六年级数学下册解比例(精选10篇)
1.六年级数学下册解比例 篇一
《解比例》教学设计
中寨乡九年一贯制学校 马旋
一、教学内容:解比例
二、教学目标:
1、使学生学会解比例的方法,进一步理解并掌握比例的基本性质。
2、培养学生运用已学知识解决问题的能力。
3、在计算过程中,使学生逐步养成验算的良好学习习惯。
三、教学重点:使学生掌握解比例的方法。
四、教学难点:根据比例的基本性质,将带未知数的比例改写成方程。
五、教学要素:
1、已有的知识与经验:比例的意义,比例的基本性质,解方程的知识经验。
2、原型:由埃菲尔铁塔图引出的比例。
3、探究的问题:①运用转化的思想可以将比例转化为以前学过哪部分的知识?
②怎样根据比例的基本性质,把比例转化成方程?
③如何解比例?
六、教学过程:
(一)唤起与生成
1、什么叫比例?比例的基本性质是什么?
2、如果已知比例中的3项,而有一项未知,求比例中的未知项
就是解比例。这节课我们就来学习怎样解比例。板书课题。
(二)探究与解决
1、提出问题,引发思考:
出示例2,让学生读取数学信息,列出算式。X:320=1:10 这个比例你会解吗?
2、尝试计算:
提出问题,启示学生分析:比例的内项、外项分别是什么?哪项未知?能否利用转化的思想,将解比例转化为我们以前学过的知识来解决?转化转化为以前学过哪部分的知识?怎样把比例转化成方程?
学生尝试计算后,组织学生进行小组讨论,相互启发,交流自己的想法。
3、全班交流,明确算理:
交流时,重点让学生明白可以将比例转化为方程来解,其依据是比例的基本性质。要让学生说明怎样根据比例的基本性质,把比例转化成方程。
4、举一反三:
①板书0.8:4=X:6让学生独立完成,并说说计算过程。②出示例3,分数形式的比例,我们该怎样计算呢?让学生独立完成,集体交流时,让学生说说计算过程,明确同样根据比例的基本性质,先把比例转换成方程,再解方程。
通过独立计算并讲述算理,加深学生对算理的理解,为归纳算法做准备。
5、总结算法
先让学生用自己的语言叙述,然后师生共同得出结论:解比例关键是根据比例的基本性质,把比例转化成方程,再解方程就行了。
(三)训练与应用
1、做一做,独立完成,全班订正。
(四)小结与提高
小结学到的知识、方法以及学习的过程等,评价学习的表现。
2.六年级数学解比例课件 篇二
教学内容:课本第69页例2、3;练一练;《作业本》第31页。
教学目标:理解解比例的意义,掌握解比例的方法,能正确地解比例。
教学重点:解比例的基本方法与依据。
教学难点:解比例的方法
教学过程:
一、复习:
1、什么叫比例?
2、什么是比例的基本性质?
3、怎样检查两个比是否成比例?
二、新授:
1、先请学生心里想好一个比例(数目简单些),如2:3=4:6,只告诉其他同学其中的三项,让大家猜一猜还有一个数字是什么?
2、根据比例的基本性质,如已知比例中的任何三项,就可以求出另一个未知项。
3、求比例中的未知项,叫做解比例。
4、例2解比例:
30∶12=45∶χ
解:30χ=12×45…………根据是什么?
χ=………不先求积,先约分比较简便。
χ=185、例3解比例=
①请学生独立尝试;
②注意格式;
③反馈练习。
6、试一试。
三、巩固练习:
1、解比例:(练一练第1题第一竖行)
2、练一练第2题
3、补充:χ∶0.8=3∶1.2四、小结:
这节课学习了什么?
五、作业
《作业本》第31页。
六年级数学解比例课件二
一、教学目标
1、理解解比例的意义,掌握解比例的方法,会正确的解比例,能根据比例的意义列比例解决实际问题。
2、学会应用比例的意义和基本性质解决实际问题。
二、教学重点
掌握解比例的方法,会解比例。
三、教学难点
应用比例的意义和基本性质解决生活中的实际问题。
四、教学预设
(一)、自学反馈
1、什么叫做解比例
2、我国国旗的长与宽的比是3:2,如果我们学校的国旗长是240厘米,求我们学校国旗的宽是多少厘米?
(1)你会解答吗?独立解答后,同桌间相互说说想法。
(2)反馈交流
①240÷3×2=160(厘米)
②解:设我们学校国旗的宽是 厘米。
240: =3:=240×2
=240×2÷
3=160
答:我们学校国旗的宽是160厘米。
(3)你是怎么想的?
(二)、关键点拨
1、用比例解决实际问题
(1)你明白第二种解法的意思吗?
(2)国旗长和宽的最简整数比和实际长度比可以组成比例,所以可以把国旗的宽设为 厘米,建立比例240: =3:2,再通过解比例求出 的值。
(3)小结:这种方法叫做用比例解决实际问题。
2、解比例的方法
(1)你是怎样解比例240: =3:2的?
(2)根据比例的意义,先求出3:2的比值,把比例转化为方程,再求 的值。
(3)根据比例的基本性质“两个外项的积等于两个內项的积”把比例转化为方程,再求出 的值。
(4)怎样才可以确定 的值是正确的?(检验)
(5)你更喜欢哪种解法?为什么?
(三)、巩固练习
1、解下面的比例
:10= : 0.4: =1.2:2 =
2、把左边的三角形按比例缩小后得到右边的三角形,求未知数X。(单位:厘米)
学生独立完成,汇报交流。
3、小丽调制了两杯蜂蜜水,第一杯用了25毫升蜂蜜和200毫升水;第二杯用了30毫升蜂蜜和250毫升水。
(1)分别写出每杯蜂蜜水中蜂蜜和水体积的比,看它们能否成比例。
(2)照第一杯蜂蜜水中蜂蜜和水的比计算,300毫升水中应加入蜂蜜多少毫升?
学生回答第一个问题,板书。再让学生观察是否能成比例。
分析:第一个问题应该说比较简单,比分别是25:200和30:250。
(四)、分享收获 畅谈感想
3.六年级数学解比例应用题练习题 篇三
(1)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?
(2)甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?
(3在一幅地图上,用3厘米的线段表示实际距离600千米。量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?
(4)运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?
(5)在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?
(6)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?
(7)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?
(8)在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?
(9)一辆汽车2小时行驶130千米。照这样的速度,从甲地到乙地共行驶5小时。甲、乙两地相距多少千米?
(10)一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。如果要4小时到达,每小时需行驶多少千米?
(11)修一条公路,原计划每天修360米,30天可以修完。如果要提前5天修完,每天要修多少米?(12)修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?
(13)修一条公路,总长12千米,开工3天修了1.5千米。照这样计算,修完这条路还要多少天?
(14)修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完?
(15)小明买4本同样的练习本用了4.8元,138元可以买多少本这样的练习本?
(16)工厂有一批煤,计划每天烧2.4吨,42天可以烧完。实际每天节约1/8,实际可以烧多少天?
(17)解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?
(18)一对互相啮合的齿轮,主动轮有60个齿,每分转80转。从动轮有20个齿,每分转多少转?
