列方程解应用题的数学说课稿(16篇)
1.列方程解应用题的数学说课稿 篇一
《列方程解应用题》说课稿
时间:2010-02-24 19:59来源:未知 作者:admin 点击:
179次
课题:列方程解含有两个未知数的应用题,人教版九年义务教育六年制第九册128页例6。
一、对教材的分析列方程解应用题是在第七册学习列出含有未知数的等式解一步计算应用题的基础上进行教学的。共分四个层次,首先教学比较容易的两步计算的应用题,其次教学两
课题:列方程解含有两个未知数的应用题,人教版九年义务教育六年制第九册128页例6。
一、对教材的分析列方程解应用题是在第七册学习列出含有未知数的等式解一步计算应用题的基础上进行教学的。共分四个层次,首先教学比较容易的两步计算的应用题,其次教学两、三步计算的应用题,本课内容是第三个层次,第四是用方程和算术方法解应用题的比较。列方程解含有两个未知数的应用题,是第一次出现在全国统编教材上。例6的内容,在算术中称为“和倍”和“差倍”问题,由于是逆向思考题,解法特殊,不易掌握,现在用方程来解,不仅思路较简单,而且这两类问题的思路统一,解法一致,既可减轻学生负担又提高了解应用题的能力,是今后小学学习分数等应用题的基础,也是今后到中学继续学习代数方程解应用题所必须具备的知识,必须重视这部分内容的教学。
本节课的教学目标是使学生初步掌握含有两个未知数的应用题的解题思路和方法,会解含有两个未知数的应用题;会用把两个未知数的值代入已知条件看是否符合的方法进行验算;在教学解题思路的同时培养学生初步的分析、综合、比较的能力;在解题过程中进一步培养初步的类推和迁移的能力及养成独立思考的良好习惯。
本节课的重点是正确设未知数和列出方程,关键要找出等量关系,列方程也是教学的难点。
二、对教学方法的选择列简易方程解应用题是中学列代数方程解应用题的基础,选择教学方法时,要注意中小学教学的衔接。
本节课首先要考虑正确运用迁移原理,这对中、小学的学习都将具有积极作用。在准备阶段的练习题中,不论是数量关系和解题的方法对学习例6都具有迁移的作用,利用这一原理可引导学生直接去做例6后的“想一想”,这既能培养迁移推理能力,也能促使学生养成独立思考的习惯。
其次,由于小学生仍处在从形象思维向抽象思维过渡的关键时刻,所以要考虑怎样做好这个过渡,在教学中采用画线段图帮助分析数量关系。线段图能使数量关系明显地呈现出来,有助于帮助学生设未知数,找等量关系和列出方程。
第三还要考虑学法指导。本课要教会学生阅读、分析应用题的方法、验算的方法,从不同角度思考问题的方法。在教学检验方法时,采用阅读的方式,让学生边读边想并说出两个检验式子的含义与作用,从中悟出检验的方法。教完例6后引导学生想不同的解题思路,列出不同的方程,就是教学生如何从不同角度思考问题的方法。这些方法对今后继续学习数学是十分必要的。
三、对教学环节的安排本课教学分三个阶段。
第一阶段是复习旧知,为学习新知做好铺垫。
主要针对新授的内容和学生不习惯用方程解及感到列方程有困难等问题设计了三个教学环节。一是基本训练,进行列方程的训练,如,x的5倍与x的和
是80;根据题意把方程写完全的训练,如,果园里原有桃树x棵,杏树135棵,两种树一共有180棵。=180,=135;根据线段图列方程的训练,如,第二个环节是练习例6前的复习题,对学生再现了三年级的内容是为学习例6“架桥”.为学习新课予作准备。第三个环节是导入新课。从改变复习题中的问题和一个条件,将复习题变成例6。使学生感到数量关系并不生疏,但由于需要逆向思考,学生又感到难做,以激发学生学习动机,为学习新课提供良好的情感和认知的起点。(第一阶段需5分钟左右)
第二阶段是教学解答应用题的思路和方法,是教学的重点,也是难点。
按照列方程解应用题的一般步骤安排四个环节。一是审题。即,全面分析已知数与已知数、已知数与未知数、未知数与未知数之间的关系,画好线段图,找出已知数,并将其中的一个设为x,而另一个则根据题中的一个条件写成含x的代数式。解答例6就应先设桃树为x棵,根据杏树是桃数的3倍这一条件得出杏树为3x棵,画好的线段图如下:二是找出等量关系列出方程。前面设未知数时已使用了一个条件,现在用另一个条件来列方程。即根据桃树和杏树共180棵列出方程x+3x=180;也可根据桃树和杏树共180棵来设未知数,根据另一条件列方程。这时设桃树为x棵,杏树是(180-x)棵,列出的方程是180-x=3x;也可设杏树为x棵,根据杏树是桃树的3倍,得出桃树是13x棵,列出的方程是x+13x=180;也可根据另一个条件设未知数,即设杏树为x棵,桃树是(180-x)棵,列出的方程是x=3(180-x)。但后几种方程解起来不方便,有的方程目前学生还不会解,教学时可要求学生只列不解。这些方程的列出有利于全面掌握数量关系,也有利于掌握,先根据一个条件设第二个未知数,再根据另一个条件列方程的基本思路和方法。但不能要求全体学生都会列出,特别是中差生,只掌握书中的一种即可。列出这些方程后,学生自然会得出书中列出的方程容易解,为此,教育学生今后学习时,不仅要考虑列出的方程是否正确,还要考虑列出的方程是否易解的问题。
第四个环节是检验。虽不要求写在本子上或卷子上,但这是不可忽视的重要步骤,长期要求下去,就可使学生养成良好的检验习惯,增强责任心和自信心,那种做完题不知对错的做法是后患无穷的。(这个阶段需20分钟左右)。
第三阶段是巩固练习,安排三个层次。
一是巩固新知的练习,可做128页“做一做”中的题目。接着做“想一想”题目,让学生独立用解“和倍”题的方法解“差倍”题,完成知识的迁移。第二环节安排课堂上的独立作业(5分钟左右)让学生独立做129页练习三十一的第一、二题,(对较好的学生教师根据实际情况增加题目)做完之后要认真进行讲评、纠正错误和打开思维受阻之处。
最后做课堂小结和布置作业(129页练习三十一第3、4、5题)。(第三阶段需15分钟左右)。
2.列方程解应用题的数学说课稿 篇二
一、通过方程解法与算术法的对比让学生了解方程解法的优势
刚开始接触列方程的时候, 学生可能不太适应, 相对于其复杂性, 会更倾向于算术解法, 但是有些题是必须通过方程解法来得出答案的, 所以让学生适应, 然后灵活运用方程解法显得尤为重要。这个时候就需要教师在教学中通过例题培养学生分别用算术法和列方程进行分析解答的能力, 然后在做题的过程中自己探索出两种方法的特点, 比较两者之间的差异, 最后认识到方程解法的优越之处。在教学中, 学生要不断地训练, 排除由算术解法形成的思维方式的干扰, 从而逐步适应并熟练掌握方程解法, 逐步做到从算术解法到列方程解法的过渡, 逐渐体会到相较于除算术解法, 方程解法的便利性, 并且让学生看到从算术方法到方程解法的进一步推进。事实上, 方程的解法是利用变量将有关的数量用含有未知数的式子表现出来, 然后根据题意列出方程式, 最后得出结果, 由因及果, 用顺向思维的方式更有利于思考。
二、培养学生“用字母表示数量关系”的能力
让学生适应列方程的方法解题之后, 就要探讨如何让学生更好更准确地列出方程式。简单来说, 首先要训练学生对数学语言与代数方程式之间的编码和解码。这种互译的训练方法可以使得列方程解应用题更加容易、快捷。
例如: (1) 用数学语言表示下列数量关系:
①5x-8;②2×6-4x。
( 2) 用式子表示下列数量关系:
①x与10 的和; ②8 与y的差; ③x与8 的积。
其次, 反复训练学生将日常生活中表达的语言“翻译”成方程的形式。当然如果把日常生活用语“翻译”为方程, 还是要以数学语言为中介的, 不然所有的“翻译”也就毫无意义。比如: “山羊的数量是牛的数量的3 倍还多6 头”, 如果将其翻译为数学术语就是“比某数的3 倍多6”, 那么再接着翻译为式子就是“3x + 6”。这样的训练能使学生真正理解每个方程的实际意义。这不仅是列解方程解应用题的前提, 也是提高学生将实际问题与抽象数学公式链接起来的能力基础。
三、提高学生发现等量关系的能力
列方程解应用题的关键之一就是分析数量关系, 那么提高学生发现等量关系的能力自然而然就成为了小学数学教学的重点。在列方程解应用题中, 主要是依据“等量关系”来列方程的, 同时“等量关系”紧密联系着应用题中所有的“基本量”。所以, 也可以说任何应用题中的等量关系都是由这些“基本量”的关系构成。那么学生就必须对数量关系有一定的了解, 才能够为列方程解应用题打下基础。如:行程问题 ( 路程= 速度 × 时间) ; 工程问题 ( 工作量= 工作效率 × 工作时间) ; 价格问题 ( 总价= 单价 × 数量) , 等等, 这些基本的数量关系为列方程解应用题做了准备。
四、培养学生设未知数的能力
在应用题中, 特别是遇到未知量较多的应用题时, 如果能够准确地设出未知数, 就会给列方程带来很大便利。如果一道题只有一个未知数那就很好设未知数, 然而一道题可能会有几个未知数同时存在, 但是只能够设一个未知数, 选择哪个未知数就显得尤为重要。而且设未知数也是列方程解应用题的第一步, 一般来讲, 设未知数的方法有两种:
1. 直接设未知数。根据题目问题, 直接以问题设未知数。这样设未知数, 对于得出问题的答案就很直接, 只要得出方程的解就可以。对于小学数学的应用题来说, 基本都是采用直接设未知数法来解决问题的。
例如: 小明今年6 岁, 小明的爸爸今年36 岁, 几年后爸爸的年龄是小明的年龄的3 倍。这道题就可直接设x年后爸爸的年龄是小明的年龄的3 倍, 即x + 36 = 3 ( x + 6) 。
2. 间接设未知数。有一些题目, 采用直接设未知数的方法, 反而会给列方程徒增麻烦。这个时候采取间接设未知数的方法反而会更容易达到求解的目的。如按比例分配问题, 就可以用间接设未知数来求解。
总的来说, 对小学数学中列方程解应用题的教学, 关键就在于教师如何在教学过程中将理论与实际结合起来。同时还要培养学生的整体发散思维模式, 训练学生的创新思维, 进而提升学生的综合能力。
参考文献
[1]顾云燕.新课程背景下“解方程”教学的思考与实践[J].河北教育 (教学版) , 2009 (12) .
