纳米制造论文

2024-07-17

纳米制造论文(共10篇)

1.纳米制造论文 篇一

“纳米材料与纳米技术”课程论文要求

根据本课程的教学内容,结合参考文献,对纳米材料与纳米技术进行综述。具体要求如下:

1.封面:广东工业大学课程论文,课程名称,论文题目,姓名、学院、学号

(10分)2.正文4000-6000字

(15分)

3.A4纸单面打印,正确排版(5号字,小标题,页码,行距,等等)

(15分)4.正文内容:要求用自己的语言,按自己的逻辑对纳米材料与纳米技术现状、应用、发展趋势、存在问题等进行论述,要有自己的分析和见解

(50分)

5.摘要、关键词及3篇以上参考文献,不可或缺;参考文献写作格式:1)作者,作者,作者等.论文名称.刊物名称,年(期):起止页.,2)作者,作者,作者等.著作名称.出版社,出版地址,出版年月.(10分)

6.严禁在网上直接下载,一经发现,取消该课程成绩。

2.纳米制造论文 篇二

领导此项研究的美国加州大学电气工程和计算机科学教授阿里·杰威表示, 与传统硅和薄膜电池相比, 纳米柱技术可使研究人员使用更为廉价和低质的材料。更重要的是, 该技术更适于在薄铝箔上制作出可卷曲的太阳能电池板, 从而降低了制造成本。一旦获得成功, 其生产成本将可低至单晶硅太阳能板的1/10。

这种太阳能电池是通过将统一的500纳米高的硫化镉嵌入碲化镉薄膜中制成的, 这两种材料均是薄膜太阳能电池中经常使用的半导体。此种电池将光能转换为电能的效率可达6%。此前, 也有科学家使用了这种立柱设计思想, 但其方法较为昂贵, 且光电转换效率不到2%。

在传统太阳能电池中, 硅吸收光并产生自由电子, 这些电子必须在受困于材料的缺陷或杂质前到达电路。这就要求使用极为纯净、昂贵的晶体硅来制造高效光伏装置。纳米柱就承担了硅的职责, 纳米柱周围的材料吸收光并产生电子, 纳米柱将其运送到电路。这种设计以两种方式来提高效率:紧密封装的纳米柱捕捉柱间的光, 帮助周围的材料吸收更多的光;电子以非常短的距离穿越纳米柱, 因此没有太多的机会受困于材料的缺陷。这意味着可以使用低质量的廉价材料。

有科学家使用不同的纳米结构来制作这种太阳能电池。比如, 哈佛大学化学教授查尔斯·里波尔研发了一种包含硅芯和同心硅层各异的纳米线;加州大学伯克利分校的杨培东则开发出了带有氧化锌纳米线的染料敏化太阳能电池。这些纳米线太阳能电池的光电转换效率已达到了4%。

杰威及其同事制作的纳米柱电池首次使用经氧化处理的铝箔, 创建出呈周期性分布的200纳米宽小孔, 这些小孔作为硫化镉晶体直立生长的模板。然后, 对碲化镉和顶端电极饰以铜和金的薄膜。它们通过一块玻璃板和电池相连, 或是将其顶端投入聚合物溶液使其弯曲。

乔治亚理工学院的材料学和工程学教授王中林评价说, 将纳米材料工程设计与制造柔性可弯曲高效太阳能电池的各种软基板技术集成在一起, 这是一个令人兴奋的进展。美国国家可再生能源实验室负责太阳能电池研究的物理化学家阿瑟·诺兹克则表示, 这种电池要与由硅、碲化镉和其他材料制成的柔性薄膜太阳能电池进行竞争, 其卖点可能不在于其柔性, 而是成本优势。

3.纳米制造论文 篇三

这些教授、专家和学者分别来自美国佐治亚理工大学、伊利诺伊大学、加利福尼亚大学、阿肯色大学、威斯康星一麦迪逊大学等大学以及中国科学院,他们分别做了纳米集成的生物制造、用于靶向癌症诊断和治疗的多功能药物、以生物制造为基础的纳米组织结构生成及制造、表面功能化、纳米设计和多尺度建模、主动和被动的纳米结构设计、功能性的分级梯度纳米集或系统、细胞传感和激发系统、多功能纳米和微计量工具、靶向药物的输送、自供电生物传感器及压电式纳米发电机等演讲报告。

生物制造是一门以细胞、活性分子以及生物材料为基本单元形成结构生物的制造科学,是工程及材料科学和生命科学交叉诞生的新兴学科。其科学技术广泛应用于体外功能结构生物体制造、仿生制造、再生医学模型的制造、体外生物、病理和药理模型制造及以细胞和活性分子为基础的细胞/组织芯片和先进医疗诊断设备的制造。

2005年,在中国国家自然科学基金委和美国国家科学基金会的资助下,清华大学召开了首届“生物制造国际研讨会”。本届又一次云集国内外生物制造、纳米制造和生物/纳米汇聚制造国际前沿领域的顶级教授、专家和学者,探讨了各自在纳米器件与测量、生物芯片、仿生制造、组织工程材料、细胞打印及受控组装等生物制造相关领域的前沿科研工作,探讨了生物/纳米集成制造科学和工程面临的重大挑战与机遇,同时也展望了生物/纳米集成制造及其与生物医学结合的前景。

