高中立体几何经典试题

2025-01-25

高中立体几何经典试题(共12篇)

1.高中立体几何经典试题 篇一

2014年教师资格考试高中信息技术经典试题

(二)1、多媒体计算机的特性

数字化、集成化、交互性和实时性。

2、OSI七层参考模型

物理层、数据链路层、网络层、传输层(OSI最核心的一层)、会话层、表示层、应用层。

3、TCP/IP协议的基本参数有哪些,各部分的意义是什么。

基本参数有:IP地址、子网掩码、和默认网关。IP地址由32位二进制比特位组成,用来表示网络中的每台计算机逻辑地址;子网掩码:与IP地址一样也是一32位的值,用它可以屏蔽一部分IP地址,用以确定网络号;默认网关:通向远程网络的接口。

4、Telnet远程登陆服务

是在Telnet协议的支持下,将用户计算机与远程主机连接起来,在远程计算机上运行程序,将相应的屏幕显示传送到本地机器,并将本地的输入送给远程计算机,由于这种服务基于Telnet协议且使用Telnet命令进行远程登陆,故称为Telnet远程登陆。

5、调制解调器

是一种计算机硬件,它能把计算机的数字信号翻译成可沿普通电话线传送的脉冲信号,而这些脉冲信号又可被线路另一端的另一个调制解调器接收,并译成计算机可懂的语言。计算机内的信息是由“0”和“1”组成数字信号,而在电话线上传递的却只能是模拟电信号。于是,当两台计算机要通过电话线进行数据传输时,就需要一个设备负责数模的转换。这个数模转换器就是Modem。

6、算法的定义和一般特征

定义:是任意一个良定义的计算过程。它以一个或多个值作为输入,并产生一个或多个值作为输出。

一般特征:有穷性、确定性、可行性、输入、输出

7、树与二叉树

树:一种简单的非线性结构,树中所有数据元素之间的关系具有明显的层次特性,即树是一种层次结构。每个树中至少有一个结点,且树中各子树是互不相交的集合。

二叉树:是一种特殊的树,每个结点最多只有两个子结点,它的子树有左右之分,且次序不能任意颠倒,其所有子树也均为二叉树。在二叉树中,一个结点可以只有一个子树(左子树或右子树),也可以没有子树。

8、数据字典概念及组成概念:是指对数据的数据项、数据结构、数据流、数据存储、处理逻辑、外部实体等进行定义和描述、其目的是对数据流程图中的各个元素做出详细的说明。

组成:数据项、数据结构、数据流、数据存储、处理过程。

9、常见计算机网络拓扑结构

星型、环型、总线型、树型、网状。

10、HTML文档的基本结构

文件开始

标头区开始

标题区

文章来自赤峰人事考试信息网:http://chifeng.offcn.com

标头区结束

文本区开始 文本区内容文本区结束

文件结束

文章来自赤峰人事考试信息网:http://chifeng.offcn.com

2.高中立体几何经典试题 篇二

关键词:高中数学;解析几何;高考数学;教学策略

一、高中数学中解析几何内容及学习问题

在高中数学中解析几何有着重要地位,是高考中重要的考查内容。在人教A版教材中,解析几何内容编排在《直线与方程》《圆与方程》《圆锥曲线与方程》《坐标系与参数方程》等章节,有平面解析几何、立体解析几何两大部分内容,通过平面直角坐标系,分析点与实数对、曲线与方程之间的对应关系,用几何方法研究代数问题或用代数问题研究几何问题。

在高考解析几何试题中,学生的得分率普遍较低,很多学生学习解析几何的水平尚未达到高考要求。高中数学解析几何教学存在一些问题,主要表现为学生懂而不会、会而不对、对而不全、全而不快。其中,懂而不会,学生只是生搬硬套、表面理解解析几何概念,产生自我假懂的现象;会而不对,解析几何问题的解决,通常用到直角坐标系,包括大量的运算,可是学生的运算能力较薄弱,即使找对了解法,也难以做对解析几何题目;对而不全,学生在解析几何问题解决过程中,往往忽视动点轨迹方程;全而不快,学生在解析几何过程中,往往照搬解题程序,对于思路宽的解析几何问题则缺少创新意识,学生不敢动笔,或者直接放弃尝试高效率的算法。笔者基于分析高考解析几何试题,给出恰切的解析几何教学策略,提高解析几何教学效益,帮助学生克服解析几何考试畏惧心理,取得理想的解析几何得分成绩。

二、高考解析几何试题分析

笔者所在广东省高考使用试卷为全国卷I卷,故此笔者对2013~2015年的全国卷1中的解析几何考查部分进行梳理总结,剖析典型高考题,为解析几何教学提出策略与建议。

1.高考解析几何试题考查对比

从全国卷I中解析几何考查知识点整体看,覆盖范围宽,视角高,层次性的考查学生对知识点的掌握程度,同时还渗透了对数学思想的考查,从2013年-2015年,全国卷I中对文科和理科不同学生的解析几何知识点考查具体见下表所示。

2013~2015年全国卷I解析几何试题题量看,是“两小一大”,两个小的客观题,一个大的解答题,分值分别为5∶5∶12。近3年的全国卷I试题中,文科理科解析几何试题共有11个选择题和填空题,题目一样的只有1个,文科和理科的试题考查差异性较大,对解析几何知识点的考查交错互补,对学生综合知识运用和问题解决能力的要求较高;文科和理科解析几何试题共有5个解答题,题目一样的只有1个,题型相对常规,考查重点是解析几何通性通法。