3.列方程解应用题的数学说课稿 篇三
一、通过方程解法与算术解法的比较,让学生了解方程解法的优势
刚开始接触学列方程的时候,学生仍用已掌握的算术解法,對列方程解法很不适应,会更倾向于算术解法,但是有些题是必须通过方程解法来得出答案的,所以让学生适应,然后灵活运用方程解法显得尤为重要。因此,在教学过程中就需要老师通过例题,培养学生分别用算术解法和列方程解法进行分析解答的能力,探索出两种方法的特点,比较两者之间的差异,最后让学生认识到方程解法的优越之处。不断地进行训练,从而使学生逐步适应并熟练掌握方程解法,逐步做到从算术解法到列方程解法的过渡,并且让学生看到从算术方法到方程解法的进一步推进。事实上,算式法和解方程是相同的,但算式的得出是从要求的数值反推回去,是把未知量放在特殊的位置,用已知量求出未知量,是逆向思维的,这样难于思考,而且一次性地计算出问题的结果来,学生也难以做到;而方程的解法是利用未知数x将有关的量用含未知数的式子表示出来,然后依题意列出方程,最后将未知数求出来,由执果索因的分析法,是顺向思维,便于思考,易于列出关系式。
二、培养学生列解方程式的能力
让学生适应方程式的方法解题之后,就要探讨如何让学生更好更准确地列出方程式,就是要培养学生熟练地游走于未知数和已知数中间。简单来说,首先要训练学生对数学语言与代数方程式之间的编码和解码。这种互译的训练方法可以使得列方程解应用题更加容易,快捷。
例如:(1)用数学语言叙述下列代数式:
①9x-27②6×12-30x
(2)用代数式表示下列数量关系
①x与40.5的和,②22与y的差
其次,反复训练学生将日常生活中表达的语言“翻译”成方程的形式。当然如果把日常生活用语“翻译”为方程,还是要以数学语言为中介的,不然所有的“翻译”也就毫无意义。比如:比如:“儿童漫画比趣味童年的4倍少19本”先翻译为数学语言“比某数的4倍少19”,再翻译为代数式,“4x-19”。这样的训练就是使学生能够真正理解每个方程的实际意义,这不仅是学习解方程式应用题的前提,也是提高学生将实际问题与抽象数学公式链接能力基础。
三、帮助学生寻找等量关系,提高解题能力
列方程解应用题的关键就在于寻找数量关系式,在教学过程中,教师要引导学生根据题意寻找合适的等量关系,从而建立相应的等式,那么解应用题接可以迎刃而解了。例如:“甲为x,乙是甲的2倍少6.5,乙是多少?”,这样的问题来引导学生寻找简单的等量关系,因为学生能够准确地找出题目中“是”,也就是“等于”的意思这样的判断句式,学生根据这一等量关系来解题就轻而易举了。可以说任何应用题中的等量关系都是由这些基本的关系构成的。那么教师在教学过程中,要引导学生在理解题意的基础上,对数量关系要有一定的了解,才能够根据等量关系来列方程解应用题。同时还可以从常见数量关系中寻找等量关系,如:路程=时间×速度,工作总量=工作效率×时间,总价=单价×数量等等,经常性的复习一些常见的等量关系,有利于学生列方程时寻找等量关系。
四、培养学生设未知数的能力
在应用题中,特别是遇到未知量较多的应用题时,如果能够准确地设出未知数,就会给列方程带来很大便利。如果一道题只有一个未知数那就很好设未知数,一旦遇到一道应用题可能会有几个未知数同时存在但是只能够设一个未知数,选择哪个未知数来设方程式显得尤为重要。而且设未知数也是列方程解应用题的第一步,一般来讲解应用题有两种设未知数的方法:
1.直接设未知数
根据题目里问的问题,直接以问题设未知数。这样设未知数,对于得出问题的答案就很直接,只要得出方程的解就可以。对于小学数学的应用题来说,基本都是采用直接设未知数法来解决问题的。
例如:红红今年9岁,红红的爸爸今年28岁,几年后父亲的年龄是女儿的年龄的2倍. 这道题就可直接设x年后父亲的年龄是女儿的年龄的2倍来解:
x+28=2(x+9)
2.间接设未知数
一些题目中,若采用直接设未知数法,会给列方程增加麻烦。如果采用间接设未知数法,即通过间接的桥梁作用,达到求解的目的。如按比例分配问题,和、差、倍、分问题,整数的组成问题等均可用间接设未知数法。间接设未知数的具体做法是设一个不是问题的未知数为“x”,然后用含有字母的代数式来表示所问的未知量,求得未知数的值后,再求出表示未知量的整式的值,最后回答问题。
总之,列方程解应用题是小学数学教学的难点,教师在教学过程中要重视培养学生的整体发散思维,锻炼学生的数学思维,培养其良好的思维习惯,从而能够运用所学的数学知识构建方程来解决生产和日常生活中的实际问题。
4.七年级数学列方程解应用题练习 篇四
http:// 百万教学资源免费下载
列一元一次方程解应用题练习卷
1)5位教师和一群学生一起去公园,教师按全票的票价是每人7元,学生只收半价.如果买门票共花费206.50元,那么学生有多少人?
2)学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?
.3)变题: 学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?
4)某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?
5)某人买了2000元的融资券,一种是一年期年利率为9%,另一种为两年期年利率为12%,分别在一年和两年到期时取出,共得利息450元,问两种融资券各买多少?
6)某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)
亿库教育网
http:// 百万教学资源免费下载 亿库教育网
http:// 百万教学资源免费下载
7)某班有50名学生,在一次数学考试中,女生的及格率为80%,男生的及格率为75%,全班的及格率为78%,问这个班的男女生各有多少人?
8)某商品按定价销售,每个可获利45元,现在按定价的8.5折出售8个所能获得的利润与按定价每个减价35元出售12个所获得利润一样。问这种商品每个的进价、定价各是多少元?
9)已知甲种商品的原价是乙种商品原价的1.5倍,因市场变化,乙种商品提价的百分数是甲种商品降价百分数的2倍,调价后甲、乙两种商品单价之和比原单价之和提高了2%,求甲种商品的降价百分数和乙种商品的提价百分数。
10)某商品由A,B两种原料制成,其中A原料每千克50元,B原料每千克40元;调价后,A原料价格上涨10%,B原料价格下降15%,但核算后,产品成本不变。问生产11千克这种产品需A,B原料各多少千克?
11)买布问题:顾客用540卢布买了两种布料138俄尺,其中蓝布料每俄尺3卢布,黑布料每俄尺5卢布,两种布料各买了多少?
12)同类变式1:“希望工程”委员会将2000元奖金发给全校25名三好学生,其中市级三好学生每人得奖金200元,校级三好学生每人得奖金50元,问全校市级三好学生、校级三好学生各有多少人?
亿库教育网
http:// 百万教学资源免费下载 亿库教育网
http:// 百万教学资源免费下载
13)同类变式2:甲、乙两人合资办一个企业,并协议按照投资额的比例多少分配所得利润,已知甲与乙投资额的比例为3:4,首年利润为38500元,问甲、乙两人可获得利润分别为多少元?
14)一份试卷共有25道题,每道题都给出了4个答案,其中只有一个正确答案,每道题选对得4分,不选或错选倒扣1分,如果一个学生得90分,那么他做对了多少道题。
15)有人问毕达哥拉斯,他的学校中有多少学生,他回答说:“一半学生学数学,四分之一学音乐,七分之一正休息,还剩3个女学生。”问毕达哥拉斯的学校中多少个学生。
16)七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问参加书画社的有多少人?
17)有一些分别标有5,10,15,20,25„„的卡片,后一张卡片上的数比前一张卡片上的数大5,小明拿到了相邻的3张卡片,且这些卡片上的数之和为240。
(1)小明拿到了哪3张卡片?
(2)你能拿到相邻的3张卡片,使得这些卡片上的数之和是63吗?
18)三个连续整数的和为72,则这三个数分别是多少?
19)某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组,且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数。
亿库教育网
http:// 百万教学资源免费下载 亿库教育网
http:// 百万教学资源免费下载
20)足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?
21)甲、乙、丙三个股东合资办一个公司,甲的资本为乙、丙两人资本的和的一半,1乙的资本为三人资本总数的,丙的资本是53万元,求这个公司资本总数是多少?
3222)某班数学兴趣小组,女生的人数比男生的人数的少2人,如果女生增加3人,31男生减少1人,那么女生的人数比全组人数的多3人。求原来男、女生人数。
23)商店里有种型号的电视机,每台售价1200元,可盈利20%,现有一客商以11500元的总价购买了若干台这咱型号的电视机,这样商店仍有15%的利润,问客商买了几台电视机?
亿库教育网
5.列方程解应用题的数学说课稿 篇五
列方程解应用题为学生解答应用题开辟了一个新的途径,开拓了学生的思路,提高了学生解答应用题的能力。因此,在小学阶段,学生必须掌握好列方程解应用题的知识,为今后进一步学习数学打下良好的基础。下面谈谈我在教学这部分知识时的一点做法:
一、由旧引新,培养学生有条理、有根据地进行分析思考的能力
列方程解应用题是建立在用算术方法解应用题的基础上得,由算术方法解题到列方程解题是一个过渡。为了使学生在初学列方程解应用题是不受算术方法的干扰,教学时,我便在数量关系的训练上帮助学生找渗透点,使教学活动循序渐进的展开学习,使学生对要学的知识感到新鲜而不陌生,以保持高昂的学习热情。一般做法是用与例题数量关系相似的基础题铺垫,引导学生分析数量关系,掌握解题思路,尤其注意解题步骤,注意搭桥铺路,分析难度,在此基础上在教学例题。
比如:“商店原来有一些饺子粉,每袋5千克,卖出7袋以后,还剩40千克,这个商店原来有多少千克饺子粉?”
我在教学时设计了以下两道铺垫题:
题1:商店原来有75千克饺子粉,卖出35千克,还剩多少千克饺子粉?
题2:商店原来有75千克饺子粉,卖出5袋,每袋7千克,还剩多少千克饺子粉?
引导学生弄清题意,给出数量关系式:
原有的重量-卖出的重量=剩下的重量
原有的重量-每袋重量×卖出的袋数=剩下的重量
出示这道题的目的是让学生有旧入新、由浅入深,把铺垫题与例题相比较,找出它们的联系点与区别。这样,弄清了铺垫题与数量关系,再教学例1,学生旧容易接受了。
二、运用线段图进行教学,培养学生的分析、观察能力
学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。应用题的分析解答,大都遵循审题→分析→解答这样的顺序,而主要是引导学生分析数量关系。因此,运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,是数量关系明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。
总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生建立概念、理清算理。最终,学生对这部分知识掌握的还可以,都能根据数量关系列方程解答应用题。
阿尔法趣味数学小课堂:列方程解应用题的一般步骤和关键是什么
列方程解应用题的一般步骤:
根据题目要求选择合适的未知数,一般为问题所要求的量,不过要具体问题具体分析.写出:设……为x,……为y,……
将未知数当做已知量,根据题目的意思列出等式.即,列出方程式3.求解方程中的未知数。
6.列方程解应用题的数学说课稿 篇六
初一数学上学期列方程解应用题练习题
初一数学上学期列方程解应用题练习题
班级:__学号:__姓名:______得分:__ 列方程解应用题(每题10分)
1.甲、乙两汽车,甲从A地去B地,乙从B地去A地,同时相向而行,1.5小时后两车相遇.相遇后,甲车还需要2小时到达B地,乙车还需要 小时到达A地.若A、B两地相距210千米,试求甲乙两车的速度.
