高中欧姆定律教学设计

2024-11-27

高中欧姆定律教学设计(精选13篇)

1.高中欧姆定律教学设计 篇一

一、分析教材

电磁感应这一章内容在选修3-2里面是最重要的一章,而第三节《楞次定律》更是重中之重,本节让学生通过实验探究总结出判断感应电流方向的规律,体现了“过程与方法”这一具体课程目标,让学生经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。

二、分析学生

学生是教学的对象,是课堂的主体,一切教学活动都是为主体服务的。学生由于基础不一,知识水平和认知水平不同,在接受“楞次定律“时肯定会出现“参差不齐”的现象。因而,为了让尽可能多的学生理解“楞次定律”,教学就应该建立在学生的基础上,教学进程就要根据学生的实际情况进行设计,用多样话的手段来帮助学生突破障碍,提高课堂效率。

三、教学目标

?1.通过实验探究得出感应电流与磁通量变化的关系,并会叙述楞次定律的内容。

?2.通过实验过程的回放分析,体会楞次定律内容中“阻碍”二字的含义,感受“磁通量变化”的方式和途径。

?3.通过实验让学生经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。

四、教学重点

楞次定律探究实验设计和实验结果的总结。

五、教学难点:

1.从静到动的一个飞跃

“楞次定律”所涉及的是变化的磁场与感应电流的磁场之间的相互关系,是一种“动态场”,并且“静到动”是一个大的飞跃,所以学生理解起来要困难一些。

2.?内容、关系的复杂性

“楞次定律”涉及的物理量多,关系复杂。产生感应电流的原磁场与感应电流的磁场两者都处于同一线圈中,且感应电流的磁场总要阻碍原磁场的变化,它们之间既相互依赖又相互排斥。如果不明确指出各物理量之间的关系,使学生有一个清晰的思路,势必造成学生思路混乱,影响学生对该定律的理

六、教材课型实验探究课

七、教学准备多媒体课件、电磁炉、楞次定律演示仪、试验单

八、教学方法实验教学

九、教学过程

1、复习引题

师:电现象和磁现象之间有紧密的联系。奥斯特发现了电流的磁效应,即电流能在其周围激发磁场。请同学判断以下三种电流的磁场。(课件演示问题、提问学生)

生:判断回答,用安培定则判断

师:电能生磁,磁也能生电。法拉第发现了磁场可以使导线中何产生电流,这个现象叫电磁感应现象,产生的电流叫感应电流,我们先看演示实验。

师(演示实验):条形磁铁穿过竖直方向的闭合线圈,灵敏电流计的指针左右来回摆动。

问:我们回顾一下产生感应电流的条件是什么?

生:当闭合线圈中磁通量发生变化时,闭合线圈中就有感应电流。

师:电流激发的磁场与原磁场之间有一个相互作用,我们通过几个有趣实例来看看它们之间相互作用时有什么样的现象。

?2.实验演示

(1)电磁炉通电时,闭合的锡箔纸圈跳起。?

?提问:大家观察到了锡纸跳起,是什么原因呢?

生:锡纸圈中有感应电流造成的

(2)楞次定律演示仪演示实验过程:

?①先介绍装置结构

?②演示实验现象

提问:为什么磁铁在穿过闭合回路时铝环运动了,而穿过不闭合的铝环时铝环没动?

生:闭合的铝环中有感应电流,磁场对电流有力的作用。

问:从上面两个实验中,大家观察到了奇特的相互作用,要想掌握利用这种相互作用为我们服务,我们必须要知道电磁感应中电流的方向。

感应电流的方向由那些因素决定?遵循什么规律?我们需要通过实验来探究这个问题。

3、学习新知,开始探究过程

(1)教师主导,设计探究感应电流方向的方案

师:我们要解决感应电流的方向问题,我们要把上节课中的演示实验再搬回来。

①?介绍实验装置,线圈的绕向,电流进入时灵敏检流计指针的偏转情况。

②方案中有四种相对运动情况。给学生每人发一张实验数据采集表格,做实验填表格。

(2).实验过程,采集数据。

请一组2名同学上讲台辅助实验,一个同学演示实验,另一个同学完成小黑板上的感应电流和感应磁场的方向。

(3)师生共同分析,从个性中找出共性,总结规律

师:大家观察比较四种情况下的到的实验数据,我们能不能发现他们的共同特点?请同学回答。

2.高中欧姆定律教学设计 篇二

一、关于牛顿第二定律

在牛顿第二定律中,物体加速度大小随着物体自身受到的作用力增大而随之增大,与此同时物体质量趋于减小,合外力方向与加速度方向相一致,即公式为F=ma。牛顿第二定律是对物理学中运动和力关系的一种概括,是较为经典的物理学定律。曾经在惯性定律中我们了解到并非是导致物体运动的原因,显然这与生活经验内容相违背,而在牛顿第二定律中我们认识所谓的运动过程侧重是指物体运动过程中状态的变化,在力的作用下物体运动方向或是速度发生了改变。

1.相互作用力

物理运动状态发生改变是受到力的作用的影响,我们经常在生活中碰到这样的例子,比如车辆在行使过程中的加速或是减速操作正是由于车辆自身运动速度受到摩擦力和牵引力的影响。加速运行时气缸中有大量汽油在燃烧,在传动装置作用下牵引力产生,加之滚动摩擦力的影响,使得车辆运动方向与合力方向相一致,进而形成加速运动的状态,这一过程中滚动摩擦力随之增大,直到与牵引力达到相互平衡的状态。

2.重力场运动

除了相互作用力和运动之间的关系问题外,牛顿第二定律在力学方面还涉及到重力场中力的应用问题。比如石子在斜上抛过程中初始的力一般都较为短暂,不易被察觉,在较大的加速度作用下飞快运动。需要注意的是,在初始力作用下石子运动速度减少再受到初始力作用影响,这其中不计与空气摩擦产生的作用力,因此重力是唯一对石子产生的作用力。在重力的影响下,石子对应的运动状态有了显著改变,这可从运动石子的大小及运动速度等方面得以体现。从运动合成及分解原理分析,这一运动作用力可被划分为垂直方向上的作用力与水平运动方向上的作用力两个方面。水平方向并不存在其余外力的影响,因此对应的石子运动速度并不会产生明显变化,至于垂直方向上的作用力则是受到重力的影响,并且在重力方向上还存在加速度的影响,这就使得垂直方向上的石子运动在具体速率方面呈现出先减小,而后在反方向迅速加速运动的现象。

二、牛顿第二定律实验操作

作为物理概念从理论演变为现实的必要基础,实验操作的重要性不可忽视,实验是帮助学生提升对物理概念感性认知的最直接手段。关于牛顿第二定律的实验操作过程可从教材中的实验获得教学灵感,以此加深学生对牛顿第二定律内容的本质理解。

1.实验装置

如下图1所示,实验过程中的长木板需要在其中一端设计定滑轮,并将其设定为滑块A与B,二者材料相同,置于长木板后借助不可伸长的轻绳连接滑块A与B,并将右边连接与打点计时器纸带相穿。

2.细节引导

缓慢抬起长木板后在滑块A置于长木板处时将其固定住,尽管教师能够理解这是平衡摩擦力作用,然而学生却可能存在不明白的地方,这就需要教师对其进行有效的引导,比如对学生提问若是模板抬起角度小则对应的滑块A会不会出现下滑现象。能够沿着长木板下滑这一过程能够阐述怎样的道理,这能够帮助学生更好地理解和运用摩擦力的概念。

3.实验分析

实验完成后教师可指导学生借助坐标纸上作图的方式来加深对牛顿第二定律相关概念的理解,牛顿第二定律关系图中的a-F或a-1/M直线是过原点的,然而实际操作过程M中学生能够计算得到的数据却并不一定达到预期效果,经常出现的情况是图像末端在原点处发生弯曲,进而导致图像不经过原点。学生可以分析若是摩擦力平衡状态下发生倾角过大或是过小的问题则对应的数据图像是怎样的,发生图像末端弯曲的主要原因是什么。对待真实的实验结果,学生应当寻找其中存在的原因,切忌简单化处理,并对其中的预期现象进行深入阐述,理清牛顿第二定律的概念,形成正确的实验认知,这是掌握和应用物理知识的关键所在。

4.习题评讲

作为物理问题情境设置的重要方式,习题的评讲过程能够帮助学生更好地实现对内化规律的吸收,且促进学生实验技能与方法的完善,这既是实验延伸的重要过程,更是对牛顿第二定律的有效应用,习题评讲中能够再一次对实验过程进行受力分析,加深理解。

综上所述,除了物理思想外,牛顿第二定律中还包含了丰富的物理实验方法,是后续物理课程学习的重要基础,这就需要教师在讲授牛顿第二定律时融入该定律建立与推导的相关过程,引导学生了解牛顿第二定律的形成全过程,这不仅能够让学生更好地掌握基本物理知识,且有利于学生对自然界运动定理的理解,这对于学生科学素养的提升和正确实验观的树立都有积极影响。

摘要:作为高中阶段物理学科中重要概念之一,牛顿第二定律在整体知识结构中有着重要的承上启下作用,是对高中阶段物理知识的有效连接。不少物理教育工作者将牛顿第二定律视为高中物理教学的核心。依据自身从事高中物理教学的多年经验,笔者针对高中物理牛顿第二定律中的力学知识进行了知识框架的概括总结。

3.高中欧姆定律教学设计 篇三

1 高中物理探究性实验的内涵

物理探究性实验可以这样来定义:学生在教师的引导下,通过实验操作和观察等方式参与到物理规律的发现和总结活动中,切实体验构建物理规律的过程,进而使自身的相关能力得到培养.