2013~2015年,全国卷I中对解析几何的知识点(直线、圆和椭圆、双曲线、抛物线)基本全部有所涉及。其中,选择题和填空题常考内容为双曲线渐近线方程、圆锥曲线的定义与方程、离心率、几何性质、抛物线准线,客观题区分度明显,是能力立题的集中体现;解答题考查内容多是直线与椭圆、直线与圆、直线与抛物线位置关系,直线与圆位置关系分量较重,常考内容是位置关系中相交弦构成图形的取值范围、最值问题。在解答题设计中,多以三角形面积计算为导引,转化为弦长和距离的求解,在具体运算中用到韦达定理、弦长公式、焦半径等公式,设而不求的代换思想,简化解答题的运算,全国卷I对解析几何的考查本质集中体现了代数问题研究几何问题。

2.高考解析几何试题具体评述

(1)数学知识:从记忆到联想

从高考试题中解析几何考查知识点看,对双曲线、抛物线、椭圆的定义和性质进行基本考查,考点有:定义、性质、轨迹方程的求解,这就需要学生在解题时,结合自己对定义的深刻理解,联想到定义、性质,在应用中“得心应手”。

(2015全国卷I文5)已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A、B是C的准线与E的两个交点,则AB=( )

A.3 B.6 C.9 D.12

【点评】圆锥曲线几何性质的考查,解题基础:明确概念、分清基本量关系,题目具有一定的综合性。

(2)数学能力:运算能力与思维能力并重

高考解析几何试题中,每年必考大的解答题,几乎都可以用坐标法求解,这就需要学生在运算中熟悉几何条件本质特征,能够以恰当的代数形式,表示平行、垂直、面积、中点、距离等关系,学生需要弄清算理,明确算法,运算算法,得出结论。数学思维决定数学算理的正确性、数学运算的方向,而运算能力则决定了数学思维具体转化施行的有效性。

(2013全国卷I理10)已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点。若AB的中点坐标为(1,-1),则E的方程为( )

A.+=1 B.+=1

C.+=1 D.+=1

【点评】利用直线与椭圆关系联立方程,应用韦达定理计算a、b关系,再利用差点法设而不求思想,计算中点弦问题,运算简单快捷。

(3)数学思想:融会贯通数学思想与方法

高考解析几何试题以知识点为载体,但又蕴含着丰富的数学思想与方法,综合考查了学生的数学能力和思想。解析几何试题的基本特点是利用坐标系,求解几何问题,究其核心是数形结合思想。而且,高考解析几何解答题具有综合性,对综合数学知识的考查,在问题解决中涉及了转化与化归思想、分类与整合思想、函数与思想、特殊与一般思想。

(2014全国卷I理20)已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点。

①求E的方程;

②设过点A的动直线L与E相交于P、Q两点,当△OPQ面积最大时,求L的方程。

【点评】该题集中体现了函数思想,整体处理时用到韦达定理,简化运算;在计算中引入关联变量,构建函数关系,是解决该题的重要数学思想和方法。

三、高中数学解析几何教学策略

1.理解是关键:数学实验,动态探究

在高中数学解析几何基础知识夯实教学中,笔者建议可以适当应用信息技术,将信息技术与解析几何整合教学,为学生创设数学实验教学,体现几何直观,提高解析几何教学效率。通过信息化的数学实验,带领学生沟通数式与图形的表征,在动态化课件中,感受解析几何的直观性,通过演示几何图形运动变化过程,帮助学生观察现象,发现几何规律,探究几何问题,得出解析几何结论。通过信息技术制作的课件,以数学实验的形式,为学生提供从感性到理性的解析几何认识过程,对解析几何进行动态探究,感受解析几何的动态美,激发学生学习解析几何的兴趣,增强学生解析几何想象力,培养学生数学观察力,为更好地理解解析几何基础知识奠定基础,加深学生对解析几何知识的理解与掌握。

理解是关键,在信息技术数学实验教学中,笔者建议:第一,注意交互。教师将信息技术与解析几何教学整合,实现传统解析几何教学和信息技术教学整合,扩充学生学习时空,观察解析几何动态演变,或开展自主解析几何学习,增强数学学习能力;第二,动静结合。信息技术课件数学实验演示下,解析几何问题的表现形式多样化,点、线、图形变化,让课堂扑朔迷离,有别样的动态美,让学生赏心悦目。在数学实验教学中,动中有静,形中有数,静中有动,数中藏形,动静相宜,数形相生,揭示了解析几何本质规律,推动学生图形和数式学习,培养学生直觉思维和逻辑思维;第三,适度适时。在解析几何传统教学难点、重点中,适时使用信息技术,创建数学实验,聚焦学生认知冲突,把准学生认知生成,促进学生认知成长,为学生学习解析几何指明方向。

2.算理是主线:强化运算,达成求简

在高中解析几何教学中,也要注重对学生运算能力的培养,关注学生数与式的运算能力,奠定解析几何正确解答,三角函数、不等式、向量、立体几何等综合问题正确解答基础,教师教会学生算理,合理设计算法,强化运算,运算结论,欣赏解析几何运算美,鼓励学生迎难而上,在耐心细致中“不怕繁”,最终发现简,达成