2.先读懂古诗,然后回答诗中问题. 巍巍古寺在山林,不知寺内几多僧.
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
三百六十四只碗,看看用尽不差争. 三人共食一碗饭,四人共吃一碗羹. 请问先生明算者,算来寺内几多僧.
,,,,3.牛奶和鸡蛋所含各种主要成分的百分比如下表.又知每1g蛋白质、脂肪、碳水化合物产生和热量分别为16.8J、37.8J、16.8J.当牛奶和鸡蛋各取几克时,使它们质量之比为3:2,且产生1260J的热量?
成分 品名 蛋白质(%)(%)(%)(%)
牛奶 3.5 3.8 4.9 87.8 鸡蛋 13.2 10.7 1.8 74.3 脂肪 碳水化合物 水份及其他
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
4.某学校社会实践小分队走访100户家庭,发现一般洗衣水的浓度以0.2%-0.5%为合适,即100kg洗衣水里含200-500g的洗衣粉比较合适,因为这时表面活性最大,去污效果最好.现有一个洗衣缸可容纳15kg洗衣水(包括衣服),已知缸中的已有衣服重4kg,所需洗衣水的浓度为0.4%,已放了两匙洗衣粉(1匙洗衣粉约为0.02kg)问还需加多少kg洗衣粉,添多少kg水比较合适?
5.“利海”通讯器材市场,计划用60000元从厂家购进若干部新型手机,以满足市场需求.已知该厂家生产三种不一同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
种型号手机每部1200元.
(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买?
(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号的手机购买数量不少于6部且不多于8部,请你求出每种型号手机的购买数量.
6.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别是:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元.
(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案,(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
种不同型号电视机的方案中,为使销售进获利最多,你会选择哪种进货方案?
(3)若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案.
7.防汛指挥部决定冒雨开水泵排水,假设每小时雨水增加量相同,每台水泵排水量也相同.若开一台水泵10小时可排完积水,开两台水泵3小时排完积水,问开三台水泵多少小时可排完积水?
8.某人沿公路匀速前进,每隔4min就遇到迎面开来的一辆公共汽车,每隔6min就有一辆公共汽车从背后超过他.假定汽车速度不变,而且迎面开来相邻两车的距离和从背后开来相邻两车的距离都是
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
1200m,求某人前进的速度和公共汽车的速度,汽车每隔几分钟开出一辆?
9.某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元.为了减少环境污染,市场推出一种叫“CNG” 改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的 .问:
(1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?
(2)若公司一次性全部出租车改装,多少天后就可以从节省的燃料费中收回成本?
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
10.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收购这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能赔不是进行.受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研究了三种加工方案: 方案一:将蔬菜全部进行粗加工;
方案二:尽可能多地进行精加工,来不及加工的蔬菜在市场上全部销售;
方案三:将部分蔬菜进行粗加工,其余蔬菜进行精加工,并恰好在15天完成.
你认为哪种方案获利最多?为什么?
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
参考答案:
1. 解:设甲车的速度为x千米/时,乙车的速度为y千米/时,由题意得
得
答:甲车的速度为60千米/时,乙车的速度为80千米/时. 2. 解:设寺内有x名僧人,由题意得
答:寺内有624名僧人.
3. 解:设取牛奶3x克,取鸡蛋2x克,由题意得
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
答:约取牛奶180g,鸡蛋120g. 4. 解:设还需加洗衣粉xkg,由题意得
答:还需加0.004kg的洗衣粉,添加0.996kg的水.
5. 解:(1)分甲乙组合;乙丙组合;甲丙组合三种情况. 方案一:甲乙组合:设买甲种手机x部,则买乙种手机(40-x)部,由题意得
方案二:乙丙组合:设买乙种手机y部,则买丙种手机(40-y)部,由题意得
方案三:甲丙组合:设买甲种手机z部,则买丙种手机(40-z)部,由题意得
综上所述,可以买甲种手机30部,乙种手机10部或买甲种手机和丙种手机各20部.
(2)分乙种手机买6部、7部、8部三种情况
买乙种手机6部:设买甲种手机x部,则买丙种手机(40-6-x)部,由题意得
买乙种手机7部:设买甲种手机x部,则买丙种手机(40-7-x)
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
部,由题意得
买乙种手机8部:设买甲种手机x部,则买丙种手机(40-8-x)部,由题意得
综上所述,可以买甲乙丙三种型号的手机的数量分别为26部,6部,18部或27部,7部,16部或28部,8部,14部. 6. 解:(1)分三种情况讨论:
方案一:甲乙组合:设买甲种电视机x台,则买乙种电视机(50-x)台,由题意得
方案二:乙丙组合:设买乙种电视机y台,则买丙种电视机(50-y)台,由题意得
方案三:甲丙组合:设买甲种电视机z台,则买丙种电视机(50-z)台,由题意得
综上所述可以买甲乙两种电视机各25台或甲种电视机35台和丙种电视机15台.(2)方案一:
方案三:
为了获得最大利润应该买进甲乙两种型号的电视机各25台.
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
(3)设买甲种型号的电视机x台,甲种型号的电视机y台,甲种型号的电视机(50-x-y)台,由题意得
易知y为5的倍数
因此有以上六种符合条件的方案.
7. 解:设每小时雨水增加量为a,每台水泵每小时的排水量为b,则根据积水量相同得
设用三台水泵需要x小时将积水排尽,由题意得
答:用三台水泵需要 小时将积水排尽.
8. 解:设人前进的速度为am/min,公共汽车的速度为xm/min,由题意得
答:人前进的速度为50m/min,公共汽车的速度为250m/min,公共汽车每隔4.8分发一班.
9. 解:(1)出租车公司每次改装x辆出租车,改装后每辆的燃料费为y元,由题意得,(2)设全部改装需要z天收回成本,由题意得
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
答:公司共改装了40辆出租车,改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了40%. 全部改装需要125天收回成本. 10.
解:方案一:
方案二:
方案三:设这批蔬菜中有 x吨进行精加工,则有(140-x)吨进行粗加工,由题意得
答:由此可以看出,方案三获利最多.
精心收集
精心编辑
精致阅读
7.怎样列方程解应用题 篇七
多次出现列方程解应用题、关键是前两次, 通过列一元一次方程解应用题与列二元或三元一次方程组解应用题, 教给学生列方程解应用题的基本思想, 方法和步骤, 打好了基础, 就会一通百通。下面以“列一元一次方程解应用题”为例, 说明教学中应遵循的一些原则和规律, 以及解决这一教学难点的做法。
我们知道, 列方程解应用题的一般步骤是:
(1) 审题, 要透彻理解题意, 明确哪些是已知量, 哪些是未知量, 有几个未知量, 根据应用题的结构特征, 有几个未知量, 就应有几个相等关系, 因此要全力找出这几个相等关系, 特别要注意挖掘隐蔽的相等关系。
(2) 设元, 根据题目要求, 考虑用直接设法还是用间接设法, 同时要考虑设几个未知数为宜。
(3) 列式, 根据题目中相等关系, 找出相等量列出方程或方程组。列方程时要注意未知数的个数与方程的个数一致, 避免列出方程解不出来的情况出现。
(4) 求解, 是主要步骤, 根据方程解法的一般步骤解出所列方程或方程组。计算的准确性决定答案的正误, 计算速度决定做题的效率。想提高计算的准确性和计算速度, 最有效的方法是做题——找解方程的类型题, 做完后总结方法。
(5) 根据应用题的实际意义, 检验方程或方程组的解是否符合题意。一方面检验方程解的正确性;另一方面, 有的实际问题可能解得出答案, 但实际上解并不符合题中要求, 此时也显示出检验的重要性。
(6) 作答:根据所设要求, 写出正确合理的答案。答是一个易被遗忘的步骤, 特别是答语中的单位名称, 更需要注意。然而当“答:——”成为一种习惯后, 就绝不会忘掉。
以上步骤中, 前两步是基础, 第三步是关键, 如果“解一元一次方程”的教学是过了关的, 那么上面最后三步是不成问题的, 从这种意义上来说“列方程解应用题”的教学重点应放在前三步上, 这是这一节教学成败的关键, 也是培养学生分析问题能力, 发展学生思维与智能的重要场所。
例如:某件商品的进价是40元, 卖出后盈利25%, 那么利润是多少?如果卖出后亏损25%, 利润又是多少?
分析:盈利:售价>进价利润=售价-进价>0
亏损:售价<进价利润=售价-进价<0
解:设盈利25%的衣服的进价为x元
x+25%x=60
由此得x=48
设亏损25%的衣服的进价为y元
y-25%y=60
由此得y=80
两件衣服的进价 (和) 是x+y=128元,
两件衣服的售价 (和) 120元。
∵进价>售价
∴卖这两件衣服总的是亏损。
说明:在解答此题时, 大家很容易理解为不盈不亏, 其原因是一件盈利25%, 另一件亏损25%, 好像持平, 其表面看起来不盈不亏, 其实每件衣服盈利率的标准量不同。我们通过列出两个方程, 进行综合分析, 得到了正确的结论。
解应用题的前三步是密切关系的, 有时甚至是交织在一起的, 在教学中怎样破这一环节呢?
