分数除法应用题免费(共16篇)(共16篇)
1.分数除法应用题免费 篇一
只要是分数除法应用题,就先找单位1.单位1找到了,方法也就出来了。分数应用题有很多种类型,在小学阶段大体分为三类:
(一)求一个数比另一个数多或少几分之几? 例:20比35少几分之几? 2/3比1/2多几分之几? 口诀:差÷单位“1”
解:(35-20)÷35(2/3-1/2)÷1/2
(二)两个量知道其中一个量,还知道一个量比另一个量多或少几分之几,求另一个量。
口诀:单位1知道用乘法,不知道用除法,多了用加,少了用减,求出来的就是另一个量。例:五年级300人,六年级人数比五年级多1/2,六年级用多少人?
300×(1+1/2)例:五年级300人,五年级比六年级少1/3,六年级有多少人? 300÷(1-1/3)
(三)单位1不知道用除法,用对应的数除以对应的分数,求出来的就是单位1.这个第三种类型的题目,占分数除法应用题的70%以上。
例:五年级300人,是六年级人数的2/5,六年级多少人? 300÷2/5
例:修一条路,第一天修了1/5,第二天修了500米,还剩1/4没修,全长多少米? 500÷(1-1/5-1/4)
2.分数除法应用题免费 篇二
数学知识无论是横向还是纵向都有内在联系, 通过我们的教学, 应该使知识真正联系沟通起来, 形成完整的知识体系。如果知识是割裂孤立存在的, 就很难转化成一种能力。所以, 每学一部分新知识, 都要与旧知识联系沟通, 使知识不断系统化、网络化, 学生就会联想丰富, 为进一步学习作好了必要的准备。
首先, 在教学过程中, 让学生认真观察课本中的有关例题和习题, 启发引导他们自己总结出分数应用题的结构特点, 分数应用题大都由关键句“甲是乙的几分之几、甲占乙的几分之几、甲相当于乙的几分之几、甲完成了乙的几分之几和已知甲求乙或已知乙求甲”等组成。接着引导学生分析题中的关键词:“占”左边的甲相当于被除数, 左边的乙相当于除数 (即单位1) , “的”右边的几分之几是“甲÷乙”得到的商。这样就把学生的思维引向了除法中被除数、除数与商的关系上来了。再系统复习除法中被除数、除数与商的关系:被除数=除数×商、除数=被除数÷商。这样, 就比较容易地拉近了新旧知识之间的距离, 学生就能借助旧知识轻而易举地解答分数乘除法应用题了, 而且能更深刻地理解分数应用题用乘法或除法列式的道理。
教学中, 再结合分析法和综合法, 找出已知条件和所求问题, 再运用上面阐述的知识分析所求问题是除数还是被除数, 若求除数则用除法列式, 若求被除数则用乘法列式。举例如下:
(1) 小营村有棉田45公顷, 占全村耕地面积的3/5, 全村耕地面积是多少公顷?通过读题, 找已知条件和所求问题得知, 全村耕地面积在关键词“占”的右边, 棉田45公顷在“占”的左边, 这道题是除数的应用题, 所以列式为45÷3/5。
(2) 小营村全村耕地面积为75公顷, 棉田面积占全村耕地面积的3/5, 棉田有多少公顷?通过读题, 找已知条件和所求问题得知, 这道题是已知除数求被除数的应用题, 所以用乘法列式为75×3/5。
另外, 在应用题中, 关键句是“甲比乙多 (少) 几分之几”时, 要让学生明白, 在这样的句式中“比”右边的乙是除数, 甲与乙两数的差是被除数。对于这样的应用题, 也能很容易地联系上述知识进行解答, 在这里就不举例说明了。
3.浅析分数乘除法应用题教学 篇三
【关键词】小学数学 分数教学 乘除法 应用题
六年级数学分数乘除法的应用教学,历来就是教师难教,学生难学的一个知识点,尤其是中下等成绩的学生感到更为吃力。多年来,分数应用题的教学,大多采用依据分数乘除法的意义进行教学。多年的教学实践,在现行教材六年级分数应用题教学中有些教法设想,供改进教法的同行们指教。
一、提高对分数的再认识
学生对“分数的再认识”知识掌握得牢固与否,将直接影响其后续学习。美国教育心理学家奥苏伯尔的“认知结构”理论认为:学习迁移的理解是以认知结构和新知识学习的相互作用为前提的。所谓认知结构,就是学生头脑里的知识结构。广义地说,它是学习者的观念的全部内容和组织;狭义地说,它是学习者在某一特殊知识领域内的观念的内容和组织。认知结构直接影响有意义的学习。他认为,认知结构的加强能促进新的学习与保持,教学的目标就是使学生形成良好的认知结构。根据这个理论的提示,要加强分数再认识的学习,为学生后续学习打下良好的基础。怎样加强分数再认识的学习呢?要开展的意义的数学活动,创设丰富的数学情境,提高学生对分数的再认识。
二、抓住分数的本质,找准单位“1”
教学分数乘除法“问题解决”中,特别是较复杂的分数乘除法“问题解决”时,指导学生学会找单位“1”是解决问题的关键。 怎样去找单位“1”,教学中通常的做法无非就是抓题目中的“的、是、占、比、相当于”等关键词。 这种教法带来的只能是学生只会机械模仿,不会思考、不会分析。 如“男生人数是女生人数的 3/4”,是男生与女生在比,女生人数就是单位“l”等。 碰到相比关系不明显的句子怎么办,教师一般会指导学生想办法把它转换成相比关系明显的句子。如“成本降低了1/9”,句意不完整,就先把意思补充完整,使它变成“现在的成本比原来的成本降低了1/9”, 再用上面的办法,就不难找出题中的单位“l”了。 就上述情况来看,可以说这是指导学生找单位“1”的一种好方法。但我们能不能认为这就抓住了知识的根本点,可以一劳永逸,以不变应万变了呢? 如果遇到这样的分率句:“剩下的页数比已看的多全书的1/5”,从相比关系来看,这里是“剩下的”与“已看的”在比,而相比的结果是多“全书的1/5”如果只看相比关系,很容易把“已看的”看作单位“1”。这类情況下如何指导学生正确判断单位“1”呢?我们可以让学生根据分数的意义去想一想它们相比的结果, 看是以谁为标准把它平均分成若干份的,分的是“谁”,就应把谁看作是单位“1”。这道题是把全书的页数平均分成5份,剩下的页数比已看的多其中的一份,全书的页数就是单位“1”,已看的页数是全书的(1-1/5)÷2=2/5,剩下的页数是全书的 2/5+1/5=3/5。 从这里我们可以看到,让学生通过相比关系来找单位“1”,还应让学生从分数的意义上来搞清楚。上述几个相比关系不明显的句子转换成相比关系明显的句子后,还应使学生知道,“成本降低了1/9”,是把原来的成本平均分成9份的 ,降低的是其中的一份,原来的成本就是单位“1”,这样就能在进一步理解数量关系的基拙上准确地判断题中的单位“1”。分数的意义贯穿于分数有关知识学习的全过程。
教学分数乘除法知识的应用中,指导学生以以往知识经验,根据相比关系来判断单位“1”不能离开分数的意义,这才是抓住了教学的根本点,否则只能是舍本逐末,指导学生只是表面机械地找单位“l”,分数应用题的教学目标是难以全面完整达到的。
三、理清分数乘除法三类应用题的关系
这三类基本应用题是:(1)求一个数是另一个数的几分之几。(2)求一个数的几分之几是多少。(3)已知一个数的几分之几是多少,求这个数。其解题依据是相通的。
如:100 米的3/4是多少?可根据“求一个数的几分之几用乘法”来解,列式为 100×3/4=75(米),可以转化为第二类应用题:75 米是 100 米的几分之几?解法为 75÷100=3/4。还可转化为第三类应用题:已知一条路的3/4是 75 米,这条路长多少米?解法为 75÷3/4=100 米。由上可见:若把 100米设为 A,75 米设为 B,3/4设为 C,根据原题意可以得出A×C=B,再根据乘法各部分之间的关系又可得出:(1)C=B÷A。(2)A=B÷C,从而把原题转化为后两道题。
教学中,教师可利用这三类应用题的相通点,帮学生理解题意,并进行这三类应用题的对比练习,学生深刻地了解了这三类应用题的联系之后,教师再逐步加大练习难度。也可让学生自己编应用题并解答,教师再从中渗透解决此类问题的思考方法,让学生真正达到“自悟”。
四、用反推法帮助学生找出数量关系
反推法是从所求问题出发,找出获得解决所求问题的充分条件的方法。利用反推法,可以逐层找出解决问题的充分条件,这些未知的充分条件必然与题中已知条件之间有着紧密的关系,找出这些数量关系之后,就能求出充分条件,最终解决所求问题,利用反推法解决,环环紧扣,思路清晰,培养了学生的逻辑推理能力。
如:我校有女生 150 人,正好占男生的5/9,全校有多少人?