求简。

算理是主线,在高中解析几何强化运算教学中,笔者建议:第一,要“精讲多练”,赋予解析几何运算练习新内涵。在解析几何运算教学中,经典做法就是精讲多练,教师精讲,学生多练。教师通过对解析几何典型例题的讲解,特别是高考试题中解析几何的重点知识点和试题,教师要详细讲解,巩固解析几何知识的同时,讲述解析几何解题思路、解答方法;第二,教师结合学生解析几何解题现状,发现学生解析几何运算存在的问题,剖析成因,对症下药,引导学生明确解题目的,转化、分析解析几何图形,构建坐标系,求解解析几何,按照清晰的解题思路运算解答。通过“双重”运算能力强化,培养学生解析几何求解举一反三的能力,阐释精讲多练新内涵。总之,在解析几何运算中,算理是主线,学生作为解析几何运算主体,亦是算理的主体,教师要引导学生把握运算方向,认清算与理的关系,做好运算准备,通过多练习强化运算能力,达成求简。

3.数形结合是核心:分析解题,诱思导悟

数与形,相倚相依,数缺形则少直观,形缺数则难入微,数形结合则代数与几何统一,万事休。高中解析几何中考查数量关系研究几何形状,用几何形状转化数量关系,涉及几何运算的数与形双重性。因此,高中解析几何教学中,数形结合是核心,通过分析解题,诱思导悟,探索数形几何。

数形结合是核心,在高中解析几何数学思想教学中,笔者建议:第一,挖掘“形”,简化“数”。学生在基本掌握通性通法基础上,掌握相得益彰的解题方法,通过反思,扩大解题成果,突破思维定式,发散思维,一题多解。通过数学类比推广,多题归一,反思数学规律,得出数学结论,形成解题思维,创新思维;第二,对数形转化实施专项训练——变式训练,解析几何问题解决的关键点在于代数式与几何的正确转化,实施变式训练,突出解析几何问题结构特征,揭示解析几何知识关联,从多角度分析比较问题,得出解题策略。通过专项变式训练,让学生“熟能生巧”,在掌握解析几何基础知识基础上,训练数形结合思想,利用变式训练,优化解析几何认知结构,灵活解决解析几何问题。变式训练,让学生发散思维,纵横思索,变式探究,推广引申,诱思导悟。

通过梳理人教A版教材中解析几何内容,立足学生懂而不会、会而不对、对而不全、全而不快四大解析几何学习问题,分析近3年高考全国卷I,归纳解析几何“两小一大”命题结构与规律,揭示高考试题中解析几何数学知识:从记忆到联想、运算能力与思维能力并重、融会贯通数学思想与方法考查三维内容,继而提出高中数学解析几何教学策略,理解是关键:数学实验,动态探究;算理是主线:强化运算,达成求简;数形结合是核心:分析解题,诱思导悟,优化解析几何课堂教学,提升解析几何教学效益,帮助学生夯实解析几何基础知识,提高解析几何运算能力,创新解析几何求解思维,促使学生养成数学素养,争取在高考中取得不错的成绩。

参考文献:

[1]杨志元.一道解析几何题的教学策略[J].数学教学,2015(11).

[2]徐朝生.解析几何高考试题分析研究[J].中学生数理化(教与学),2016(3):47.

[3]刘宁.高中解析几何的教学策略[J].课程教育研究,2015(21):114-115.

[4]朱斌.高中解析几何教学策略论谈[J].语数外学习(数学教育),2012(12):7.

3.小学奥数几何试题 篇三

有两个长方形,甲长方形的长是98769厘米,宽是98765厘米;乙长方形的长是98768厘米,宽是98766厘米。这两个长方形的面积哪个大?

分析与解利用长方形面积公式,直接计算出面积的大小,再进行比较,这是可行的,但是计算太复杂了。

可以利用乘法分配律,将算式变形,再去比较两个长方形的.面积大小,这就简便多了。

甲长方形的面积是:

98769×98765

=98768×98765+98765

乙长方形的面积是

98768×98766

=98768×98765+98768

4.奥数几何夹角试题及答案 篇四

(1)固定平面上一条直线,其它直线与此条固定直线的交角自这条固定直线起逆时针计算,只能是15、30、45、60、75、90、105、120、135、150、165十一种角度之一,所以,平面上最多有12条直线。否则,必有两条直线平行。

(2)根据题意,相交后的直线会产生15、30、45、60、75的两条直线相交的情况均有12种;他们的角度和是(15+30+45+60+75)12=2700产生90角的有第1和第7条直线;第2和第8条直线;第3和第9条直线;第4和第10条直线;第5和第11条直线;第6和第12条直线共6个,他们的角度和是906=540所以所有夹角和是2700+540=3240。

5.高三数学拟试题《几何证明选讲》 篇五

几何证明选讲

1、(广东省百所高中2014届高三11月联考)如图,在△ABC中,AB=AC,∠C=72°,圆E过A,B两点且与BC相切于点B,与AC交于点D,连结BD,若BC

1,则AC=___

答案:

22、(广东省宝安中学等七校2014届高三第二次联考)如图4,在ABC中,DE//BC,EF//CD,若BC3,DE2,DF1,则AB的长为________.

答案:9

2延长AE交BC_____.

