六年级数学下册《圆锥的体积》教学设计

2025-01-15

六年级数学下册《圆锥的体积》教学设计(共11篇)

1.六年级数学下册《圆锥的体积》教学设计 篇一

《圆锥的体积》

【学习目标】

1、通过探索与发现,推导出圆锥体积的计算方法,并能解决简单的实际问题。

2、经历探索圆锥有关知识的过程,进一步发展空间观念。

3、在观察与实验、猜测与验证、交流与反思等活动中,体会数学知识的产生过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。重点:

圆锥体积的推导过程 难点

正确理解圆锥体积计算公式. 【预习指导】

一、已学知识回顾

(1)圆柱的体积公式是什么?

课件出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高. 【预习指导】(教材P11-P12页)知识点一:圆锥体积的计算公式

(一)想一想,论一论:(思考一分钟,然后将你的想法与大家分享)圆锥是由

两部分组成的。怎样计算圆锥的体积呢?请你猜想圆锥体积的计算方法。(提示:本书当中所讲的圆锥都是直圆锥。)

我的猜想:

(二)想一想,论一论:(思考一分钟,然后将你的想法与大家分享)你有什么办法验证自己的猜想呢?

实验准备材料:

实验操作过程:

实验操作结论:

【课中探究】

1、想一想,论一论:(思考一分钟,然后将你的想法与大家分享)推导圆锥体积公式

(1)通过实验可知:

(2)归纳总结:圆锥的体积=

,如果用V表示圆锥的体积,S表 示圆锥的底面积,表示高,那么圆锥的提及的计算公式,V=

(提示:计算圆锥的体积时不要忘记乘1/3)

2、想一想,论一论:(思考一分钟,然后将你的想法与大家分享)

解题思路:

答:

【当堂检测】

1、2、一堆圆锥形沙堆,底面周长是62.8米,高石6米,这堆沙子有多少立方米?

3、一堆圆锥形沙堆,它的占地面积为12平方米,高是1.5米,每立方米沙重 1.7吨。用载重为2吨的汽车把这堆沙运走,几次才能运完?

【拓展延伸】

一个长8厘米,宽5厘米、高4厘米的长方体的体积与一个圆锥的体积相 等,圆锥高15厘米,它的底面积是多少平方厘米?

【作业布置】 课后练一练

2.六年级数学下册《圆锥的体积》教学设计 篇二

一、等底等高的圆柱与圆锥的体积

第一, 给出圆柱与圆锥体积的“和”。

题目经常给出等底等高的圆柱圆锥的体积的和, 而让我们去求圆柱与圆锥的体积或求圆柱比圆锥多余的体积, 这时, 我们把圆锥的体积看成一份, 把圆柱的体积看成三份, 这样就把圆柱与圆锥的体积看成相等的四份, 如果给出体积之和, 就可以把这个和平均分成四份, 求出每一份的体积, 也就是圆锥的体积, 再乘3就得到圆柱的体积。这样还可求出圆柱比圆锥多余的体积。

例如:等底等高的圆柱与圆锥的体积之和为64立方厘米, 求圆柱比圆锥多多少立方厘米?

根据以上分析:圆柱的体积为3份, 圆锥的体积为1份, 并且这四份都是相等的, 也就是说把圆柱与圆锥的体积之和平均分成4份, 其中一份的体积则为圆锥体积, 三份体积则为圆柱体积, 圆柱体积比圆锥体积多两份, 如果算出一份的体积, 多余的体积就会迎刃而解。

64÷4=14 (立方厘米) 14×3=42 (立方厘米)

42-14=28 (立方厘米)

答:圆柱的体积比圆锥多28 (立方厘米)

第二, 给出圆柱与圆锥的体积之“差”。

我们在练习题目时, 经常碰到等底等高的圆柱与圆锥的体积之差, 而求出圆柱或圆锥的体积, 有时还要求出圆柱的体积是圆锥的几倍或圆锥的体积是圆柱的几分之几。

根据所学知识, 等底等高的圆柱的体积是圆锥的三倍, 圆锥的体积是圆柱的三分之一, 这样我们就会把圆柱体积和圆锥体积看成相等的四份, 这样看来, 圆柱体积就比圆锥体积多两份, 而多余的体积给出来, 把它平均分成两份, 就是每一份的体积, 圆柱占三份就乘3, 得到圆柱的体积, 圆锥占一份乘一, 就得到圆锥的体积。

例如:一个圆柱削成一个最大的圆锥, 体积减少了36立方分米, , 求圆柱与圆锥的体积分别是多少立方分米?削去部分的体积是圆锥的几倍?