在解决此题时,可以这样引导学生:要求“全校人数”,我们必须先知道什么?题中男女生人数都是已知条件吗?只给出了女生人数,那么男生人数如何去求呢?男生人数又和什么量之间有关系呢?这样可得出关系式:男生人数×5/9=150。据此求出男生人数,再根据全校人数等于男生人数加上女生人数求出全校人数。解题过程包含了两个关系式:(1)全校人数=男生人数+女生人数。(2)男生人数=女生人数÷5/9。
综上所述,分数应用题虽然是数学中的难点,但是只要做到了这几点,有序的进行思考,形成良好的思维品质,增强了学生学好数学的自觉性,难点就分解了,解决分数问题学生就能得心应手了。
4.分数除法简单应用题 篇四
保亭思源小学
黄晓霞
“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣。”教学改变复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目,再让学生介绍本班的情况,引发学生参与的积极性,向他们提供充分的从事数学活动和交流的机会。
一、让学生获得亲身体验。
教学中,为让学生认识解答分数乘法应用题的关键是什么时,让学生通读题目、细读题目,圈出题目中的重要词句,理解题意。画出线段图分析数量之间的关系。亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。
教学中把“自主、合作、探究”的教学方式。和教师分析讲解相结合。把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。学生毕竟是初学者,他们的自主、合作、探究肯定是不全面的,各种水平的学生在自主、合作、探究中所学的层次也是不一样的。所以教师的讲解是必要的,尤其是概念性的知识,可以为学生节约许多时间。但教师在教学中要准确把握自己的地位。帮助优生建构知识结构,帮助一般学生理解题意掌握知识。真正把自己当成了学生学习的帮助者、激励者。发挥学生的主体地位,重视教师的主导地位。
二、多角度分析问题,提高能力。
5.分数除法 应用题教学反思 篇五
分数应用题的教学是教学中的一个重点,也是一个难点。如何激发学生主动积极地参与学习的全过程呢?教学时,我没有采用书上的情境,而是从学生的生活实际引入。,例如:我们班有多少女生?有多少男生?女生占全班人数的几分之几?现在知道“全班人数”和“女生占全班人数的几分之几”求女生有多少人,怎样求?学生很快就知道列出乘法算式解决。反过来,知道“女生人数”和“女生占全班人数的几分之几”求全班人数呢?这样引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。
让学生理解题中的数量关系是解决分数除法应用题的关键。教学中,我通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律,从而让学生体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。本课重点是要让学生学会用方程的方法解决有关的分数问题,体会用方程解决实际问题的重要模型。为了帮助学生理解,我借助线段图的直观功能,引导孩子们理清解题思路,找出数量间的相等关系。
6.分数除法应用题教学设计 篇六
课题:分数除法应用题
教学内容:小学数学第十一册第二单元分数除法应用题例
1、例2。(教 科书34-35页)教学目标:
(1)使学生掌握分数除法应用题的结构及数量关系,学会分析解答分数法除应用题,发展学生思维能力。
(2)引导学生充分自主探索,分组讨论,观察分析和比较,在自主学习中探究,在探究中发展提高。
(3)通过过师生交流总结,让学生获得学习数学的成功。让学生养成认真审题、积极思考的良好学习习惯。
教学重点:能用方程正确解答分数除法应用题。教学难点:确定单位“1”、分析数量关系 教
具:小黑板。教学过程:
一、导言:
以前我们学过了分数应用题,这节课我们继续研究分数应用题,(板书:分数
应用题)。
没学新课之前老师要考考大家,可以吗?(生答略)
二、复习:
1.说说下面各题中应该把哪个看作单位“1”,数量之间相等关系怎样?
①吃了一筐白菜的2/5。②一本书的价格正好是一支钢笔价格的2/5。③小明体内的水分占体重的4/5。
2.小明的体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?
把答案讲给同学们听,说一说你怎样想的。
三、自主探究、解决问题
1、教学例1 同学们已经掌握了解了分数乘法应用题的方法那么同学们想不想利用这个方法去解答分数除法应用题呢?这节课我们就来研究分数除法应用题怎样解答好不好?
①小明体内所含的水分是28千克,占体重的4/5,他的体重是多少千克?
仔细观察看一看有没有什么发现?
独立做,做完组内交流,组长分好工,做好记录,看看哪个小组方法多,你们小组准备由谁发言,用几句话表达自己小组的方法。
小结:用方程解比较容易,因为它的解题思路与我们以前学的分数乘法应用题的思路是一致的,也是根据题中的叙述的条件明确把谁看作单位1,然后根据一个数乘分数的意义列出等量关系式,由于单位1是未知的,要设成x,列出方程进行解答。这也是我们本节课所要掌握的已知一个数的几分之几是多少求这个数的应用题用方程解的方法。
2、教学例2。师:同学们研究出了解答分数除法应用题的方法,那么你愿意不愿意用它帮助一下遇到困难的小明呢?
②小明买一条裤子是75元,是一件上衣的2/3,一件上衣是多少钱?
(看题)(独立完成后说说自己的想法)
谁愿意帮助小明?在本上写出你的答案,谁想把你的答案写在黑板上?解:设上衣的价格为x元。
x ×2/3=75
x=75÷2/3
x=75×3/2
x =112。5 说一下你的想法
3、比较例
1、例2有什么不同。
师:例
1、例2虽然存在着不同指出,但是解题方法是类似的。我们再做两道题看看是不是这样。(投影出示做一做1、2)。请两名同学在投影片上做,其他同学在本上做,做后请同学叙述怎样做的,为什么这样做。
小结:通过以上的学习,同学们觉得分数应用题在解答时的关键是什么?
四、练习
1、判断下列说法是否正确。
①
白兔只数是黑兔只数的2/5,单位“1”是黑兔,数量关系式:黑兔的只数×2/5=白兔的只数()。②
黑兔只数的2/5是白兔的只数,白兔的只数是单位“1”()。
③
苹果树占果园总面积的4/7,果园总面积是单位“1”,苹果树占地面积×4/7=果园的面积。()
2、①林庄果园占地面积是840公顷,苹果树果园总面积的3/4,苹果树占地多少公顷?
②林庄苹果树占地360公顷,占果园总面积的3/4,果园总面积有多少公顷?
3、新风小学去年植树320棵,相当于今年植树棵数的4/5。今年共植树多少棵?