(19)6台榨油机每天榨油48.6吨,现在增加了13台同样的榨油机,每天共榨油多少吨?
(20)一某工厂要生产一批机器零件,5天生产410个,照这样计算,要生产1066个机器零件需要多少天?
(21)某工地要运一堆土,每天运150车,需要24天运完,如果要提前4天完成,每天要多运多少车?
(22)用一边长为30厘米的方砖铺地,需200块,如果改用边长为20厘米的方砖铺地需多少块?
4.六年级数学下册解比例 篇四
1、结合具体情境,体会产生比例尺产生的必要性,理解比例尺的意义,能看懂线段比例尺,学会求平面图的比例尺和根据比例尺求出图上距离或实际距离。
2、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题,进一步体会数学与日常生活的密切联系。
我在设计教学环节时,仔细分析了教材的设计意图,同时又思考如何将概念教学恰到好处的与学生的生活实际联系起来。在上课伊始,呈现了两个同学画的教室平面图,让学生讨论哪一幅画得合理,从而初步体会“只有图上距离和实际距离的比都相等,画的图才比较合理。”。然后又呈现了一幅画得合理而且标有比例尺的平面图,为理解比例尺的意义提供了支撑,并体会比例尺的实际意义。
在探究新知这一环节中,我考虑到比例尺的概念和怎样求比例尺这一部分知识较简单,况且六年级学生已经具备一定自学能力,课前安排学生自学教材21页和22页上面的内容以及搜集了比例尺,学生在汇报搜集到的比例尺时直接板书在黑板上然后看着比例尺来说一说比例尺的意义。学生基本都能根据比例尺说出它所表示的意义,但是可能由于没有把意义板书出来的缘故,有部分学生对于单位的换算不是很清楚,导致之后在做题时后进生容易把单位是厘米还是米(或者千米)弄错。
在概括比例尺公式的这一环节,在学生的自学单上让学生先尝试去求比例尺,课堂上再让学生来汇报。在学生汇报完之后我急于让学生进行巩固练习,没有及时的对比例尺的关系式进行强化加深,导致部分学生没有真正理解比例尺的意义,对如何求比例尺也不是很清楚,课堂氛围开始沉闷。
有了以上的铺垫教学,在已知比例尺、实际距离求图上距离,或是已知比例尺、图上距离求实际距离时,就简单多了。用图上距离和比例尺求实际距离我选取书本22页试一试的第一个问题,在这个问题上,有些学生根据理解这个比例尺的意义(图上距离1厘米相当于实际34000000厘米)来解决问题,也有部分同学根据前一课《比例的应用》来解决问题。用实际距离和比例尺求图上距离这个问题,我选取的是教材第21页左下角的问题,但考虑到时间原因没有让学生在图中画出东北方向的社区活动中心,只让他们求图上距离。在求这两个问题时,大部分学生都是根据比例尺,来分析图上距离和实际距离之间的倍数关系,然后列乘法算式来做,所得结果再进行单位的换算。少部分选择用方程来解答,还有个别学生利用三者之间的乘除法关系来求,求实际距离用图上距离除以比例尺。
纵观整节课还存在几个比较严重的问题:教师的课堂评价语言很少比较单一,对于学生的回答没有及时的进行反馈;课堂氛围不够活跃。对于一些后进生来说,知识点多,理解起来比较慢,掌握起来还有些难度。本节课的教学时间把握得不好,因为,理解比例尺的意义是教学重点,所以课堂上让学生说比例尺的意义占用的时间多了,导致相应的习题没有完成,学生的练习时间偏少。
5.六年级数学下册解比例 篇五
数学来源于生活,又运用于生活。所以我从学生所熟悉的生活中的例子入手,引导学生发现我们的身边处处都有相互关联的两种量。
在教学中我还积极利用了学生的自我观察,给于了学生一些较为形象具体的表格形式进行对比、分析。从而让学生能轻易地发现两个数量间的变化关系。在观察和对比了以后在进行意义的概括。由浅到深逐步慢慢转化为对文字的叙述的判断。但是对正比例意义的理解还将涉及到学生对一些数量关系的掌握情况。但是我并没有急于地让学生背数量关系。而是把对意义的理解作为重点,通过几个具体的表格的强化加深学生对意义的理解。对于学生来说,数量关系并不陌生,在以前的应用题学习中是反复强调过的,但是还是有一部分的学生是对数量关系的掌握是非常不理想的。本节课的教学并不仅仅停留在数量关系上,而是要从一个新的数学角度来加以研究,用一种新的数学思想来加以理解,用一种新的数学语言来加以定义。因此在下一节课的复习题中我让学生大量的复习了常见的数量关系,并且联系教材复习了教材及练习中涉及到的一些数量关系,渗透了难点。对于一些学生较容易出现错误的题目进行重点的讲解。
6.六年级数学下册解比例 篇六
一、填空。
1.()和()的比叫做这幅图的比例尺。比例尺分为()比例尺和()比例尺。2.图上20厘米的距离表示实际距离40千米,这副地图的比例尺是()。3.一种微型零件的长5毫米,画在图纸上长20厘米,这幅图的比例尺是()。
4.在比例尺是1:4000000的地图上,图上距离1厘米表示实际距离()千米。也就是图上距离是实际距离的,实际距离是图上距离的()倍。用线段比例尺表示为()。
5.在一幅比例尺是30 :1的图纸上,一个零件的图上长度是12厘米,它的实际长度是()。
6、在比例3:10=18:60中,如果第二项增加它的1/2,那么第四项必须增加(),比例仍然成立。
7、在比例尺是1∶4000000的地图上,1厘米相当于实际()厘米,合()千米。
8、在比例尺是1∶100000的地图上,2厘米表示的实际距离是()千米。
9、在比例尺是()的平面图上,4厘米的图上距离表示实际距离240千米。
10、一幅地图的线段比例尺是
改写成为数字比例尺是()或()。
11、在比例尺是1∶100的图纸上,量得操场宽70厘米,操场的实际宽是()米。
12、一张图纸的比例尺是6∶1,如果在图上量线段的长是48毫米,实际长()。
13、一个机器零件长8毫米,按7∶1的比例画在纸上,要画()毫米。
14、测量一种零件的长60毫米,若画在比例尺是2∶1的图纸上则应画()厘米;若画在比例尺是1∶1的图纸上则应画()厘米;若画在比例尺是1∶2的图纸上则应画()厘米。
15、甲乙两地相距560千米,用1∶20000000的比例尺画图,图上距离应是()厘米;如果在图上要画56厘米长的线段表示这一实际距离,就应选用()比例尺。
16、甲乙两地的距离是300千米,在一幅比例尺是 的地图上距离是()厘米。
17、一所大学的一座教学楼长150米,宽90米,在一张学校平面图上用30厘米的线段表示教学楼的长,该图的比例尺是(),在图上的宽应画()。二.选择。(把正确答案的符号填在括号里。)1.图上距离()实际距离。
a.一定大于 b.一定小于 c.一定等于 d.可能大于、小于或等于
2.在一幅比例尺是1 :1000000的地图上,用()表示60千米。
a.0.6厘米 b.6厘米 c.60厘米
3.在一张图纸上,用6厘米的线段表示3毫米,这张图纸的比例尺是()
a.1 :2 b.1 :20 c.20 :1 d.2 :1 4.下列叙述中,正确的是()