根据以上分析:把圆柱削成最大的圆锥, 削出来的的圆锥与原来圆柱的关系是等底等高, 那么就存在这样的关系, 圆柱体积的三分之一是圆锥体积, 其实把三分之二削掉了。也就是说把圆柱体分成三份, 消掉了两份, 剩下一份为圆锥体。

36÷2=18 (立方分米) 18×3=54 (立方分米)

18×1=18 (立方分米) 36÷18=2 (倍)

答:圆柱体积是54圆锥体积是18, 削去部分的体积是圆锥的2倍。

第三, 给出圆柱或圆锥的体积, 求出另一个的体积。

我们在学习中经常碰见给出等地等高的圆柱和圆锥的其中一种的体积, 而要求出另外一种体积, 或者求出两个的体积之差。

等底等高的圆柱与圆锥的体积关系, 即圆柱的体积是圆锥的三倍, 圆锥的体积是圆柱的三分之一, 如果给出圆柱体积, 要求圆锥体积, 则圆柱体积撑三分之一就是圆锥体积。如果给出圆锥体积, 要求圆柱体积, 则圆锥体积乘三就是圆柱体积。

例一:一个圆柱的体积为102立方分米, 与它等底等高圆柱的体积是多少立方分米?

根据以上分析:圆锥的体积为圆柱体积的三分之一。

102×1/3=34 (立方分米)

答:圆锥的体积为34立方分米。

二、圆柱和圆锥的体积在相等或不相等的情况下, 它们的底和高的关系

第一, 圆柱与圆锥的体积相等, 找出它们的底面积和高的关系。

在体积相等的情况下, 底面积和高的关系有两种, 第一种是给出底面积的关系, 找出高的关系。第二种是给出高的关系, 找出底面积的关系。以下根据例题详细的分析:

例一:体积相等的圆柱与圆锥, 圆柱的底面积是圆锥的三倍, 则圆柱与圆锥的高的比是多少?

分析:圆柱与圆锥的体积相等, 则S柱H柱=1/3S锥H锥, 而圆柱的底面积是圆锥的3倍, 则S柱=3S锥, 把上述等式替换可得:3S锥H柱=1/3S锥H锥, 等式的两端同时除以相同的数, 等式不变, 这样可得到:3H柱=1/3H锥, 所以圆柱的高与圆锥的高的比是:H柱:H锥=1/3:3=1:9。

例二:体积相等的圆柱与圆锥, 圆柱的高是圆锥的1/4, 则圆柱的底面积是圆锥的 () 。

A、3/4 B、3倍C、4倍D、4/3倍

分析:它们的体积相等, 即:S柱H柱=1/3S锥H锥, 而圆柱的高是圆锥的1/4, 即H柱=1/4H锥, 把上述等式替换可得:S柱×1/4H锥=1/3S锥H锥, 等式的两端同时除以相同的数, 等式不变, 这样可得到:S柱×1/4=1/3S锥, 然后两端同时乘4, 可得:S柱=4/3S锥, 圆柱的体积是圆锥的4/3倍。可选D答案。

第二, 圆柱与圆锥的体积不相等, 找出它们的底面积和高的关系。下面有两个例题就能很好的说明它们的关系。

例一:一个圆柱的体积是一个圆锥的2倍, 它们的底面积相等, 求圆柱与圆锥高的比是多少?