3、(广州市培正中学2014届高三11月月考)(几何证明选做题)

AC的中点,点E在线段BD上,A4、2014届高三上学期调研)(几何证明选讲选做

题)如图2,在△ABC中,DE//BC,DF//AC,AE=4,EC=2,BC=8,则BF=.答案:3DBFEC图2-1-

5、(海珠区2014届高三上学期综合测试

(二))(几何证明选讲选做题)如图4,平行四边形

ABCD中,AE:EB1:2, AEF的面积为1cm2, 则平行四边形ABCD的面积为cm2.答案:246、(惠州市2014届高三上学期第二次调研)(几何证明选讲选做

题)如图,D是圆O的直径AB延长线上一点,PD是圆O的切

线,P是切点,

D30。,AB4,BD2,PA=.

答案:237、(揭阳一中、潮州金山中学2014届高三上学期期中联考)如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E,PC4,PB8,则CD_______.答案:4.8

P8、(汕头市潮师高级中学

2014届高三上学期期中)(几何证明选讲选做题)如图,从圆O外

一点A引圆的切线AD和割线ABC,已知ADAC6,圆O的半径为3,则圆心O到AC的距离为.

答案:

59、(汕头四中2014届高三第二次月考)(几何证明选讲选做题)如图,AD为圆O直径,BC

切圆O于点E,ABBC,DC

BC , AB4,DC1,则AD等于.-2-

答案:

510、(佛山市石门中学2014届高三第二次检测)(几何证明选讲选做题)如图所示,AB,CD是半径为2的圆O的两条弦,它们相交于P,且P是AB的中点,PD=4,∠OAP=30°,则CP=

6.经典重生值几何 篇六

与老一代腾龙头顶金圈的SP系列镜头不同,这只新款微距镜头在外观上与最新的35mm F/1.8和45mm F/1.8两只镜头非常相似,黑色的镜筒品质感极强,宽大的对焦环拿在手中和转动时的手感极佳。镜头上的按键设计也更为现代,手感很好。在镜头卡口处的淡金色圆环透出一种奢华的感觉,与镜头SP的顶级定位相得益彰。

而在你看不到的地方,腾龙为这只微距镜头配备了比以往更强的防尘防潮构造,保证了更好的耐用性。前端镜片还使用了氟涂层技术,可有效防止水汽凝结和油污沾染。

功能升级

如果你是上一代腾龙90mm微距镜头的用户,恐怕会对规格表中的数据非常熟悉。事实上,上一代90mm微距镜头与新镜头拥有相同的镜头结构,相同的3片特殊镜片,所以MTF曲线也几乎完全一致。

但如果你真的把这只新镜头安装到相机上,还是会发现其明显的升级之处。

首先对焦速度就有明显提升。这也是你在野外拍摄微距时会首先感受到的。因为野外拍摄需要迅捷的反应速度,对焦慢一点往往意味着错失一个精彩瞬间。这里新改良的USD超声波马达做出了巨大贡献。

除了对焦,你还会感受到防抖性能的提升,取景器中的画面更稳定了,拍摄到的照片成功率也非常高。我们此次测试的机身拥有5060万像素,画面的一点点抖动在稍稍放大后都能被发现。而我们在测试时使用了0.3米的最近对焦距离进行1:1等比放大拍摄,在略低于安全快门时依然能获得清晰的画面。这要归功于腾龙在VC防抖中新加入的X、Y轴移动补偿功能,这对于微距拍摄格外有用。

极佳的画质

对一只微距镜头来说,光学素质的要求会更高也更全面,因为人们往往会用它拍摄从产品、生态到人像等各种题材。换句话说,既要求镜头在大光圈时,有锐利的焦内成像和优美的焦外虚化效果,又要求在收缩光圈后,在画面各部都有极高的解像力。同时,色差和畸变最好为零。

在实拍时,我们很高兴地发现腾龙SP 90mm F/2.8 Di Macro VC USD的细节极为丰富,色彩也很饱和通透。并且,如今的超高像素单反相机正好能发挥这只镜头的光学特点,让我们拍到比以往更多的细节。

性价比突出

在保持了极高的光学素质,同时提升了功能之后,腾龙这只全新的微距镜头售价却没有大幅提升。在多数电商平台上仅比上一代贵大约300元,总价依然在4000元内。而相对于其在使用时的功能升级,这几百元的花费相当值得。我们也认为相对于价格更高的原厂微距镜头,这只腾龙SP 90mm F/2.8 Di Macro VC USD值得推荐。

7.高中立体几何经典试题 篇七

1、设MN是圆O外一直线,过O作OA⊥MN于A,自A引两条直线分别交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初二)

B N

(例1图)(例2图)

2、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.

求证:∠DEN=∠F.

【部分题目解答】

1、(难度相当于高考压轴题)

如图,以MN为x轴,A为原点,AO为Y轴建立坐标系,设圆的方程为:x2(y-a)2r2,设直线AB的方程为:ymx,直线AD的方程为:ynx,点B(x1,y1)、C(x2,y2);

D(x

3,y3)、E(x4,y4);则B、C222x(y-a)r,消去y得:(1m2)x2-2amxa2-r2{ymx2ama2-r

2由韦达定理知:x1x22;x1x22,m1m12ana2-r2

同理得:x3x42;x3x42, n1n1直线CD方程为:y-y2y2-y3(x-x2), x2-x

3x3y2-x2y3, y2-y3由此得Q点横坐标:xQ

同理得P点横坐标:xPx1y4-x4y1 ,y4-y

1xy-xyxy-xy故,要证明APAQ,只需证明:xQ-xP3223-1441, y2-y3y4-y1

即证明:(x3y2-x2y3)(y4-y1)(-x1y4-x4y1)(y2-y3)