五、总结全课
7.分数除法应用题免费 篇七
因此,学生数学思维方法的形成过程,理应是学生在已有知识经验不断积累的基础上其数学思维得到有效迁移的过程。一线教师在教学实践中只有适时引领学生实施数学思维方法的有效迁移,才能促进学生对数学问题的思考逐步走向深入,继而形成问题解决的思维方法,并逐步内化为学生解题的技能与技巧,不断增强学生在数学应用过程中的数学悟性。
一、思维路径:有效迁移的激活点
在分数除法的简单应用过程中,学生所表现出来的思维常态路径为:一旦题中所表达的“应用意义”与分数除法的“算式意义”能够走向统一,分数除法的运算意义在解决实际问题中的数学思维就会被激活,此时的数学思考会驱使学生把分数除法的“算式意义”向分数除法的“应用意义”进行有效迁移,从而顺势利用分数除法的计算方法解决实际问题。因此,教师在教学时要能结合具体的问题情境和分数除法的固有特征,有针对性地引领学生在已有思维路径的基础上对已有知识经验进行自然迁移,使新知识的应用在旧知识的思维经验基础上自然生成。
例如,一块地有9/10公顷,3小时可以耕完,平均每小时耕多少公顷?题中虽然呈现给学生的“9/10公顷”是一个分数形式的“工作总量”,但被平均分的份数“3小时”依然是一个整数形式的“工作时间”。因此,在这种类型的分数除法应用中,学生的思维路径仍然保持着“把9/10公顷平均分成3份,求每份是多少公顷”的数学思维方法,这与9/10÷3表示“把9/10平均分成3份,表示每份是多少”的算式意义在学生的头脑中是一致的。所以,此时学生会自然把“9/10÷3”计算思路迁移到“平均每小时耕多少公顷”的应用意义的思考中,从而顺利求得解题结果。这一思维过程符合儿童的思维现实,顺应除法运算的算式意义,学生在已有知识经验的基础上,思维路径被自然打开,数学迁移被有效激活。
二、思维困惑:有效迁移的冲突点
在小学阶段,学生在对加、减、乘、除的运算意义的建构探索过程中,除法的运算意义最能驱动学生产生认知上的冲突、思维上的困惑。因为对于整数、小数、分数的加法、减法和乘法在认知上其意义始终是同一的,学生只要建立了整数的运算意义,就能顺势探索出其对应的小数或分数的运算意义。而对于除法,从整数到小数再到分数的发展过程中,学生经历了其运算意义由原先的整数的直观意义逐步向分数的抽象意义的建构,理解上形成思维困惑,无法直接触摸分数除法的运算意义,更无法把分数除法的运算意义向分数除法的应用意义迁移,继而产生了思维迁移的冲突。教师在教学时要抓住整数除法的应用意义和分数除法的应用意义的异同点,有效捕捉学生思维困惑过程中数学迁移的冲突点,促使学生的数学思考由直观思维上升到抽象思维,由概念抽象走向数学质疑,由思维困惑走向理解内化。
例如,上题变式为:一块地有9/10公顷,3/4小时可以耕完,平均每小时耕多少公顷?原先的“3 小时可以耕完,求平均每小时耕多少公顷”在学生脑海里形成的“平均分”的数学思维能直接得到有效迁移,现在换成“3/4小时”这样的分数形式,学生此时无法直观理解,更不会直接想到用除法算式去计算。从学生的思维经验和已有知识分析,此时学生的思维状态会呈现出如下过程:求平均每小时耕多少公顷?一定是超过1 小时的公顷数量,经过平均分,可以得到每小时耕地的公顷数量。当把整数变成真分数,学生产生认知冲突:“3/4小时”没有“1 小时”多或者不满1 小时,无法平均分。学生的思维处于迷茫、困惑状态,数学思考无法进行下去,更不会想到用除法来算。即使是换成大于1 小时的假分数,学生的思维依然无法进行下去,因为此时学生缺失了这一数学概念的思维基础和经验,缺少了思考这一问题的思维支撑。所以,从整数除法的应用意义到分数除法的应用意义的迁移中,看似其思考问题的路径是一致的,可是在相同路径上学生所产生的思维深度和性质却是不一样的,因为这一思考路径不符合学生的思维现实,也不符合学生的学习现实,未能顺应学生的思维特征和认知特点。因而,在分数除法里,每当除数从整数变化到分数,对除法意义进行迁移时就会形成思维上的障碍,产生认知冲突,学生此时需要寻求思考此类数学问题的思维支撑。
三、思维依托:有效迁移的支撑点
在数学思考过程中,学生的大脑时常会呈现出树枝网状的思维结构,只要探寻到每一节的思维支点,学生就会顺着网状的思维枝丫一节一节地深入下去,最终到达解决问题的彼岸。所以,当学生的思维徘徊在问题分析的十字路口,迷失了解决问题的思维方向时,教师要能从儿童的思维现实出发,抓住数学概念之间的前后联系和知识的生长点,探寻知识形成过程中的思维依托,让学生有“知”可依,有“经”可循。即在已有知识和经验的基础上,形成有效迁移的思维支点,继而萌发解决问题的数学思维方法。
教材传递给学生对于分数除法的应用经验是根据乘法数量关系式列方程解答,初步为学生提供分数除法应用的思维依托。因此,教学时教师必须从学生的思维经验出发,借助列方程解题过程中所需数量关系的思维依托,逐步引领学生建构起分数除法的初步意义。还以上题为例在耕地效率不变的情况下,3/4小时的耕地量一定是1小时的34,由此引导学生得出数量关系式:1小时的耕地公顷数×3/4=34小时耕地的公顷数。从而让学生感受到,要求1小时的耕地公顷数实际上是用“3/4小时耕地的公顷数”除以“3/4”可以得到。在如此解题思考过程中,学生已经初步感知了分数除法的思考方法,此时学生经历了从分数乘法数量关系中捕捉到分数除法的应用方法后,学生对于分数除法意义建构的数学思维受到“摇动”,教师顺势“推动”除法“包含除”的意义理解,引领学生联想和思考:1小时里面有几个3/4小时就表示有几个3/4小时耕地的公顷数,这样就可以用1小时除以3/4小时,得到了包含几个34小时的个数,再乘34小时耕地的公顷数(910公顷),即910×(1÷34)=910÷34,从而顺利理解了“用3/4小时耕地的公顷数除以3/4小时,就得到每小时耕地的公顷数”的应用意义。如此引领学生由“根据乘法数量关系列方程解答”的思维“摇动”除法运算意义的思维,再由除法“包含除”运算意义的思维“推动”分数除法应用意义的思维,学生对分数除法意义运用的思维就会被唤醒。只有这样,引领学生从两个维度进行数学思考,学生才会在分数除法的意义建构过程中找到相应的思维依托,并在体验过程中,初步感受到“3/4小时耕了9/10公顷,要求平均每小时耕多少公顷?”依然可以直接用分数除法进行计算。但如何让学生能彻悟此分数除法应用中的运算意义,还需要帮助学生揭示其中“等份除”的含义,才会支撑着学生对分数除法应用的理解与掌握走向直观化和明朗化。
四、思维顿悟:有效迁移的着力点
数学迁移是数学理解的前提,是知识内化的根基。所以,思维顿悟是数学迁移过程中的思维着力点,它会在数学思考活动中不断引导学生自主发现数学规律,领悟数学思想,掌握数学方法。当学生的大脑经历了思维路径、思维困惑、思维依托的思维活动后,对于分数除法的意义理解得以顿悟,激发了学生用“整数倍”的思维向“非整数倍”的思维进行有效迁移,促使分数除法的运算意义由抽象走向直观,促进了除法运算意义和解决问题的有效融合,助推了学生对分数除法简单应用的数学思维方法的形成。
因此,经过上述思维活动后,学生已经坚信:一块地有9/10公顷,无论是“3小时可以耕完”还是“3/4小时可以耕完”,要求平均每小时耕地多少公顷,均可以直接列除法算式计算。由此,当“耕地时间”在整数数量到分数数量的变化过程中,学生的数学思维产生如下顿悟,数学方法得到有效迁移。