a.比例尺是一种尺子。b.图上距离和实际距离相比,叫做比例尺。c.由于图纸上的图上距离小于实际距离,所以比例尺都小于1。
5.用1厘米的线段表示50千米的实际距离,这幅地图的比例尺是()
a. 1:5000 b.1:50000 c.1:5000000
6、图上20厘米表示实际距离10千米,这幅图的比例尺是()。
7、在比例尺是()的平面图上,6厘米长的线段表示实际距离是240米。
8、一幅地图的比例尺是
图上量得从甲地到乙地距离是5厘米,它的实际距离是()。
A.150千米 B.1500千米 C.1500000 千米
9、把线段比例尺
改写成数字比例尺是()。
10、一个精密零件,实际长5毫米,在比例尺是()的图纸上才能量得10厘米的距离。
A.2∶1 B.20∶1 C.1∶20
11、在一幅地图上用4厘米长的线段表示实际20千米。这幅地图的比例尺是()。
A.1∶5 B.1∶20000 C.1∶500000
12、在一幅比例尺是1∶40的图纸上,量得一个零件的长是5毫米,这个零件的实际长()。
A.20厘米 B.20毫米 C.8毫米
13、在比例尺是1∶500的图纸上测得一块长方形土地长5厘米,宽4厘米,这块地的实际面积是()平方米。
A.20平方米 B.500平方米 C.5000平方米
三.判断。
(1)在一幅平面图上,用3厘米表示30千米的距离,这个平面图的比例尺是(2)图上距离∶实际距离=比例尺()
()(4)两地的实际距离是900千米,在比例尺1∶6000000的地图上的距离是1.5厘米()(5)一条长4500千米的公路在地图上只有9厘米,这幅地图的比例尺是
。()
。()
(6)甲乙两地间的距离是1050千米,在比例尺是1∶30000000的地图上,这段距离画3.5厘米。()(7)有一幅地图,已知图上距离2厘米,实际距离是70千米,这幅地图的比例尺是1:3500000。()(8)在比例尺是1∶4500000的地图上,量得两城的距离是6厘米,两城之间的实际距离是270千米。()四.应用题。
1.一幅地图,图上4厘米表示实际距离80千米,求这幅地图的比例尺? 2.一幅地图,图上10厘米表示实际距离5千米,这幅地图的比例尺是多少?
3.长春到吉林的铁路长124千米,如果用1∶400000的比例尺,画在一幅地图上,需要画多长的线段?
4.在比例尺是1∶200000的地图上量得两地距离是8厘米,如果在1∶800000的地图上两地的距离是多少?
5.甲乙两地相距44千米,在一幅地图上量得图上距离是2.2厘米,求这幅地图的比例尺是多少?
6..在比例尺是1∶4000000的中国地图上,甲地到乙地的铁路长是35厘米,求这段铁路的实际长是多少?
7.我国东西宽约4800千米,南北长约5700千米,在1∶6000000的地图上,求出东西和南北图上距离各是多少厘米?
8.一座仓库的墙壁长4.3米,高220厘米,按1∶100的比例尺画在纸上。问各应画多长?
9.在比例尺是7∶1的图纸上,量得一个精密零件的长是42毫米,这个零件的实际长度是多少毫米?
10.在比例尺为3∶1的设计图上,量得精密零件的长为105毫米,这种精密零件的实际长度是多少?
11.一幅地图比例尺为
甲乙两地实际长700千米,画在图上应画多长?
12.一种精密零件长2.5毫米,用20∶1的比例尺画图,应画多长?
13.在比例尺1∶250000的地图上,量得两地距离约26厘米,两地实际距离是多少千米?
14.在比例尺5∶1的机器零件图上,量得一种零件长是100毫米,宽是85毫米,求这种零件实际的长和宽各是多少?
15.新建一幢大楼,地基是长方形,长80米,宽30米把它画在设计图上,长是40厘米,宽应是多少厘米?
16.要把一座长110米、宽40米的楼房设计图画在一张长80厘米,宽60厘米的图纸上,选择多大的比例尺较合适?
17.在一幅1∶6000000的地图上,量得无锡到北京的距离是17厘米,求无锡到北京的实际距离是多少千米?
18.甲地到乙地实际距离是950千米,在比例尺是1∶5000000的地图上,甲地到乙地的图上距离是多少厘米?
19.北京到上海的实际距离是1050千米,在比例尺是1∶25000000,应画多少厘米?
20.有一个直径是0.3厘米的钟表零件,如果用10∶1的比例尺画图,这个零件的直径应该画多少厘米?
21.在比例尺是1∶2000的图纸上,量得一个正方形花坛的边长为4厘米,这个花坛实际面积是多少?
22.在比例尺是1:5000的地图上,甲乙两地距离是4厘米,如果画在比例尺是1:10000的地图上,这段距离是多少?
23.一块长方形地,长60米,宽30米,若用1∶600的比例尺画在图纸上,求在图纸上的面积是多大?
24.在比例尺1∶2000的图上量得一块长方形土地,平面图的长是6厘米,宽是4厘米,求这块土地实际面积是多少?
25.在五百万分之一的地图上,量得北京到天津的距离为6.5厘米,若火车每小时行50千米,北京到天津火车需要几小时到达? 26.在一幅比例尺是 的地图上,量得甲、乙两地的图上距离是6.5厘米,一辆汽车从甲地到达乙地行了6小时,平均每小时行多少千米?
27.在比例尺是1∶40000000的地图上,量得甲、乙两地之间的铁路长4.8厘米,若火车每小时行80千米,火车行完全程要用多少天?
28.在比例尺是1∶2000000的地图上,量得甲乙两地距离是3.6厘米,如果汽车以每小时30千米的速度在上午8点从甲地出发,到达乙地要几点钟?
29.下图是一块梯形菜地,它的实际面积是48公顷,这块菜地如果用比例尺
画在纸上,它的面积是多少?
30.量一量从学校到火车站、商店、体育馆、电影院、少年宫的图上距离,再根据比例尺算出它们的实际距离。
31、ab两地相距480千米,画在图上是15厘米,求这幅图的比例尺。
32、在一幅地图上,张村和李庄的距离是3厘米,两村实际相距1200米。求比例尺。
33、一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。
7.六年级数学下册解比例 篇七
1教学目标:
1.在实践活动中体验生活中需要的比例尺。使学生认识比例尺的意义,学会求一幅平面图的比例尺。
2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。使学生感受数学在解决问题中的作用,提高学生学习数学的兴趣和信心。
教学重点:
认识比例尺的意义。
教学难点:
求一幅平面图的比例尺。
板书设计:
比例尺
(1)9.5厘米:95米=9.5:9500=1:1000
6厘米:60米=6:6000=1:1000
(2)19厘米:95米=19:9500=1:500
12厘米:60米=12:6000=1:500
图上距离 :实际距离=比例尺
教学过程:
(包括导引新课、依标导学、异步训练、作业设计等)
一、生活原型再现
师:(出示孙楠同学的照片)你们认识他吗?他是谁?