将上式整理得:y3y4(x1x2)y1y2(x3x4)x1y2y4x2y1y3x3y2y4x4y1y3

注意到:y1mx1,y2mx2;y3nx3,y4nx4,代入整理得:

左边m2x1x2(x3x4)n2x3x4(x1x2),右边mn[x1x2(x3x4)x3x4(x1x2)] 把上述韦达定理的结论代入得:

22a2-r22an2am2amn(a2-r2)(mn)2a-r左边m22n22 22m1n1n1m1(m1)(n1)2

a2-r22ana2-r22am2amn(a2-r2)(mn)右边mn(2)m1n21n21m21(m21)(n21)

可见:左边=右边,故xQ-xP,即APAQ.证毕!

【此题充分体现:化归思想、设而不求思想方法、数形结合方法、以及分析计算的能力】 标系.例

2、分析:如右图,建立坐

总体思路:设点A、B、C、D坐标后,求出直线AD、从而求出两个角度的正切值,证明这两个角度问题的关键是:如何设点C、D而C、D两点是相互独立运动的,故把点C、D设AD=BC= r,则C点可以看作是以B为圆心,r上的动点,类似看待D点,故,设

C(arcosθ,rsinθ)、D(-arcos,rsin), 从而得N(cosθcossinθsin,)22

易得:kBCtan,kADtan【此处充分展现了圆的,参数方程的美妙之处】kMN

8.高中数学立体几何证明公式 篇八

线面平行→线线平行 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

线面平行→面面平行 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

面面平行→线线平行 如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

线线垂直→线面垂直 如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。

线面垂直→线线平行 如果连条直线同时垂直于一个平面,那么这两条直线平行。

线面垂直→面面垂直 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

线面垂直→线线垂直 线面垂直定义:如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α。

面面垂直→线面垂直 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

9.高中立体几何经典试题 篇九

理数

1.(2014重庆一中高三下学期第一次月考,14)(原创)如图,在,是的长为。的中点,于,的延长线交

中,的外接圆于,则,[解析] 1.在Rt△ABC中,, 解得;同理可得, 由射影定理可得,得.根据割线定理可得, 得, 所以.2.(2014天津蓟县第二中学高三第一次模拟考试,14)如图, 圆于、两点,且与直径

交于点,切圆于点,则, 交

.1

[解析] 2.根据相交弦定理可得理可得①②联立得PB=15.①.在Rt△DTP中,结合条件可得DT=9.根据切割线定

②.3.(2014天津蓟县邦均中学高三第一次模拟考试,14)如图,点P在圆O直径AB的延长线上,且PB=OB=2, PC切圆O于C点,CD

AB于D点,则CD=.[解析] 3.根据切割线定理可得OC, 在Rt△OCP中, 根据射影定理可得PC= CD=

22, 得, 得PD=3, 又因为

..连接, 所以CD的长为4.(2014重庆杨家坪中学高三下学期第一次月考,14)如图,割线,若,,则、为⊙O的两条

等于____________.[解析] 4.由割线定理得,所以,解得或(舍去),2

由~,所以,所以,解得.5.(2014湖北黄冈高三4月模拟考试,15)(选修4-1:几何证明选讲)已知点直径的演唱线上,直线,则

与圆

相切于,的平分线分别交、在圆于的、两点,若.[解析] 5.因为为圆的切线,由弦切角定理,则,又因为平分,则,所以,根据三角形外角定理,因为是圆的直径,则,所以是等腰直角三角形,所以.6.(2014广东汕头普通高考模拟考试试题,15)如图,点①结论的序号是___________., 延长与圆

交于另一点 , ②, , 分别与圆切于,给出下列三个结论:,③

~, 其中正确 3

[解析] 6.如图,错,所以正确的序号为①②.,,所以③范围.7.(2014广东广州高三调研测试,14)(几何证明选讲选做题)

如图4,则为⊙的直径,弦交于点.若,的长为_______.[解析] 7.由已知可得,,由相交弦定理得:,所以

8.(2014北京东城高三第二学期教学检测,10)如图,割线与直径相交于

点.已知∠

=,与圆相切于,不过圆心, 则圆的的半径等于_______.4

[解析] 8.由题意可得:.从而, 又因为。由切割线定理,所以可得,所以,所以.故直径.再由相交弦定理,从而半径为7.9.(2014重庆铜梁中学高三1月月考试题,16)如图,圆心,弦于点,则

切⊙O于点_________.,割线经过

[解析] 9.依题意,由切割线定理,所以,即,所以圆的半径,由为切线,所以,所以,又弦于点,所以.10.(2014湖北八校高三第二次联考数学(理)试题,15)(选修4-1:几何证明选讲)如图,△ABC为圆的内接三角形,BD为圆的弦,且BD//AC. 过点A 作圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB = AC,AE = ______.,BD = 4,则线段CF的长为 5

[解析] 10.根据切割线定理可得,代入数据得EB=5.因为AB=AC,可得∠C=∠ABC,又因为EA是切线,根据同弧对应的圆周角相等可得,∠C=∠EAB,所以可得∠EAB=∠ABC,所以可得EA//BC,又因为BE//AC,所以四边形ACBE为平行四边形,所以AC=EB=5,BC=EA=.因为AC//BD,所以可得弧AB与弧CD相等,所以可得∠FACA=∠ACB,所以△AFC∽△BAC,可得,代入数据得.11.(2014重庆五区高三第一次学生调研抽测,14)如图,的延长线上,与半圆相切于点,若