分析:体积相等可得:V柱=2V锥, 可得:S柱H柱=2×1/3S锥H锥, 而它们的底面积相等, 则S柱=S锥, 等式的两端同时除以相同的数, 等式不变, 可得:H柱=2×1/3H锥, 即H柱=2/3H锥, 那么圆柱与圆锥高的比:H柱:H锥=2/3:1=2:3。

例二:一个圆柱的体积是一个圆锥的1/2, 圆柱的底面积是圆锥的3倍, 那么, 圆锥高是圆柱高的 () 。

A、1/6 B、3倍C、12倍D、18倍

分析:圆柱的体积是圆锥的1/2, 可知:V柱=1/2V锥, 即:S柱H柱=1/2×1/3S锥H锥, 圆柱的底面积是圆锥的3倍, 可知:S柱=3S锥, 把上述等式替换:3S锥H柱=1/2×1/3S锥H锥, 等式的两端同时除以相同的数, 等式不变, 可得:3H柱=1/6H锥, 两端同时乘6, 这样可得:18H柱=H锥, 所以圆锥的高是圆柱的18倍。

总之, 我们作为教师, 尽可能的深入研究教材, 把课堂设计成多种形式的教学情景, 让课堂充满探索性、竞争性、趣味性, 同时让学生参与进来快乐的获得知识。这样即增加了学生学习数学的兴趣, 还培养了学生的合作、探究、操作、创新的能力。

摘要:等底等高的圆柱的体积是圆锥的三倍, 圆锥的体积是圆柱的三分之一, 这样我们就会把圆柱体积和圆锥体积的和评价分成四份, 圆柱体积占三份, 圆锥占一份, 圆柱比圆锥多两份。

3.六年级数学下册《圆锥的体积》教学设计 篇三

圆锥的体积

课时

1课时

教学

内容

教材第33、34页

教材分析

《圆锥的体积》这部分知识是小学阶段学习几何知识的最后一部分内容,也是人们在生产生活中经常遇到的几何形体,教学这部分内容,有利于进一步发展学生的空间观念,为进一步学习和解决实际问题打下基础,我认为《圆锥的体积》这部分内容在本单元中占有十分重要的地位。

教学目标

1、学生自主探索出圆锥体积和圆柱体积之间的关系,在初步掌握圆锥体积的计算公式的基础上,能回忆起圆锥体积的推导过程,解决实际生活中有关圆锥体积计算的简单问题。

2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

3、通过小组活动,实验操作,巧妙创设情境,激发学生的自主探索意识,发展学生的空间观念。

教学重点

掌握圆锥体积的计算公式

教学难点

正确探索出圆锥体积和圆柱体积之间的关系。

教学准备

多媒体课件、学具

教      学      过      程

教学环节

教师活动预设及环节设计意图

学生活动预设

二次备课、随笔

先学

提出猜想,让学生通过观看微课及看书初步了解圆锥体积的推导过程(通过先学,让学生对第二天所学知识有所了解,同时有疑问。)

观看微课并阅读课本第33页的内容。

交流

一、提出猜想。

昨天同学们通过观看微课和看书,请大家我,今天我们要学习什么内容?(师及时板书)

对于圆锥的体积这部分内容,你学到了哪些?还有哪些地方是你不明白的?

(由先学自然过渡到交流,让学生充分的说,培养学生“说”数学的能力。)

二、实验探究

同学们回想一下,昨天你观看视频的时候,老师提出了怎样的猜想?

为什么会有这样的猜想?这个猜想对不对?你如何验证你说说的?

(一)小组合作

要求:

1.四人一组进行分工合作,各组根据需要选用实验用具,轮流操作。

2.做好实验数据的收集

整理,并完成实验。

(二)交流、汇报

师:哪个小组愿意当小老

师,给同学们具体讲解

一下你们整个的操作过

程以及得出的结论。

为什么选圆柱和圆锥进行研究,而不选圆锥和长方体或圆锥和正方体进行研究?(让学生从众多的学具中选出本次实验所需的学具,让生充分明白其中的道理)

如何证明等底等高?(回顾高的测量方法,让生明白实验要科学、严谨。)

由于我们现在是六年级,掌握的知识有限,到高年级后,我们还会学习更多的数学知识,到时就可以更严谨的证明V锥=sh

老师上网查了,这部分知识太难了,希望同学们以后学会之后,用更加严谨的方法推翻老师微课中所说的猜想,可以吗?

