1、学生板演.

2、整理方法:

求28和42的最大公约数,先用短除形式分解质因数,直到两个商是互质数为止,然后把所有的除数乘起来.(板书:把所有的除数乘起来)

求28和42的最小公倍数,先用短除形式分解质因数,直到两个商是互质数为止,然后把所有的除数和商乘起来.(板书:把所有的除数和商乘起来)

(二)分析对比,寻找异同.

1、出示下表.

求两个数的`最大公约数

求两个数的最小公倍数

相同点   不同点

2、分组讨论:

求两个数的最大公约数和最小公倍数有什么相同点和不同点?

3、信息反馈,总结填表.

求两个数的最大公约数

求两个数的最小公倍数

相同点

用短除的形式分解质因数,直到两个商是互质数为止.

同左

不同点

把所有的除数乘起来.

把所有的除数和商乘起来.

4、针对不同点探究真知.

(1)探讨:为什么求两个数的最大公约数是把所有的除数乘起来,而求两个数的最小公倍数是把所有的除数和商乘起来?

(2)小结:两个数的最大公约数是它们的公约数中最大的,它必须包含两个数全部公有的质因数.所有除数正好是两个数全部公有的质因数,所以,求最大公约数就要把所有除数乘起来.而求最小公倍数既要包含两个数全部公有的质因数,又要包含各自独有的质因数.两个数的商分别是它们独有的质因数.所以求两个数的最小公倍数要把所有的除数和商乘起来.

(三)反馈练习:

根据短除式,你能很快地说出24和36的最大公约数和最小公倍数吗?

三、全课小结.

今天这节课我们学习了哪些知识?通过今天的学习,你有哪些收获?

四、随堂练习.【演示课件“比较”】

1.选择题:根据下面的短除式,选择正确答案.

(1)18和30的最大公约数是(    )

A:2×3=6      B:3×5=15       C:2×3×3×5=90

(2)18和30的最小公倍数是(    )

A:2×3=6      B:2×3×3×5=90   C:18×30=540

2.改错:找出下列各题错在哪里,并说明如何改正.

(1)

60和90的最大公约数是 2×3=6,

60和90的最小公倍数是 2×3×10×15=900.

(2)

7和12的最大公约数是7.

7和 12的最小公倍数是 7×1×12=84.

3.下面的数,哪些能被2整除?哪些能被3整除?哪些能被5整除?

12   21   36   45   60   105   144   255

4.很快说出下面每组数的最大公约数和最小公倍数.

3和5 4和6 10和16

8和7 6和10 9和15

9和27 7和21 7和12

五、布置作业 .

1、求出下面每组数的最小公倍数

2、5和10 8、16和24 6、8和14

3、6和9 5、7和15 8、9和18

2、幸福村小学某班利用假日为饲养场割草.第一小队7个人3小时割了73.5千克.照这样计算,全班48人用同样时间割草多少千克?

3.最小公倍数教学反思 篇三

温赛甘

最小公倍数教学反思

深圳市宝安区燕山学校温赛甘

求最小公倍数的方法是整除部分的难点,它抽象不易理解,且与学生已有的知识储备联系较小。为达到让学生明白求最小公倍数的算理的目的,今年我又进行了深入地探究,有所顿悟,从孩子们兴奋的表情中,多年的难题终于解决了。现将这节课的教学反思如下:

一、创设情境,激发兴趣

“公倍数”、“最小公倍数”单从纯数学的角度去让学生领会,显然是比较枯燥、乏味的。《新课程标准》指出数学教学要紧密联系学生的生活环境,从学生的经验和已有的知识出发,激发学生的学习兴趣,向学生提供充分从事数学活动的机会,增强学生学好数学的信心。为了让这些枯燥的知识变成鲜活、灵动数学,使学生体会到最小公倍数在实际生活中的运用,课始,我把新知找4和6的公倍数融入到学生喜欢的“森林运动会”中,让学生在解决问题的过程中,自然而然地接受了新知,起到了“润物细无声”的作用。同时在这一环节的教学中,能充分相信学生,让学生通过独立思考、小组合作,既解决了问题,又习得了新知。在教法上做到有“扶”有“放”、“收放”自如,真正体现了“双主体”的作用。