是半圆,的直径,则

在.[解析] 11.延长,又,所以.12.(2014山西忻州一中、康杰中学、临汾一中、长治二中四校高三第三次联考,22)选修 6

4-1:几何证明选讲

如图,过圆外一点作一条直线与圆交于两点,且,作直线与圆相切于点,连结

于点,已知圆的半径为2,(1)求的长;

(2)求证:.[解析] 12.(1)延长交圆于点,连结,则,又,所以,又可知,所以

根据切割线定理得,即.7

⑾证明:过作于,则,从而有,又由题意知

所以,因此,即

13.(2014山西太原高三模拟考试

(一),22)选修4一1:几何证明选讲

如图,已知PA与⊙O相切于点A,经过点O的割线PBC交圆O于点B,C,∠APC的平分线分别交AB、AC于点D、E.(Ⅰ)证明:∠ADE=∠AED;

(Ⅱ)若AC=AP,求的值.[解析] 13.8

14.(2014河北石家庄高中毕业班复习教学质量检测

(二),22)选修4—1:几何证明选讲:如图,已知于、为圆的一条直径,以端点作垂直于

为圆心的圆交直线

于点.、两点,交圆两点,过点的直线,交直线(Ⅰ)求证:、、、四点共圆;

(Ⅱ)若,, 求外接圆的半径.[解析] 14.(Ⅰ)因为为圆一条直径,所以,又,故、、、四点在以为直径的圆上,所以,、、、四点共圆.(4分)

(Ⅱ)因为与圆相切于点,由切割线定理得 , 即,9

所以

又, 则, 得,连接, 由(1)可知为的外接圆直径,, 故的外接圆半径为.(10分)

15.(2014河北唐山高三第一次模拟考试,22)选修4―1: 几何证明选讲

如图,点.是圆的切线,是切点,于,过点的割线交圆于、两(Ⅰ)证明:,,四点共圆;

(Ⅱ)设,求的大小.[解析] 15.(Ⅰ)连结,则.由射影定理得,由切割线定理得,故,即,又,所以~,所以.10

因此,,四点共圆.(6分)

(Ⅱ)连结.因为,结合(Ⅰ)得

.(10分)

16.(2014贵州贵阳高三适应性监测考试, 22)【选修4-1:几何证明选讲】

如图,.是圆的直径,弦、的延长线相交于点,垂直的延长线于点(Ⅰ)求证:;

(Ⅱ)求证:.[解析] 16.(Ⅰ)连结,因为为圆的直径,所以,又,11

则四点共圆,所以.(5分)(Ⅱ)由(Ⅰ)知,连结,又∽,所以

即,所以.(10分)

17.(2014黑龙江哈尔滨第三中学第一次高考模拟考试,22)选修4-1:几何证明选讲

如图,是的⊙直径,与⊙相切于,为线段上一点,连接、分别交⊙于、两点,连接交于点.(Ⅰ)求证:、、、四点共圆.(Ⅱ)若为的三等分点且靠近,,求线段的长.[解析] 17.(Ⅰ)连结,则,12

所以,所以,所以四点共圆.(5分)

(Ⅱ)因为,则,又为的三等分点,,又因为,所以,.(10分)

18.(2014吉林实验中学高三年级第一次模拟,22)选修4—1几何证明选讲: 如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F。

(I)求证:DE是⊙O的切线;

(II)若的值.[解析] 18.22.(I)证明:连结OD,可得∠ODA=∠OAD=∠DAC …………………2分 ∴OD//AE 又AE⊥DE

…………………………………3分 ∴OE⊥OD,又OD为半径

∴DE是的⊙O切线 ………………………5分

(II)解:过D作DH⊥AB于H,13

则有∠DOH=∠CAB

…………6分

设OD=5x,则AB=10x,OH=2x,由△AED≌△AHD可得AE=AH=7x ……………8分

又由△AEF∽△DOF 可得

……………………………………………………10分

19.(2014河南豫东豫北十所名校高中毕业班阶段性测试

(四)数学(理)试题, 22)选修4-1: 几何证明选讲.

如图,AB是于点G. 的一条切线,切点为B,ADE、CFD都是的割线, AC =AB,CE交(I)证明:(Ⅱ)证明:FG//AC.;

[解析] 19.20.(2014吉林省长春市高中毕业班第二次调研测试,22)选修4—1:几何证明选讲.