三、导出公式

师生总结:圆锥的体积是和它等底等高的圆柱的体积的;圆椎的体积是圆柱体积的3倍

字母公式:V=Sh

同学们,我们大家一起来回顾一下验证圆锥体积的过程,从实验过程思考,由猜想到通过实验进行验证,再得出结论;这是一种数学的研究方法。

从实验的选材思考,首先是圆柱和圆锥的相同之处最多,其次我们知道圆柱的体积公式,利用转化的数学思想推导出了圆锥的体积公式。(让学生再次经历“引出问题-实验探究-导出公式”的探索过程,在动手实践的过程中感悟数学思想,同时培养学生的建模思想。)

四、巩固练习

1.出示例3

(1)理解题意。

(2)引导分析。

(3)尝试计算,指明板演,讲解订正。

(4)师评价并小结:我们的小老师都是学习数

学的有心人,都知道在计

算圆锥的体积时要注意

算法的优化。(让学生通

过观察、对比,由说到感

悟算法的优化)

2.完成课本第35页第4

题。

3.完成课本第35页第5题。

(让通过练习,巩固圆锥体积的计算,加强辨析,明确图形之间的关系。)

生齐答:“圆锥的体积”

指名学生说一说。

预设1:圆锥的体积等于与它等底等高圆柱体积的。

预设2:

V锥=V柱

预设3:

V锥=sh

预设4:

V锥=∏r2h

指名生说一说:V锥=

V柱?

指名生说一说从微课中了解到的知识。

生答:不对。

学生先说一说如何实验。

学生动手操作,教师巡视,发现问题及时指导。

小组汇报试验结论(注意汇报出试验步骤和结论)

预设1:等底等高的圆柱和圆锥各一个,先在圆锥里装满水(或沙子、米),然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?

预设:2:圆锥的体积等于与它等底等高圆柱体积的预设3:等底等高的圆柱和圆锥各一个,先在圆柱里装满沙子,然后倒入圆锥,倒3次擦能把圆柱里的沙子倒完。

预设4:发现这个实验不够严谨,首先选择的材料之间有空隙,其次如果把握不好每次倒的量,会造成多了或少了。

圆柱的体积=底面积×高

圆锥的体积=×圆柱的体积=×底面积×高

(1)已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。

(2)可利用圆锥的体积公式来求,需先已知沙堆的底面积和高先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积

(3)分析完后,指定学生板演。主要说说自己的计算过程。

让生明白:最后算出多少π的形式计算较快捷还不容易出错。

学生独立完成,全班集体订正,关键让生说一说自己的解题思路。

学生以开火车的方式进行,关键让生说一说为什么错了。

提升

1.出示课本第36页第8题。

(1)理解题意。

(2)引导分析。

(让学生发现题目的延续性,提高学生解决综合性问题的能力。)

2.王老师通过微课还留了一道思考题,请各位小老师仔细观看,认真思考,老师想告诉同学们的是什么知识?

(通过观看微课,让学生仔细观察、思考,提升学生对“等底等高”的理解)

学生当小老师进行每一问的讲解。

课件播放微课,若有时间,让生观察计算结果,看看有什么发现?

指名生说一说,关键让生明白:并不是只有等底等高的圆柱和圆锥之间的体积才存在3倍的关系。

板书设计

圆锥的体积

等底等高

研究方法

猜想:V锥=

V柱

转化

验证:V柱=

Sh

结论:V锥=V柱=Sh

4.六年级数学下册《圆锥的体积》教学设计 篇四

圆锥体积的计算方法

课型

新授课

教学目标[来源:学#科#网]

知识与能力:[来源:学科网]

1、经历圆锥体积计算公式的推导过程,理解并掌握圆锥体积的计算公式,能正确地计算圆锥体积。

2.运用圆锥体积的计算方法,解决有关实际问题,增强学生的应用意识。

过程与方法:

经历实验活动,在活动中探索并发现其中的规律

情感与价值观:

进一步丰富对空间的认识,建立空间观念,发展学生的形象思维。

教学重难点

重点:圆锥体积的计算

难点:圆锥体积计算公式的推导过程

准备

等底等高的圆柱和圆锥体容器

课时

1课时

课堂预设

一、情境导入

1、一个炎热的夏天中午小张和他同学到冷饮店,去买冰激凌走进店里看见有等底等高,形状不同的两种冰激凌,圆柱的5元一支,圆锥的1.5元一支,营业员问他要买哪一种,小张摸着脑袋不知买哪一种划算。

2、复习

①底面积是7平方厘米,高

8厘米,体积

=

?