学生从“一块地有9/10公顷,3小时可以耕完,平均每小时耕地多少公顷?”不难想到,问题要求的是“每份数”,3小时不是“一份数”,它显然是一个“多份数”,就可以把9/10公顷平均分成3份,继而求出“每份数”,即平均每小时耕多少公顷。而对于某一个数,要么是“一份数”,要么就是“多份数”,所以对于“3/4小时”抑或任意一个诸如1/4、5/4等真、假分数,它既然不是“一份数”,就可以看作是一个“多份数”。因此,既然是一个“多份数”,就可以根据“平均分”的含义,直接除以这个“多份数”,从而求得“每份数”。这样学生就会把除数是整数的分数除法的方法顺利迁移到除数是分数的分数除法上来,有效突破了分数除法意义难于理解的教学难点,加深了对分数除法意义的直观理解和自然建构。所以,学生只有从自己的已有知识经验出发,经历解决问题的思维过程,才会产生寻求数学方法的思维冲动,学生的思维才会顿悟,继而激发学生探寻数学迁移的连接点,最终形成解决实际问题的直接思维方法和数学技能。
8.“分数与除法”教学解析及建议 篇八
“分数与除法”错例解析
分数是小学生对数的概念一次重要扩展,也是小学生对数的认识的一次重大飞跃。它对学生更好地理解数的连续性与可分割性起着非常重要的作用。分数概念不但抽象,而且复杂,是学生认识和理解时最容易出现问题的概念。特别是学生进入分数学习的第二阶段——五年级《分数的意义和性质》时,各种各样的问题如雨后春笋般陆续暴露出来。学生在学习的过程中出现诸多的不适应性和盲目性,发生的错误也随之增多。在教学“分数与除法关系”一课后,笔者的感触尤为深刻。
“分数与除法”的教学内容,是在理解了分数的意义,分数单位等知识的基础上进行教学的。在巩固的基础上,作业练习中会出现一些应用辨识性的数学问题,学生面对这些类型的题都是屡屡中招。(见典型错题1、典型错题2)
“分数与除法”归因分析
数量分率:分不清 在学习小数除法时,解决每段长多少米时正确率很高。在教学完分数的意义后,学生解决每段是这根绳子的几分之几时正确率也很高,但现在将情境融合,把两个问题整合在一起提问时,学生思绪混乱,错误不断。之所以出现错误,根源在于学生没能很好地认清分数的两种身份:既可表示分率(关系),也可表示具体数量。分数表示关系可以通过运算得到,也可以通过平均分得到。分数表示数量可以通过度量得到,也可以通过计算得到。分数的双重含义都可以通过计算得到,方法的共享让学生的学习产生了负迁移。再则,学生从三年级开始接触的分数都是以分率的身份出现,平均分中只涉及连续量平均分。在教师教学或学生学习时,因缺少沟通,两种身份在头脑中相互干扰,从而导致错误。
分数意义:不深刻 人教版五年级下册教材中,用份数定义的方式描述分数的意义。虽然贴近学生的生活,但也出现一些倾向性的弊端。一份或几份的说法,没有超出自然数的范围,没有显示出这是一种新的数。从教材提供的例题来看,选择的素材和呈现的情境局限在部分和整体单一的纬度上。从生活情景直接跳跃到纯粹的数学概念,没有经验支撑的抽象水平和丰富的内涵表征,学生接受分数概念的内在结构就会不稳定。另外,分数意义的核心——单位“1”,学生对它的认识存在不少问题,主要表现在以下几个方面:倾向于自我假设在同一情境中出现的各个分数具有相同的单位“1”;信息量超过自己的处理能力时,便会配合其处理能力,自行更改单位“1”或分解单位“1”。构建抽象灵活的单位“1”概念是学生构建分数概念过程中的主线。教师在教学时必须予以充分的重视。
除法意义:不领会 如果对以上典型错题的这4个问题的本质追根溯源的话,它们都是小学低段的自然数除法意义的生长延伸。二年级除法的起始课《平均分》,例2和例3就渗透了两类基本的除法。在练习三中出现两类除法的题组(如图A)。第一小题属于等分除问题15÷5=3,利用的数学模型是总数÷份数=每份数。第二小题属于包含除问题15÷3=5,利用的数学模型是总数÷每份数=份数。新课程背景下的课堂教学,教师为了避免被扣上“穿新鞋走老路”之嫌,不再强调总数、每份数、份数等数学术语,而寄望学生借助生活经验和对运算意义的理解,解决此类问题。渐渐地,弱化了数量关系模型的抽象、提炼和建构,淡化了解题方法的训练。有的学生通过观察数据信息成功体验到万能解题方法——大数除以小数得出正确结果,有些学生借助具体情境也能顺利地解决问题。在这种美好的表象下,教学似乎非常成功。殊不知,对数量关系式有效建构的缺失,给学生进入高段学习埋下了可怕的隐患,因为高段数学运算已经突破了较小数不能成为被除数的界限。
均分概念:不到位 在二年级下册除法的初步认识中,学生首次学习平均分概念。到了三年级上册分数的初步认识,学生应用平均分概念获得几分之一或几分之几的分数。在这两个阶段的教学时,教师特别注重两个目标问题的研究:什么叫平均分?怎么平均分?为了达成这些目标,教师主要采取动手操作的教学方式帮助学生理解平均分的意义,获得平均分的方法。但对于平均分的要领——“谁被平均分”的关注不够。进入高段学习后,数系的扩张和计算方法的泛化,学生面对具体的情境,可以提问的方式不再唯一(如典型错题案例2的问题)。如果仅明白平均分含义,忽视了解题关键的命脉——“谁把谁平均分”的明确指向,学生的判断只能跟着感觉走。没有清晰的思路,解题错误也就不可避免地产生了。
“分数与除法”解题策略
丰富表征信息,完善学生的认知结构 学生对知识顿悟的前提是对需要的信息有一个完整清晰的表征信息。尤其是对那些学习比较困难的学生来说,更需要一种形象化的程序性知识,能够让学生在头脑中迅速表征出图像来。在这种情况下,一般的对策是紧密联系学生的生活经验和已有知识,引导学生借助生活经验和数学知识相似性的特点,将新知纳入到原有的知识结构中去,使学生的知识得以同化和顺应。为了让学生找到分数具有分率即关系(比)和具体数量的双重意义完整清晰的表征信息,教师必须十分注重相应知识模块的专项训练。运用说、议、画等手段,丰富个性体验,逐步完善学生的认知结构。
加强题组对比,深化所学知识的意义建构 数学中的各部分知识是相互联系、相互依存的。教师从数学知识的整体出发,把有相关性的数学知识设计成具有联系性的题组让学生进行比较练习。就好像为学生搭了一个梯子,使他们沿着台阶一步一步往上走,在掌握基本知识和技能的同时,渗透比较分析归纳的思想。通过有相互联系又有区别的题组进行比较练习,既梳理了数学知识间的联系,又加深了学生对数学知识的理解。在新概念形成、新知识掌握以后,将一些形式上相似,实质不同,容易混淆的知识点加以精心设计并进行对比练习。让学生在比较中鉴别,不仅可以提高正确率,还可以加深对数学知识理解和解题方法的掌握。endprint
解析数量关系,提升问题解决能力 解析数量关系是传统应用题解决的最重要的策略,新课程背景下的教学同样离不开数量关系的分析解构。随着年级的增长和知识的积累,题中呈现的数学信息量会随着思考角度的变化而变得复杂。如果教师在教学时不善于引导学生把握变化的特征和规律本质,面对问题情境,学生很难在自己已有的知识经验基础上建构“原生态”的数量关系。这时,学生往往能理出数据,却理不出头绪。见如下教学片断:
师:解决每段长几米的问题,就需要考虑谁被平均分?以谁为标准去分?分成了几份?
生1:这里是绳子被平均分。
生2:应该是绳子的长度2米被平均分。
生3:按段为标准平均分,分成了3段就是3份。
师:所以,被分的数做被除数,标准的数做除数。
师:看着这幅图,老师想到了一个问题——每米有几段呢?能解决吗?
生:每米是1.5段。
师:你是怎么想的?
生:因为这个绳子是2米长,1米的话就是在中间切开,正好把中间的一段绳子切开得到一半是0.5段,再加上1段,就是1.5段。
师:你分析的很有道理。谁能用算式简洁地表示出来?
生:3÷2=1.5(段)。
师:理由呢?