如图,是圆的直径,是延长线上的一点,是圆 的割线,过点作的垂线,交直线于点,交直线

于点,过点作圆的切线,切点为.(1)求证:四点共圆;(2)若, 求的长.[解析] 20.(1)证明:连结,∵是圆的直径,15

∴,在和中,又∵ ∴

∴四点共圆。

(2)∵四点共圆,∴

∵是圆的切线,∴ ∴

又因为 ∴

∴.答案和解析

理数

[答案] 1.[解析] 1.在Rt△ABC中,, 解得;同理可得, 由 16

射影定理可得,得.根据割线定理可得, 得[答案] 2.15 , 所以.[解析] 2.根据相交弦定理可得理可得①②联立得PB=15.①.在Rt△DTP中,结合条件可得DT=9.根据切割线定

②.[答案] 3.[解析] 3.根据切割线定理可得OC, 在Rt△OCP中, 根据射影定理可得PC= CD=[答案] 4.6

22, 得, 得PD=3, 又因为

..连接, 所以CD的长为[解析] 4.由割线定理得,所以,解得或(舍去),由~,所以,所以,解得.[答案] 5.[解析] 5.因为为圆的切线,由弦切角定理,则,又因为平分,则,17

所以,根据三角形外角定理,因为是圆的直径,则,所以是等腰直角三角形,所以[答案] 6.①②

.[解析] 6.如图,错,所以正确的序号为①②.,,所以③范围.[答案] 7.1 [解析] 7.由已知可得,,由相交弦定理得:[答案] 8.7,所以

[解析] 8.由题意可得:.从而, 又因为。由切割线定理,所以可得,所以,所以.故直径.再由相交弦定理,从而半径为7.[答案] 9.[解析] 9.依题意,由切割线定理,所以,即,18

所以圆的半径,由为切线,所以,所以,又弦于点,所以.[答案] 10.[解析] 10.根据切割线定理可得,代入数据得EB=5.因为AB=AC,可得∠C=∠ABC,又因为EA是切线,根据同弧对应的圆周角相等可得,∠C=∠EAB,所以可得∠EAB=∠ABC,所以可得EA//BC,又因为BE//AC,所以四边形ACBE为平行四边形,所以AC=EB=5,BC=EA=.因为AC//BD,所以可得弧AB与弧CD相等,所以可得∠FACA=∠ACB,所以△AFC∽△BAC,可得,代入数据得.[答案] 11.[解析] 11.延长,又,所以.[答案] 12.查看解析

[解析] 12.(1)延长交圆于点,连结,则,19

又,所以,又可知,所以

根据切割线定理得,即.⑾证明:过作于,则,从而有,又由题意知

所以,因此,即

[答案] 13.查看解析

[解析] 13.[答案] 14.查看解析

[解析] 14.(Ⅰ)因为为圆一条直径,所以,又,故、、、四点在以为直径的圆上,所以,、、、四点共圆.(4分)

(Ⅱ)因为与圆相切于点,由切割线定理得 , 即,所以

又, 则, 得,连接, 由(1)可知为的外接圆直径,, 故的外接圆半径为.(10分)

[答案] 15.查看解析

[解析] 15.(Ⅰ)连结,则.由射影定理得,由切割线定理得,故,即,又,所以~,所以.因此,,四点共圆.(6分)

(Ⅱ)连结.因为,结合(Ⅰ)得

.(10分)[答案] 16.查看解析

[解析] 16.(Ⅰ)连结,因为为圆的直径,所以,又,则四点共圆,所以.(5分)(Ⅱ)由(Ⅰ)知,连结,22

又∽,所以

即,所以

.(10分)

[答案] 17.查看解析

[解析] 17.(Ⅰ)连结,则,,所以,所以,所以四点共圆.(5分)

(Ⅱ)因为,则,又为的三等分点,,又因为,所以,.(10分)

[答案] 18.查看解析

[解析] 18.22.(I)证明:连结OD,可得∠ODA=∠OAD=∠DAC …………………2分∴OD//AE 又AE⊥DE

…………………………………3分 ∴OE⊥OD,又OD为半径

∴DE是的⊙O切线 ………………………5分

(II)解:过D作DH⊥AB于H,23

则有∠DOH=∠CAB

…………6分

设OD=5x,则AB=10x,OH=2x,由△AED≌△AHD可得AE=AH=7x ……………8分

又由△AEF∽△DOF 可得

……………………………………………………10分

[答案] 19.查看解析 [解析] 19.24

[答案] 20.查看解析

[解析] 20.(1)证明:连结,∵是圆的直径,∴,在和中,又∵ ∴

∴四点共圆。

(2)∵四点共圆,∴

∵是圆的切线,∴ ∴又因为 ∴

10.高中立体几何经典试题 篇十

1、如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)若AB∥CD,试证明四边形ABCD是菱形;

(2)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,并说明理由.

2、已知:如图平行四边形ABCD,DE⊥AC,AM⊥BD,BN⊥AC,CF⊥BD

求证:MN∥EF

3、已知:如图菱形ABCD,E是BC上一点,AE、BD交于F,若AE=AB,∠DAE=2∠BAE 求证:BE=AF A

D B E C

4、已知:如图正方形ABCD,P、Q分别是BC、DC上的点,若∠1=∠2 AD求证:PB+QD=PA 12

Q

BC

P

D5、已知:如图正方形ABCD,AC、BD交于点O,E、F分别是BC、OD的中点 A求证:AF⊥EF

F

O

BCE6已知:如图,AB//CD,AEED,BFFC,EM//AF交DC于M,求证:FMAE。

7、已知:如图,⊿ABC中,E、F分别是AB、BC中点,M、N是AC上两点,EM、FN交于D,若AM=MN=NC,求证:四边形ABCD是平行四边形。

8、已知:如图,12,AB3AC,BEAD,求证:ADDE。

9、已知:如图,AB//CD,D900,BEECDC,求证:AEC3BAE。

10、已知:如图,ADBC,B2C,BEEC,求证:DE12AB。

11、已知:如图,ABDC,AEDE,BFFC,FE交BA、CD的延长线于G、H,求证:12。

12、已知:如图,AB//CD,ADC900,BEEC,求证:AED2EDC。

13、已知:如图,正方形ABCD中,E是DC上一点,DF⊥AE交BC于F 求证:OE⊥OF

AD

O E

B

FC14、如图,分别以△ABC的三边为边长,在BC的同侧作等边三角形ABD,等边三角形BCE,等边三角形ACF,连接DE,EF。求证:四边形ADEF是平行四边形。

EF

D A

BC

15、如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.