二、问题教学,建构体系

建构主义认为,知识的获得不是由传递完成的,知识只能在综合的学习情景中被交流。现代教育观点认为:学习不是为了占有知识,而是为了生长知识,因此在教学中,我们不要教给学生现成的知识,而是让学生自己去观察、思考、探索研究出数学。为此,这节课一开始就为同学们提供了一个具体的问题情境:“从十月一日起,小兰的妈妈每4天休息一天,爸爸每6天休息一天,他们打算等爸爸妈妈休息时,全家一块儿去公园玩。那么在这一个月里,他们可以选哪些日

最小公倍数教学反思

温赛甘

子去呢?你会帮他们把这些日子找出来吗?”让学生通过解决这个生动具体的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验;在此基础上,再引导学生从生活“进到数学”,通过对实际问题的反思抽象,引出公倍数、最小公倍数等数学概念,并通过对解决问题过程的进一步提炼,总结出求公倍数和最小公倍数的方法。

三、体验现实,理解数学

教学前,我了解了学生在这节课前已有的知识背景,直接出示例题,让学生自己去尝试解答,然后汇报个性化的解题方法。在不断的交流汇报中,学生发现了有特殊关系的两个数的最小公倍数的求法。教师又让学生举实例进行验证。公因数只有1的两个数的最小公倍数是它们的乘积。有倍数关系的两个数最小公倍数是它们中的较大数。再应用这一发现进行试一试的练习。让学生经历了观察、思考、比较、反思等活动中,逐步体会到了数学知识的产生、形成与发展的过程。

四、重视过程,深刻领会

学生获取知识过程花的时间可能也要稍多一些,但是这一过程中,学生的学习积极性和主动性被充分地调动了起来,当他们面对那些生动有趣的实际问题时,会自觉地调动起已有的生活经验和那些“自己的”思维方式参与解决问题的过程中来,主动地借助已有的知识经验用学过的一些方法来展示自己内部的思维过程。在这一过程中,学生不仅能清楚地体会到数学的内部联系,而且能真切地体会到数学与外部生活世界的联系,体会到数学的特点和价值,体会到“数学化”的真正含义,从而帮助他们获得对数学的正确认识。

五、有效开放,自主探究

现代教育观点认为:学习不是为了占有知识,而是为了生长知识。教学中,我们不要教给学生现成的数学,而是要让学生自己观察、思

最小公倍数教学反思

温赛甘

考、探索研究数学。因此在研究最小公倍数的意义时,我让学生亲历知识的形成过程,设计看到这列数你想说些什么,看到这两列数你想说些什么?研究两数互质和成倍关系的最小公倍时设计你有什么发现?你会有怎样的猜想?一系列开放的数学问题,每个问题都为学生留出了足够的思维活动空间,让学生在高度的思维状态下,调动大量的原有知识参与新知识的构建。学生围绕这些问题,自主地在小组内开展了探究性的合作活动,根据自己已有的知识和经验,用自己的思维方式,自主地、开放地去探究,生成了各种方案资源。使学生的数学学习活动真正成为一个生动活泼、积极主动的、富有个性的过程。给我留下一个深刻的印象就是“教学的精彩在于学生的发现。”

六、独立思考,合作交流

在教学有特殊关系的两个数的最小公倍数时,教师让学生自己说一说每组数最小公倍数有什么不同?学生在经历求的过程后,又仔细观察,认真思考,汇报自己的想法,把被动的认知改成了主动探究。在教学求最大公因数和最小公倍数的异同时,教师出示了求20和48的最大公因数和最小公倍数的题目。让学生自己尝试后,小组讨论求两个数的最大公约数和最小公倍数的相同点和不同点。在同学之间的讨论、交流、探索中,学生发现了新知识的特点,又在不断的比较中,知道了新知识和旧知识之间的异同。就这样,在整理、归纳、交流的活动中丰富了数学活动的经验,提高了解决问题的能力,学生在这堂课中成为了学习的主人。