(一) 要引导学生认真“识题”要分清题中哪些是已知, 哪些是未知量, 已知量与未知量之间有怎样的关系, 这些关系是直接给出的还是间接给出的, 凡涉及到教学、物理、化学方面的公式、定律时, 应该结合题目予以复习, 不要认为这些公式是学过的学生都已经掌握了。遗忘是学习的特点之一, “温故而知新”只有在新旧知识的反复循环中, 才能巩固加深学过的知识, 才会获得新的知识, 如果忽视这一点, 就会给整个教学带来困难。
(二) 要重视“用未知数表示代数式”这一环节的教学。一个应用题中往往含有若干个量, 当我们选择某一未知量为未知数后, 就要用这个未知数表示其他相关的量, 即把其他相关的量写成含有未知数的代数式, 这一步对初学者来说是不可忽视的, 在教学中, 不要设完未知数后就立即进入列方程, 应加强这一方面的训练。
(三) 要引导学生搞清一些常见的基本数量关系式并熟悉它们的变形如:
行程问题:速度×时间=距离
工程问题:工作效率×时间=工作量
搞清这些基本关系式, 对于解决常见的应用是很有好处的。
(四) 要注意分析题中的等量关系, 例如:轮船在两个码头之间航行, 由于顺水和逆水的方向不同, 速度也就不同, 所用时间也不相等, 但我们要抓住这道题的等量关系, 即:顺水中航行的路程=逆水中航行的路程, 顺水中航行的速度=静水中的速度+水速。
逆水中航行的速度=静水中的速度-水速等这类问题的相等关系, 抓住这一点, 问题就迎刃而解了。
摘要:列方程解应用题是运用方程知识解决实际问题的重要课题, 对于培养学生分析问题与解决问题的能力十分有益, 特别对提高学生素质起着一定的促进作用。它既是初中数学教学中的重点内容, 也是难点内容。
8.解方程的说课稿 篇八
一 教材分析:
1. 课标要求
(1)知道用字母表示数和用方程表示数量关系的优越性,会用 字母和含未知数的式子表示数和常见的数量关系。
(2)认识等式和方程,理解等式的性质和方程的解法。初步学会根据字母的取值求含有字母的式子的值,比较熟练地解答含有一个或两个未知数的方程。
(3)研究简单的情景关系和数形联系,明确含字母的式子、等量及等量关系的意义。建构含字母的式子、等式和方程的数学模型,探究等式的特性和方程的特点。
(4)感受用字母表示数和构建方程在生活中的应用价值,强化应用意识,培养分析能力和归纳概括能力。
(5)学会按时间发生的基本顺序进行数量关系的提取和思维模型的加工,将生活事理关系与数学逻辑思维有机地结合。
(6)用方程的基本思想解决简单的实际问题。
(7)体会方程在数学史和人类发展史上的意义,进一步增强热爱数学的热情。
2. 编写意图
⑴突破方程的传统设计
方程在小学阶段的学习,由于小学生的认识范围有限,传统的教科书都采用的是用四则运算的基本关系和几种常见应用题的数量关系作为解题的基础和列方程的基础。这种处理方法,学生能够很好地掌握和运用。但是,把它放在整个数学领域,就有一些问题。主要是传统小学教科书中的方程从解答依据到列方程的思路,都与中学的教科书内容不一致,学生到初中还要重新学习解方程和列方程的知识和技能。本教科书采用新的理念,突破传统观念,既遵循四则计算的意义列、解方程,以便适应小学生的认知基础,又用方程核心思想——等量关系来构建数学模型,先学习等量与等式,讨论出等式的性质,再学习方程与方程的解法,为第三学段的方程学习打好基础。
⑵突出方程的生活背景
方程思想在现实中是普遍的,但却难以直接与学生的生活联系起来,因为人们习惯于运用已知条件构建数学模型。而方程思想不是从局部入手思考问题的,而是从宏观角度把整个事件的存在因素综合考虑的,找出各因素之间存在的等量关系,构建数学模型。
本教科书,首先从生活素材排演云南佤族的《木鼓舞》的直观现象引入等量与关系,再从已购回的若干物品问某一个物品重量的方式引入方程。同时,在后续的学习和练习的设计中,也是尽量采用现实生活素材,让学生真正把数学与生活联系起来,感受数学的价值。
(3)突出方程的核心思想
方程的核心思想就是构建等量关系的数学模型。这种数学模型的组合要素就是生成事件的基本要素。比如:第91页,小学生排演舞蹈,男生、女生与演员总数的关系是一个学生熟悉的而且又很好理解的等量关系模型。其基本思考的思路是:A=A1+A2。教科书在其它类似的问题和问题解决部分的题目呈现时,尽量突出这种思想。
⑷突出方程的应用地位
本教科书通过生活实例引入方程,让学生从情景到数学模型更加体会到数学的应用价值。特别是文艺演出、西气东输、唐卡艺术、商品买卖、植树育林、退耕还草和野生动物保护等多层面、多角度、多行业的实例呈现,显示出方程运用的巨大空间,为学生学习方程起到明显的激励作用。
3. 采用体例
教科书中每节内容的编写结构大多数是:正文、课堂活动、练习。正文呈现教学内容,体现具体目标要求,课堂活动是师生互动,建立教与学的双边活动的有效途径。通过活动使学生完成对知识的自主建构和理解。练习是为学生巩固和应用知识而设立的。
4. 具体内容及逻辑线索
具体内容:
本单元的教学内容分为6个部分:① 用字母表示数 ②等式 ③方程 ④解方程 ⑤解决问题整理和复习⑥整理和复习
逻辑线索:
用字母表示数是本单元的起始课,通过学习,使学生体会用字母表示数的优越性,为下一节学习方程做好准备。接着学习了等式,用方程核的思想——等量关系来构建数学模式,再学习方程与方程的解法,为以后学习方程打好基础。解决问题是紧接着这些内容编排的,培养学生解决问题的能力。最后是整理复习,提高学生对本单元的掌握水平,教科书按照知识的逻辑顺序来编排,既有利于教师的教,有利于学生的学。
5.知识树
6.教材先后整合的内容
本单元是在学生对小学阶段整数、小数、分数的认识、四则运算,已全部学完,学生的数与代数的知识和经验已经积累到相当的程度,需要对更高一级的数学知识和数学思想进行学习的基础上进行教学的。
本单元因为其数学思想和解决问题的思维方式不同,它把学生习惯的由条件到问题建立数量关系的解决问题思路淡化,取而代之的是按事物发生发展的自然顺序构建数量关系,其核心思想是构建等量关系。方程作为数学领域的重要知识和重要思想,在解决数学问题方面占有重要作用,也是学生在中学学习数、理化和解决问题的重要思想和方法。
二、 教学策略的运用
1. 学情分析:
(1)学生已有知识基础:已经掌握了小学阶段整数、小数、分数的认识、四则运算
(2)学生已有知识经验与新知识的结合点:
学生对数与代数的知识和经验已经积累到相当的程度,需要对高一级的数学知识和数学思想进行学习。
(3)方程作为数学领域的重要知识和重要思想,也是学生在中学学习数理化的重要思想和方法。作为数学上具有特殊意义的方程,对小学生来说基本上是陌生的。
2、教法分析
数学是一门比较抽象的学科,要根据五年级学生的特点,在课堂上创设情景,调动学生的学习积极性,充分激发学生的求知欲,创设出一种轻松愉快的教学氛围。
(1) 重视生活背景的呈现
本单元学生主要是通过生活事件构建等量关系,因此课堂上教学素材的呈现十分重要。比如:学习用字母表示数时,校园失物招领的生活原型的呈现,能够唤起学生对用字母表示数的理解。在这个情境中,他们深切地感到,生活中有时需要用到比数学更有用的符号-字母。在学习等式的意义时,出示学生排演云南佤族舞蹈《木鼓舞》时,舞蹈演员组成的舞蹈队是一个关键的认知背景。一个队的人数是他们首先关注的,这是多个元素的组合。教师依据教科书的信息提问后,学生才会去关注男演员、女演员人数以及与总数的关系。这样,在教师大力渲染霞,集合中部分元素与总数的关系被突显出来,使学生把生活问题提升为数学问题。“舞蹈队总人数”表示的因素有两个:“55”和“40+15”。这两个因素意义相同,大小相等。同理,表示“男演员人数”的两个因素是:“40”“55-15”,表示“女演员人数”的两个因素是“15”和“55-40”其它背景材料、教育因素和渲染程度要弱化,这样才是数学学习。
(2)加强学习过程的指导
学生的学习过程中,既有方法和技能的习得,还有学习情感的体验和学习习惯的养成。比如:等式性质的探讨,必须由学生亲自动手探究。由于天平实验要求精度稿,教师先要在课前组织学生熟悉天平的构造,没有天平的学习一定准备好替代品,其次是要规划好实验措施和步骤。学生的操作是在教师指导下完成的。要告诉学生如何分组,先做什么再做什么?操作过程中观察什么现象?谁来做记录……第三,必须交代实验的任务和观察中思考什么问题,避免盲目性。第四,要求学生把观察的结果互动交流,以得到统一的认识和互相的启发。
(3) 强调数学模型的构建
教师要非常重视每一个学生对所学习的数学模型知识的认识,在学生讨论交流的叙述形成以后,教师要视其情况给予归纳和小结,强调其关键意思和关键文辞。在学习用字母表示数时,要让学生时时叙述使用该字母的缘由和表示的意义,同时让学生清楚含字母的式子不仅表示几个数之间运算关系,也表示几个数的运算结果。在等式和等式性质的认识里,要加强等式的口头交流和书面活动。学生对方程一节的学习可能有些困难,特别是一两个例题和几个作业,对他们的理解和巩固达不到量上的需要,教师可以根据需要适当补充。问题解决,与过去的列方程解应用题相比,从量上和形式上做了大量的删减,只是程序了方程解决问题的.基本要素-构建等量,列出等式(方程)。对于类型方面是无法一一顾及的,只要方法上能够运用就行了。训练中突出抓等量,列方程。
(4)尊重学生探究的差异和创造
方程的学习与其它知识的学习一样,一定会遇到两极分化或发展不平衡的现象。特别是在探究等式的性质时,教师要非常细心地观察各组学生的表现和他们获得的结论,只要他们基本获得需要的数学思想和结论,只要他们基本获得需要数学思想和结论,就应该给予充分的肯定。在问题解决的过程中,学生一定会提出不同的方案,包括错误的方案。教师应本着求同存异的思想,允许不同的想法存在,同时鼓励学生对多重方法进行比较,寻求大家都能理解的方法和自己独特的方法。在解决问题时既能用自己的方法,也能用别人都理解的方法,就达到融会贯通了。
3、案例分析
(1)创设情境,激发兴趣
在教学用字母表示数时,首先创设一个学生喜欢的猜谜语小游戏,在此基础上导入新课,揭示课题。到学生的生活中寻找素材,为学生学习数学创设生活情境。小学数学不是枯燥的帐本,而要来源于生活,应用于生活。学生每接触一个数学知识就必须知道这些数学知识是从哪里来的。“用字母表示数”相对于小学生来说,较抽象深奥,通过创设情境,从学生的生活实践中提出问题,让学生惊奇地发现:“用字母表示数”原来就在我们身边,小小字母的作用还真大:可以表示人名、地名,还可以表示数字。这就使得“用字母表示数”具体而现实,从而调动学生学习的积极性,帮助部分学生消除学习中的畏难情绪。
(2)相互交流,深化理解
方程是从学生看得见、摸得着的天平到抽象的,是学生认识上的一大飞越,要让学生达到由具体到抽象的真正理解,就要在教学过程中把传授知识变为渗透思想,教给学生学习知识的方法。要把天平与方程中“相等”联系起来,让学生在不断调整天平平衡的过程中,对方程的意义有了较好的理解。数学学习需要学生有一个主动探索的心态,有一个敢干质疑的精神。在教学时要为学生创设了一个相互交流、相互学习、相互帮助解决的和谐的课堂学习环境,同时又让学生在相互交流中深化了新知,在交流中提高了准确表达能力,这样不仅使课堂有了活气,学生放得开,学得活,而且从思想上给了学生一个思维的台阶,使得教学难点得以分解.