(1)求证:EB=GD;

(2)判断EB与GD的位置关系,并说明理由;

(3)若AB=2,AG=错误!未找到引用源。2,求EB的长.

16、如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.

(1)直接写出点E、F的坐标;

11.高中立体几何经典试题 篇十一

一、填空题:

1.(2011年高考天津卷文科13)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且

若CE与圆相切,则线段CE的长为.2【解析】设AF=4x,BF==2x,BE=x,则由相交弦定理得:DFAFFB,2即8x2,即x21722,由切割线定理得:CEEBEA7x,所以CE.442.(2011年高考广东卷文科15)(几何证明选讲选做题)如图4,在梯形ABCD中,AB∥CD,AB=4,CD=2,E、F分别为AD、BC上点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为.

5【答案】.7

【解析】由题得EF是梯形的中位线,S梯形ABFE

S梯形EFCD1(23)h5 17(34)h23.(2011年高考陕西卷文科15)B.(几何证明选做题)如图,BD,AEBC,ACD900,且AB6,AC4,AD12,则AE=_______.【答案】

2【解析】:RtABERtADC所以

即AEABAE,ADACABAC642 AD12

二、解答题:

4.(2011年高考江苏卷21)选修4-1:几何证明选讲(本小题满分10分)如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1r2),第21-A图

圆O1的弦AB交圆O2于点C(O1不在AB上),求证:AB:AC为定值。

解析:考察圆的切线的性质、三角形相似的判定及其性质,容易题。证明:由弦切角定理可得AO2CAO1B,ABO1Br1 ACO2Cr

5.(2011年高考全国新课标卷文科22)(本小题满分10分)选修4-1几何证明选讲 如图,D,E分别是AB,AC边上的点,且不与顶点重合,已知C

EAEm,ACn,AD,AB

为方程x14xmn0的两根,(1)证明 C,B,D,E四点共圆; 2D第22题图

(2)若A90,m4,n6,求C,B,D,E四点所在圆的半径。

6.(2011年高考辽宁卷文科22)(本小题满分10分)选修4-1:几何证明选讲

如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED。

(I)证明:CD//AB;

12.高中立体几何 篇十二

高中立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。立体几何是中学数学的一个难点,学生普遍反映“几何比代数难学”。但很多学好这部分的同学,又觉得这部分很简单。那么,怎样才能学好立体几何呢?我这里谈谈自己的认识。

一.空间想象能力的提高。

开始学习的时候,首先要多看简单的立体几何题目,不能从难题入手。自己动手画一些立体几何的图形,比如教材上的习题,辅导书上的练习题,不看原图,自己先画。画出来的图形很可能和给出的图不一样,这是好事,再对比一下,那个图更容易解题。

二.逻辑思维能力的培养。

培养逻辑思维能力,首先是牢固掌握数学的基础知识,其次掌握必要的逻辑知识和逻辑思维。

1.加强对基本概念理解。

数学概念是数学知识体系的两大组成部分之一,理解与掌握数学概念是学好数学,提高数学能力的关键。

对于基本概念的理解,首先要多想。比如对异面直线的理解,两条直线不在同一个平面是简单的定义,如何才能不在同一个平面呢,第一是把同一个[平面上的直线离开这个平面,或者用两支笔来比划,这样直观上有了异面直线的概念,然后想在数学上怎么才能保证两条直

线不在一个平面,那些条件能保证两条直线不在一个平面。我们多去想想,就可以知道,只要直线不平行,并且不相交,那么就异面,对于不平行的条件,在平面几何中我们已经知道,如何能保证不相交呢,想象延长线等手段能不能得到证明呢,如果不能,那么把其中一条直线放在一个平面,看另外一条直线和这个平面是否平行,这样我们对异面直线的概念就比较容易掌握。

这在立体几何“简单几何体”部分的学习中显得尤为突出,本章节中涉及大量的基本概念,掌握概念的合理性,严谨性,辨析相近易混的概念。如:正四面体与正三棱锥、长方体与直平行六面体、轴截面与直截面、球面与球等概念的区别和联系。

2.加强对数学命题理解,学会灵活运用数学命题解决问题。

对数学的公理,定理的理解和应用,突出反映在题目的证明和计算上。需要避免证明中出现逻辑推理不严密,运用定理、公理、法则时言非有据,或以主观臆断代替严密的科学论证,书写格式不合理,层次不清,数学符号语言使用不当,不合乎习惯等。

(1)重视定理本身的证明。我们知道,定理本身的证明思路具有示范性,典型性,它体现了基本的逻辑推理知识和基本的证明思想的培养,以及规范的书写格式的养成。做到不仅会分析定理的条件和结论,而且能掌握定理的内容,证明的思想方法,适用范围和表达形式.特别是进入高中学习以后所涉及到的一些新的证题的思想方法,如新教材上的立体几何例题:“过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.”此定理的证明就采用了反证法,那么反

上一篇:房地产暖场邀约说辞下一篇:导购员销售2022个人总结