生:孙楠。
师:怎么可能呢?照片上的人这么小,怎么会是他呢?
生:是缩小了……
师:如果孙楠的眼睛不缩小,鼻子和嘴巴缩小了,那会怎么样?
生:不像他了,像丑八怪……
师:那怎样才能像他呢?
生:都要缩小。
师:一起缩小,是吧。如果他的眼睛缩小100倍,鼻子和嘴巴缩小10倍,像他吗?
生:不像,要缩小相同的倍数。……
二、创设情境,以疑激思
同学们都喜欢足球,踢足球要讲究战术,要研究战术需要设计足球场的平面图,下面我们就来当一回小小设计师,设计出足球场的平面图。
出示:足球场:长 95米,宽60米。学生作图。
三、独立探究,合作交流。
1、通过学生讨论,引出学习要求。
(1)确定图上的长和宽的长度;
(2)画出足球场的平面图;
(3)写上图上的长和宽的长度;
(4)分别写出图上长、宽与实际长、宽的比,并化简。
根据要求个人作图,完成后四人小组交流(重点交流你是怎么确定图上的长和宽的)选择你们组认为最好的,贴在黑板上。
2、学生小组学习。
3、学生汇报设计思路。
生1:我是把实际的长和宽都缩小1000倍,图上的长就是9.5厘米,宽就是6厘米,这样的长方形图就是足球场的平面图。……
(根据学生的汇报板书)
图上距离:实际距离
(1)9.5厘米:95米=9.5:9500=1:1000
6厘米:60米=6:6000=1:1000
(2)19厘米:95米=19:9500=1:500
12厘米:60米=12:6000=1:5004、揭示比例尺的意义。
图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离 :实际距离=比例尺
师:1:500的比例尺,说说你是怎样理解的?
生:表示图上距离是实际距离的1/500;
表示实际距离是图上距离的500倍;
图上距离和实际距离的比是1:500;
图上1厘米表示实际距离5米,介绍数值比例尺和线段比例尺。让学生掌握两种比例尺各自的特点。
四、加深理解,拓展应用。
(1)在咱学校校园的平面图上,用15厘米长的线段表示实际长度60米,你能求出这幅图的比例尺吗?
(2)辨析:比例尺是一把尺吗?
(3)比例尺一般出现在什么地方?(地图上或平面图上)
(4)出示山东省主要城市位置图。
师:在这张地图上,你去过什么地方?
师:今年暑假老师准备去泰安登泰山,你能帮老师算一算烟台到泰安有多远吗?需要什么条件?
生:比例尺。出示比例尺 1∶8000000
生:图上距离。
师:给你一把尺子能解决这个问题吗?
学生尝试解决。
交流:
生1:在这幅地图上,我用尺子量得烟台到泰安的距离是5.5 厘米,根据比例尺图上1厘米表示实际距离80千米,5.5×80=440千米。
生2:根据实际距离是图上距离的8000000倍,可以用
5.5×8000000=44000000厘米=440千米
生3:根据图上距离是实际距离的1/8000000,也可以用
5.5÷1/8000000=5.5×8000000=44000000厘米=440米
生4:老师,也可以用方程来解。
解:设烟台到泰安的距离是x厘米。
1:8000000=5.5:x
x=44000000
44000000厘米=440千米
师:那老师如果乘坐每小时100千米的汽车,几小时就能到达?
生:4.4小时
师:可是老师以前去过泰安,是需要8个多小时才能到达的,这是为什么呢?
一时,学生都皱起了眉头陷入了沉思,经过片刻的等待,终于有孩子举起了手:“老师,我们量出的图上距离是直线的,而实际的路线不可能是直的,汽车要走许多许多弯路的。”
忽有一学生喊到:“老师,如果我们通过飞机来计算,那肯定是准确的,因为飞机可是走直线的吧!”……
五、反思体验 拓展完善
1、学生谈自己的收获,总结本节课的内容。
2、你还想知道什么?
六、作业设计
自主练习:
2、3苏教版六年级下册数学《认识比例尺》课件
1教学目标:
1、使学生理解比例尺的意义,学会求比例尺。
2、使学生经历比例尺产生过程和探究比例尺应用的过程提高学生解决实际问题的能力。
3、结合情境使学生体验到数学与生活的密切联系进一步激发学生学习数学的兴趣。
教学重点:
理解比例尺的概念,根据比例尺的意义求出比例尺。
难点:
从不同角度理解比例尺的意义。
教学内容:
一、情景导入,明确比例尺用途。
师:同学们,我国国土面积有多大?(960万平方公里)
大家知道吗?我国的国土面积居世界第三位。这么大的面积,我可以现在就展示出来,大家相信吗?(大屏)我是怎样做到的呢?(缩小)在现实生活中有时根据需要把图形放大或缩小若干倍再画到图纸上。那么大家猜猜:这张图把中国领土缩小了多少倍?(100000000)
二、归纳概念。
师:1:100000000中的1表示什么?(图上距离)那么,100000000呢?(实际距离)这两个距离是以什么形式出现的呢?(比)我们赋予这个比一个新的名称------比例尺。(板书课题)那么,比例尺怎么求呢??图上距离:实际距离=比例尺(板书)我们还可以把它写成比的形式。(板书)
理解1:100000000的意义。(图上距离1厘米,表示实际距离100000000厘米。)同桌互说。出示习题。
师:比例尺是一个大家族,他们是一对孪生兄弟。左面的这个比例尺也可以写成分数形式。由于他们是数字组成的,我们称他们为数值比例尺。右面的这个比例尺所表示的意思是图上距离1厘米,实际距离50千米。也可以用它(大屏)表示。他们是由线段组成的,我们称为线段比例尺。在画线段比例尺的时候要注意线段的长度要是1厘米。在最后面的数字末尾加一个单位名称。
师:在生产中,有时由于机器零件比较小,需要把实际尺寸扩大一定的倍数以后再画到图纸上。
师问:你知道2:1是什么意思吗?(图上距离2厘米,表示实际距离1厘米)你发现了什么?前项大于后项。这个图形比实际的要大。(比例尺前项比后项大时,就表示放大。)
师:请看大屏,仔细观察这2个比例尺,你发现了什么??(总有一个数字是1)(小结:为了计算方便,通常把比例尺写成前项或后项是1的比。)
三、讲解例题。
1、出示例题,指名读题。
2、结合公式“比例尺=图上距离:实际距离”列式
3、强调:比例尺在计算的时候要统一单位。比例尺没有单位名称。
四、习题练习。
1、做一做 一栋楼房东西方向长40m,在图纸上的长度是50cm。这幅图纸的比例尺是多少?