②底面半径是

3分米,高10分米,体积

=

?

③底面直径是

6分米,高10分米,体积

=

?

二、新课

1、教学圆锥体积的计算公式。

(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的.

(2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?

(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的)

板书:圆锥的体积=×圆柱的体积

=×底面积×高,[来源:学*科*网Z*X*X*K]

字母公式:V=Sh2、通过实验你发现了什么

圆柱的体积是与它等底等高圆锥体积的3倍。也就是说圆锥体积与它等底等高圆柱体积的三分之一

要求圆锥的体积必须知道什么?

圆锥的底面积和高。

三、巩固练习

完成第34页的“做一做”。

四、布置作业。

练习六第5~7题。

五、课堂总结

这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?

板书设计

圆锥体积的计算方法

圆柱的体积=底面积×高

圆锥的体积=×圆柱的体积

=×底面积×高

字母公式:V=Sh

5.六年级数学下册《圆锥的体积》教学设计 篇五

课题 圆锥的体积

作者及工作单位 殷兴均达州市宣汉县南坝镇第二中心小学

教材分析

《圆锥的体积》是西师版义务教育课程标准实验教科书数学六年级下册的内容。本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。

学情分析

六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。但是我校是处于城镇边缘的农村学校,学生的基础较差,接受能力有限,对于本节的学习有一定的难度。

教学目标

1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。

2、运用实验法在合作探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。

3、体会数学与生活的密切联系,感受探究成功的快乐。

教学重点和难点

重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。

难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。

教学过程

教学环节 教师活动 预设学生行为 设计意图

一、复习准备

1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?

2、圆锥有什么特点?(同时出示幻灯)

3、在这个圆锥体中,几号线段是圆锥体的高。

4、引入:看来,同学们对于圆锥体的特征掌握得很好。你们想不想继续研究圆锥呢? 1.长方体、正方体、圆柱。

2.一个顶点;一个侧面,展开是一个扇形;一个底面,是圆形;一条高,从顶点到底面圆心的垂直距离。

3.学生手势出示

4.想

复习内容紧扣重点,由实物到图形,采用对比的方法,不断加深学生对形体的认识。

二、创设情境

出示等底等高的实心圆锥、实心圆柱和装有适量水的水槽(标有刻度)

引入新课(板书课题) 激发学生兴趣,学生认真观察,跃跃欲试,都想争取参加实验。 联系生活实际创设情境,引发学生的好奇心,激发学习兴趣。情境创设可以让学生感受到数学与生活实际密不可分,从而感受用数学能够解决实际问题的思想,激发学生学习数学的兴趣。

三、学习新课

1、猜想体积大小

实心圆锥和实心圆柱的体积有怎样的关系 圆锥体积小于圆柱体积。

圆锥体积可能是圆柱体积的二分之一、三分之一。 猜想关系,这个环节,共进行两次猜想,第一次是猜想体积大小。第二次是让学生凭借直觉大胆提出猜想,猜想圆锥的体积与圆柱体积的可能关系,同时在猜想中明确探索方向。学生可能猜想二分之一、三分之一等。在形成猜想后,再引导学生“实验验证”自己的猜想。

2、理解等底等高

我们研准备一个圆柱体和一个圆锥体。你们比比看,这两个形体有什么相同的地方?

底面积相等,高也相等,用数学语言说就叫“等底等高”。 底面积相等,高也相等。 为推导圆锥的体积计算公式打下基础

3、猜想关系、实验验证

同学们有说二分之一的,有说三分之一的,争是争不出结果的,得用实验来验证。

谁来汇报一下,你们组是怎样做实验的?