物理基本概念和规律教学的过程中,教师需要给予学生适当的点拨,引导他们设计实验、规范操作、观测实验现象、记录数据并处理,进而形成自己对物理规律的认识.学生应该处于整个探究过程中的主体地位,他们会在此过程中加强处理各种问题的能力,他们的创造性思维也能得以训练,学习的激情和兴趣不断地被激起.高中物理的探究性实验教学也需要学生积极主动地思考,敢于质疑,勇于探索,从而培养学生主动学习的习惯,锻炼他们的学习能力、动手能力.

2 高中物理探究性实验教学的设计思路

怎样来将探究性实验教学整合进高中物理课堂呢?笔者认为,有关教学活动的设计应该按照以下的几个环节来组织.

首先要让学生明确“探究什么”,科学探究活动都应该有一个明确的探究对象,高中物理探究性实验活动的内容就是物理问题.在进行教学设计时,选择怎样的问题至关重要,教师必须结合学生实际情况,设计出最能激发学生探究欲望的物理问题,而且该问题是否能联系学生的生活实际、探究过程的可操作性都必须加以考虑.我们对问题的设计要打破物理教材的束缚,合适的设计应该要最接近学生物理学习的最近发展区.

第二步是指导学生思考“如何探究”.在这一环节,教师要鼓励学生注重假设,积极猜想,很多伟大的物理发现都源于科学家大胆的假设和猜想,可以这样说物理规律的探索就是以猜想和假设为起始的落脚点.此外,学生之间要相互交流各自的猜想,在沟通中完善自己对结论的猜想.

第三步是实验论证.这是探究性实验教学的主要环节,这一环节中,学生的工作包括设计实验和实验操作.学生的自主实验不是漫无目的的胡乱操作,教师要引导学生组织好缜密的实验思路,规划实验步骤,实验操作和现象记录的分工协作.教师要巡视每一个小组的讨论和研究,及时地参与到其中,旁敲侧击,给予点到为止的指导.

第四步是结论归纳.这一环节是锻炼学生的数据分析能力和归纳能力.不同类别的实验需要学生或是用表格法列出相应的实验现象进行比较(例如,探究影响电荷间相互作用力的因素);或是用图象法发掘定量的正反比规律(例如,探究加速度与[HJ1.5mm]力、质量的关系).教师在此过程中,应该鼓励学生设计科学的数据记录表格,耐心运算,仔细画图,进而结合猜想,大胆地进行归纳和总结.

第五步是交流体会.在这一环节中,学生不仅仅是交流自己的探究成果,还应该包括自己实验设计和实验操作中的感受和体验,这也是实验技巧和动手能力取长补短的一个契机.

3 高中物理探究性实验教学的设计实例

“楞次定律”是《电磁感应》这一章的重点,也是难点.以往的教学中,教师也会在课堂进行演示实验的操作,但是单纯的被动接受导致学生只能获得肤浅的感性认识,进而导致他们对规律只是一知半解,只能通过习题的反复训练来熟悉这条规律,这样进行往往是事倍功半.如果将探究的工作交给学生,让他们体验发现规律的过程,效果会更好,下面探讨一下通过探究性物理实验对本节进行教学的设计思路.

(1)设计情境,提出问题

首先可以通过一个个问题导入新课,一系列由浅入深的问题可以不断刺激学生的求知欲,一些似懂非懂的问题尤其能激起学生的兴趣.本节内容,笔者认为可以设计这样一些问题:

a.怎样才能产生电磁感应现象?

b.使用老师所提供的实验器材能否发生电磁感应现象?如果你认为可以,请设计相应的电路(例如,用条形磁铁插入、抽出实验探究的实验),并陈述电流存在的证据.

c.你能想到哪些方式可以引起闭合回路中的磁通量发生变化?

d.感应电流是否也能在它所处的环境激发出磁场?如果你认为可以,请进一步思考怎样确认该磁场的方向.

e.请你进行实验,研究原磁场的方向和感应电流磁场方向间的关系.

(2)组织讨论,鼓励猜想

让学生以学习小组的形式对相关问题展开讨论,鼓励学生进行大胆地猜想,并让他们积极地和其他同学进行交流.五个问题的前四个是和学生的知识基础有关,属于一定程度的复习,学生的答案较为统一;最后一个问题,已经涉及“楞次定律”的范畴,学生对该问题的答案应该是不一致的.争议的解决,自然而然地过渡到下一个环节——实验.

(3)围绕猜想,进行实验

结合学生对第五个问题猜想上的争议,比较分歧所在,此时教师的工作不是评价学生猜想的对错,而是要开始引导学生设计实验,对自己的猜想进行检验.教师要提醒学生注意判断和记录原磁场磁通量的变化情况,并能够通过电流表指针偏转情况来判断电流的方向,进而结合线圈的绕线方向来判断感应电流磁场的方向.教师要引导学生设计合理的实验记录表格(例如,用条形磁铁插入、抽出实验设计探究表格如下)

(4)整理记录,归纳结论

实验结束后,教师引导学生对比实验记录,验证自己的猜想是否正确,让猜想得以验证的同学总结归纳物理规律;而实验结果与猜想有冲突的同学,要提醒他们反思实验中可能出现的错误或误差,鼓励他们改进实验思路,重新操作,如果依然有误,则可提醒他们要敢于质疑自己先前的猜想,并从相反的角度来归纳相关结论.

(5)展示成果,交流体会

教师要给出时间,让学生展示自己有关感应电流方向规律[HJ1.65mm]的认识,并进一步给出教材有关“楞次定律”的描述.当然交流不应停滞于此,教师更要鼓励学生交流自己在猜想过程,实验过程中所遇到的困难,所发生的错误,以及自己克服困难、纠正错误的智慧.

在上述的教学设计中,学生始终站在探究活动的主阵地上,从感性认识到理性分析,最终在实验操作中锁定有关“楞次定律”的认识.这一过程,学生收获的不仅仅是这一知识点的理解和掌握,更有探究能力的培养和动手能力的锻炼,当然最后的展示和交流,也帮助学生进一步完善自己的物理思维和科学方法.

4.牛顿第一运动定律高中的教学 篇四

摘要:本文从几个角度表明了现行高中物理教材中关于牛顿第一定律教学的一些问题,提出了一些新的观点与方法

关键词:自然观 、方法论 、惯性

一、关于历史与内容

课本上将这一节(1)的内容分成两个部分,即将牛顿第一定律的内容与建立牛顿第一定律的历史区分开来。作者的这一增加学生的科学历史观的企图无疑是正确的:“作为思想形式的自然科学,存在于且早已存在于一个历史的连贯性中,并且为了自身的存在,它依赖于历史思想……一个人除非理解历史,否则他就不能理解自然科学(2)”。可是,另一方面,在作者看来,这样一种对课本内容的划分是有疑问的。最起码的是,这种划分把牛顿第一定律当成一个不变的、终结性的东西。对牛顿之前,讲了从亚里士多德以来的两千年的历史,而对牛顿之后却什么也不讲,这就使学生对牛顿第一定律的领悟有一种僵化的感觉。作者认为,在牛顿第一定律的历史与内容的关系中至少要考虑到下面两个问题。

第一,课本上引述了一段亚里士多德的话:“必须有力作用在物体上,物体才能运动,没有力的作用,物体就要静止下来。”对于这样的一种写作方式与引述的这样一段内容,作者不敢苟同。从写作方式上而言,作者认为,我们应当对在人类历史长河中有卓越贡献的人物的论述是肯定性的。要是在教科书中纯粹来论述否定性的人物或否定性的结论的话,那何必要用亚里士多德来开刀呢,人类历史长河中这类人物简直是多得不计其数。或许,这种陈述方式是来自于思想界的习惯。真像黑格尔所说(3):“亚里士多德乃是从来最多才最渊博(最深刻)的科学天才之一,――他是一个在历史上无与论比的人……虽然他许多世纪以来乃是一切哲学的教师,但却从没有一个哲学家曾被完全没有思想的传统这样多地歪曲过,这些关于他的哲学的传统的说法,过去一直被保持着,到今天情形还是如此。人们把与他的哲学完全相反的观点归之于他。柏拉图的著作被广泛地阅读,亚里士多德则直到最近几乎还未被认识,所流行的乃是关于他的一些最错误的偏见。”

从内容上而言,事实上,课本上引述的亚里士多德的话,同亚里士多德关于力和运动关系的论述是有出入的。关于这一个问题,由于太过于复杂,作者将另文论述,只是在这里需要指出:亚里士多德关于力与运动方面所论述的原义和这里大相径庭;我们应当在古希腊哲学的背景中去领会亚里士多德关于力与运动关系的论述;或者可以更直截了当地说,亚里士多德根本没有讲过引文中的话!(4)

仍然,我们通常认为经典力学起源于人们对于亚里士多德物理学的批判。但从历史的观点来看,经典力学毫无疑问与亚里士多德物理学及中世纪物理学有着紧密的关系。因而,我们不能用非此即彼的态度来给真实而复杂的历史下一个粗暴而简单的结论。

另外一点需要特别指出的是,根据作者的研究,由于牛顿第一定律与牛顿第二定律有本质的`区别(5)。与牛顿第一定律的发展有历史渊源的亚里士多德物理学中的内容不是力与运动的关系(事实上这是与牛顿第二定律的发展有历史渊源的),而是亚里士多德关于“天然运动”(6)与“天然处所”的观点。当然,这一点对一般的读者来说可能太为难了,但作者有责任指出这一点。事实上,我们从牛顿所列举(7)的关于牛顿第一定律的例子中就可看到这一踪迹。