2、填空
(1)()和()的比叫做这幅图的比例尺。
(2)通常把比例尺写成前项或后项为()的比。
(3)比例尺分()比例尺和()比例尺两种。
(4)比例尺 表示图上1cm的距离代表实际距离()km,转化成数值比例尺是()。
3、判断
(1)所有的比例尺的前项都是1。()
(2)一幅图的比例尺应根据图纸的大小来确定。()
(3)一幅图的比例尺是8:1,这幅图所表示的实际距离大于图上距离。()
(4)地图上量得5cm的距离表示实际400m的距离,这幅地图的比例尺是1:80。()
(5)一幅地图的比例尺是1:500000厘米。()
8.六年级数学下册解比例 篇八
蒋向超
一、教学内容
本节课在教材中的地位:本节教材是在比和比例的基础上进行教学,着重使学生理解正比例的意义。正比例与反比例是比较重要的两种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它们解决一些含正、反比例关系的实际问题。同时通过这部分内容的教学,可以进一步渗透函数思想,为学生今后的学习打下基础。
学生已有的知识经验基础:比和比例的有关知识,常见的数量关系(常见的数量关系是学生理解正、反比例意义的重要基础)而新教材没有都将常见的数量关系形成关系式,也增加了这节课的教学难度。让学生有画折线统计图的经验,所以基本能自己动手画出正比例关系的图像。
二、教材分析:
对比新旧教材,我们不难发现新教材在保留原来表格的基础上取而代之的是两种量的变化有什么规律?”这一个更开放、更具挑战性的问题。这一问题更能提供让学生有足够研究的空间与思维想象的空间,以及创造性的培养。旧教材中的3个小问题实际上就是正比例概念的三层含义(两个量必须相关联;一种量随着另一种量的变化而变化;相关联的两个量的比值一定)。旧教材这样编排的目的是让学生带着这3个问题观察表格,发现表格中的两个量的变化规律。虽然这样的 编排能让学生明确观察方向,少走弯路,及时的发现变化规律,但是这样的数学学习体现不了学生学习的自主性,学生只是按照教师的指令在行动。而新教材的编排目的是让学生自己去发现规律,体现了以学生为主体的教学理念,如何更好的组织、引导学生在没有3个小问题的帮助下也能发现其中的变化规律呢?新教材的这一变化对我们一线教师提出了更高的要求。因此深入研读教材,理解教材编写意图,准确把握教学目标,是有效完成这节课的前提。教材精简了例题,教材不再对研究的过程作详细的引导和说明,只是提供观察研究的素材与数据,出示关键性的结论,充分发挥学生的主动性,以体现自主探究、合作交流的学习过程。
三、设计理念:
教材的改动是为了让学生自己去发现寻找出表中的规律,而不是像原来那样按照事先设计好的问题去回答。但是如果一开始马上放手让学生去寻找规律,学生会感到盲目,不知从何入手,那势必会造成合作学习的低效。新课程标准在修改稿中指出:数学活动是师生共同参与、交往互动的过程。有效的数学教学活动是教师教与学生学的统一,学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,带着问题动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。基于以上对教材内容的分析,因此,在教学中,我主要体现以下几个方面:
{一}、努力为学生创设充足的观察,分析、思考,探索、交流与合作 的时间和空间,使学生真正理解和掌握成正比的量的特征、初步渗透函数思想,得到必要的数学思维训练,获得广泛的数学活动经验。充分体现学生是数学学习的主体,教师是数学学习的组织者与引导者。{二}、努力实现扶与放的和谐统一,共同构建有效课堂。学生能自己解决的决不包办代替:学生可能完成的,充分相信学生,发挥自主探索与合作交流的优点,让学生有一个充分体验成功展示自我的舞台;学生有困难的,给予适当引导,拒绝无效探究,提高课堂效率。
四、教学目标:
基于对教材的理解和分析,我将该节课的教学目标定位为:
1、帮助学生理解正比例的意义。用字母 表示变量之间的关系,加深对正比例的认识。
2、通过观察、比较、判断、归纳等方法,培养学生用事物相互联系和发展变化的观点来分析问题,使学生能够根据正比例的意义判断两种量是不是成正比例。
3、学生在自主探索,合作交流中获得积极的数学情感体验,得到必要的数学思维训练。
五、教学重难点:理解正比例的意义。
下面我侧重谈谈对这节课重难点的处理:学生能在具体的情景中理解和体会成正比例的量的规律,但要他们用很专业的数学语言来描述,还是比较困难的,对于六年级的学生来说,语言的表达能力,组织能力,归纳能力有限,考虑问题也有局限性。不管是哪个层次的学生都或多或少存在着,当他们将各自的想法整合起来,基本能得出较为完 整的结论。比如,什么叫两种相关联的量,学生也很难得出,也没有探究的价值,所以由教师直接讲授,而对于他们之间的规律,则由学生自己来随意表述,当他们将各自的想法整合起来,通过共同归纳、概括,合作交流,得出较为完整的结论时,能让学生深深体会到自己的价值和合作学习的高效。
六、教学过程:
说教学策略和方法,引入新课。
首先提供情景素材,接下来教师引导,培养学生自己发现问题的能力,学生自主探究成正比例的量这个环节分为了四层:观察—讨论―—再观察—再讨论,一环扣一环教学,分小组合作交流让学生充分参与,学生在反复观察、思考,讨论、交流的过程自己建立概念,深刻的体验使学生感受到获得新知的乐趣。
本环节将书中的表格分两层呈现,首先出示表格,让学生观察,研究变量,感受是一种量变化,另一种量也随着变化,这量种量是两种相关联的量。接着引导学生研究定量,出示表格
1、表格2,让学生计算正方形的周长、面积,让学生体会周长和边长的比值相等、面积与边长的比值不相等。感受变量、常量,此时可能部分同学还是模糊的,所以进一步让学生自己讨论:周长和边长这两种变化的量具有什么特征?面积和边长两种变化的量又具有什么特征?学生讨论汇报后,可引导学生归纳:正方形的周长、面积都随着边长的变化而变化,它们是两种相关联的量;边长增加、周长(面积)也增加,周长(面积)降低、边长减少,但周长和边长的比值总是一定的,而面积与边长的 比值不是相等。所以,周长与边长能成正比例,面积与边长不成正比例,“周长、边长”之间的这种关系,从而自主归纳出成正比例的量的特征,在此基础上让学生自学:这里的周长和边长是成正比例的量,周长和边长成正比例关系。仅有例题的首次感知还不能形成正比例的概念,增加一个与例题不同的情景素材,为学生进一步积累感性认识。如果说例1是在老师的引导下完成,补充做一做就应该放手,让学生独立经历正比例关系的判断过程,再次感知正比例关系。学生能够列举出生活中成正比例的量的例子是学生是否真正掌握成正比例的量的特征的一个重要依据,学生能说出更好(估计优生部分可以,但不能说出这时也不必追问,教师接着引导学生用字母式y/x=k(一定),加深对正比例的认识。
9.六年级数学下册解比例 篇九
教学内容:图形的放大与缩小,比例的意义与性质。教材分析:
两个内容分别属于两个知识领域,前者是图形与几何的内容,后者是数与代数的内容。在一个单元里同时教学两个领域的知识,这样的教材很少遇到。本单元把图形的放大与缩小、比例的意义与性质结合起来教学,是因为这两个内容能够互相利用、互相支持。图形放大或缩小的过程中,大小变了,但形状与结构都保持不变,比例能够准确地揭示图形放大或缩小的本质特征,帮助学生建立图形放大与缩小的正确概念。比例是表示两个比相等的式子,这个相当抽象的数学概念和图形的放大或缩小联系起来,就有了具体的含义,图形的放大、缩小有助于学生形成比例的概念。全单元编排七道例题,具体安排如下: 例
1、例2 图形放大与缩小的含义 在方格纸上把图形放大或缩小 例3 比例的意义 例4 比例的性质 例5 解比例
例
6、例7 比例尺的意义 比例尺的实际应用 教学目标:
1、使学生在现实的情景中初步理解图形的放大和缩小,能在方格纸上将简单的图形放大或缩小;联系图形的放大和缩小理解比例的意义,认识比例的项和内项、外项;理解并掌握比例的基本性质,能应用比例的基本性质解比例;理解比例尺的意义,知道比例尺的不同表达形式,会求平面图的比例尺、能应用比例尺解决一些实际问题。
2、使学生经历认识比例和应用比例有关知识解决问题的过程,进一步丰富对现实世界中数量关系的认识,体会不同领域数学知识之间的联系,获得一些解决问题的策略,培养初步的形象思维和逻辑思维,发展空间观念。
3、使学生在参与数学活动的过程中,进一步体会数学在日常生活和生产中的广泛应用,感受数学知识和方法的学习价值;获得一些学习成功的体验,激发对数学学习的兴趣,增强学好数学的信心。重点难点: 理解比例的意义,认识比例,应用比例的基本性质解决实际问题。理解比例尺的意义和作用,会求图上距离和实际距离 课时:7课时
第一课时 图形的放大和缩小
(一)教学内容:教科书第33~34页例
1、例2“试一试”和“练一练”,练习六第1、2题 教学目标:
1、使学生在具体情境中初步理解图形的放大和缩小,学会利用方格纸把一个简单图形按指定的比放大或缩小。
2、使学生在观察、比较、思考和交流等活动中,感受图形放大、缩小在生活中的应用。
3、初步体会图形的相似,进一步发展空间观念。
教学重难点:
理解图形的放大和缩小,能利用方格纸把一个简单图形按指定的比放大或缩小。教学过程:
一、基础训练,引入新知
呈现例1图片在黑板上。
提问:把放大前后的两幅画相比,你能发现什么?