生:因为这里被分的是3段绳子就做被除数,按2米去平均分,可以分成2份做除数。
师:结果除了用小数外,还能用分数表示吗?(并相机提示分数与除法的关系)
生:能,。
师:这样的分数,同学们感觉是不是很陌生,像刚才一半用表示,再和1合并也能得到一个分数,这些分数就是我们后几节课要学的知识。
新课程理念下解决问题不要求学生规范地表达数量之间的关系,但这并不表明,教学仅停留在解决问题的策略和日常生活经验,而忽视问题的本质。探索时,学生展示的方法是其经验认知的体现。交流时,教师应有意识地引导学生对各种方法进行比较分析,形成思维水平的策略或数学模型。在上述教学片断中,由于数的范围的拓宽,以往不能解决的问题从不可能变成了可能。一组对应的数学信息:2米长和3段,通过不同的提问方式,解析得到两组不同的数量关系:每段长度=总长度÷段数,每米段数=总段数÷米数。面对这类问题,教师要善于追根刨底,点破解决要领,及时概括总结,学生的思维才能从无序走向有序、从混沌走向清晰,数学思维能力才会有质的提高。
9.分数除法应用题教学案例 篇九
东于小学 张文灵
教材简析:
本课是人教版《小学数学第十一册》第三单元分数除法解决问题例1。分数除法应用题是分数乘法应用题的进一步深化,要在学生熟练掌握单位“1”×分率=分率所对应的量的数量关系上进行教学。它的解题方法多样,可以让学生尝试研究,这对学生思维方法多样的培养很有意义。这部分内容是分数应用题中出现的第一个难关,这一部分内容学习的好坏,直接影响到学生今后学习较复杂的分数应用题。因此,本节课的教学对于学生的后续学习具有非常重要的意义。教学目标:
1、理解分数除法应用题的结构特征和数量关系,能用多种方法解决“已知一个数的几分之几是多少,求这个数”的应用题。
2、通过创设情境,培养学生获取信息,提出问题,探讨解决问题的能力,懂得在合作交流中实现资源共享。
3、让学生亲身经历由分数乘法应用题的数量关系转化为其它数量关系解分数除法应用题,或直接根据分数乘法应用题的数量关系式解分数除法应用题的过程。掌握简单分数应用题的分析方法,体会转化、迁移的数学思想。
4、养成对应用题的分析、比较、研究的能力,自信的学习态度与情感。教学重、难点
1、教学重点:分数除法应用题的解法,并从中培养学生分析、比较、迁移、转化的能力。
2、教学难点:学生能否将已学过的分数乘法应用题的数量关系式迁移、转化运用到本节课中。教与学的过程预设
一、创设情境
同学们,你们对我们班的情况知道哪些,大家能介绍一下吗?(学生介绍)我也知道咱班的一个信息:参加奥数小组的人数是参加美术小组人数的1/3,你知道六(2)班参加奥数小组的同学有几人吗?
(①这道题不能解答,因为我们不知道参加美术小组的人数。②知道奥数小组的人数就是美术小组人数的1/3,因此只有知道美术小组的人数才能求出数奥小组的人数。)同学们说得真好!你们认为解答分数乘法应用题的关键是什么?
(从题目的关键句找出数量之间的相等关系。)[设计意图:从学生日常学习生活中引出具体的事例,体现“数学来源于生活,数学是对生活的提炼和对生活的超越”的思想,能使学生产生主动参与探索,渴望解决问题的心理倾向,从而为他们后续学习在知识、思维、情感等方面积蓄了良好的准备态势。]
二、问题探究
师:新学期开始了,为了丰富咱们同学们的学习生活,学校决定开放图书室,其中故事书要占图书总数的4/5。根据这条信息,你能联想到哪些数学知识? 生1:把图书总数看作单位1。
生2:把图书总数平均分成5份,故事书占其中的4份。生3:在图书总数中,大部分是故事书。„„
师:你能用线段图表示图书总数与故事书之间的关系吗? 师:加上一个条件和一个问题,你能把它改编成一道应用题吗?
生1:学校有图书300本,故事书占图书总数的4/5,故事书有多少本? 师:请你们解答这道题。学生解答。
生2:学校有图书200本,故事书占图书总数的4/5,故事书有多少本? 师:请口头列出算式。
师:刚才同学们编的题都是已知图书总数求故事书,还能改编成别的应用题吗? 生:学校有图书300本,故事书占图书总数的4/5,其他的书有多少本? 师:你会解答这道题吗?(生解答过程略)
生:学校有故事书200本,故事书占图书总数的4/5,学校一共有故事书多少本?
师:这道题与前面几道题有所不同,你发现了吗?
生1:前面几道题都是已知图书总数,求故事书,而这道题正好相反,已知故事书求图书总数。
生2:前面几道题都是已知单位一,而这道题是求单位一。师:那这道题你能不能解答呢?试一试。(学生解题)
生1:设图书总数是X本。
4/5 X=200 X=250 师:你根据什么列出的方程?
生1:根据“图书总数×4/5=故事书200本”这个数量关系式。
师:还有别的方法吗? 生:200÷4×5=250(本)师:说说你这么做的道理。
生:因为根据题意把图书总数平均分成5份,故事书就有4份,用故事书的200本除以4,就求出每份是50本,再用50乘5就是5份一共多少本,也就是图书总数是250本。
师:其他同学还有别的方法吗?
生:200÷4/5=250(本)师:你是怎么得到这个算式的? 生:根据方程推导出来的。
师:同学们真不简单,想出了这么多种不同的方法。这便是我们今天研究的分数应用题。
[设计意图:这里,创造性地将教材内容转换成了学生熟悉的实际问题,体现了学习内容的生成性。在这个现实的问题情境中,学生的认知经验得到了充分的尊重。激活了学生的知识经验,引发了学生的个性思维,渗透了数量关系。教学时,充分尊重学生的观点,形成多样化的解决问题的方法。展开自主探索与合作交流激发学生的求知欲,让学生经历了数学知识的产生过程以及思维的形成过程,使学习更加有效,真正做到从学生实际出发,尊重他们的需要。]
三、巩固应用
1.先说出把哪个数量看作单位“1”,并把数量关系式补充完整。(1)一桶油,用去它的3/5,正好是12千克。这桶油重多少千克?()×3/5=()
(2)六年级一班今年评出三好学生6名,占全班总人数的1/8。这个班有学生多少名?
()×1/8=()2.完成课本38页做一做。3.对比与辨析
(1)小林家买来一袋大米,重30千克,吃了3/5,吃了多少千克?
(2)小林家买来一袋大米,吃了30千克,正好是这袋大米的3/5,这袋大米有多少千克?
(3)小林家买来一袋大米,吃了一部分后还剩3/5,还剩30千克,这袋大米有多少千克?