(3)实现从算术思维到代数思维的提升
以前,我们是根据四则运算的互逆关系来解方程,属于算术领域的思考方法;而用等式的基本性质解方程属于代数领域的思考方法,两者有联系,但后者是前者的发展与提高,运用等式性质解方程具有更广泛的适用性。在现阶段,解简单的方程也许无法清楚明了地显现出“等式的基本性质”的优越性,但随着数学知识的深化,一些较复杂的问题(例如:把一些图书分给某班学生阅读,如果每人分3本,则剩20本;如果每人分4本,还缺25本,这个班有多少学生?解答此题时,学生容易根据等量关系列出如下方程:3X+20=4X-25)用算术思维解方程,解法如下:3X+20=4X-25,4X=3X+20+25,4X=3X+45,4X-3X=45,X=45会显繁难、费力,学生也较难理解与接受;而用等式的基本性质解答:3X+20=4X-25,3X+20-3X=4X-25-3X,X-25+25=20+25,X=45,就能明显地显示出简洁、方便的优越性。可见,运用代数的思考方法解决问题,使学生的思维水平得到了有效提高。
三、教学训练和反馈
教师的教学效果和学生的学习情况大都是通过学生的练习反馈出来的,因此做好练习环节的反馈设计是每一节教学课教学设计的一个重点。我注重从以下几方面做起:
1、反馈形式要多样。最常用的反馈方法有同桌交换,小组轮换,实物投影展示作业,面批面改等,可以根据自己的需要来安排调整。
2、反馈要有针对性。比如一节课的重点是让学生掌握利用公式解决问题,在练习当中如果仅仅是计算错,可不必放大,提醒学生下次细心一点。如果学生在关键步骤上有了错误----不会列式解决问题,那么教师应引起重视。
3、反馈要有一定的层次性。通过层次反馈将错误类型相同的集中起来一起纠错,既节省了教学时间又提高有效性。
9.列方程解应用题的数学说课稿 篇九
学习目标:能找出实际问题中的等量关系,列出二元一次方程组,解决简单的实际问题 学习重点:将题目中的等量关系进行转化,列出二元一次方程组。一
学习准备:.回忆列一元一次方程解应用题时的常用步骤:审,找,设,列,解,答。2 二元一次方程组的解法有()(二
解读教材
1典型例题
例1 阅读课本P229,完成“鸡兔同笼”的分析 A 题型:鸡兔同笼 B 等量关系 鸡头+兔头=
_________________________________________-鸡脚+兔脚=
_____________________________________________ C
设鸡有x只,兔有y只则鸡头有
兔头有
鸡脚有
兔脚有
请你完成本题的标准答案 及时练习
(只写分析)有两堆苹果,多的的3倍是少的8倍,多的的一半与少的的差是4,那么多的数是多少? 分析: A 题型 B 等量关系
C 设
D 列方程组
例2以绳测井,若将绳三折测之,绳多五尺;四折测之绳多一尺,井深几何? A 题型 B等量关系
()+()=()
()+()=()
C 设绳长x尺,井深y尺 解
三
拓展教材
4辆小卡车和5辆大卡车一次可以运货30吨,6辆小卡车和9辆大卡车一次可以运货54吨,问小卡车和大卡车每辆每次可运货多少吨 分析 A 题型 B 等量关系
C 设
D 列方程组
练习
1.今有鸡兔不知共有头24脚74,则鸡兔各有多少? 一队人儿一队狗,两队并成一起走,脑袋共有80个,却有200腿在走,请君仔细数一数,多少人儿多少狗。
某制衣厂计划用10天加工一批出口童装和成人装360件,该厂的加工能力是:每天能单独加工童装45件或成人装30件。
(1)该厂应安排几天加工童装,几天加工成人装,才能如期完成任务?
(2)若加工童装一件可获利80元,加工成人装一件可获利120元,那么该厂加工完成这批服装后,共可获利多少元?
某高校共有5个大餐厅2个小餐厅经过测试,同时开放1个大餐厅,2个小餐厅可供1680名学生就餐;同时开放2个大餐厅,1个小餐厅可供2280学生就餐。(1)求1个大餐厅,1个小餐厅分别可供多少学生就餐
10.列方程解应用题教学思考 篇十
一、重视数量关系的建构和训练
低年级借助于小棒、卡片等实物帮助理解数量关系,发挥小学生形象思维的优势,不断提高其抽象思维能力。到了高年级,随着学生经验的积累和知识的储备,抽象思维有了一定的发展,对于一些数量关系和数学问题相对比较敏感。不管哪个阶段,数量关系是数学学习的主要内容,尤其是解应用题,始终离不了数量关系的分析。
1.掌握常见的数量关系。方程应用题中等量关系的建立源于多个方面,首先是数学中的计算公式。小学阶段,学生积累了不少计算公式,对列方程解应用题很有帮助。其次是常用的数量关系,如“单价×数量=总价,工作效率×工作时间=工作总量,1倍数×倍数=几倍数”等。这些基本的数量关系都具有高度的概括性和广泛的应用价值。还有一些关系,如整体与部分的关系、各种运算关系等。不论是用算术方法还是列方程解应用题,这样一些基本数量关系的积累是必须的,教师应结合具体的教学情境让学生理解并熟练掌握这些关系,提高学生分析问题、解决问题的能力。
2.列式计算训练。学习列方程解应用题之前,进行一些准备性列式计算练习,不仅起着检验、巩固旧知识的作用,也是引导学生学习方程应用题、衔接新旧知识的有效方法,还可以起到降低新课坡度、把握关键、分散难点的目的。
例如:小强的数学成绩是98分,比小军成绩的2倍少66分。小军的成绩多少分?
可设计以下准备性练习题:
(1)42比x少12.5。列方程 。
(2)x的8倍是72。列方程 。
(3)100比x的4倍少60。列方程 。
可先要求用算术方法分析解答,把x换成“一个数”,再用方程解答,让未知数与已知数共同参与列式和运算,由浅入深,在具体训练中理解列方程解答与算术方法的区别,方程中的已知量和未知量共同组成一个等量关系,思路比较清晰,思维比较顺畅,这样的训练为学习列方程解应用题做好准备。
二、重视数量关系的分析
数量关系式是指用运算符号和文字表示数量之间关系的式子。列数量关系式,可以帮助学生把实际问题转化为题中已知数量和未知数量之间相等关系的数学问题,这种关系有时错综复杂,难以用一个等量关系表述,需要几个等量关系交叉运用,而各种数量关系就会以数学语言的方式将繁复的问题简单化,把难以发现的数量关系符号化,进而抽象为方程式。
1.准确理解题意是正确列出等量关系式的前提。
要准确理解题意,就得认真审题,对原题多读几遍,边读边想,哪些是题中的主要元素,它与其他元素的关系是什么;哪些是题中的细枝末叶,对解决实际问题关系不大,可以略去,这样对原题做恰当的“瘦身”处理,原本难以捉摸的数学问题逐渐变得清晰,数量关系进一步明晰,这样就为解决问题铺平了道路。对于实际问题先在头脑里形成表象,建立模型,再进一步细化分析,梳理出条件和问题、已知和未知之间的关系。如例题:在学校举行的田径比赛中,小军的跳高成绩是1.42米,比小强低0.06米,小强跳高成绩是多少米?引导学生逐一分析,得出三种关系:小军的成绩+0.06=小强的成绩;小强的成绩-小军的成绩=0.06;小强的成绩-0.06=小军的成绩。
2.找准关键句是正确列方程的基础。
应用题数量之间必然存在关系,一般表现为和、差、积、商的关系。在应用题中,找准表示数量关系的句子,即关键句,它是列方程的依据,是解方程应用题的核心。在关键句中,需要抓住重点字眼,这些字眼就是这道题的灵魂,一旦突破,方程应用题也不难。要引导学生善于找关键句,善于分析关键句,善于按照关键句写出正确的数量关系。如,“地球的表面积约为5.1亿平方千米,海洋的面积约是陆地面积的3倍,海洋面积和陆地面积各是多少平方千米?”这道题中的关键句是“海洋的面积约是陆地面积的3倍”,这一关系可以写成:“海洋的面积=陆地的面积×3”,但还隐藏着另一个关系“地球表面积=海洋面积+陆地面积”,这道题正是利用这个不易发现的关系列出方程的。
3.重视情境图在正确理解题意中的作用。
情境图可以将文字叙述的实际问题具体化,使学生在复杂的条件和问题中理清思路,正确地分析、综合、判断和推理。线段图是数学情境图的主要形式,对于初学者而言,线段图(情境图)是帮助解决应用题的重要手段。从多年的教学经历中发现,一些难以表述清楚的行程问题,如果画出线段图帮助分析,往往能使问题迎刃而解。
三、一题多变,培养学生思维的灵活性
一题多变,就是把一道题目改变条件或问题变成许多题目,让学生在题意的改变中进一步掌握数量之间的各种关系,拓宽思路, 培养思维的灵活性,以提高学生解答问题的能力。如,例题“大球有24个,小球有6个,一共有多少个?”可以让问题不变,根据大球和小球的多少和倍数关系,改变某一条件,形成很多题目:
(1)大球有24个,是小球的4倍。
(2)大球有24个,比小球多18个。
(3)大球有24个,小球比大球少18个。
(4)小球有6个,比大球少18个。
(5)小球有6个,是大球的1/4。
(6)小球有6个,大球比小球多18个。
(7)小球有6个,大球是小球的4倍。
这些关系让学生逐一弄个明白,既使学生保持旺盛的求知欲,保持注意力集中,又可激发其思维创新能力;既拓宽了学生列方程解决实际问题的深度和广度,又掌握了多种解题方法。
四、引导比较,做好算术应用题到方程应用题的衔接和过渡
11.列方程解应用题 篇十一
方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。下面是列方程解应用题大全,请参考!
列方程解应用题大全
类型一(简单的一步方程)
1、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。六一班收集了60个,六二班比六一班多收集15个,六二班收集了几个?
2、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。六二班收集了60个,六二班比六一班多收集15个,六一班收集了几个?
3、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。六二班收集了60个,六二班收集的是六一班的2倍,六一班收集了几个?
4、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。其中六二班收集了60个,六二班共有4个小组,平均每个小组收集多少个?(用除法)
类型二(几倍多多少/少多少):
1、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?
2、吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?
3、农场一共收获了1200棵大白菜,每22棵装一筐,装完后还剩12棵,共装了几框?
类型三(买东西和卖东西):
1、小明有面值2角和5角的共9元,其中2角的有10张,5角的有多少张?
2、我买了两套丛书,单价分别是:<<科学家>>2.5元/本,<<发明家>>3元/本,两套丛共花了28元。其中《科学家》这本书买了4本,《发明家》买了多少本?
3、王奶奶拿了孙子们帮她收集的`易拉罐和饮料瓶去废品收购站卖,共得到7元,易拉罐和饮料瓶每个都是0.15元,已知易拉罐有20个,那么饮料瓶有几个?
类型四(和倍问题 / 差倍问题):
1、粮店运来大米和面粉480包,大米的包数是面粉的3倍,运来大米和面粉各多少包?
2、小强妈妈的年龄是小强的4倍,小强比妈妈小27岁,他们两人的年龄各是多少?
3、甲车每小时比乙车多行驶10千米,甲车的速度是乙车的1.2倍,求乙车的速度是多少?