根据学生回答的情况,谈话导入:像刚才把一幅长方形画放大后长方形的长和宽与原 来相比,其中变化有什么规律?这就是我们今天要学习的内容。
板书课题:图形的放大和缩小
二、探究体验,获取新知。
1、认识图形的放大
出示例1中两幅图片长和宽的数据。提问:两幅图的长有什么关系?宽呢?
组织学生先讨论,启发学生用不同的方法比较出两幅图的长和宽的关系:第二幅图的 长是第一幅的2倍,宽也是第一幅的2倍;第一幅图和第二幅图长的比是2:1,宽的比也是2:1,等等。
指出:把图形的每条边放大到原来的2倍,就是把图形按2:1的比放大。提问:刚才我们在电脑上操作时,把原来的一幅长方形按怎样的比放大了?
2、认识图形的缩小。
谈话:我们可以把一个图形按一定的比放大,也可以把一个图形按一定的比缩小。提问:如果要把第一幅图按1:2的比缩小,缩小后的长与宽各应是原来的几分之几?
三、变式拓展,自主建构。
教学例2
1、出示例2,让学生读题
(1)提问:按3:1放大是什么意思?放大后的长、宽各是原来的几倍?各应画几格?(2)学生画图,再展示、交流。
(3)让学生尝试在方格纸上画出缩小后的长方形,再展示各自画的图形,并交流思 考的方法。重点指导学生说说缩小后的长方形的长和宽应是原来的几分之几,各应画多少格。
2、讨论:把放大和缩小后的图形与原来的图形相比,你有什么发现?
让学生明确:放大和缩小后的图形与原来的图形相比,大小变了,但形状没变。(放 大和缩小后的图形长与宽的比与原来图形的长和宽的比是完全一样的。)
3、教学“试一试”
先独立画出按2:1的比放大后的三角形,再让学生说一说自己是怎么画的?
提问:量一量,斜边的长也是原来的2倍吗?你发现什么? 小结:把三角形按2:1的比放大后,各条边的长都是原来的2倍。
四、当堂检测,评价反思。
1、做“练一练”
让学生按要求在方格纸上画出缩小后的图形,再让学生说一说是怎样画的,缩小后有 关边的长度是原来的几分之几,各应画几格?
2、做练习六第1、2题。
第1题要引导学生具体分析相关图形边的长度,并完成填空,再组织交流。第2题先让学生独立完成,然后组织交流
3、全课小结。
什么是图形的放大和缩小。要遵循什么原则?放大和缩小后的图形与原来的图形有什么关系?
五、家庭作业
《家庭作业》
教学反思
第二课时 图形的放大和缩小(二)教学内容: 教科书第35页的例3,完成随后的练一练和练习六的第3—6题。教学目标:
1、理解比例的意义。
2、能根据比例的意义,正确判断两个比能否组成比例。
3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。教学重难点:
理解比例的意义,能正确判断两个比能否组成比例。教学过程:
一、复习导入
1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?
2、关于比你有哪些了解?(生答:比的意义、各部分名称、基本质等。)还记得怎样求比值吗?希望这些知识能对你们今天学习的新知识有帮助。
二、教学比例的意义
1、认识比例
(1)呈现放大请后的两张长方形照片及相关的数据。要求学生分别写出每张照片长和宽的比。
(2)比较写出的两个比,说说这两个比有什么关系?你是怎样发现的?(求比值,或把它们分别化成最简比)
(3)是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重 视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:6.4:4=9.6:6。或6.4/4=9.6/6数学中规定,像这样的式子就叫做比例。(板书:比例)
(4)你能说说什么叫比例吗?(让学生充分发表意见,在此基础上概括出比例的意义)(5)学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
2、学以致用
(1)学习比例的意义有什么用呢?(可以判断两个比是否可以组成比例。)
(2)分别写出照片放大后和放大前的长的比和宽的比,这两个比也能组成比例吗? 学 生独立完成,再说说是怎样想的?由此可以使学生对比例意义的丰富感知。(3)你能根据以上照片提供的数据,再写出两个比,并将它们组成比例吗?
三、巩固练习
1、做练一练,学生独立完成,再逐题说说判断的思考过程。
2、做练习九第3题。
先写出符合要求的比,再说清楚相应的两个比是否能够组成比例的理由。
3、做练习九第4题
独立审题,说说解题步骤,在独立完成。同时找两个同学板演。
四、全课小结。
通过本课的学习,你有哪些收获?
五、作业
练习九第5、6题。教学反思
第三课时 比例的基本性质
教学内容:教科书第38~39页例4,“试一试”和“练一练”,练习七第1~4题 教学目标:
使学生认识比例的“项”以及“内项”和“外项”。能力目标:理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
通过自主学习,让学生经历探究的过程,体验成功的快乐。教学重难点:
引导观察,自主探究发现比例的基本性质 教学过程:
一、基础训练,引入新知
1、昨天学习了什么内容?(比例)什么叫比例?