第二,惯性定律是人类理性在两千多年的历史长河中发展的产物,它不仅在牛顿之前经历了曲折的发展历程,在牛顿之后也有了很大的发展。在这里特别一提的是爱因斯坦与诺特尔对惯性定律的发展所作出的创造性工作。特别是爱因斯坦在创建了广义相对论以后,使得惯性定律变得更有包容性:“物理学定律比牛顿所想象的情况简单得多。我们不需要对偏离惯性定律的情况作出解释。因为根本不存在偏离惯性定律的情况,所有运动都是惯性运动,所有物体完全沿着时空的自然等直线运动。这些等直线的形状则取决于对这些等直线进行观测所处的参照系。在惯性参照系中,等直线碰巧是直线。在其他参照系中等值线为曲线。在惯性参照系与其他参照系之间不存在任何实质的

5.高中物理欧姆定律知识点总结 篇五

高中物理欧姆定律知识点

一、电压

(一)、电压的作用

1、电压是形成电流的原因:电压使电路中的自由电荷定向移动形成了电流。电源是提供电压的装置。

2、电路中获得持续电流的条件①电路中有电源(或电路两端有电压)②电路是连通的。

注:说电压时,要说“xxx”两端的电压,说电流时,要说通过“xxx”的电流。

3、在理解电流、电压的概念时,通过观察水流、水压的模拟实验帮助我们认识问题,这里使用了科学研究方法“类比法”

(类比是指由一类事物所具有的属性,可以推出与其类似事物也具有这种属性的思考和处理问题的方法)

(二)、电压的单位

1、国际单位:V常用单位:kVmV、μV

换算关系:1Kv=1000V、1V=1000mV1mV=1000μV

2、记住一些电压值:一节干电池1.5V一节蓄电池2V家庭电压220V安全电压不高于36V

(三)、电压测量:

1、仪器:电压表

2、读数时,看清接线柱上标的量程,每大格、每小格电压值

3、使用规则:两要、一不

①电压表要并联在电路中。

②电流从电压表的“正接线柱”流入,“负接线柱”流出。否则指针会反偏。

③被测电压不要超过电压表的最大量程。

Ⅰ危害:被测电压超过电压表的最大量程时,不仅测不出电压值,电压表的指针还会被打弯甚至烧坏电压表。

Ⅱ选择量程:实验室用电压表有两个量程,0—3V和0—15V。测量时,先选大量程,用开关试触,若被测电压在3V—15V可测量,若被测电压小于3V则换用小的量程,若被测电压大于15V则换用更大量程的电压表。

(四)、利用电流表、电压表判断电路故障

1、电流表示数正常而电压表无示数:

“电流表示数正常”表明主电路为通路,“电压表无示数”表明无电流通过电压表,则故障原因可能是:①电压表损坏;②电压表接触不良;③与电压表并联的用电器短路。

2、电压表有示数而电流表无示数

“电压表有示数”表明电路中有电流通过,“电流表无示数”说明没有或几乎没有电流流过电流表,则故障原因可能是①电流表短路;②和电压表并联的用电器开路,此时电流表所在电路中串联了大电阻(电压表内阻)使电流太小,电流表无明显示数。

3、电流表电压表均无示数

“两表均无示数”表明无电流通过两表,除了两表同时短路外,最大的可能是主电路断路导致无电流。

二、电阻

(一)定义及符号:

1、定义:电阻表示导体对电流阻碍作用的大小。

2、符号:R。

(二)单位:

1、国际单位:欧姆。规定:如果导体两端的电压是1V,通过导体的电流是1A,这段导体的电阻是1Ω。

2、常用单位:千欧、兆欧。

3、换算:1MΩ=1000KΩ1KΩ=1000Ω

4、了解一些电阻值:手电筒的小灯泡,灯丝的电阻为几欧到十几欧。日常用的白炽灯,灯丝的电阻为几百欧到几千欧。实验室用的铜线,电阻小于百分之几欧。电流表的内阻为零点几欧。电压表的内阻为几千欧左右。

(三)影响因素:

1、实验原理:在电压不变的情况下,通过电流的变化来研究导体电阻的变化。(也可以用串联在电路中小灯泡亮度的变化来研究导体电阻的变化)

2、实验方法:控制变量法。所以定论“电阻的大小与哪一个因素的关系”时必须指明“相同条件”

3、结论:导体的电阻是导体本身的一种性质,它的大小决定于导体的材料、长度和横截面积,还与温度有关。

4、结论理解:

⑴导体电阻的大小由导体本身的材料、长度、横截面积决定。与是否接入电路、与外加电压及通过电流大小等外界因素均无关,所以导体的电阻是导体本身的一种性质。

⑵结论可总结成公式R=ρL/S,其中ρ叫电阻率,与导体的材料有关。记住:ρ银<ρ铜<ρ铝,ρ锰铜<ρ镍隔。假如架设一条输电线路,一般选铝导线,因为在相同条件下,铝的电阻小,减小了输电线的电能损失;而且铝导线相对来说价格便宜。

(四)分类

1、定值电阻:电路符号:。

2、可变电阻(变阻器):电路符号。

⑴滑动变阻器:

构造:瓷筒、线圈、滑片、金属棒、接线柱

结构示意图:

变阻原理:通过改变接入电路中的电阻线的长度来改变电阻。

使用方法:选、串、接、调

根据铭牌选择合适的滑动变阻器;串联在电路中;接法:“一上一下”;接入电路前应将电阻调到最大。

铭牌:某滑动变阻器标有“50Ω1.5A”字样,50Ω表示滑动变阻器的最大阻值为50Ω或变阻范围为0-50Ω。1.5A表示滑动变阻器允许通过的最大电流为1.5A.作用:①通过改变电路中的电阻,逐渐改变电路中的电流和部分电路两端的电压②保护电路

应用:电位器

优缺点:能够逐渐改变连入电路的电阻,但不能表示连入电路的阻值

注意:①滑动变阻器的铭牌,告诉了我们滑片放在两端及中点时,变阻器连入电路的电阻。

6.欧姆定律的教学体会 篇六

欧姆定律 ( 初中学习的是部分电路欧姆定律) 作为一个重要的物理规律, 反映了电流、电压、电阻这三个重要的电学量之间的关系, 是电学中最基本的定律, 是分析解决电路问题的金钥匙。

欧姆定律这节课的特点是, 十分重视科学方法教育, 重视科学研究的过程。让学生在认知过程中体验方法、学习方法, 了解得出欧姆定律的过程。了解运用“控制变量法”研究多个变量关系的实验方法, 同时也为进一步学习电学知识打下了基础。

教材安排是通过实验探究来研究电流与电压电阻关系, 从而得出欧姆定律。这样安排比较好, 但实际学生动手参与率不高, 学生的科学探究有效性不高, 有点照本宣科, 对欧姆定律不能真正实现探究的思想。究其原因有三点:

1. 本实验是用欧姆定律来研究欧姆定律由于学生还没学习欧姆定律很难理解为什么调节滑片的位置就能改变或保持这段电路两端的电压。

2. 学生很难正确区分一段电路和整个电路两个概念及它们之间的关系, 在本实验中研究AB这段电路中的电流与电压和电阻的关系时不容易将这段从整个电路中分离出来, 更不会分析探究它们之间的关系。

3. 在一个电路图中却要分次研究两个实验规律先研究电流与电压的关系, 后又更换电阻, 研究电流与电阻的关系, 学生很难理解, 更别说自己设计这个电路来探究其中规律了。

以上是学生探究实验和分析实验电路的障碍, 如何来解决呢?

在教学中笔者对实验教学做了适当的改变。让学生自己分两步实验来设计电路探究规律:先激疑, 后激智, 引出正确的电路设计, 再完成正确的实验操作。

第一步, 研究电流与电压的关系, 他们的设计是: 保持电阻不变, 用改变电池节数来改变电池两端的电压。 ( 因为学生很容易想到串联电池越多电压越大) , 于是我说, 那你们就按你们的思路去探究, 结果是能得出: 电阻一定时, 电压越大, 电流越大, 却得不出: 电阻一定时, 电流与电压成正比的关系。此时, 他们反问:问题出在哪呢? 我接着反问: 你们怎么知道定值电阻两端的电压是在成倍数的变化呢? 学生马上回答, 因为电池是成倍的增加啊, 我说, 那你们用电压表测测看, 一测发现电压并没随电池节数的成倍增加而成倍增大, 学生反问: 那怎么办? 有学生很快想到上节课学到滑动变阻器可以调节电压, 立即就串联了滑动变阻器上去, 结果, 水到渠成, 完成了该实验, 而且不用改变电池节数。现在再反问学生这两种电路设计的区别在哪, 问题在哪, 优势在哪, 这时老师点拨一下: 因为导线也有电阻, 学生就会豁然开朗, 会心一笑, 经过一次挫折他们重新设计出探究电流与电压关系的电路, 同时也自行将这段电路从整个电路中分离出来, 研究出这段电路中电流与电压的关系:电阻一定时, 电流与电压成正比的关系。

第二步, 研究电流与电阻的关系, 起初他们的设计是: 保持电池节数不变, 再改变电阻。 ( 因为学生很容易想到串联电池节数不变, 电压也不变) , 很快, 有些学生就想到在第一步中出现的问题, 于是想到可以用滑动变阻器控制电压不变, 只要在原来的电路图上改变电阻就行了, 并想到如用电阻箱来改变就更好了, 因为不仅改变方便, 能多次成倍数改变电阻, 并且能知道电阻的值, 这样也更方便找到电流与电阻的更具体的关系。

这样分两个实验电路图分别设计, 分别实验, 避免了照搬照抄, 死记硬背的教学模式, 实验从开始设计到实验障碍, 再到改进实验, 总结规律, 都是学生亲身实践, 学生真正理解了:

1. 两步实验中为何要用滑动变阻器, 如何用滑动变阻器?