你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系? 分组做实验。

学生汇报

用等底等高的圆锥和圆柱,通过实验,让学生研究出等底等高的圆柱与圆锥之间的关系。再利用课件演示,帮助学生回顾自己的实验过程,加深学生对实验过程的体验。

4、总结公式

我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

V锥=V柱×1/3=sh×1/3

“sh”表示什么?乘1/3呢? 学生尝试总结圆锥的体积计算公式。 通过实验总结结论,培养学生的归纳概括能力和语言表达能力。

5、全面验证

是不是任何一个圆锥体的体积都是任何一个圆柱体体积的1/3呢?

(课件演示)等底不等高、等高不等底

为什么你们做实验的圆锥体积等于圆柱体积的1/3呢?

现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

今后我们求圆锥体体积就用这种方法来计算。 (因为是等底等高的圆柱体和圆锥体。)

在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。注重强调了等底等高圆锥和圆柱的体积才有这样的倍数关系,突出了重点。

6、圆锥体积公式的实际应用

(1)例:一个圆锥形的物体,底面积是11平方厘米,高是9厘米.它的体积是多少立方厘米?

(2)一个圆锥的底面直径是20厘米,高是6厘米,它的体积是多少?(只列式不计算)

(3)一个圆柱与一个圆锥体积相等,底面积也相等。圆柱高15厘米,圆锥高多少厘米?

(4)一个圆柱与一个圆锥体积相等,高也相等。圆锥的底面积是圆柱底面积的几倍?

(5)有一根底面直径是6厘米,长是15厘米的圆柱形钢材,要把它削成与它等底等高的圆锥形零件。要削去钢材多少立方厘米?(课件) 学生独立计算,集体订正.

(1)列式:11×9×1/3=33(立方厘米)

答:它的体积是33立方厘米

(2)3.14×(20÷2)2×6×1/3。

(5)3.14×(6÷2)2×15×(1-1/3)=282.6(立方厘米)

练习是理解知识,掌握知识形成基本技能的基本途径,同时又是运用知识、提高能力,形成知识结构的重要步骤,让学生通过不同层次的练习,得到不同层次的收获,使学生在思维能力有所发展,增加用数学的意识。

板书设计

圆锥的体积

圆柱的体积=底面积×高

等底等高

圆锥的体积=底面积×高×1/3

V锥=V柱×1/3=sh×1/3

学生学习活动评价设计

本校的老师听了这节课之后,评价如下:

充分发挥了学生的主体作用,把课堂还给学生,学生积极参与学习。

在本节课的设计中设计应用了多媒体课件,插入flash功能、放大功能、幕布遮盖功能,为学生理解重难点创造了平台,学生反馈效果很好,有了多媒体课件演示,课堂更加丰富、更加生动,师生间的交互性更强,学生的学习主动性大大提高。

重点突出,难点突破。

建议还要多给学生实验操作时间,训练学生的动手动脑能力。

教学反思

1、本节课的教学环节设计科学合理,猜疑--实验验证--总结公式--运用知识--练习巩固,环环相扣。

2、布鲁纳说过:“学习的最好刺激,乃是对所学材料的兴趣”。在课堂中充分利用电教媒体的作用,设情引趣,为学生创设直观情境,引导学生想学、乐学、会学、善学。学生观看多媒体课件的直观演示,亲自动手操作,动眼观察、动脑思考,充分溶于教学活动之中,从而能够主动地学习。

3、圆锥体积的计算方法是学生经过自己的自主探索、实验发现的,很有必要让学生回顾这段过程。利用多媒体课件这一先进的教学平台演示圆柱体积与圆锥体积之间的关系,便于进一步在学生头脑中形成表象,引发学生思考抽象概括。

6.六年级数学下册《圆锥的体积》教学设计 篇六

第十一课时 测量物体的体积 总第22课时

教学内容:教材第37页测量物体的体积

教学目标:

1.通过学习,使学生所有的物体都有一定的体积,并学会求同一种物体的体积。

2.通过学习,使学生了解不规则物体的计算方法,并提高灵活应用计算方法解决一些实际问题的能力。

教学重点:学会求不规则物体的体积。

教学难点:进一步掌握同一种物体的体积计算方法。

预习作业:

1、回家找一块土豆,并计算它的体积。

2、回家找同一种铁块大小不同的3块,并算一算它的体积。

教学过程:

-、预习效果检测

1、计算下面物体的体积

圆柱:底面直径5厘米,高7厘米

圆柱:底面直径15厘米,高7厘米

圆柱:底面直径5厘米,高14厘米

圆柱:底面直径5厘米,高21厘米

圆锥:底面直径5厘米,高7厘米

圆锥:底面直径5厘米,高21厘米

圆锥:底面直径5厘米,高14厘米

通过计算,你发现了什么?

二、合作探究

1、出示准备好的圆柱形容器1个,土豆1个,小组合作,用下面的方法测量物体的体积,并填写表格。

实际操作时应注意什么?

2、出示准备好的2块铁块,并用天平称出它们的质量,并填写下表。

比较测量和计算的结果,你有什么发现?

三、教师小结

同学们,同一种材料,质量与体积比的比值时一定的。应用这一知识,我们就能算出另一块铁块的体积。

四、课堂小结

7.六年级数学下册《圆锥的体积》教学设计 篇七

教学要求:

l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

3.培养学生初步的空间观念和发展学生的思维能力。

教具准备:长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的的教具。

教学重点:掌握圆锥的特征。

教学难点:理解和掌握圆锥体积的计算公式。

教学过程:

一、铺垫孕伏:

1.说出圆柱的体积计算公式。

2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)

二、自主探究:

1.认识圆锥。

我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

2.根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。

3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。

(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。

(2)认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?

4.学生练习。

口答练习三第1题。

5.教学圆锥高的测量方法。(见课本第17页有关内容)

6.让学生根据上述方法测量自制圆锥的高。

7.实验操作、推导圆锥体积计算公式。

(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的图)

(2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?

(3)实验操作,发现规律。

在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。

老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?

(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的。

(5)启发引导推导出计算公式并用字母表示。

圆锥的体积=等底等高的圆柱的体积=底面积高

用字母表示:V=Sh

(6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以?

8.教学例l

(1)出示例1

(2)审题后可让学生根据圆锥体积计算公式自己试做。

(3)批改讲评。注意些什么问题。

三、巩固练习

1.做练习三第2题。

学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。

2.做练习三第4题。学生书面练习,小组交流,集体订正。

四、课堂小结

这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

五、课堂作业

练习三第3题及数训。

六、板书:

圆锥

圆锥的特征:底面是圆,

侧面是一个曲面,展开是一个扇形。

它有一个顶点和一条高。

圆柱的体积=底面积高

圆锥的体积=圆柱体积

8.六年级数学下册《圆锥的体积》教学设计 篇八

第一课时面的旋转

填空题

1、快速旋转一面底边是直角的三角形小旗就会看到一个()。

2、圆柱有两个面是()的圆,有一个面是()。

3、从圆柱的()到()的距离是圆柱的高,一个圆柱有()条高。

第二课时圆柱的表面积

1、圆柱的侧面展开后是一个()形。

2、圆柱的侧面积=()×()。

3、圆柱的表面积=()+()。

4、一个圆柱的底面半径是1厘米,高是2厘米,⑴这个圆柱的底面周长是多少?

⑵这个圆柱的侧面积是多少?

⑶这个于圆柱的表面积多少?