类型五(相遇问题、追及问题、鸡兔同笼)
1、甲乙两辆车同时从A、B两地相向而行,甲车每小时走5km,乙车每小时走6km,已知A、B两地相距110千米,问甲车和乙车几小时后相遇?
2、小明和小东比赛骑自行车,他们约好同时从学校出发,看谁先到达终点的邮局,谁就赢。4分钟后,小明到达终点,取得了胜利,这时小东落后了他400米。经过计算发现,小明每分钟骑300m,那么小东每分钟骑多少米?
3、笼子里关了一些鸡和兔子,已知它们的腿加起来共有48条,并且鸡的只数和兔子的只数相同,那么鸡和兔子各有多少只?
类型六(和差问题):
1、甲乙两人年龄的和为29岁,已知甲比乙小3岁,甲、乙两人各多少岁?
2、两个相邻自然数的和是97,这两个自然分别是多少?
12.解一元一次方程-去括号说课稿 篇十二
尊敬的各位评委老师:
大家好!我今天的说课课题是“解一元一次方程----去括号”。本节课是人教版七年级上册第三章第二节《解一元一次方程——去括号》,以下我就从教材分析、教法与学法分析、教学过程、课后反思四个方面来介绍这节课:
一、教材分析
1、教材的地位及作用
这节课既是第三章知识的深化,又为我们以后学习一元一次方程的应用提供研究和学习的方法,同时也为含有分母的一元一次方程的计算做好准备,具体的说,本节课就是要通过对去括号的掌握和理解,让学生形成系统的解一元一次方程的知识结构,学会学习解一元一次方程的方法,因此本节课的重要性是不言而喻的。
2、学情分析
这节课是学生在学习了去括号法则和移项之后,进一步系统学习解一元一次方程的有关知识。故本节课只是去括号法则在一元一次方程中的延伸。再者,七年级的学生年龄和认知水平还较低,学生爱表现、有较强的好胜心理等特征,因此,在教学过程中结合学生的这些特征是上好这节课的关键所在。
基与上面对教材的分析,考虑到学生已有的认知结构、心理特征,我确定以下教学目标、教学重点和难点:
3、教学目标:
【知识目标 】掌握去括号解一元一次方程的方法,能熟练求解一元一次方程,能判别解的合理性。【能力目标】(1)通过学生观察、独立思考等过程、培养学生归纳、概括的能力;
(2)进一步让学生感受并尝试寻找不同的解决问题的方法。
【情感目标】(1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成良好的习惯。
(2)通过学生间的相互交流、沟通,培养他们的协作意识。
4、教学重点与难点
【重点】用去括号解一元一次方程。【难点】解一元一次方程是如何正确的去括号
二、教法、学法分析
1、教法:为了达到本节课的教学目标,在教学过程中,我注重体现教师的引导和学生的主体地位,采用引导、探究法为主的教学法,尽力引导学生成为知识的发现者,为学生创设情境,不断激发学生的求知欲望和学习兴趣,从而达到提高学习和能力的目的。
2、学法:根据以上的分析,我设计的学生学法是:回顾→观察→探索讨论→归纳→练习→拓展。
三、教学过程
为达到教学目标,充分发挥学生的主体作用,激发学生学习的主动性、自觉性、积极性,本节课教学程序设计如下:
(一)回顾旧知,承前启后
1、解一元一次方程时,最终结果一般是化为哪种形式?(x=a)
2、一元一次方程的解法我们学了哪几步?移项 → 合并同类项 → 系数化为1
3、移项,合并同类项,系数为化1,要注意什么?
①移项要变号 ②合并同类项时,只有把同类项的系数相加作为所得项的系数,字母部分不变 ③ 系数化为1,要方程两边同时除以未知数前面的系数。
4、同学们还记得如何去括号吗?
化简:(1)+(2a-3b+c)=______.(2)2(x+2y-2)=_____.(3)-(4a+3b-4c)=____.(4)-3(x-y-1)=_______.让学生回忆前面学过的去括号法则,然后通过师生互动,生生互动等教学手段完成四道有代表性的含有括号的式子,这样顺理成章地引出新授知识,导入新课。
(二)新课
例1 解方程:(1)2x-(x+10)=5x+2(x-1)
(2)3x-7(x-1)=3-2(x+3)
对于例1中的方程,是本节课的教学重点,花的时间也比较多,先让学生观察该方程的特点,然后分组讨论共同完成。介于导入时提到的去括号法则,学生很容易想到有括号要去括号这种解法,并请每组代表起来描述,在学生做对时给予肯定与表扬,让他体会到成功的喜悦,提高学习的兴趣。
最后在解题过程中还要让学生解题格式规范化,在教师的启发、引导下,学生自己归纳出解一元一次方程的步骤:去括号→移项→合并同类项→系数化为1。
(三)情景探究,解决问题
我采纳课本94页的例2,让学生在这一环节中体会到列方程解应用题更简变,也体会到数学来源于生活,数学与生活是息息相关、密不可分的,现实生活中的很多问题都用数学知识去解决。
(四)练习与小结:教科书95页练习共4个
男女生分组竞争,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。最后在师生互动中解决这些题。
(五)拓展探究,归纳总结
解方程3x-2[3(x-1)-2(x+2)]=3+(18-x)
这道方程,对刚刚接受新知的学生而言,是一道很有趣味的挑战。本题我是通过引导学生有括号应该先去括号,但要注意去括号的先后顺序;要看清括号前的系数。
(六)布置作业
在布置作业上,考虑到学生学习上的个体差异性,我准备了必做题和选做题。这些题在内容上围绕重点,巩固新知,从层次上来说是逐层深化
(七)板书设计
四、课后反思:
我将本节课定位为探究式教学活动,通过对教材进行适当的整合。让学生带着原有的知识背景、生活体验和理解走进学习活动,并通过自己的主动探索,与同学交流、反思等,构建对知识的形成和运用。
13.怎样列一元一次方程解应用题 篇十三
一、 审题
列方程解应用题需仔细认真读题, 弄清题意并抓住关键的语句, 找出问题中的已知数量有哪些, 要求的量是什么。
二、 设元
列方程解应用题时, 恰当地设元有利于寻找等量关系列方程, 列方程解应用题的基本设元方法有 (1) 直接设元:根据题目的要求直接设元, 即求什么就设什么; (2) 间接设元, 有些问题, 如果直接设元很难列出方程, 我们可以把既便于列方程 , 又与所求的量有一定转换关系的未知量作为元设出, 再由所设的元的值求出所求的量; (3) 设辅助元:有些问题所求的量只有一个, 但未知量却较多, 这时可以“设而不求”, 对结果从整体上考虑, 恰当地利用数量的关系求解。 (4) 按比例设元:若方程应用题是反映有关比例的问题的, 可以先按比例份数设元, 列方程求出每一份的数量, 再按比例求对应的量。 (5) 整体设元:在解决某些数学问题时, 可将待求式 (或待证式) 用一个未知数来表示, 然后根据题设条件求出这个未知数, 从而使问题获得解决。
三、找等量关系
列方程解应用题的关键是分析出实际问题的等量关系。 寻找等量关系一般有三种办法: (1) 从有关数量比较的关键语句中发现等量关系, 并以文字形式写出来 (如大、小、多、少、倍、分等) ; (2) 借助基本数量关系, 探讨数量之间的等量关系 (如路程= 速度×时间) ; (3) 注意变化中的不变量, 寻找隐含的等量关系 (如行船问题中两码头之间的距离, 静水速度, 水流速度不度等) 。
四、利用一元一次方程解决实际问题的常见题型
注:此表转下页
五、范例解析
现以部分题型为例, 分析如下:
例1 小华今年3岁, 她与她妈妈年龄的十分之一的和的一半恰好就是小华的年龄, 小华的妈妈今年多少岁?
解析:这是一个典型的和差倍分问题, 解题时要抓住关键性词语如十分之一的和、一半等, 建立等量关系。
解:设小华的妈妈今年x岁, 根据题意可得:
undefined
解得:x=30.
答:小华的妈妈今年30岁。
例2 一艘轮船, 逆流航行21千米所需的时间是顺流航行22千米所需的时间的1.5倍。已知水流的速度是4千米/时, 试计算轮船在静水中的速度。
解析:根据顺流速度=静水速度+水流速度, 逆流速度=静水速度-水流速度, 以及航行的时间关系可以得到方程。
解:设轮船在静水中的速度为x千米/时。
则由题意知:undefined
解之得:x=18 (千米/时) 。
例3 某缝纫师做成一件衬衫、一条裤子、一件上衣所用的时间之比是1 ∶2 ∶3 , 他用10 个工时能做成2件衬衫, 3 条裤子和4 件上衣, 那么他要做14 件衬衫、10 条裤子和2 件上衣共需多少工时?
解析:本题的关键是求解出每件衬衫、每条裤子、每件上衣各需要消耗多少工时, 因为做成它们所用的时间之比是1 ∶2 ∶3, 可以设这个缝纫师做一件衬衫需要x个工时、裤子需要2x 个工时、上衣需要3x 个工时;又因为他用10 个工时能做成2 件衬衫、3 条裤子和4 件上衣, 可知2 x + 3×2 x + 4×3x =10 , 便可解出x 的值, 进而求出本题所需要的解。
解:设缝纫师做一件衬衫需要x 个工时, 做一条裤子需要2 x 个工时, 做一件上衣需要3x 个工时, 根据题意可知:
2 x + 3 ×2x +4×3x = 10
解得:undefined
要做14 件衬衫、10 条裤子和2 件上衣共需:
undefined (工时) 。
答:做14 件衬衫、10 条裤子和2 件上衣共需20 个工时。
例4 一个两位数, 十位上的数字与个位上的数字和为11, 如果把十位上的数字与个位上的数字对调, 则所得新数比原数大63, 求原两位数。
解析:若直接设这两位数很难求解, 根据已知条件, 可间接设原来两位数的个位上的数字为x, 则十位上的数字为11-x.
解:设原来两位数的个位上的数字为x, 根据题意得:
x+10× (11-x) =10x+ (11-x) +63
解之得:x=2.
所以十位上的数字为9.
答:所求两位数为29.
例5 在甲处劳动的有27人, 在乙处劳动的有19人, 现在另调20人去支援, 使在甲处的人数为在乙处人数的2倍, 应调往甲、乙两处各多少人?
解析:设应调往甲处x人, 则调往乙处 (20-x) 人, 那么甲、乙两处的人数可列出下表:
解:设应调往甲处x人, 则调往乙处 (20-x) 人, 根据题意得:
27+x=2×[19+ (20-x) ]
解之得:x=17.
答:应调往甲处17人, 乙处3人。
例6 一个工程队承包甲、乙两项工程, 甲工程工作量是乙工程工作量的两倍, 前半个月全体工人都在甲工地工作, 后半个月, 工人分成相等的两组, 一组仍留在甲工地工作, 另一组到乙工地工作, 一个月后, 甲工程完成而乙工程的剩余量刚好够一个工人一个月的工作量, 如果每个工人的工作效率相同, 问这个工程队有多少工人?