[设计意图:练习是学生掌握知识、形成技能、发展智力的重要手段。这样安排,练习有密度、有坡度,体现了层次性、针对性、趣味性,调动了学生的学习积极性。引导学生对所学习的内容进行梳理、总结,将知识系统化、条理化、特别对在获取新知识时体现出来的数学思想方法、策略进行反思,从而加深对知识的理解。并把所学的数学知识应用到生活中,解决生活中的数学问题,以激发学生进一步学习数学的需要,促使学生主动地学习数学。] 反思:
分数除法应用题是整个小学阶段应用题教学的重、难点之一,如何激发学生主动积极地参与学习的全过程,引导学生正确理解分数除法应用题的数量关系,我作了以上的教学尝试,详细评析如下:
1、从生活入手解决问题。教学一开始请学生介绍班级的有关情况,引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学,培养学生问题意识。
2、分析主要条件解决问题。在做分数应用题时,关键是分析题中的数量关系,尤其是分析两个数量之间的分率关系。教学中,为让学生深刻理解分率句,特意先出示分率句,引导学生联想学过的数学知识,培养其发散思维,感受应用题中数量之间的联系,为解题做好铺垫。
3、图形结合理解数量关系。解决分数应用题的一项法宝莫过于线段图了,教师有意识地让学生画图直观地展现数量关系,进一步理解题意。
10.分数乘除法应用题教学反思 篇十
分数乘除法应用题是十一册教材的教学重点,也是难点。学习分数乘法应用题时正确率比较高,可是一进入除法应用题的学习,数量关系就相对复杂了,所以教学时要特别重视渗透解决问题的策略,逐步提升学生解决问题的能力。
1.充分发挥线段图的作用
出示:美术组的人数比航模组多
让学生说说自己对这句话的理解,让所有学生清楚美术组比航模组多的人数是航模组的,如果要求你用线段图表示出来,你先用一条线段表示出哪个组的人数呢?使学生明白先画出单位“1”的量,接下来就好画多了。师:“仔细观察我们画出的线段图,从线段图上能看到什么信息呢?”生:“美术组的人数比航模组多。”师:“你还能看到哪些信息呢?看不到了吧!”说着老师在线段图上分别标出“25”“?”这时让学生看着线段图说出一道完整的应用题。美术组有25人,美术组的人数比航模组多,航模组有多少人?从线段图上学生清楚的看到“美术组的人数比航模组多”其实就是美术组的人数是航模组的,也就是(1+)。这时解题思路就一目了然了。
2.充分运用对比,让学生通过分数乘法应用题理解除法应用题。为让学生认识解答分数除法应用题的关键是什么,教学中,我抓住乘除法之间的内在联系,让学生从中发现与乘法应用题的区别,使学生了解这类分数应用题的特征。接着放手让他们借助线段图,分析题中的数量关系,美术组的人数是航模组的(1+)可以说成航模组的
14***414(1+)是美术组的人数,在学习过程中发现规律,得出这类应用题根据“已知一个数的几分之几是多少,求这个数用除法或方程”就能解决问题。
3.鼓励方法多样,让学生拓宽解题思路。
11.分数除法应用题免费 篇十一
【关键词】小学生;分数乘除法;计算;错误率;成因
作为一名小学教师,在平时的教学当中,我们应该认真对待《普通小学数学课程标准》中所提出的要求,在实际的教学当中,结合对照《新课标》及时的进行反思教学活动,应该为不断提高小学生教学水平而不断努力。
一、计算的重要性极其意义
计算不仅是我国学生必考的科目,而且计算在我们的日常生活当中随处可见,中小学计算教学不仅是数学教学的基础,更是贯穿于数学教学的全过程,由此可见计算教学的重要性。
作为一名小学教师,我们认为首先应该让我们的学生知道计算的意义,即使我们面对的学生年龄都还尚小,在理解运算重要性上存在一定的困难,但是,我们都有义务向他们不断的解说运算在我们生活中的意义,只有让学生充分的了解了计算的意义极其重要的地位,才能够引起学生的注意,这将很好的帮助我们有效的推进教学。
二、小学生分数乘除法计算高错误率的成因
在平时的教学当中,我观察到许多在分数乘除法上存在问题的学生,他们大部分都存在以下几点特征:
1.对分数的感知不正确、不够具体
在小学生分数乘除法计算当中,因为学生年龄都普遍偏小,对于分数的感知还不够,所以在学习分数的计算方法的时候显得比较笼统,而且并没有具体的概念。大多数学生在运算的过程当中只能注意到一些孤立的表面,并且大多数学生在审题、演算过程中急于求成,所获取的表象本身就是模糊不清的相近或相似的数据,符号更容易产生使信息失真、甚至出现数据、符号抄错等低级错误。
其次,就是学生在分数的运算当中,太过于随性而导致没有正确的关注运算中应该注意的运算顺序,这在乘除加减法混合运算当中相当的致命。比如说:在“1÷-÷1=”之中,很多学生忽略了先乘除后加减的运算规则,看到减号就直接的拿左右相减,得出错误的答案0,这些都是学生在计算当中太过于随性而导致的后果。在实际的教学当中,对于这一点我们应该适当的安排一些有针对性的习题给学生进行有针对性的练习。
2.知识掌握不够牢固,导致运算方法互相混杂不清
在分数的乘除运算当中,还有一种常见的错误根源在于学生在数学运算公式知识的掌握熟练度不够,因为在数学教学当中,会出现许多的运算公式,所以可能会导致学生在运算的过程当中混淆运算公式的运算方法,从而导致一些学生在分数乘除法上运用了加减法的运算规则,这也是我们在教学当中所说的负迁移。
为了让学生很好的掌握分数乘法的计算方法,作为老师我们应该有意识的让学生对分数乘除与分数加减法进行区别,避免学生在学完乘除法之后,分数加减法时出现了分子相加减,分母也相加减的现象。这种问题的存在,显然就是之前对于分数加减法的掌握度不够。所以,除了在平时的教学当中要随时提醒学生之外,我们更应该做好应对这种混淆后果的准备。
3.科技发展让学生变得懒怠
随着科学技术的发展,计算机的发明帮助了我们平时生活中的计算问题,但新科技的发明也有负面的一面,因为生活中对于计算机的依赖,在学习当中许多学生就不再愿意自己亲自动手运算,這一方面是学生对于运算能力的重要性理解不够,另一方面就是学生懒怠心理在作祟。对于这种情况,我们应该多多的给学生做思想工作,从思想意识当中去改变学生的态度。
4.运算难易程度影响学生情绪不稳定
在分数的乘除法计算当中,并不仅仅是困难的运算上出错的较多,在一些相对简单的运算当中,错误率也较多,这是因为学生在遇到一些相对简单的运算当中,没有足够的耐心,审题不严谨,导致的不必要的错误。在平时的教学当中,我发现这种错误的出现率是最为常见的错误之一,但这也是最没有必要的错误之一。所以,在此我们一定要在培养学生细心程度上多多下功夫,尽可能的避免一些不必要的失分。
结束语:计算在日常生活中随处可见,是我国教育事业当中不可或缺的重要部分,也是目前学生需要掌握的基本技能,虽然在平时小学生分数乘除法计算的教学当中,会有许多问题阻碍学生掌握好这项技能,但是作为老师,我们应该从多方面的发现问题所在,从根源上解决问题,才能更有效的提高学生的成绩。
参考文献:
[1]李东,小学数学分数乘除法运算技术与裸程整合的核心[J〕.教育研究,2000(8):49一53.
[2]余胜元,刘娟.小学分数计算能力与课程整合———教学模式与方法[M].上海教育出版社,2005.
[3]陈会力.发展在小学生计算能力教育.在全国小学计算能力教育工作会议上的报告.[r]2000.
12.分数除法应用题免费 篇十二
一、借助一题多解的模式开拓学生视界
利助一题多解的模式, 可以帮助学生更加深入地领会问题本质, 以便其能够站在多个角度分析问题、研究问题、解决问题。在指导学生利用分数除法处理实际问题时, 教材已经考虑到了学生的思维发展特点, 顾全了有关知识在小学高年级及初中的衔接问题, 给出了较为优的问题解决途径, 即用方程解应用题。但是对于教师来讲, 没有必要一切皆按教材的要求去做, 却不管其他方法。笔者认为:教师可以大胆鼓励学生多尝试其他类型的问题处理途径, 同时帮助学生从多个角度出发, 进行问题的分析、研究, 以便拓展思路、开拓视界。同时, 借助一题多解的模式, 学生有了更多学习与交流的机会, 从中能够感受到多种方法间的联系与贯通, 从而加深对于数量关系的认识与理解, 无形中增强以分数除法原理为依托, 处理实际问题的能力。
比如下面的问题:
按照测算, 一个健康成年人体内水分大致占到体重的2/3左右, 而儿童体内水分则大致占体重的4/5。小明的体重中有28千克水分, 而小明体重是爸爸体重的7/15。根据这些条件请回答小明的重量是多少;小明爸爸的重量是多少?