在研究电流与电压的关系时, 如果不用滑动变阻器, 虽然能够测量出R两端的电压和其中的电流, 但该电路只能测量出一组电压和电流的值, 而从一组电流和电压的数据是无法找出二者之间的关系的, 应该再测几组电压和电流, 因此就需要改变R两端的电压, 用滑动变阻器可以成倍地改变R两端的电压, 简单方便, 当然也可以采用改变电池节数的方法, 但因为导线有电阻, 很难成倍地改变R两端的电压, 比较下来, 当然是用滑动变阻器更方便快捷。同时, 滑动变阻器还可以起到保护电路的作用。

2. 用控制变量法探究电流I与电阻R之间的关系实验中, 应该如何操作? 探究电流I与电压U之间关系时, 应该如何操作?

探究电流I与电阻R之间的关系时, 如何保持电压U不变? 即改变定值电阻的阻值的同时, 该电阻两端的电压就发生了变化, 因此, 要及时调节滑动变阻器以保持电压不变, 观察并记录电流表的示数随电阻的变化关系。

探究电流I与电压U之间关系时, 要不断的改变电压, 即保持定值电阻的阻值不变的同时, 要改变电阻两端的电压, 因此, 要及时调节滑动变阻器使电压成倍地变化, 观察并记录电流表的示数随电压的变化关系。

总之, 这样改进充分发挥了实验的作用, 降低了教学环节中学生遇到问题的难度, 调动了学生的学习兴趣和积极性, 更深入地理解和掌握了知识。既培养了思维能力, 又培养了实验能力, 进一步实现了以教师为主导、学生为主体、思维为核心、能力为目标的教学理念, 开阔了学生思路, 有效地提高物理教学质量。

摘要:“教然后而知困”。教学反思是一种有益的思维活动和再学习活动;也是回顾教学——分析成败——查找原因——寻求对策——以利后行的过程。

关键词:欧姆定律,有效性,反思,电路设计,滑动变阻器

参考文献

[1]教育部.初中物理新课程标准 (实验稿) .

[2]邢红军.论科学技术发展与中学物理课程改革.中学物理教考.

7.高中欧姆定律教学设计 篇七

关键词:“孟德尔遗传定律”;生物遗传学;分离定律;自由组合定律

中图分类号:G633.9

1.高中生物遗传学的学习情况简介

遗传学是高中生物的重点学习内容之一,同时也是同学们学习掌握情况最不佳的学习内容之一,而且根据对多年的高考生物试卷的调查与分析,发现遗传学的生物题也是同学们得分率最低的题型之一。遗传学的学习之所以会出现这种尴尬的局面主要有以下两个方面的原因:首先,同学们对遗传学的学习态度不正确,由于遗传学类型的生物题对我们综合能力要求较高,需要我们有一定的分析能力和理解能力,所以很多同学在刚刚学习遗传学时感到十分吃力,从而出现害怕遗传学的学习态度,这种害怕型的学习态度只会阻碍同学们对遗传学的学习进度;除了同学们对遗传学的学习态度不端正之外,影响同学们学习遗传学的另一个原因就是同学们对于遗传学的学习兴趣不高,在我国大部分的高中学校,生物老师的教学模式和教学理念都过于陈旧,很多生物教学课堂的大部分时间都是老师在讲,学生只能被动地接受老师所讲的知识点,课堂上留给同学们自由讨论和独立思考的时间并不多,课堂教学气氛过于沉闷,因此导致很多同学对于遗传学的学习兴趣不高,缺乏对遗传学知识的探索欲望[2]。

2.“孟德尔遗传定律”的主要内容

“孟德尔遗传定律”主要由两个定律组合而成,第一个定律是分离定律,即一对等位基因在杂合状态中保持相对的独立性,而在形成配子时,又按照原样分离到不同配子中去的现象,例如某一个黑色头发的人的控制头发颜色的基因组为Aa,这个基因组在分离时会形成两个配子,一个配子为A,另一个配子为a,不会出现一个配子是Aa,另一个配子是空白的这种现象。分离定律是自由组合定律成立的铺垫条件之一,帮助人们迈入了遗传学世界的大门。第二个定律是自由组合定律,即当具有两对或者更多对相对性状的亲本进行杂交时,一对染色体上的等位基因与另一对染色体上的等位基因的分离和组合是彼此间互不干扰的,各自独立地分配到配子中去。自由组合定律进一步揭示了自然界中遗传与变异现象的本质,同时利用自由组合定律,可以准确地预测子一代或者子二代乃至更以后的子代的表现性状,自由组合定律的提出大大丰富了遗传学的研究内容,推动了很多遗传学技术的发展[3]。

3.“孟德尔遗传定律”在高中生物遗传学中的运用

“孟德尔遗传定律”在高中生物遗传学中的应用较多,尤其是自由组合定律,百分之九十的遗传学题都会涉及到自由组合定律,分离定律主要是考察同学们对遗传学概念及一些专有名词的理解程度,主要的考察题型为选择题货车判断题。自由组合定律在高中生物遗传学中运用得较多,其在高中生物遗传学中主要以三大类型的题目出现:①两对相对性状均在常染色体上,这是典型的考察自由组合定律的题目,针对这种类型的题目,首先要整理清楚题目中所给的信息,然后可以将题中的信息转化为树状图,帮助分析和理解问题,最后运用自由组合定律将每一种配子的情况进行组合,得出最后结果;②两对相对性状在性染色体上,众所周知,无论男性还是女性都是由22对常染色体和一对性染色体所组成的,控制相对性状的基因位于性染色體上的情况要比位于常染色体上的情况稍微复杂一些,需要同学们将控制性别的基因和控制相对性状的基因联合考虑起来;③控制两种相对性状的两组基因一组位于常染色体上,一组位于性染色体上,这种类型的题目是第一种情况和第二种情况的综合运用,但是只要同学们保持清醒的思维,充分理解自由组合定律的实质,一定可以将这种类型的遗传题处理正确。在高中生物遗传学的学习中,无论在分离定律还是自由组合定律,首先要求同学们要充分理解这两大定律的实质含义和运用范围,然后要求同学们理解清楚题中所给出的信息和隐藏的信息,最后解出答案。

4.结语

综上所述,虽然要充分掌握“孟德尔遗传定律”对同学们的能力要求较高,但是只要学生树立正确的学习态度及在平时做好课前预习工作和课后复习工作,同时在课堂上保持高度的注意力,同学们就一定可以学好遗传学的知识。提高遗传学的课堂教学成果不仅仅需要老师的努力,而且也需要我们自身的努力。只有在两者的共同努力下,我们的高中生物教学课堂才能越来越好。

[参考文献]

[1] 黄亦达.孟德尔杂交实验在高中生物课堂上的启示[J].学园,2016(07)

[2] 邹瑜.从达尔文到孟德尔:遗传学说的提出与反驳[J].生物学教学,2016(06)

8.高中物理万有引力定律教案 篇八

一、背景分析及指导思想:

本节课是针对应届高三学生的第一轮复习而设置。在本节之前学生在高一已经学习了万有引力定律这一章的相关知识,但知识的系统性不强,对“表面模型”和“环绕模型”及二者特点有了一定的掌握,但解决问题的方法性不强,对部分的重点和难点的分析不透彻。因此在设计时我们兼顾了本章的知识特点、高考大纲要求和学生特点,在教学过程中设置提问,重在提升学生的思维能力和解决问题的能力。

二、高考特点分析:

本部分是高考考查的重点内容之一,每年的高考试题中都会出现,频率较高,命题的立意包括:万有引力定律与其他知识的综合;应用万有引力定律解决一些实际问题,一般以选择题、填空题或计算题(新课标后计算题出现频率较低)的形式考查。

由于航天技术、人造地球卫星属于现代科技发展的重要领域,有关人造卫星问题的考查频率会越来越高,加上载人航天的成功、中国北斗卫星导航系统的建成和完善、中国探月计划的实施、美国火星计划的实施,这些都是命题的热点。

三、内容设置与方案:

鉴于本部分的内容特点及在高考中的地位,设计这节复习课时,我们打破常规复习课以梳理知识为主的模式,重点突出模型教学与“问题式”方法教学。本节课设计了三个教学环节,第一个环节是知识梳理,以梳理基础知识;第二个环节是模型探究,以“地表”和“天上”两条线为引,突出圆和椭圆两类问题,并能解决相应的实际问题——(包括质量估算和简单变轨问题)的基本技能;第三个环节从高考的考点入手,有效的抓住高考的得分点,引导学生构建从基本概念、基本规律出发应用所学知识分析、解决实际问题的能力。三个环节上彼此呼应,充分体现以学生为主体的课堂教学模式。

四、设计意图:

启发提示,设计阶梯式问题,降低学生对问题理解的难度,引导学生顺着疑问阶梯找到知识的果实。并学会这一思维方法,达到突破这一重难点的目的。渗透科学研究方法以及问题解决的方法的教育,使学生学会“近似处理”和“估算法”,在实践中体验解决问题的脉络。最后通过例题检查学生学习的效果。

教学三维目标:

一、知识与技能:

1、理解万有引力定律,了解它在天文学上的主要应用,使学生能应用万有引力定律解决天体问题;

2、理解运用万有引力定律处理天体问题的基本思路和基本方法;

3、掌握宇宙速度的概念,构建相关知识网络。

二、过程与方法:

1、通过探求计算天体质量公式的过程,体会利用模型解题的思维过程;

2、使学生能够在教师的帮助下构建自己的知识结构体系,提高运用所掌握的科学知识分析和解决实际问题的能力。

三、情感态度与价值观:

1、通过万有引力定律在航天上的应用使学生感受到自己能应用所学物理知识解决实际问题——天体运动;

2、通过体会万有引力定律在人类认识自然界奥秘中的巨大作用,让学生懂得理论来源于实践,反过来又可以指导实践的辩证唯物主义观点。

教学重点:

1、理解万有引力定律及应用两类模型解决天体运动的的解题思路方法;

2、应用万有引力定律处理天体运动问题的归类总结,构建自己的知识结构体系。

3、变轨问题速度、加速度、能量关系的讨论

教学难点:

1、应用“万有引力定律”处理天体运动问题及归纳

2、两类模型的构建及使用模型计算中心天体质量

教学方法:

讨论、分析、归纳、计算机辅助

教学时间:40分钟

教学内容及过程:

基础知识梳理:

引入: 展示太阳系星球分布图。

我们知道现在地球的人口越来越多,开始制约经济的发展,对此人类计划向太空移民,据了解目前最适合人类生存的是火星。美国国家航天局在20提出了“火星计划”,并于开始招募志愿者,在四月份的时候在中国招募了600名志愿者。我现在就有一个疑问:“美国人要将志愿者通过飞船送上火星,是不是简简单单的只要将飞船启动就可以了呢?必须克服哪些困难呢?”当然首先必须克服的就是地球的束缚——地球的引力。

1687年,牛顿在前人的基础上,总结并建立了万有引力定律:

1、任何两物体间都存在相互作用的引力,这个力的大小与这两个物体的质量的乘积成正比,与两物体之间的距离的平方成反比。

2、表达式:

3、适用于两个质点或均匀球体;r为两质点或球心间的距离;G为万有引力恒量(17由英国物理学家卡文迪许利用扭秤装置测出) 。

现在同学们考虑一个问题:是不是任何两个物体间的引力都符合这个规律,都可以用这个公式来进行计算呢?需要注意:公式有适用条件,规律适用于任何物体间。

二、万有引力定律在天体运动中的应用——模型探究:

现在同学们观看“嫦娥一号”探月卫星的3D模拟视频,简单介绍卫星奔月过程,思考如何让卫星从地球到月球环绕。

展示卫星奔月图片:

提问引导:

问题(1)轨道模式分为哪两种?

圆和椭圆两种,两个圆轨道之间有一椭圆轨道用来变轨

问题(2)卫星围绕地球做匀速圆周运动,那么其所需要的向心力由什么提供呢?

由地球给它的万有引力提供

思考:我们能否发射一颗卫星以任意纬度为轨道运转,比如图中所示轨道?

问题(3)对匀速圆周运动需要满足的基本供与需的关系是什么?

满足关系:供=需,供就指的是二者间的万有引力。

问题(4)卫星围绕地球做匀速圆周运动有什么样的运行规律?

对于常见的运动比如行星绕恒星的运动,卫星绕行星的运动,人造天体绕地球(或其它行星)运动我们都处理为匀速圆周运动,其运动所需的向心力由万有引力提供。

即 = ;

我们可以得出卫星运行的规律:

r 越大卫星线速度越小,角速度越小,周期越大,加速度越小。这种模型,我们称之为“环绕模型”。

9.高中物理牛顿第一定律教案 篇九

(1)、知道理想实验是科学研究的重要方法。

(2)、知道牛顿第一定律的建立过程。

(3)、理解牛顿第一定律的内容和意义。

(4)、知道什么是惯性,会正确解释有关现象。

(5)、正确理解力和运动的关系。

2.过程与方法

培养学生的观察能力、抽象思维能力及应用定律解决实际问题的能力

3.情感、态度与价值观

(1)、对客观事物的正确认识需要人们经过长期的由表及里,由片面到全面的认识过程。通过本节的学习要让学生建立起正确的认识论与方法论的观点,同时体会到人们认识世界的长期性和艰巨性。

(2)、培养学生严谨的科学态度和作风,积极探索的创新精神,敢于向权威提出质疑和挑战的非凡勇气,不断地追求真理。

教学重点

牛顿第一定律、惯性。

教学难点

对理想实验、牛顿第一定律及惯性的正确理解?

教学方法

?教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。?

教学工具

计算机、投影仪、CAI课件等

教?学?活?动

(一)引入

教师活动:指出在力学中只研究怎样运动而不涉及运动和力的关系的分科叫做运动学.研究运动合力的关系的分科叫动力学.动力学知识在生产和科学研究中有着重要用途.动力学的奠基人是英国科学家牛顿.1678年出版的《自然哲学的数学原理》是牛顿的动力学奠基之作.牛顿运动定律确立了力和运动的关系,这一章我们就来学习它。

(二)进入新课

1、引出错误观点——历史的回顾

教师活动:马路上有一辆车,发动机坏了,这么让它运动起来?(播放课件)

教师设问:车运动起来后,如果不施加力的作用,车会怎么样?

继续设问:车会不会立刻停下来?

教师引导:施加了力车运动起来,停止施力,车要停止;于是可得结论,要让车运动起来,就必须施加力给车,换言之:力是维持物体运动的原因,我所推理出的这一观点正确吗?

课件展示?力是维持物体运动的原因,让学生感受到力确实是维持物体运动的原因。

学生活动:同学们意见不一

教师引导:人类在认识力和运动关系的道路中经历了漫长而又曲折的过程,请问在认识力和运动关系的过程中,有那几位著名的科学家?

学生活动:回答:亚里士多德、伽利略、笛卡尔、牛顿

教师活动:幻灯片简单介绍?亚里士多德、伽利略、笛卡尔、牛顿

教师设疑:?他们各自的观点分别是什么?请同学们仔细阅读教材P68-69内容,并思考亚里士多德、伽利略、笛卡尔、牛顿他们各自的观点和所运用的方法

教师活动:教师帮助学生共同总结,得出这几位科学家各自的观点和运用的科学方法。

着重通过幻灯片展示伽利略的理想实验,让学生体会科学方法的运用和科学探究的艰难。

2、牛顿第一定律的学习

教师活动:课件展示“牛顿第一定律”,内容,并演示牛顿第一定律实验,通过展示,让学生知道其内容并明白这一定律是推理出来的

学生活动:认真观看课件演示,用心体会,并齐声朗读定律内容两遍。

教师活动:分析定律的内容,定律的前半句话“一切物体总保持匀速直线运动状态或静止状态”揭示了物体所具有的一个重要的属性——惯性,即物体保持匀速直线运动状态或静止状态的性质;牛顿第一定律指出一切物体在任何情况下都具有惯性

1、百米运动员到达终点为什么不能立刻停下来?

2、锤头松了,为什么要把锤柄往石头上磕,锤头就套牢了?

3、地球自西往东自转,你向上跳起后,为什么还落回原地?

教师活动:分析定律内容,定律的后半句话“除非作用在它上面的力迫使它改变这种状态为止”实际上是对力的定义,即力是改变物体运动状态的原因,而不是维持物体运动的原因。

分析定律内容,定律指出物体不受外力作用时的运动规律,它描述的只是一种理想状态,而实际中不受外力作用的物体是不存在的,当物体所受合外力为零时,其效果与不受外力相同,因此,要把“不受外力作用”理解为“合外力为零”

例题?物体的运动状态与受力情况关系是

A、当物体受力不变时,运动状态也不变

B、物体受力变化时,运动状态才会改变

C、物体不受力时,运动状态就不会改变

D、物体不受力时,运动状态也可能改变

教师点评

力是改变物体运动状态的原因,如果物体的运动状态发生改变,物体一定受到外力的作用或者受力不平衡;物体不受外力或受力平衡,则运动状态将保持不变。力是物体产生加速度的原因

10.欧姆定律的教学体会 篇十

欧姆定律有效性反思电路设计滑动变阻器教材安排是通过实验探究来研究电流与电压电阻关系,从而得出欧姆定律。这样安排比较好,但实际学生动手参与率不高,学生的科学探究有效性不高,有点照本宣科,对欧姆定律不能真正实现探究的思想,如何改变你?

欧姆定律(初中学习的是部分电路欧姆定律)作为一个重要的物理规律,反映了电流、电压、电阻这三个重要的电学量之间的关系,是电学中最基本的定律,是分析解决电路问题的金钥匙。

欧姆定律这节课的特点是,十分重视科学方法教育,重视科学研究的过程。让学生在认知过程中体验方法、学习方法,了解得出欧姆定律的过程。了解运用“控制变量法”研究多个变量关系的实验方法,同时也为进一步学习电学知识打下了基础。

教材安排是通过实验探究来研究电流与电压电阻关系,从而得出欧姆定律。这样安排比较好,但实际学生动手参与率不高,学生的科学探究有效性不高,有点照本宣科,对欧姆定律不能真正实现探究的思想。究其原因有三点:

1.本实验是用欧姆定律来研究欧姆定律由于学生还没学习欧姆定律很难理解为什么调节滑片的位置就能改变或保持这段电路两端的电压。

2.学生很难正确区分一段电路和整个电路两个概念及它们之间的关系,在本实验中研究AB这段电路中的电流与电压和电阻的关系时不容易将这段从整个电路中分离出来,更不会分析探究它们之间的关系。

3.在一个电路图中却要分次研究两个实验规律先研究电流与电压的关系,后又更换电阻,研究电流与电阻的关系,学生很难理解,更别说自己设计这个电路来探究其中规律了。

以上是学生探究实验和分析实验电路的障碍,如何来解决呢?