解析:此类工程问题需要利用工程总量不变及两地工程量之间的关系。
解:设这个工程队有x 人, 每个人每个月的工作量是1 , 则甲工地工作量为undefined, 而乙工地的工作量为undefined, 依题意得:
undefined
解得:x = 8.
答:这个工程队共有8 个人。
例7 一年定期储蓄的利率为1.98%, 所得利息交纳20%的利息税, 如果某储户有一笔一年期定期储蓄到期纳税后的利息为450元, 问储户存入多少本金? (精确到1元)
解析:由于利息=本金×利率×期数, 扣除其中20%为利息税后, 其余的80%即为储户所得利息。
解:设储户存入x元本金, 根据题意可得:
x×1.98%× (1-20%) =450
x≈28409 .
14.《列方程解应用题》教案 篇十四
①使学生学会列方程解相遇问题求相遇时间的应用题,进一步认识相遇问题的数量关系
②通过两种不同解法的教学,培养学生灵活解题的能力,以及思维的发散性和灵活性
③在教学中激发学生的学习兴趣,并结合学生的生活实际,感受到数学与生活的联系,会利用数学知识解决一些简单的实际问题;
④在教学中渗透与实践胡瑗教育。
教学准备:多媒体课件
教学过程:
一、复习旧知,导入新课
⒈口头列式
①一辆汽车每小时行驶70千米,4小时行驶多少千米?
②小兵每分钟行驶60米,5分钟行驶多少米?
⒉复习:小强和小芳同时从两地出发,相对走来。小强每分钟走65米。小芳每分钟走55米,经过4.5分钟两人相遇。两地相距多少米?
生读题,列式解答。
问:你用什么方法解答的?你是怎么想的?
生回答,师。
①两地相距的米数=小强走的总路程+小芳走的总路程;
②两地相距的米数=小强和小芳每分钟一共走的路程×相遇时间
师揭示课题,引入新课
评析:复习紧扣本课知识,目的明确,效果实在,为学生学习新知奠定了良好的知识基础。
二、讲授例题,学习新课
出示例3:两地相距540米。小强和小芳同时从两地出发,相对走来。小强每分钟走65米。小芳每分钟走55米。经过几分钟两人相遇?
师让学生认真读题,比划一下例题内容,并和同学交流一下,弄清题目意思。
问:读了题目有不明白的地方?
学生提问,老师或者学生帮助释疑。
问:你刚才读懂了题目中的数量有怎样的等量关系?
生想法一:两地相距的米数=小强走的总路程+小芳走的总路程
生想法二:两地相距的米数=小强和小芳每分钟一共走的路程×相遇时间
师用课件演示学生的想法
让学生独立解答,指名板演。
集体订正,学生说己列方程的思考方法。
问:这道例题我们可以用什么方法来检验?
生叙述。
师了解例题学生完成的情况,对学习有困难的学生进行个别指导。
评析:例题教学,把主动权还给学生,学生运用已有的知识掌握例题的解题思路和解题方法,教师只是学生学习知识过程中的一个合作者。这样安排,创设了和谐的师生关系,培养了学生善于思考的习惯,提高了学生解决问题的能力。
三、巩固练习
1、练一练:
⑴两艘军舰从相距609千米的两个港口同时相对开出。一艘军舰每小时行42千米,另一艘军舰每小时行45千米。经过几小时两艘军舰相遇?
⑵甲、乙两艘轮船同时从一个码头向相反方向开出,甲船每小时行23.5千米,乙船每小时行21.5千米。航行几小时后两船相距315千米?
指名板演,让学生注意区别两艘轮船的行驶方向以及数量之间的等量关系。
2、填空:
⑴一辆轿车和一辆卡车同时从两地出发,相向而行,经过X小时相遇。已知轿车每小时行70千米,卡车每小时行65千米。70X表示,65X表示(),70X+65X表示()。
⑵师徒二人同时加工一批零件,徒弟每天加工12个,师傅每天加工20个,两人一同做了α天。12α表示(),20α表示(),这批零件一共有()个。
3、只列方程不计算:
⑴南通和南京相距325千米。两辆汽车分别从南通和南京同时出发,相对而行。从南京开出的汽车每小时行68千米,从南通开出的汽车每小时行62千米。经过多长时间,这两辆汽车在途中相遇?
⑵甲乙两个工程队共同铺铁路,甲队每天铺70米。乙队每天铺64米。铺了多少天后,甲队比乙队多铺36米?
评析:让学生及时巩固了新课内容,学会分析相遇问题的数量关系,掌握基本的解题思路和解题方法,同时让学生把所学的新知识运用到生活中,解决生活中类似的一些常见问题,体现让数学回归生活的教学理念,有效避免了对应用题进行机械的程式化训练。
四、课堂作业:数学书第100页的1、2、3题
五、课堂:
问:(1)今天的学习有什么不懂的地方,需要老师或者同学帮助的?
(2)今天的学习你有什么收获?
评析:本课,既有知识的归纳,也有情感的交流,拉近了师生之间的距离,为下面知识的综合运用营造了良好的探索氛围。
六、综合提高,学生活动
电脑屏幕出示下图:(略)
问:这是哪儿?对了,这是我们家乡正在修建的市民广场。从图上,你获得了哪些信息?
生汇报,师注意归纳。
师:现在要在广场的四周铺设一条绿化带,准备让两个工程队共同完成。(配音:第一队每天铺20米。第二队每天铺30米)你能运用今天所学的知识,提几个问题,并解答吗?
生汇报,师对表现优异的学习小组进行表扬。
评析:本课设计,既体现了应用题教学改革的方向,也是校本课程“胡瑗教育”的一次渗透、探索与实践。主要表现在:
(1)以课本为载体,灵活运用,适当拓展,增强课堂教学的新颖性、趣味性,是对胡瑗“讲授教学法”与“娱乐教学法”新的理解与尝试,能让教学学生“旨意明白,众皆大服”,且又愉悦身心,培养学生思维的敏捷能力。
(2)在本课应用题教学中,尝试进行问题开放、解题策略开放的练习,让学生以小组合作的方式提出不同的问题,而且自己想办法解决,充分发挥了同学们的学习主动性和积极性,注意了教师的主导作用与学生的主动性相结合的原则,这些是胡瑗商讨教学法在新课程背景下的体现。
(3)因材施教法由孔子创造,但胡瑗继承并发展了这一教学方法。本课例题的教学有两种不同的思路与解题方法,让学生根据自己的知识基础选择自己合适的方法解答,有利于不同层次的学生都有提高与发展,其实也是因材施教教育的一种体现。
15.列方程解应用题的数学说课稿 篇十五
讲 义:课题--列方程解应用题
学生: 学科: 数学 教师: 日期: 2012-7-30 考点分析: 1.掌握和差问题类型题目的解法和技巧
2.学会分析题目,利用题目的有效条件建立等量关系解决问题 3.培养逻辑思维能力,推理能力,综合分析能力
教学过程:
一、复习:列方程解答应用题的步骤
(1)、弄清题意,确定未知数并用x表示(一般设单位一为x);(2)、找出题中的数量之间的相等关系;(3)、列方程,解方程;(4)、检查或验算,写出答案。
二、新知识讲解:和差问题
例
1、世纪小学五(2)班共有学生48人,其中男生比女生多4人,问该班男女生各有多少人? 解:设五(2)班女生有x人,则男生有(x4)人
列方程:(x4)x48 解得:x22 女生:22+4=26(人)
答:该班有男生26人,女生22人。
同步练习
1、买一件上衣和一件裤子共需295元,上衣比裤子贵75元,问买一件上衣和一条裤子分别需多少钱?
举一反三
1、小强其中考试时语文和数学的平均分数是96分,数学比语文多8分,问语文和数学各多少分
旭博教育 快乐成长,从心开始!
例
2、甲乙两桶水共重60千克,从甲桶中倒出8千克水给乙桶,那么两桶水的重量刚好相等。求原来甲、乙两桶水各重多少千克?
解:设原来甲桶水重x千克,则乙桶水重(60x)千克
列方程:x8(60x)8 解得:x38
乙桶水重:60-38=22(千克)答:甲桶水重38千克,乙桶水重22千克。
同步训练
2、甲、乙两筐苹果共重64千克,从甲筐中取出5千克放入乙筐,结果甲筐的苹果比乙筐的苹果还多2千克,求原来甲、乙两筐各有苹果多少千克?
例
3、在一个减法算式里,被减数,减数与差这三个数的和是996,减数比差大38,求减数是多少? 解:设差为x,则减数为(x38),被减数为:x(x38)2x38
列方程:(2x38)x(x38)996
解得:x268 答:减数是268.同步训练
3、在一个减法算式里,被减数,减数与差这三个数的和是256,减数比差小12,求差是多少?
三、课堂小结:
1、总结列方程解应用题的步骤:设x(单位一)→列方程(等量关系)→解方程→检验→答
2、归纳找单位
一、等量关系的技巧
(1)单位一:“是”、“比”“占”字后面,分率前(最靠近数据的);
(2)等量关系:注意“相等”、“一样多”、“共”、“和”、“全长”等特殊字眼 旭博教育 快乐成长,从心开始!
四、巩固提高
1、买一支圆珠笔和一支钢笔共用了14元,已知圆珠笔比钢笔便宜8元,那么圆珠笔和钢笔的单价分别是多少?
2、小伦期末考试语文和数学的平均分时93分,数学比语文少了6分,问小伦语文和数学各考了多少分?
3、一个两位数由两个数字组成,两个数字之和是8,两个数字之差是2,这个两位数是多少?
4、两个自然数的和与这两个数的差的差的积是85,求这个两各自然数分别是多少?
5、在一个减法的算式里,被减数,减数与差这三个数额和是388,减数比差大16,求减数和差分别是多少?
6、甲、乙两桶水共重40千克,从甲桶中倒出6千克水,那么两桶水的重量刚好相等。求原来甲桶水多重? 旭博教育 快乐成长,从心开始!
7、甲、乙两筐梨共重80千克,从甲筐中取出5千克放入乙筐,结果两筐的重量相等。求原来甲、乙两筐各有梨多少千克?
8、甲筐有苹果50千克,乙筐有橘子若干千克,如果从乙筐中取出14千克橘子,苹果就比橘子多12千克,乙筐原有橘子多少千克?
9、甲、乙两桶油共重75千克,从甲桶中倒出5千克各乙桶,甲桶还比乙桶多7千克。求原来甲、乙两桶各有油多少千克?
10、甲、乙两辆公共汽车共载客83人,若甲车增加6人,乙车减少7人,这是两车的乘客一样多,求两辆汽车原来分别有乘客多少人?
11、学校食堂有3种蔬菜,其中黄瓜、番茄共重50千克,青菜,黄瓜共重70千克,青菜、番茄共重60千克。这三种蔬菜各重多少千克?