2、判断下面每组中两个比能否组成比例?把组成的比例写出来。
⑴ 3:5和18:30 ⑵ 0.4:0.2和1.8:0.9
⑶ 5/8:1/4和7.5:3 ⑷ 2:8 和9:27
学生独立完成,说说判断过程。
二、探究体验,获取新知。
1、教学比例各部分的名称
谈话过渡:现在我们已经知道了比例的意义、各部分名称,也知道了比例在生活中有 很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
2、出示例4
提问:你能根据图中的数据写出比例吗?
(1)引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。
(2)引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?
学生先独立思考,再小组交流,探究规律。
(板书:两个外项的积等于两个内项的积。)
验证:是不是任意一个比例都有这样的规律?
⑴课件显示复习题(4组),学生验证。⑵学生任意写一个比例并验证。
完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
思考3/6=2/4是那些数的乘积相等。课件显示:交叉相乘。
小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现 规律,再验证)
三、变式拓展,自主建构。
比例的基本性质的应用
(1)比例的基本性质有什么应用?(2)做“试一试”
a先假设这两个比能组成比例
b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。
C、根据比例的基本性质判断组成的比例是否正确。
四、当堂检测,评价反思。
1、做“练一练”
(1)学生尝试练习。
(2)交流讨论。使学生明确:可以把四个数写成两个比,根据比值是否相等作出判 断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。
2、在()里填上合适的数。
1.5:3=():4 12:()=():5
先让学生尝试填写,再交流明确思考方法。
3、做练习十第1、2题
五、家庭作业 《家庭作业》
教学反思:
第四课时 解比例
教学内容:教科书第40页例5“试一试”和“练一练”,练习七第5~9题 教学目标:
使学生学会解比例的方法
进一步理解和掌握比例的基本性质。
进一步体会数学知识之间的联系,感受学习数学的乐趣。教学重难点:
掌握解比例的书写格式。教学过程:
一、基础训练,引入新知
教师:前面我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识。
二、探究体验,获取新知。
1、出示例5
(1)审题,帮助学生理解题意。提问:怎样理解“把照片按比例放大”这句话?(放 大前后的相关线段的长度是可以组成比例的)
(2)如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?引导学生写出 含有未知数的比例式。
告诉学生:“像上面这样求比例中的未知项,叫做解比例。
(3)讨论:怎样解比例?根据是什么?
(4)思考:“根据比例的基本性质可以把比例变成什么形式?” 教师板书:6x=13.5×4。“这变成了什么?”(方程。)
教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。(在6x前加上“解:“)
(5)让学生把解比例的过程完整地写出来。指名板书。
三、变式拓展,自主建构。
总结解比例的过程。
提问:
“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?”(先根
据比例的基本性质把比例变成方程。再根据以前学过的解方程的方法求解。)
“从上面的过程可以看出,在解比例的过程中哪一步是新知识?”(根据比例的基本性质把比例变成方程。)
3、做“试一试”,学生独立完成,再说说解题思路。
四、当堂检测,评价反思。
1、做“练一练”
2、做练习七第6、7题。先说说按比例“缩小或放大“的含义 再列出相应的比例式并求解。
3、做练习七第8、9题
学生独立审题并解题。讲评时重点指导学生解决第(2)问。
五、小结:这节课你学到了什么?有什么体会?
六、家庭作业:《家庭作业》
教学反思:
第五课时 认识比例尺
教学内容:教科书第43~44页例6和“练一练”,练习八第1、2题 教学目标:
使学生在具体情境中理解理解比例尺的意义,能看懂线段比例尺。
会求一幅图的比例尺,会把数值比例尺与线段比例尺进行转化。
使学生在观察、思考和交流等活动中,培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。
教学重难点:
使学生理解比例尺的含义,会求一幅图的比例尺。教学过程:
一、基础训练,引入新知
谈话:同学们,我国历史悠久,地域辽阔,国土面积大约有960万平方千米。但这么辽阔的地域却可以用一张并不很大的纸画下来。
出示大小不一的中国地图,并提问:想知道这些地图是怎样绘制出来的吗?今天我们就学习这方面的知识——比例尺。板书课题:比例尺
二、探究体验,获取新知。
1、出示例6,在学生理解题意后提问:题目要求我们写出几个比?这两个比分别是哪 两个数量的比?什么是图上距离?什么是实际距离?
2、探索写图上距离和实际距离的比的方法。
提问:图上距离和实际距离单位不同,怎样写出它们的比?
引导学生通过交流,明确方法:先要把图上距离和实际距离统一成相同的单位,写出 比后再化简。
学生独立完成后,展示、交流写出的比,强调要把写出的比化简。
3、揭示比例尺的意义以及求比例尺的方法。
谈话:像刚才写出的两个比,都是图上距离和实际距离的比。我们把图书距离和实际 距离的比,叫做这幅图的比例尺。
提问:这张长方形草坪平面图的比例尺是多少?
启发:可以怎样求一幅图的比例尺呢?
根据学生的回答,相机板书:
图上距离:实际距离=比例尺
三、变式拓展,自主建构。
4、进一步理解比例尺的实际意义,认识线段比例尺。
提问:我们知道这幅图的比例尺是1:1000,也可以写成1/1000。1:1000的意思是 图上1厘米的线段表示实际距离1000厘米的距离,也表示图上距离是实际距离的1/1000,还表示实际距离是图上距离的1000倍。
图上距离/实际距离=比例尺
指出:为了计算简便,通常把比例尺写成前项是1的最简单整数比。像1:1000这样 的比例尺,通常叫做数值比例尺。比例尺1:1000还可以用下面这样的形式来表示。
进一步指出:像这样的比例尺通常叫做线段比例尺。
问:从这个线段比例尺来看,图上的1厘米表示实际距离多少米?图上的2厘米、3厘米分别表示实际距离多少米?这与1:1000的含义相同吗?
四、当堂检测,评价反思。
1、做“练一练”第1题。
先说说每幅图中比例尺的实际意义。同样长的实际距离在哪幅图中画得长?哪幅图中 1厘米的图上距离表示的实际距离长?
2、做“练一练”第2题。让学生各自测量、计算,再交流思考过程。
3、指出:
①比例尺与一般的尺不同,这是一个比,不应带计量单位。
②求比例尺时,前、后项的长度单位一定要化成同级单位。如 2.5厘米:1O千米,要把后项的千米化成厘米后再算出比例尺。
③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。
五、小结:这节课你学到了什么?有什么收获?
六、家庭作业:《家庭作业》 教学反思:
第六课时 比例尺的应用
教学内容:教科书第44~45页例
7、“试一试”和“练一练”,练习八第3~9题 教学目标:
使学生理解线段比例尺含义。
使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。
在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。教学重难点:
1、能按给定的比例尺求相应的实际距离或图上距离。
2、感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力。教学过程:
一、基础训练,引入新知
1、什么叫比例尺?求比例尺时要注意哪些问题?
2、在一幅地图上南京到上海相距5厘米,实际相距300千米,求这幅地图的比例尺?你能画出这幅地图的线段比例尺吗?
二、探究体验,获取新知。
1、教学例7。
(1)出示例7,明确题意,找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了图上距离,求实际距离。)
(2)说一说比例尺1:8000所表示的意义。
(3)根据对1:8000的理解让学生尝试练习。
(4)交流算法,说说为什么这样算?帮助学生掌握不同算法以及之间的联系。重点
引导学生理解和掌握用列比例式求实际距离的方法。引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?