在教学中笔者对实验教学做了适当的改变。让学生自己分两步实验来设计电路探究规律:先激疑,后激智,引出正确的电路设计,再完成正确的实验操作。

第一步,研究电流与电压的关系,他们的设计是:保持电阻不变,用改变电池节数来改变电池两端的电压。(因为学生很容易想到串联电池越多电压越大),于是我说,那你们就按你们的思路去探究,结果是能得出:电阻一定时,电压越大,电流越大,却得不出:电阻一定时,电流与电压成正比的关系。此时,他们反问:问题出在哪呢?我接着反问:你们怎么知道定值电阻两端的电压是在成倍数的变化呢?学生马上回答,因为电池是成倍的增加啊,我说,那你们用电压表测测看,一测发现电压并没随电池节数的成倍增加而成倍增大,学生反问:那怎么办?有学生很快想到上节课学到滑动变阻器可以调节电压,立即就串联了滑动变阻器上去,结果,水到渠成,完成了该实验,而且不用改变电池节数。现在再反问学生这两种电路设计的区别在哪,问题在哪,优势在哪,这时老师点拨一下:因为导线也有电阻,学生就会豁然开朗,会心一笑,经过一次挫折他们重新设计出探究电流与电压关系的电路,同时也自行将这段电路从整个电路中分离出来,研究出这段电路中电流与电压的关系:电阻一定时,电流与电压成正比的关系。

第二步,研究电流与电阻的关系,起初他们的设计是:保持电池节数不变,再改变电阻。(因为学生很容易想到串联电池节数不变,电压也不变),很快,有些学生就想到在第一步中出现的问题,于是想到可以用滑动变阻器控制电压不变,只要在原来的电路图上改变电阻就行了,并想到如用电阻箱来改變就更好了,因为不仅改变方便,能多次成倍数改变电阻,并且能知道电阻的值,这样也更方便找到电流与电阻的更具体的关系。

这样分两个实验电路图分别设计,分别实验,避免了照搬照抄,死记硬背的教学模式,实验从开始设计到实验障碍,再到改进实验,总结规律,都是学生亲身实践,学生真正理解了:

1.两步实验中为何要用滑动变阻器,如何用滑动变阻器?

在研究电流与电压的关系时,如果不用滑动变阻器,虽然能够测量出R两端的电压和其中的电流,但该电路只能测量出一组电压和电流的值,而从一组电流和电压的数据是无法找出二者之间的关系的,应该再测几组电压和电流,因此就需要改变R两端的电压,用滑动变阻器可以成倍地改变R两端的电压,简单方便,当然也可以采用改变电池节数的方法,但因为导线有电阻,很难成倍地改变R两端的电压,比较下来,当然是用滑动变阻器更方便快捷。同时,滑动变阻器还可以起到保护电路的作用。

2.用控制变量法探究电流I与电阻R之间的关系实验中,应该如何操作?探究电流I与电压U之间关系时,应该如何操作?

探究电流I与电阻R之间的关系时,如何保持电压U不变?即改变定值电阻的阻值的同时,该电阻两端的电压就发生了变化,因此,要及时调节滑动变阻器以保持电压不变,观察并记录电流表的示数随电阻的变化关系。

探究电流I与电压U之间关系时,要不断的改变电压,即保持定值电阻的阻值不变的同时,要改变电阻两端的电压,因此,要及时调节滑动变阻器使电压成倍地变化,观察并记录电流表的示数随电压的变化关系。

总之,这样改进充分发挥了实验的作用,降低了教学环节中学生遇到问题的难度,调动了学生的学习兴趣和积极性,更深入地理解和掌握了知识。既培养了思维能力,又培养了实验能力,进一步实现了以教师为主导、学生为主体、思维为核心、能力为目标的教学理念,开阔了学生思路,有效地提高物理教学质量。

参考文献:

[1]教育部.初中物理新课程标准(实验稿).

[2]邢红军.论科学技术发展与中学物理课程改革.中学物理教考.

11.高中欧姆定律教学设计 篇十一

一、课堂教学知识量大, 学生难以吸收

初中物理“闭合电路欧姆定律”这一节教学内容有过多次变动, 实验教材里的内容主要有两点:一是闭合电路欧姆定律;二是路端电压和负载的关系;此外还外加了路端电压和电流的关系。因为知识点较多, 课堂教学量很大, 所以课堂上时间紧, 学生思考和参与实践都比较少, 课堂上没有充分发挥学生的主体作用。从课后反馈的情况来看, 学生掌握的情况并不是太好。

二、演示实验, 可视性较差

在演示路端电压和负载 (或电流) 的关系时, 学生要观察电流表、电压表指针的偏转情况, 由于表盘小, 颜色暗, 放在桌面上又有些低, 所以站在后面的同学看不清楚, 影响了实验效果。针对这种情况, 教师可以做如下改进。

在实验课堂上做演示实验时, 一方面教师可以把仪器放在一个升降台上, 把台子升起来, 使全班学生都能看清楚;另一方面对有些演示实验, 用投影仪把实验情况投影到大屏幕上, 便于学生观察;此外, 如果课堂人数较少, 教师还可以将演示实验改为6组学生实验, 真实性、可视性都会更好。这样不仅能够达到演示实验的预期效果, 也能提高学生的动手能力和学习兴趣。

三、学生活动少, 主体作用没有很好体现

在“闭合电路欧姆定律”教学中, 一方面是教学内容安排得比较多, 为了在规定的时间内完成任务, 必须按照设定好的节奏进行, 课堂上并没有给学生留下较多思考和发散的时间;另一方面, 教师思想保守, 教学不够大胆, 认为学生物理基础较差, 害怕学生不发言, 出现冷场情况, 或者学生课堂发言不入主题而不好收场。针对这种情况, 教师可以做如下改进。

对教学内容做了相应的调整以后, 就可以给学生留有更多的思考时间和发表见解的机会, 如果学生在课堂上不敢发言, 教师可以鼓励、引导学生融入课堂教学活动, 学生说错了正好可以纠正其错误, 只要学生积极思考, 积极参与, 勇于发言, 就要给予鼓励, 这是培养学生良好思维习惯的大好时机。因为, 在课堂教学中, 任何层次的学生都可以与他互动起来, 就看教师怎样引导, 如何让学生互动。当然, 在实验教学中, 很多实验具有安全性和特殊操作性, 对于这类实验教师要规范学生的实验行为。加强学生动手实验的目的就是为了充分发掘学生的好动性、探知性, 让学生从自己的角度去思考问题, 让学生在张扬个性的同时, 拓展创新能力。

参考文献

[1]雷光锦.《闭合电路欧姆定律》教学设计[J].昭通师范高等专科学校学报, 2011, 1 (25) :111.

[2]谢建华.浅谈“闭合电路欧姆定律”的教学[J].内蒙古民族大学学报, 2011, 3 (15) :124-125.

[3]田维友.《闭合电路欧姆定律》教学设计[J].湖南中学物理, 2009, 9 (15) :68.

12.高中欧姆定律教学设计 篇十二

判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。

(2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。

所涉及到的题型有四类:(1)阻力不计的抛体类。(2)固定的光滑斜面类。(3)固定的光滑圆弧类。(4)悬点固定的摆动类。

(1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。

(2)固定的光滑斜面类

在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。

(3)固定的光滑圆弧类

在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。

(4)悬点固定的摆动类

和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。因此只有重力做功,物体的机械能守恒。

作题方法:

一般选取物体运动的最低点作为重力势能的零势参考点,把物体运动开始时的机械能和物体运动结束时的机械能分别写出来,并使之相等。

注意点:在固定的光滑圆弧类和悬点定的摆动类两种题目中,常和向心力的公式结合使用。这在计算中是要特别注意的。习题:

1、三个质量相同的小球悬挂在三根长度不等的细线上,分别把悬线拉至水平位置后轻轻释放小球,已知线长LaLbLc,则悬线摆至竖直位置时,细线中张力大小的关系是()

ATcTbTaBTaTbTcCTbTcTaDTa=Tb=Tc4、一质量m = 2千克的小球从光滑斜面上高h = 3.5米高处由静止滑下斜面底端紧接着一个半径R = 1米的光滑圆环(如图)求:

(1)小球滑至圆环顶点时对环的压力;

(2)小球至少要从多高处静止滑下才能越过圆环最高点;

(3)小球从h0 = 2米处静止滑下时将在何处脱离圆环(g =9.8米/秒2)。

二、系统的机械能守恒 由两个或两个以上的物体所构成的系统,其机械能是否守恒,要看两个方面

(1)系统以外的力是否对系统对做功,系统以外的力对系统做正功,系统的机械能就增加,做负功,系统的机械能就减少。不做功,系统的机械能就不变。

(2)系统间的相互作用力做功,不能使其它形式的能参与和机械能的转换。

系统内物体的重力所做的功不会改变系统的机械能

系统间的相互作用力分为三类:

1)刚体产生的弹力:比如轻绳的弹力,斜面的弹力,轻杆产生的弹力等

2)弹簧产生的弹力:系统中包括有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转换。

3)其它力做功:比如炸药爆炸产生的冲击力,摩擦力对系统对功等。

在前两种情况中,轻绳的拉力,斜面的弹力,轻杆产生的弹力做功,使机械能在相互作用的两物体间进行等量的转移,系统的机械能还是守恒的。虽然弹簧的弹力也做功,但包括弹性势能在内的机械能也守恒。但在第三种情况下,由于其它形式的能参

1与了机械能的转换,系统的机械能就不再守恒了。

归纳起来,系统的机械能守恒问题有以下四个题型:(1)轻绳连体类(2)轻杆连体类

(3)在水平面上可以自由移动的光滑圆弧类。(4)悬点在水平面上可以自由移动的摆动类。

(1)轻绳连体类

这一类题目,系统除重力以外的其它力对系统不做功,系统内部的相互作用力是轻绳的拉力,而拉力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。

[例]:如图,光滑斜面的倾角为,竖直的光滑细杆到定滑轮的距离为a,斜面上的物体M和穿过细杆的m通过跨过定滑轮的轻绳相连,开始保持两物体静止,连接m的轻绳处于水平状态,放手后两物体从静止开始运动,求m下降b时两物体的速度大小?