16.列方程解应用题的数学说课稿 篇十六
教学目标
1.使学生在解决实际问题的过程中, 理解并掌握形如ax±b=c方程的解法, 会列上述方程解决两步计算的实际问题。
2.使学生在观察、分析、抽象、概括和交流的过程中, 经历将现实问题抽象为方程的过程, 进一步体会方程的思想方法及价值。
3.使学生在积极参与数学活动的过程中, 养成独立思考、主动与他人合作交流、自觉检验等习惯。
教学重点:理解并掌握形如ax±b=c方程的解法, 会列方程解决两步计算的实际问题。
教学难点:如何指导学生在观察、分析、抽象、概括和交流的过程中, 将现实问题抽象为方程。
教学过程
课前谈话导入:同学们, 经调查, 我们班大部分同学的年龄是12岁 (虚岁) , 也可以通过推理推算出来, 7岁入学, 在学校学了五年, 正好是12岁。老师今年是39岁, 师在黑板上板书39和12。下面请同学比较一下老师和你的年龄, 并用一句话把比较的结果说出来, 注意启发引导学生说出:“老师的年龄比我年龄的3倍还多3岁”, “老师的年龄比我年龄的4倍少9岁”。两种说法都可以。接着问, 明年呢?“老师的年龄比我年龄的3倍还多1岁”。
【设计意图】通过学生熟悉的年龄话题引入, 并训练学生对两数大小比较, 为新课分析数量关系作理解铺垫。把抽象的数量关系分析生活化, 利于学生进入学习情境。
一、在现实问题情境中分析数量关系, 列出方程, 探索解方程的方法——教学例1
(一) 在情境中分析数量关系, 提出问题
1.师谈话进入情境:孙悟空跟随师父历尽千辛万苦从西天取来大量经书, 藏在古城西安的大雁塔中。大雁塔和小雁塔是著名的古代建筑。 (出示大雁塔和小雁塔的图片) 这节课, 我们先来研究一个与这两处建筑高度有关的数学问题。 (出示例1的一部分“西安大雁塔的高度比小雁塔高度的2倍少22米”, 暂不出示所求的问题)
2.师让生读出这段文字并提问:谁比谁少22米?让学生明白“大雁塔高度和小雁塔高度的2倍比, 少22米, 可以把小雁塔高度的2倍看做一个整体。”
师进一步启发:这句话清楚地说明了大雁塔和小雁塔高度之间的关系, 请同学们用数量关系式表示出大雁塔和小雁塔高度之间的相等关系。
出示学生可能想到的等量关系式: (1) 小雁塔的高度×2-22=大雁塔的高度; (2) 小雁塔的高度×2=大雁塔的高度+22; (3) 小雁塔的高度×2-大雁塔的高度=22。
3.引导学生观察第一个等量关系式。师:经测量小雁塔高度是43米, 你能利用这个关系式口答出大雁塔的高度吗?学生口答, 师板书:2×43-22=64 (米) 。
【设计意图】运用数量关系直接求出高度, 体会顺向思维。既感受数量关系的价值, 又为下面的逆向思维作出对比准备, 更重要的是让学生在下面列方程时也要像这样顺向思维进行思考。
4.师:如果知道大雁塔的高度是64米, 你能提出什么问题?
生:小雁塔的高度是多少米? (出示“大雁塔高度是64米”和“小雁塔高度是多少米?”把例1补充完整。)
【设计意图】在清楚数量关系的基础上, 学生已经把问题迁移到需要用逆向思维考虑解决的问题上。让学生自己提出问题, 突出解决问题是学生自己的学习需求, 也为他们探索解答作出心理准备。
(二) 根据等量关系布列方程, 同时唤起有关方程的旧知
1.生观察第一个等量关系式, 师提问:在这个等量关系式中, 这时哪个数量是已知的?哪个数量是我们去求的?
追问:让你求小雁塔的高度怎么办呢?我们可以用什么方法来解决这个问题?
生:可以列方程解答。如果学生列出正确的算式进行解答, 师给予肯定, 再引导学生用方程的方法解决问题。
师明确方法, 并提示课题:这样的问题可以列方程来解答。今天我们继续学习列方程解决实际问题。 (板书课题:列方程解决实际问题)
2.师谈话:我们在五年级已经学过列方程解决简单的实际问题, 结合今天我们学习的内容, 谁来说一说列方程解决实际问题一般要经过哪几个步骤?
生能大概说出“写设句、列方程、解方程和检验等即可。
3.让学生先自主尝试设未知数, 并根据第一个等量关系式列出方程。
解:设小雁塔高x米。
2x-22=64
【设计意图】经历由现实问题抽象为方程的过程。在建构数学模型的过程中, 先由情境抽象成数量关系式, 再根据数量关系式列出方程, 实现了学生在逐步抽象的过程中学习数学的方法, 体现了数学的简洁性和学习数学的必要性。
(三) 自主探索解方程的方法, 体会转化的思想
提问:这样的方程, 你以前解过没有?运用以前学过的知识, 你能解出这个方程吗?
交流中明确:首先要应用等式的性质将方程两边同时加上22, 使方程变形为2x=?, 即把用两步计算的方程转化为一步计算, 变新知为旧知, 再用以前学过的方法继续求解。
要求学生接着例题呈现的第一步继续解出这个方程。学生完成后, 组织交流解方程的完整过程, 核对求出的解, 并提示学生进行检验, 最后让学生写出答句。
【设计意图】让学生在自主探索方程解法的过程中, 体会运用转化策略, 把两步转化成一步、复杂转化成简单、新知转化成旧知。
(四) 思考其他方法, 感受解法的多样化
1.提问:还可以怎样列方程?
学生列出方程后, 要求他们在小组内交流各自列出的方程, 并说说列方程的根据, 以及可以怎样解列出的方程。如果学生不能列出其他方程, 师不能作硬性要求。
2.引导小结:刚才我们通过列方程解决了一个实际问题。你能说说列方程解决问题的大致步骤吗?其中哪些环节很重要?
引导学生关注:⑴要根据题目中的信息寻找等量关系, 而且一般要找出最容易发现的等量关系;⑵分清等量关系中的已知量和未知量, 用字母表示未知量并列方程;⑶解出方程后要及时进行检验。 (师板书:找等量关系;用字母表示未知数并列方程;解方程, 检验。)
【设计意图】通过解法的多样化, 使学生明白可以根据自己学习实际和思维习惯分析数量关系, 列方程解决问题, 同时训练学生思维, 拓展学生解决问题的思路。
二、自主尝试列方程解决实际问题, 注意比较例题, 进一步形成解决问题模式——自主合作学习“练一练”
“杭州湾大桥是目前世界上最长的跨海大桥, 全长大约36千米, 比香港青马大桥的16倍还长0.8千米。香港青马大桥全长大约多少千米?”
谈话:我们已经初步掌握列方程解决稍复杂的实际问题的方法和步骤, 下面就请同学们试着解决一个实际问题。做“练一练”。
1.先让学生读题, 并设想解决这一问题的方法和步骤, 然后让学生独立完成。
2.小组合作交流。交流前要出示交流顺序提示:⑴说说找出了怎样的等量关系;⑵根据等量关系列出了怎样的方程;⑶是怎样解列出的方程的;⑷对求出的解有没有检验。
3.最后让学生核对自己的答案, 检查自己的解题过程。
针对学生不同的思路和方法 (包括用算术方法) , 教师在提出主导意见的基础上要予以肯定。
4.启发思考:这个问题与例1有什么相同的地方?有什么不同的地方?提炼出列方程解决稍复杂的实际问题的基本思路和解形如ax±b=c方程的一般方法。
【设计意图】让学生在独自解决问题的过程中学会解决问题, 在探究中学会合作。
三、运用方程策略独立解决实际问题, 牢固形成解决问题模式 (建构牢固的数学模型) ——做“练习一”的第1~5题
谈话:在列方程解决问题的过程中, 有两个方面要引起我们重视, 一个是寻找等量关系, 能用含有字母的式子表示具体数量;另一个就是解方程。下面我们就对这两个方面进行进一步的学习和训练。
1.做“练习一”第1题
“解方程。4x+20=56 1.8+7x=3.9 5x-8.3=10.7”
先让学生说说解这些方程时, 第一步要怎样做, 依据是什么, 然后让学生独立完成。交流反馈时, 要在关注结果是否正确的同时, 了解学生是否进行了检验。 (三个同学到黑板上板演, 其他同学选做一题。)
2.做“练习一”第2题
“在括号里填上含有字母的式子。
(1) 张村果园有桃树x棵, 梨树比桃树的3倍多15棵。梨树有 () 棵。
(2) 王叔叔在鱼池里放养鲫鱼x尾, 放养的鳊鱼比鲫鱼的4倍少80尾。放养鳊鱼 () 尾。
学生独立完成后, 再要求学生说说写出的每个含有字母的式子分别表示哪个数量, 是怎样想到写这样的式子的? (把题目中的多、少改成少、多让学生再表示)
3.做“练习一”第3题
“猎豹是世界上跑得最快的动物, 时速能达到110千米, 比猫最快时速的2倍还多20千米。猫的最快时速是多少千米?”
谈话:同学们, 我们既能准确地找到等量关系, 又能正确解方程, 那么我们就具备了解决实际问题的能力了。就请同学们独立解决一个问题。
学生独立完成后, 指名说说自己的思考过程, 进一步突出要根据题中数量之间的相等关系列方程。
4.课堂作业:做“练习一”的第4题和第5题。
“北京故宫占地大约72公顷, 比天安门广场的2倍少8公顷。天安门广场大约占地多少公顷?”
“世界上最小的鸟是蜂鸟, 最大的鸟是鸵鸟。一个鸵鸟蛋长17.8厘米, 比一只蜂鸟体长的3倍还多1厘米。这只蜂鸟体长多少厘米?”
【设计意图】在巩固训练和应用策略阶段采用先部分后整体的练习步骤, 进一步深化认识, 并在体验中达到知识和技能的内化。
四、总结列方程解决问题的思路、方法, 体会方程的思想和价值——学生拓展设计
1.学生拓展设计
师:请同学们回到课前, 我们师生关于年龄的对话中, 看39岁和12岁, 你能设计一个用今天所学的策略和方法解答的实际问题吗?
师要多听学生的发言, 考虑学生所说数量之间的关系以及提出问题的贴切性并作出评价和概括。
2.今天这节课我们学习了什么内容?你有哪些收获?还有没有疑惑的地方?教师同时总结, 方程是我们解决问题很重要的一个策略, 正确地运用方程, 能帮助我们解决很多实际问题, 尤其是用算术方法不容易解决的一些问题。我相信同学们经过今天的学习, 对方程会有更深的认识, 并在以后的学习和运用中进一步学好和用好方程。
【列方程解应用题的数学说课稿】推荐阅读:
六年级上册数学列方程解应用题训练的试题12-26
七年级数学列方程解应用题练习09-27
列方程解应用题的一般步骤是什么08-22
北师大八年级数学上期列方程组解应用题———鸡兔同笼教案及练习08-14
解方程说课稿小学08-02
小学数学方程及其应用题教案11-02
小学数学《列方程解决简单的实际问题》教案11-22
分式方程的应用06-11
分式方程应用题的教学设计12-09