首先,学生小组讨论18和30的最小公倍数与18和30有什么关系,通过共同交流,发现绝大多数同学思维都停滞在最小公倍数一定是这两个数的倍数的阶段上,于是我充分发挥了教师的主导作用,让学生把18和30分解质因数,并引导学生观察18=2×3×3,30=2×3×5,讨论交流要求的最小公倍数与18和30的质因数有没有关系,最小公倍数教学反思

温赛甘

给学生充足的时间,因为学生已经知道最小公倍数是18的倍数,而18是2、3、3相乘得到的,所以有学生发现18和30的最小公倍数一定包含18的质因数2、3、3的乘积,同理也包含30的质因数2、3、5的乘积,接着提问:这6个质因数相乘后是最小公倍数吗?为什么?学生通过交流发现公有质因数2、3重复乘了一次,这样得到的公倍数就不是最小的,要想最小,只须用2×3×3×2×3×5,即用公有质因数2、3乘各自独有质因数3、5就是最小公倍数。这样在老师的引导,自己的观察、思考、发现的专注探索中学生基本上理解了求两个数最小公倍数的方法,思维得到了发展,教学难点迎刃而解,同时为后续的实际计算做好了铺垫。

七、互动生成,启发思考

学生在前面的森林运动会“做裁判”中已经初步认识了“公倍数”和“最小公倍数”,我借机顺势推舟,请学生用列举法找公倍数和最小公倍数,为了在形式上避免了雷同,我是通过让学生填表获得最感性的认识,在此基础上更大胆地放手让学生自己去发现、验证、总结归纳结论,由于前面有了“做数学”方法的引领,学生在这里是能“胜任”的。这样就从概念的认识提高到了对方法的理解和掌握。在研究“互质”两个数的最小公倍数时,让学生经历“观察——发现——猜想——验证——归纳” 五个过程,感受数学的严密性、科学性,感悟“做数学”的基本方法,从中渗透数学思考和数学方法。两数“互质”、两数“成倍”的最小公倍数是本课的重点,所以,在这一环节的最后以表格的形式进行了整理,起到巩固强化的作用。

4.《最小公倍数》教学反思 篇四

课后,我把教学流程在脑子里又重新过了一遍,并与以前的教学方法进行了比较,发现解决问题的症结只有一点————让学生真正了解两个数的最小公倍数与这两个数质因数的关系。为此,教学求最小公倍数的方法时,我采用了以下几个步骤:

首先,学生小组讨论18和30的最小公倍数与18和30有什么关系,通过共同交流,发现绝大多数同学思维都停滞在最小公倍数一定是这两个数的倍数的阶段上,于是我充分发挥了教师的主导作用,让学生把18和30分解质因数,并引导学生观察18=2×3×3,30=2×3×5,讨论交流要求的最小公倍数与18和30的质因数有没有关系,给学生充足的时间,因为学生已经知道最小公倍数是18的倍数,而18是2、3、3相乘得到的,所以有学生发现18和30的最小公倍数一定包含18的质因数2、3、3的乘积,同理也包含30的质因数2、3、5的乘积,接着提问:这6个质因数相乘后是最小公倍数吗?为什么?学生通过交流发现公有质因数2、3重复乘了一次,这样得到的公倍数就不是最小的,要想最小,只须用2×3×3×2×3×5,即用公有质因数2、3乘各自独有质因数3、5就是最小公倍数。这样在老师的引导,自己的观察、思考、发现的专注探索中学生基本上理解了求两个数最小公倍数的方法,思维得到了发展,教学难点迎刃而解,同时为后续的实际计算做好了铺垫。

上一篇:高适的送别诗下一篇:河北省法医鉴定中心