(2)轻杆连体类

这一类题目,系统除重力以外的其它力对系统不做功,物体的重力做功不会改

变系统的机械能,系统内部的相互作用力是轻杆的弹力,而弹力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。

例:如图,质量均为m的两个小球固定在轻杆的端,轻杆可绕水平转轴在竖直平面内自由转动,两小球到轴的距离分别为L、2L,开始杆处于水平静止状态,放手后两球开始运动,求杆转动到竖直状态时,两球的速度大小

(3)在水平面上可以自由移动的光滑圆弧类。

光滑的圆弧放在光滑的水平面上,不受任何水平外力的作用,物体在光滑的圆弧上滑动,这一类的题目,也符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明

例:四分之一圆弧轨道的半径为R,质量为M,放在光滑的水平地面上,一质量为m的球(不计体积)从光滑圆弧轨道的顶端从静止滑下,求小球滑离轨道时两者的速度?

(4)悬点在水平面上可以自由移动的摆动类。

悬挂小球的细绳系在一个不受任何水平外力的物体上,当小球摆动时,物体能在水平面内自由移动,这一类的题目和在水平面内自由移动的光滑圆弧类形异而质同,同样符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明

例:质量为M的小车放在光滑的天轨上,长为L的轻绳一端系在小车上另一端拴一质量为m的金属球,将小球拉开至轻绳处于水平状态由静止释放。求(1)小球摆动到最低点时两者的速度?(2)此时小球受细绳的拉力是多少?

习题

1.如图5-3-15所示,质量相等的甲、乙两小球从一光滑直角斜面的顶端同时由静止释放,甲小球沿斜面下滑经

过a点,乙小球竖直下落经过b点,a、b两点在同一水平面上,不计空气阻力,下列说法中正确的是()

A.甲小球在a点的速率等于乙小球在b点的速率

B.甲小球到达a点的时间等于乙小球到达b点的时间

C.甲小球在a点的机械能等于乙小球在b点的机械能(相对同一个零势能参考面)

D.甲小球在a点时重力的功率等于乙小球在b点时重力的功率

2. 一根质量为M的链条一半放在光滑的水平桌面上,另一半挂在桌边,如图5-3-

16(a)所示.将链条由静止释放,链条刚离开桌面时的速度为v1.若在链条两端各系一个质量均为m的小球,把链条一半和一个小球放在光滑的水平桌面上,另一半和另一个小球挂在桌边,如图5-3-16(b)所示.再次

将链条由静止释放,链条刚离开桌面时的速度为v2,下列判断中正确的是()

A.若M=2m,则v1=v2B.若M>2m,则v1<v

2C.若M<2m,则v1>v2D.不论M和m大小关系如何,均有v1>v2

5.如图5-3-19所示为某同学设计的节能运输系统.斜面轨道的倾角为37°,木箱与轨道之间的动摩擦因数μ=

0.25.设计要求:木箱在轨道顶端时,自动装货装置将质量m=2 kg的货物装入木箱,木箱载着货物沿轨道无初速滑下,当轻弹簧被压缩至最短时,自动装货装置立刻将货物御下,然后木箱恰好被弹回到轨道顶端,接着再重复上述过程.若g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:

(1)离开弹簧后,木箱沿轨道上滑的过程中的加速度大小;(2)满足设计要求的木箱质量.

如图5-3-20所示,一个质量为m的小铁块沿半径为R的固定半圆轨道上边缘由静止滑下,到半圆底部时,轨

道所受压力为铁块重力的1.5倍,则此过程中铁块损失的机械能为()

1113A.mgRB.C.D.842

42.如图5-3-21所示,斜面置于光滑水平地面上,其光滑斜面上有一物体由静止下滑,在物体下滑过程中,下列说

法正确的是()

A.物体的重力势能减少,动能增加B.斜面的机械能不变

C.斜面对物体的作用力垂直于接触面,不对物体做功D.物体和斜面组成的系统机械能守恒

4.如图5-3-23所示,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小球a和b.a球质量为m,静置于地面;b球质量为3m,用手托住,高度为h,此时轻绳刚好拉紧.从静止开始释放b后,a可能达到的最大高度为()

A.hB.1.5hC.2hD.

5.如图5-3-24所示,在动摩擦因数为0.2的水平面上有一质量为3 kg的物体被一个劲度系数为120 N/m的压缩轻质弹

簧突然弹开,物体离开弹簧后在水平面上继续滑行了1.3 m才停下来,下列说法正确的是(g取10 m/s2)()

A.物体开始运动时弹簧的弹性势能Ep=7.8 JB.物体的最大动能为7.8 J

C.当弹簧恢复原长时物体的速度最大D.当物体速度最大时弹簧的压缩量为x=

0.05 m

8.如图5-3-27所示,小球从A点以初速度v0沿粗糙斜面向上运动,到达最高点B后返回A,C为AB的中点.下列说法中正

确的是()

A.小球从A出发到返回A的过程中,位移为零,合外力做功为零

B.小球从A到C过程与从C到B过程,减少的动能相等

C.小球从A到B过程与从B到A过程,损失的机械能相等

10.如图5-3-29所示,半径为R的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬间得到一个水平初速度v0,若v0大小不同,则小球能够上升到的最大高度(距离底部)也不同.下列说法中正确的是()

RRA.如果v0=gR,则小球能够上升的最大高度为B.如果v0=2gR,则小球能够上升的最大高度为2

2C.如果v0=3gR,则小球能够上升的最大高度为

11.如图5-3-30所示,AB为半径R=0.8 m的1/4光滑圆弧轨道,下端B恰与小车右端平滑对接.小车质量

M=3 kg,车长L=2.06 m,车上表面距地面的高度h=0.2 m.现有一质量m=1 kg的滑块,由轨道顶端无初速释放,滑到B端后冲上小车.已知地面光滑,滑块与小车上表面间的动摩擦因数μ=0.3,当车运行了1.5 s时,车被地面装置锁定.(g=10 m/s2)试求:

(1)滑块到达B端时,轨道对它支持力的大小;(2)车被锁定时,车右端距轨道B端的距离;

(3)从车开始运动到被锁定的过程中,滑块与车面间由于摩擦而产生的内能大小;

(4)滑块落地点离车左端的水平距离.

2.如图7-7-11所示,质量为2m和m可看做质点的小球A、B,用不计质量的不可伸长的细线相连,跨在固定的半径为R的光滑圆柱两侧,开始时A球和B球

与圆柱轴心等高,然后释放A、B两球,则B球到达最高点时的速率是多少?

3RD.如果v0=5gR,则小球能够上升的最大高度为2R

29.如图所示,长度相同的三根轻杆构成一个正三角形支架,在A处固定质量为2m的小球,B处固定质量为m的小球,支架悬挂在O点,可绕过O点并与支架所在平面相垂直的固定轴转动,开始时OB与地面相垂直,放手后开始运动,在不计任何阻力的情况下,下列说法正确的是()

A.A球到达最低点时速度为零

B.A球机械能减少量等于B球机械能增加量。

C.B球向左摆动所能达到的最高位置应高于A球开始运动时的高度。

D.当支架从左向右往回摆动时,A球一定能回到起始高度

14.如图所示,一劲度系数为k=800N/m的轻弹簧两端各焊接着两个质量均为m=12kg的物

13.高中欧姆定律教学设计 篇十三

(一)一、功

1.公式和单位:,其中是F和l的夹角.功的单位是焦耳,符号是J.2.功是标量,但有正负.由,可以看出:

(1)当0°≤<90°时,0<≤1,则力对物体做正功,即外界给物体输送能量,力是动力;(2)当=90°时,=0,W=0,则力对物体不做功,即外界和物体间无能量交换.

(3)当90°<≤180°时,-1≤<0,则力对物体做负功,即物体向外界输送能量,力是阻力.

3、判断一个力是否做功的几种方法

(1)根据力和位移的方向的夹角判断,此法常用于恒力功的判断,由于恒力功W=Flcosα,当α=90°,即力和作用点位移方向垂直时,力做的功为零.