在遇到这个问题时, 教师就完全可以鼓励学生从不同角度去处理, 以便做到殊途同归, 万虑一致。第一种是方程法, 假设小明的体重是X千克, 根据数量关系列出方程;第二种根据已知两数积与其中一个因数, 求另一个因数的原理, 可用除法直接计算;第三种先把小明体重视为单位1, 再平均分成5份, 则其中4份都是水, 按照这个思路继续解答。
二、借助对比分析的模式帮助构建模型
借助对比分析的模式, 使学生明确问题处理的基本结构, 接下来学生可以在此基础上形成以分数除法为依托的问题模型。在利用分数除法处理实际问题的过程中, 各部分间关系同行程问题处理中存在的数量关系有相似之处, 即可以按照基本数量关系式, 找到其他有用的关系式。若想知道一个数的几分之几是多少, 需要用到乘法予以运算, 根据分数乘法所具有的意义, 能够给出基本数量关系, 即单位1×分率=对应数量, 再从这个关系式中推导出其他内容:对应数量÷分率=单位1等。
在教学过程中, 教师应当注意到借助分数乘法和分数除法间的对比关系, 可以使学生构建模型更加方便快捷, 让学生在对比、交流、观察、实践中感受到它们的数量联系, 这对于学生发现规律、理解规律、运用规律都是有好处的, 他们可以从中真切地领悟与归纳出借助分数除法处理实际问题的基本特点及思路关键节点。
比如在讲解了用分数除法处理实际问题的教材例题以后, 教师可以给学生提供进行对比练习的机会:
A:第二小学有1000名学生, 女生人数是学生总数的3/5, 女生人数是多少?
B:第二小学有400名男生, 男生人数是学生总数的2/5, 学生总数是多少?
C:第二小学有400名男生, 女生比男生多1/5, 女生人数是多少?
……
不同的问题提出来以后, 教师可以要求学生进行分组训练, 即各组每名学生分别处理一个问题, 然后小组对这些问题进行对比, 从而帮助学生建立用分数除法处理实际问题的宏观模型, 而不是将思维局限在只知套用公式的死角。
三、线段图是形象与抽象的联系纽带
小学高年级正处在思维转变的关键阶段, 形象思维渐弱, 而抽象思维渐强。如何利用好这个阶段, 把握住学生的形象思维能力不使其丧失, 是数学教师的一项重要任务。单就分数除法处理实际问题这个课题来看, 线段图无疑可以帮助学生理清问题同条件间的联系, 促进学生解题能力的无形中进步。
在将分数除法看作基本方略, 用于处理实际问题的教学过程中, 教师会发现, 那些与基本结构特征不太相符, 同时数量关系又稍显复杂的问题, 经常置学生于困窘的境地。此时教师完全可以通过带领学生绘制线段来领会题目意图, 使学生在数与形的转换中做到游刃有余, 摸清数量关系的特征, 从而增强问题处理能力。比如下面的问题:
书店要卖一批辞典, 当卖出4/5之后, 又运回来1495本, 这样一来, 书店这批辞典的数量比卖出去的还要多50本。那么原来书店有这批辞典多少本?
当初次接触到这个问题时, 学生可能会感觉茫然, 不知从何处下手, 就算找到思路, 也多是用方程的办法来解决, 较为复杂。此时教师即可以发挥线段图的功能, 引导学生将原有辞典数量看作1, 卖出4/5, 即可以画线段:
接下来根据已知条件, 再于线段上添加50、1495等数量关系, 有了线段图的指导, 接下来问题如何解决, 基本就可以一目了然了。小学生对于分数除法的理解能力与运算能力是会受到心理发展特点局限的, 特别是可以说清楚为什么要进行颠倒相乘原理的学生少之又少。所以要制定出真正可行的课程教学目标, 不给学生提出超出其接受极限的目标, 而是要在其领会能力之内, 找出更多富于启发性的方法。当然, 教师还应当注意增加分数性质方面的教学内容, 以便学生可以更好地理解分数本身的意义与性质, 这是一切分数运算及分数除法实际问题处理的基础。
13.分数与除法关系的应用教案 篇十三
(1)7÷9(2)4÷7(3)8÷15(4)5吨÷8吨
二、揭示课题
这节课学习“分数与除法关系的应用”。(板书课题)
三、探索研究
1.出示例4。
(1)出示例4并审题。
(2)提问:根据把低级单位的名数改写成高级单位名数的方法,这两题该怎样计算?当两数相除得不到整数商时,商应该如何表示?
让全体学生尝试练习。
(3)集体订正。订正时让学生说说是怎样想的?
(4)比较例4与复习题第1题有什么不同的地方,有什么相同的地方?
重点说明当两数相除得不到整数商时,其结果可以用分数表示。
2.练习教材第80页下面的“练一练”第1题。
3.教学例5。
(1)出示教材第80页复习题,让学生独立列式解答。
集体订正时启发学生分析:这道题把谁与谁比,求鸡的只数是鸭的几倍,把什么看作标准,用什么方法计算?算式怎样列?
板书:30÷10=3
答:鸡的只数是鸭的3倍。
(2)出示例5并读题,鼓励学生从不同角度思考,并组织学生讨论解题方法。
讨论后师生共同评价,主要有两种方法:
①从分数意义入手。求养鹅的只数是鸭的几分之几,也就是求7只是10只的几分之几。把10只看作一个整体,平均分成10份,每份1只,7只就是这个整体的。
②从倍数关系入手。求养鹅的只数是鸭的几分之几,是以鸭的`只数作标准,可以用除法计算,列式为:7÷10=。
(3)比较复习题与例5异同点。
通过比较使学生看到:求一个数是另一个数的几分之几,和求一个数是另一个数的几倍,都用除法计算,都拿作标准的数作除数,得出的商都表示两个数的关系,都不能注单位名称。所不同的是,前面的题是求一个数是另一个数的几倍,得到的商是大于1的数,后面的题是求一个数是另一个数的几分之几,得到的商是小于1的数。
4、练习。教材第80页“练一练”第2题。
四、课堂实践
1.在括号里填上适当的分数。
8厘米=()米146千克=()吨23时=()日
41平方分米=()平方米67平方米=()公顷37立方厘米=()立方分米
2.五(1)班有女生25人,比男生多4人。
(1)男生占全班人数的几分之几?
(2)女生占全班人数的几分之几?
(3)男生人数是女生人数的几分之几?
五、课堂小结
1、把低级单位名数改写成高级单位名数当得不到整数商时,该如何表示?
2、求一个数是另一个数的几分之几应用题的解答方法是什么?