注意:最后的单位要换算成“米”作单位的数。
三、变式拓展,自主建构。
做“试一试”。
(1)独立算出学校到医院的图上距离。
(2)讨论怎样把医院的位置在图上表示出来。
(3)在图中表示医院的位置。
四、当堂检测,评价反思。
1、做“练一练”先独立解题,再组织交流
2、做练习八第4题
重点知道学生在地图上测两地之间的距离和在地图上如何找比 例尺。
3、做练习八第5题。重点帮助学生确定合适的比例尺。在解决 问题的过程中,进一步体会比例以及比例尺的应用价值。
4、将下列各题做在课堂作业本上。
(1)北京到天津的距离是140千米,在一幅比例尺是1:2000000 的地图上,两地间的距离是多少厘米?在一幅比例尺是1:500000的地图上,量得甲、乙两城的距离是12。5厘米。甲、乙两城实际相距多少千米?
0 40 80 120千米
(3)在一幅比例尺为的地图上,小丽量得某省会城市与北京的距离是32.5厘米。这个城市与北京相距多远?(4)做练习八第3题。
五、小结:通过本课的学习,你又掌握了什么新的本领?
六、家庭作业:《家庭作业》 教学反思:
第七课时 面积的变化
教学内容:教科书第48~49页 教学目标:
使学生经历“猜测-验证”的过程中,自主发现按比例放大后面积的变化规律
应用面积的变化规律解决一些实际问题。
使学生进一步体会比例的应用价值,提高学习数学的兴趣
教学重难点:
探究平面图形按比例放大或者缩小后面积的变化规律 教学过程:
一、基础训练,引入新知
1.正方形面积的计算公式是什么?
2.长方形面积的计算公式是什么?
3.三角形面积的计算公式是什么?
4.圆面积的计算公式是什么?
二、探究体验,获取新知。
1.出示教科书第48页上面的两个长方形
说明:大长方形是小长方形按比例放大后得到的。
(1)请同学们分别量出两个长方形的长和宽,写出对应的边长之比 大长方形与小长
方形的比是():(),宽的比是():()
(2)一个长方形的长和宽按比例放大后,它的面积发生变化吗?会发生怎样的变化呢?这节课我们一起来探究“面积的变化”,板书课题。
(3)请同学们先估计一下,大长方形与小长方形的面积比是():(),再通过计算,验证自己估计的对不对?
(4)全班交流,使学生初步感知长方形按比例放大后面积的变化规律
2.出示教科书48页下面的一组图形
说明:下面的图形是上面相对应的图形放大后得到的。
(1)请同学们测量相关的数据进行计算,再填写下表,再填写教科书第49页上面的 表格
(2)组织讨论:通过上面的计算和比较,你发现了什么?(3)小组交流
(4)总结:把一个平面图形按N:1的比例放大后,放大后与放大前的面积比是? 启发学生进一步思考:如果把一个平面图形按指定的比例缩小,缩小前后图形面积的变化规律又是什么?
三、变式拓展,自主建构。
让学生选择第49页图中一幢建筑或一处设施,测量并计算它的实际占地面积。
四、当堂检测,评价反思。
1.在比例尺是1:800的平面图上,有一块长方形的草地,长是3.5cm,宽是2cm,它的实际占地面积是多少?
2.一块长方形运动场,长150米,宽80米。在一幅比例尺是1:250 的平面图上,这块长方形运动场的面积是多大?
4.在一幅比例尺是1:2000的世界图上,量得一个圆形花坛的直径是2厘米,它的实际面积是多大?
五、小结:本节课你发现了什么规律?掌握了什么方法?
10.六年级数学下册比例单元测试题 篇十
六年级数学下册比例单元测试题
一、填空20分
1、2.04千米=()米3.6时=()分
5吨300千克=()吨0.4立方米=( )立方分米
2、根据3×4=2×6这个等式,能写成( )个比例式。
3、出粉率一定,面粉的重量与小麦的重量成( )比例关系。
4、这是()比例尺,它表示图上()的距离,相当于实际距离()千米。
5、在一个比例中,两个外项互为倒数,其中一个内项0.3,另一个内项是( )。
6、如果5x=y(x不为0),那么x和y成()比例。
7、一个长5厘米,宽2厘米的长方形,按1:3的比例尺放大之后,长应画( )厘米,宽应画( )厘米。
8、一个零件长2.4厘米,在设计图上画12厘米,设计图的比例尺是()。
9、把数值比例尺1:5000000改写成线段比例尺是()。
10、配置一种盐水,用5克盐需加水200克,现有水800克,需盐()克。
二、选择题10分
1、下面()组中的两个比不能组成比例。
①2:3和6:9②0.01:6.2和0.5:310③12:13和0.8:0.6
2、下面的量中,()组不能成比例
①小明的年龄和他的体重。②正方形的.周长和边长
③总价一定,单价和数量。
3、手表厂的技术人员设计新型的手表时,想把手表的零件放大到原来的50倍,则画图时选用的比例尺是( )。
①1:50②50:1③1:500000
4、在4:9=20:45中,比例的外项是()。
①4和9;②9和20③20比45
5、星光运动场的长是108米,宽是64米,画在练习本上,比例尺比较合适的是( )
①1200②12000③110000④140000
三、判断10分
1、图上距离总比实际距离小.( )
2、被除数一定,商和除数成反比例。( )
3、由两个比组成的式子叫做比例。()
4、因为5a=6b所以ab=56。()。
5、为了计算简便,比例尺通常写成前项是1的比。()
四、解比例(12分)
X:24=3:88.1:x=1.8:36
12:23=6:x4.81.6:x2
2、计算下面各题,能简算的要简算。(18分)
25×32×1.25713×217+613÷17223÷(1-58)
12+13-12+131.8×(5.7-3.44÷0.8)0.3×2÷0.3×2
五、动手操作:5分
1)、画出三角形向下平移3格后的图形。2分
2)、画出三角形按2:1放大后的图形。3分
六、解决问题28分
1、修路队每天修路3.2米,15天可以修完,实际每天修4米,几天可以修完?(5分)
2、甲乙两地在比例尺是1:20000000的地图上长4厘米,乙丙两地相距500千米,画在这幅地图上,应画多长?(5分)
3、用边长是900cm2的方砖铺地需要2000快,如果改用边长是40厘米的方砖铺地,需要多少块?(5分)
4、一个机器零件的长度是0.5厘米,在比例尺1:40的图纸上,它的长度是多少?(5分)
【六年级数学下册解比例】推荐阅读:
人教版六年级数学下册《解比例》教学设计11-04
六年级下册数学比例知识点11-30
小学数学六年级下册《反比例》课后教学反思08-20
苏教版六年级数学下册第七单元总复习:正比例和反比例(一)教学设计12-14
人教版六年级数学比例06-22
数学四年级下册《解方程(一)》教学反思11-29
六年级数学《比例尺》教学反思09-03
六年级数学《正比例》教学反思10-31
六年级数学 比例的基本性质教学设计06-21