(2)根据力和瞬时速度方向的夹角判断,此法常用于判断质点做曲线运动时变力的功.当力的方向和瞬时速度方向垂直时,作用点在力的方向上位移是零,力做的功为零.(3)根据质点或系统能量是否变化,彼此是否有能量的转移或转化进行判断.若有能量的变化,或系统内各质点间彼此有能量的转移或转化,则必定有力做功.

4、各种力做功的特点

(1)重力做功的特点:只跟初末位置的高度差有关,而跟运动的路径无关.

(2)弹力做功的特点:对接触面间的弹力,由于弹力的方向与运动方向垂直,弹力对物体不做功;对弹簧的弹力做的功,高中阶段没有给出相关的公式,对它的求解要借助其他途径如动能定理、机械能守恒、功能关系等.

(3)摩擦力做功的特点:摩擦力做功跟物体运动的路径有关,它可以做负功,也可以做正功,做正功时起动力作用.如用传送带把货物由低处运送到高处,摩擦力就充当动力.摩擦力的大小不变、方向变化(摩擦力的方向始终和速度方向相反)时,摩擦力做功可以用摩擦力乘以路程来计算,即W=F·l.(1)W总=F合lcosα,α是F合与位移l的夹角;(2)W总=W1+W2+W3+¡为各个分力功的代数和;(3)根据动能定理由物体动能变化量求解:W总=ΔEk.5、变力做功的求解方法(1)用动能定理或功能关系求解.(2)将变力的功转化为恒力的功.

①当力的大小不变,而方向始终与运动方向相同或相反时,这类力的功等于力和路程的乘积,如滑动摩擦力、空气阻力做功等;

②当力的方向不变,大小随位移做线性变化时,可先求出力对位移的平均值=2F1+F2,再由W=lcosα计算,如弹簧弹力做功;

③作出变力F随位移变化的图象,图线与横轴所夹的¡°面积¡±即为变力所做的功; ④当变力的功率P一定时,可用W=Pt求功,如机车牵引力做的功.

二、功率 1.计算式

(1)P=tW,P为时间t内的平均功率.(2)P=Fvcosα

5.额定功率:机械正常工作时输出的最大功率.一般在机械的铭牌上标明. 6.实际功率:机械实际工作时输出的功率.要小于等于额定功率. 方恒定功率启动

恒定加速度启动 式 过程

阶段一:

设牵引力为F 过程分v↑⇒F=v(P↓⇒a=m(F-F阻↓ 阶段一:

a=m(F-F阻不变⇒F不变⇒v↑⇒P=F·v↑,直到P=P额=F·vm′ 阶段二:

v↑⇒F=v(P额↓⇒a=m(F-F阻↓ 阶段三:

F=F阻时⇒a=0⇒v达最大值vm=F阻(P额

运动规律 vt图象

三、动能

析 阶段二:F=F阻⇒a=0⇒P=F·vm=F阻·vm 加速度逐渐减小的变加速直线运动以加速度a做匀加速直线运动(对应下图中的OA(对应下图的OA段)⇒以vm匀速直段)⇒匀加速运动能维持的时间t0=a(vm′⇒以线运动(对应下图中的AB段)

vm匀速直线运动,对应下图中的BC段

1.定义:物体由于运动而具有的能.2.公式:Ek=21mv2.单位:焦耳(J),1J=1N·m=1kg·m2/s2.4.矢标性:动能是标量,只有正值.

四、动能定理

1.内容:所有外力对物体做的总功等于物体动能的变化量,这个结论叫做动能定理. 2.表达式:w=Ek2-Ek1变化的大小由外力的总功来度量.

4.适用条件:动能定理既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功.

5.动能定理中涉及的物理量有F、s、m、v、W、Ek等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理.无需注意其中运动状态变化的细节 6.应用动能定理解题的一般思路

(1)确定研究对象和研究过程.注意,动能定理一般只应用于单个物体,如果是系统,那么系统内的物体间不能有相对运动.

(2)对研究对象进行受力分析.(研究对象以外的物体施于研究对象的力都要分析,含重力)(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负).如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功.(4)写出物体的初、末动能.(5)按照动能定理列式求解.

五、机械能

1.重力做功的特点:重力做功与路径无关,只与初、末位置的高度差h有关.重力做功的大小WG=mgh,若物体下降,则重力做正功;若物体升高,则重力做负功(或说物体克服重力做功). 2.重力势能(1)概念:物体的重力势能等于物体的重力和高度的乘积.(2)表达式:Ep=mgh,(3)重力势能是标量,且有正负.其正、负表示大小.物体在参考平面以下,其重力势能为负,在参考平面以上,其重力势能为正.

六、机械能守恒定律

1.内容:在只有重力(或弹簧的弹力)做功的情况下,动能和势能发生相互转化,但总量保持不变,这个结论叫做机械能守恒定律.

2.机械能守恒的条件:(1)只有重力或系统内弹力做功.(2)受其他外力但其他外力不做功或做功的代数和为零. 3.表达式:

(1)Ek+Ep=Ek′+Ep′,表示系统初状态机械能的总和与末状态机械能的总和相等.(2)ΔEk=-ΔEp,表示系统(或物体)机械能守恒时,系统减少(或增加)的重力势能等于系统增加(或减少)的动能,在分析重力势能的增加量或减少量时,可不选参考平面.

(3)ΔEA增=ΔEB减,表示若系统由A、B两部分组成,则A部分物体机械能的增加量与B部分物体机械能的减少量相等.

4.判断机械能是否守恒方法:(1).利用机械能的定义判断(直接判断):若物体在水平面上匀速运动,其动能、势能均不变,机械能不变.若一个物体沿斜面匀速下滑,其动能不变,重力势能减少,其机械能减少.

(2).用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,虽受其他力,但其他力不做功,机械能守恒.

(3).用能量转化来判断:若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒.(4).对一些绳子突然绷紧、物体间非弹性碰撞等,除非题目特别说明,否则机械能必定不守恒. 七.功能关系

1.合外力对物体做功等于物体动能的改变.W合=Ek2-Ek1,即动能定理. 2.重力做功对应重力势能的改变.WG=-ΔEp=Ep1-Ep2 重力做多少正功,重力势能减少多少;重力做多少负功,重力势能增加多少. 3.弹簧弹力做功与弹性势能的改变相对应.WF=-ΔEp=Ep1-Ep2 弹力做多少正功,弹性势能减少多少;弹力做多少负功,弹性势能增加多少. 4.除重力弹力以外的力的功与物体机械能的增量相对应,即W=ΔE.5.克服滑动摩擦力在相对路程上做的功等于摩擦产生的热量:Q=Wf=f·s相

四、能量转化和守恒定律

能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变.

高中物理机械能守恒定律知识点总结

(二)机械能守恒定律:

1、内容:只有重力(和弹簧弹力)做功的情形下,物体动能和重力势能(及弹性势能)发生相互转化,但机械能的总量保持不变。

2、表达式:

3.条件

机械能守恒的条件是:只有重力或弹力做功。可以从以下三个方面理解:

(1)只受重力作用,例如在不考虑空气阻力的情况下的各种抛体运动,物体的机械能守恒。(2)受其他力,但其他力不做功,只有重力或弹力做功。例如物体沿光滑的曲面下滑,受重力、曲面的支持力的作用,但曲面的支持力不做功,物体的机械能守恒。(3)其他力做功,但做功的代数和为零。判定机械能守恒的方法:(1)条件分析法:应用系统机械能守恒的条件进行分析。分析物体或系统的受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力(或弹力)做功,没有其他力做功或其他力做功的代数和为零,则系统的机械能守恒。

(2)能量转化分析法:从能量转化的角度进行分析:若只有系统内物体间动能和重力势能及弹性势能的相互转化,系统跟外界没有发生机械能的传递,机械能也没有转化成其他形式的能(如内能),则系统的机械能守恒。

(3)增减情况分析法:直接从机械能的各种形式的能量的增减情况进行分析。若系统的动能与势能均增加或均减少,则系统的机械能不守恒;若系统的动能不变,而势能发生了变化,或系统的势能不变,而动能发生了变化,则系统的机械能不守恒;若系统内各个物体的机械能均增加或均减少,则系统的机械能不守恒。

(4)对一些绳子突然绷紧、物体间非弹性碰撞等,除非题目特别说明,否则机械能必定不守恒。

竖直平面内圆周运动与机械能守恒问题的解法:

在自然界中,违背能量守恒的过程肯定是不能够发生的,而不违背能量守恒的过程也不一定能够发生,因为一个过程的进行要受到多种因素的制约,能量守恒只是这个过程发生的一个必要条件。如在竖直平面内的变速圆周运动模型中,无支撑物的情况下,物体要到达圆周的最高点,从能量角度来看,要求物体在最低点动能不小于最高点与最低点的重力势能差值。但只满足此条件物体并不一定能沿圆弧轨道运动到圆弧最高点。因为在沿圆弧轨道运动时还需满足动力学条件:所需向心力不小于重力,由此可以推知,在物体从圆弧轨道最低点开始运动时,若在动能全部转化为重力势能时所能上升的高度 满足

时,物体可在轨道上速度减小到零,即动能可全部转化为重力势能;在,物体上升到圆周最高点时的速度)时,物体可做完整的圆周运动;若在时,物体将在与圆心等高的位置与圆周最高点之间某处脱离轨道,之后物体做斜上抛运动,到达最高点时速度不为零,动能不能全部转化为重力势能,物体实际上升的高度

满足

上一篇:餐厅领班竞聘演讲稿下一篇:物流能源计量管理制度