第三课时圆柱的体积

求下面圆柱的体积。

1、底面半径是2厘米,高是3厘米。

2、底面直径是2分米,高是10分米。

3、底面周长是25.12米,高是100米。

第四课时圆锥的体积

1、底面半径是2厘米,高是3厘米。

2、底面直径是2分米,高是30分米。

9.六年级数学下册《圆锥的体积》教学设计 篇九

我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。这样学生亲身参与操作,有了空间感觉的体验,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。

不足:

由于学生的学具有限,在很大程度上阻碍了学生主动探究的欲望和动手操作的能力,加上本人能力有限,语言组织能力不是很好,使课堂气氛不是那么活跃,课堂显得有些压抑

再教设想:

10.六年级下册圆锥圆柱数学知识点 篇十

1.圆柱的特征:一个侧面、两个底面、无数条高且侧面沿高展开图是长形。

2.圆锥的特征:一个侧面、一个底面、一个顶点、一条高且侧面展开图是扇形。

圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

圆柱与圆锥等底等体积,圆锥的高是圆柱高的3倍。

圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

圆柱体积比等底等高圆锥体积多2倍。

圆锥体积比等底等高圆柱体积少。

(1)等底等高:V锥:V柱=1:3

(2)等底等体积:h锥:h柱=3:1

(3)等高等体积:S锥:S柱=3:1

题型总结:

高不变半径扩大缩小n倍,直径、底面周长、侧面积扩大缩小n倍,底面积、体积扩大缩小n2倍。

半径不变高扩大缩小n倍,侧面积、体积扩大缩小n倍

削成最大体积的问题:

正方体里削出最大的圆柱圆锥:圆柱圆锥的高和底面直径等于正方体棱长

长方体里削出最大的圆柱圆锥:圆柱圆锥底面直径等于宽(宽>高)圆柱圆锥高等于长方体高

浸水体积问题:水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度。

等体积转换问题:一圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3 。

练习题

1一个圆柱和一个圆锥等底等高,圆柱的体积是48立方厘米,那么圆锥的体。积是( ),如果圆锥的体积是36立方厘米,圆柱的体积是( )。

2.把一个圆柱削成一个最大的圆锥,这个圆柱的体积是48.15立方分米,削成的圆锥的体积是( )立方分米,削去的体积是( )。

3. 把一个圆柱削成一个最大的圆锥,这个圆锥的体积是3.2立方分米,削去的体积是( )立方分米,原来圆柱的体积是( )。

4.一个圆柱的底面半径是3㎝,高是2㎝,与它等底等高的圆锥体的体积是( )。

5.一个圆柱与一个圆锥等底等高,圆锥的体积是19.2立方厘米,该圆柱的体积比圆锥的体积多( )立方厘米。

6.等底等高的圆柱和圆锥,已知它们的体积之差是24立方分米,则圆柱的体积是( )立方分米,圆锥的体积是( )。

数学最大的数和最小的数

最大的数,从数学意义上讲是不存在的。但是有一个数,宇宙间任何一个量都未能超过它,这个数就是10的100次方,也叫“古戈尔”(gogul的译音)。

目前世界上每秒运算10亿(10的9次方)次的最快速的电子计算机,假定它从宇宙形成时(距今约200亿年)就开始运算,到今天,其运算总次数也不够10的100次方次。

没有最小的数字,但有最小的自然数,就是“0”。

小学数学条形统计图知识点

(1)用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按一定的顺序排列起来。

(2)优点:很容易看出各种数量的多少。注意:画条形统计图时,直条的宽窄必须相同。

(3)取一个单位长度表示数量的多少要根据具体情况而确定

(4)复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。

(5)制作条形统计图的一般步骤:

a) 根据图纸的大小,画出两条互相垂直的射线。

b) 在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。

c) 在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。

11.六年级数学下圆锥的体积教学反思 篇十一

教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学目标是让学生通过观察实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。由于六年级的学生对圆锥的认识和圆柱的体积的知识掌握较牢固,学生感到简单易懂,因此学起来并不感到困难。

新课一开始,我用课件出示一个圆柱体和一个圆锥体让学生观察并猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后课件演示实验过程,让孩子从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,这样学生对知识的掌握就水到渠成了。对圆锥的体积建立了鲜明的印象之后,再应用公式解决实际的生活问题,起到巩固深化知识点的作用。

当然,教学是一门缺陷艺术,在教学之后我感到遗憾的是,没让学生动手实际操作,我想如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会更多的知识,更重要的是能培养学生的能力。

1、探究圆锥体积计算方法的学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

2、每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。

上一篇:护士面试试题及答案下一篇:我爱家乡的古塔公园作文