六、课堂作业
练习十四第5-9题。
板书设计
求一个数是另一个数的几分之几
一个数÷另一个数=教学
后记
14.分数除法应用题免费 篇十四
德国教育家第斯多惠说过这样一段话:如果使学生习惯于简单地接受和被动地工作,任何方法都是坏的;如果能激发学生的主动性,任何方法都是好的。反思整个教学过程,我认为这节课教学的成功之处有以下几方面: 1、教学内容“生活化”
《国家数学课程标准》指出:“数学教学应该是,从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”纵观整节课的教学,从引入、新课、巩固等环节的取材都是来自于学生的生活实际,使学生感到数学就在自己的身边。
2、解题方法“多样化”
《数学课程标准》中,将“在解决问题的过程中发展探索与创新精神,体验解决问题策略的多样性”列为发展性领域目标。而这一目标的实现除了依靠学生自身的生理条件和原有的认知水平以外,还需要相应的外部环境。这节课上学生一共提出了5种解题方法,其中有3种是我们平时不常用的,第5种是我也没有想到的。我从学生的需要出发及时调整了教案,让每一个想发言的学生都能表达自己的想法,尽管他们有些数学语言的运用还不太准确,但我还是给与了肯定与鼓励。在这种宽松的氛围下,原本素不相识的师生在短短40分钟的时间里就产生了情感上的交融。学生有了运用知识解
第 1 页 决简单问题的成功体验,增强了学好数学的信心,并产生进一步学好数学的愿望。虽然后面还有两个练习没有来得及做,但我认为对一个问题的深入研究比盲目地做十道题收获更大,这种收获不单单体现在知识上,更体现在情感、态度与价值观方面。
3、师生交流“情感化”
数学教学改革,决不仅仅是教材教法的改革,同时也包括师生关系的变革。在课堂教学当中,要努力实现师生关系的民主与平等,改变单纯的教师讲、学生听的“注入式”教学模式,教师应成为学生学习数学的引导者、组织者和合作者,学生成为学习的主人。纵观整个教学过程,教师所说的话并不多,除了“你是怎么想的?”“还有其他的方法吗?”“说说看”等激励和引导以外,教师没有任何过多的讲解,有学生讲不清楚,教师也是用商量的口吻说:“谁愿意帮他讲清楚?”当一次讲不明白,需要再讲一遍时,教师也只是用肢体语言(用手势指导学生看图)引导学生在自己观察与思考的基础上明白了算理。学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。
第 2 页
4、值得商榷的几个方面:
(1)形式能否再开放一些
(2)优生“吃好”了,能否让差生也“吃饱”
15.稍复杂的分数除法应用题说课稿 篇十五
--------李修武
一、说教材 教材简析:
这部分内容,是在学生学过分数除法的意义和计算法则、分数乘法应用题、用方程解“已知一个数的几分之几是多少,求这个数”的文字题的基础上进行教学的。同求一个数的几分之几是多少的应用题一样,本小节的教学的“已知一个数的几分之几是多少,求这个数是多少”的应用题,也是由于分数乘法意义的扩展,相应的除法意义的具体含义也有了扩展,从而产生了新的应用题。这类应用题历来是学生学习的难点。教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法应用题的联系,重点帮助学生分析题里的数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。此外也加强了方程解与算术除法解的联系,使学生通过方程解领会此类应用题的特征,学会用算术法直接列式计算。这样既培养学生灵活解答分数应用题的能力,也有助于发展学生思维的广度。
二、说教学目标和教学重、难点
(一)教学目标(出示多媒体)
1、知识目标:使学生学会用方程解答“已知一个数的几分之几是多少,求这个数的分数除法应用题,并掌握检验的方法。
2、能力目标:培养学生的观察尝试、创新的能力。
3、情感目标:让学生通过两种方法解答应用题 的体会,感受获得成功体会的经历,树立学好数学的信心,有良好的数学情操。
(二)教学重点(出示多媒体)
用方程解答“已知一个数的几分之几是多少,求这个数”的分数除法应用题,也是由于分数除法意义的扩展,相应的除法的意义的具体含义也有所扩展,而产生新的应用题。掌握这类应用题的结构特征,能用方程和算术方法解决,是难点所在。
三、说教法、学法。
为了真正地落实新课程标准,把课堂的主动权还给学生,激发学生求知的欲望,使探索发现成为学生自身发展的需要,让他们主动参与探索学习的过程,变教为主为学为主,提高获取知识的本领,因此本节课我主要采用自主探索的方法进行教学,从而达到教是为了不教的目的。六年级学生已具备了较强的动手操作能力和观察推理能力,并且仍具有好玩、好奇的特征,因此我主要指导学生采取以下的学法,使学生不仅“学会”,更要“会学”。以分组合作的形式,充分调动学生的感官,让学生积极主动地参与知识的产生和发展过程,有充分的时间讨论、思考,自己主动的获取知识,获得成功的体验,感到学习带来的快乐,真正实现教师角色的转变,使学生成为课堂的主人。
五、说教学过程
(一)引出新知
好的开始是成功的一半。新课的引入是课堂教学的重要环节,是一堂课成功的起点。
第一个环节:复习旧知,促进迁移
该环节主要复习与新知有密切联系的旧知,为新知的探究铺路搭桥,激发学生探究新知的欲望,调动学生的学习积极性,设计如下:
1、根据题意写出下面的数量关系。
共三个小题,让学生思考后口答,教师板书数量关系。
2、出示与例题有关的分数乘法应用题。学生练习后,提问:这道题为什么用乘法计算?怎样用图表示已知条件和问题,把谁看作单位“1”?
第二个环节:创设情境,探究新知
对小学生来说,通过自己的探索获取新知,就是一种再创造,第二个环节的教学,我设计如下层次展开:
第一层次:独立探索
出示例3后,激励:老师相信同学们一定会解决这个难题,开始行动吧!先放手让学生尝试列式计算。教师提示可根据复习题的数量关系式,用未知数X帮助自己解这道题。
第二层次:合作探索
在学生计算出例3的结果后,再组织学生分组合作,讨论交流是怎么做的?为什么这样做?我做得对吗?存在什么疑问?
在此基础上,教师引导学生学习如何画图表示题意,找数量关系,根据数量关系列方程。该环节是学生学习时的难点所在,只有让学生深入理解题意,了解此类题型的结构特征,把握题中所含的数量关系,才能真正把知识内化为能力,做到举一反三,运用自如。我如此设计,正基于此。这样做既培养了学生的团结合作的精神,又培养了学生的分析推理调整的能力。
第三层次:尝试练习
让学生独立完成教材42页的第3题,个别学生板演,教师在学生完成后集体点评,强调学习的难点。
第三个环节:变式练习,巩固深化
练习的设计要抓基础知识与发展创新能力紧密结合起来,以达到发展思维,形成技能的目标。在此环节我设计了如下练习:
1、定位练习。
仿照例2出示类似的两道应用题,要求学生读题,画图,深入理解题里的数量关系,列出数量关系式。强化难点,形成技能。
2、提高题:同来互相编题,互相解答。
通过以上练习,促使学生将新的知识溶入到已有认知结构中,以利于更好的迁移和运用。
第四个环节 课堂作业 反馈信息 完成课本练习十第4、5题
(三)说“诱思探究”在本节课的具体体现
1、以学生为主体,教学中多次引导学生尝试练习,引导学生把旧知与新知进行对比;引导学生自主探索,亲身体验,切实把学生推向学习探索的第一线。体现了“诱思探究”对当代课堂教学的要求。
2、设计多层次,多形式的练习,促使知识的形成和内化。教学中,我做到复习铺垫练,新知尝试练,难点强化练,是练习面向全体学生,人人参与,全员动手,从而使学生的创新能力培养得到了落实。
16.分数除法应用题教学反思1 篇十六
小岔乡九年制学校教师:贺佩学
分数除法应用题是在学生已经学习了运用分数乘法解决一些实际问题的基础上进行教学的。分数除法应用题是本册教学中的难点,要突破这个难点,让学生透彻理解这类应用题,就要抓住乘、除法之间的内在联系,通过运用转化、对比等方法,使学生了解这类分数应用题的特征,再借助线段图分析题中的数量关系,找出解题规律。我根据多年来的教学经验总结出一套较粗浅的分析解答分数应用题的方法,比如“是、占、比、相当于”后面的量就是单位“1”;知道单位“1”求另一个量就用乘法,要求单位“1”就用除法”等等。通过本节课教学,我感受到以下几点:
一、从生活入手学数学。
《数学课程标准》中指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”因此教学一开始,我就改变由复习旧知引入新知的传统教法,直接取材于学生的生活实际,用介绍该斑的情况引发学生参与的积极性,使学生感到数学就在自己的身边,在生活中学数学,让学生学习有价值的数学。
二、关注过程,让学生亲身体验。
教学“解答分数除法应用题的关键是什么”时,我故意通过省略题中的一个已知条件,让学生发现问题,并亲身感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律,从而让学生真切地体会并归纳总结出:解答分数除法应用题的关键是“从题目的关键句入手找出数量之间的相等关系。”在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢对关键词语等琐碎的分析;喜欢用严密的语言进行严谨的逻辑推理。虽分析得头头是道,但容易走两个极端:或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析。这样就浪费了宝贵的课堂师生互动、生生互动的时间。教学中,我把分数除法应用题与引入的分数乘法应用题有机地结合起来教学,让学生通过讨论、交流、对比,亲自感受它们之间的异同。挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题、应用数学的能力。
三、多角度分析问题,提高能力。
【分数除法应用题免费】推荐阅读:
《分数除法应用题》教学设计07-08
分数除法应用题一教学设计08-17
《分数乘、除法应用题对比》说课稿12-08
六年级《分数除法应用题》教学设计06-09
百分数除法应用题练习题10-01
分数与除法09-10
分数除法作文10-24
分数乘除法教案10-12
分数除法课标解读07-06
分数除法的教学设计07-09