4.纳米制造论文 篇四

纳米石墨薄片及聚合物/石墨纳米复合材料制备与功能特征研究

摘要:分析与总结了聚合物/石墨纳米功能复合材料制备方法,还根据制备纳米功能复合材料所需的纳米微观结构和功能特征介绍了石墨和膨胀石墨微观结构、膨胀石墨的物化性能,并对纳米石墨薄片制备和修饰进行研究,最后提出聚合物/石墨纳米功能复合材料发展方向. 作者: 黄仁和王力 Author: 作者单位: 山东科技大学,济南校区,山东,济南,250031 期 刊: 功能材料 ISTICEIPKU Journal: JOURNAL OF FUNCTIONAL MATERIALS CONTENTS 年,卷(期): ,36(1) 分类号: B150.4530 F430.50 关键词: 聚合物 石墨 纳米石墨薄片 纳米功能复合材料 制备方法 机标分类号: TB3 TQ1 机标关键词: 纳米石墨薄片聚合物复合材料制备纳米功能复合材料微观结构膨胀石墨制备方法物化性能功能特征材料发展材料所 基金项目: 纳米石墨薄片及聚合物/石墨纳米复合材料制备与功能特征研究[期刊论文]功能材料 --2005,36(1)黄仁和王力分析与总结了聚合物/石墨纳米功能复合材料制备方法,还根据制备纳米功能复合材料所需的.纳米微观结构和功能特征介绍了石墨和膨胀石墨微观结构、膨胀石墨的物化性能,并对纳米石墨薄片制备和修饰进行研究,最后提出聚合物/石...

5.纳米加工技术 篇五

江苏科技大学机械学院

学号:139020021

姓名:原旭全

纳米尺度的研究作为一门技术,是80年代刚刚兴起的.它所研究的对象是一般研究机构很难涉猎的即非宏观又非微观的中间领域,有人称之为介观领域.所谓纳米技术通常指纳米级(0.1nm~l00nm)的材料、设计、制造、测量、控制和产品的技术.纳米技术主要包括纳米级精度和表面形貌的测量;纳米级表层物理、化学、机械性能的检测;纳米级精度的加工和纳米级表层的加工一一原子和分子的去除、搬迁和重组;纳米材料;纳米级微传感器和控制技术;微型和超微型机械;微型和超微型机电系统;纳米生物学等;纳米加工技术是纳米技术的一个组成部分.纳米加工的含义是达到纳米级精度(包括纳米级尺寸精度,纳米级形位精度和纳米级表面质量)的加工技术.其原理使用极尖的探针对被测表面扫描(探针和被侧表面不接触),借助纳米级的三维位移控制系统测量该表面的三维微观立体形貌.材料制造技术.著名的诺贝尔奖获得者Feyneman在20世纪60年代曾预言:如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到大量的异乎寻常的特性,就会看到材料的性能产生丰富的变化.他说的材料即现在的纳米材料.纳米材料是由纳米级的超微粒子经压实和烧结而成的.它的微粒尺寸大于原子簇,小于通常的微粒,一般为l一100nm.它包括体积份数近似相等的两部分:一是直径为几个或几十个纳米的粒子;二是粒子间的界面.纳米材料的两个重要特征是纳米晶粒和由此产生的高浓度晶界.这导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变.如:纳米陶瓷由脆性变为100%的延展性,甚至出现超塑性.纳米金属居然有导体变成绝缘体.金属纳米粒子掺杂到化纤制品或纸张中,可大大降低静电作用.纳米Tiq按一定比例加入到化妆品中,可有效遮蔽紫外线.当前纳米材料制造方法主要有:气相法、液相法、放电爆炸法、机械法等.l)气相法:¹热分解法:金属拨基化合物在惰性介质(N2或洁净油)中热分解,或在H冲激光分解.此方法粒度易控制,适于大规模生产.现在用于Ni、Fe、W、M。等金属,最细颗粒可达3一10nm.º真空

蒸发法:金属在真空中加热蒸发后沉积于一转动圆的流动油面上;可用真空蒸馏使颗粒浓缩.此法平均颗粒度小于10nm.2)液相法:¹沉积法:采用各种可溶性的化合物经混合,反应生成不溶解的氢氧化物、碳酸盐、硫酸盐或有机盐等沉淀.把过滤后的沉淀物热分解获得高强超纯细粉.采用此工艺制备出均质的玻璃和陶瓷.由于该法可制备超细(10nm一100nm)、化学组成及形貌均匀的多种单一或复合氧化物粉料.已成为一种重要的超细粉的制备方法.3)放电爆炸法:金属细丝在充满惰性气体的圆筒内瞬间通人大电流而爆炸.此法可制造Mo.W等难熔金属的超细颗粒(25一350nm),但不能连续操作.4)机械法:利用单质粉末在搅拌球磨(AttritorMill)过程中颗粒与颗粒间和颗粒与球之间的强烈、频繁的碰撞粉碎.近几年大量采用搅拌磨,即利用被搅拌棍搅拌的研磨介质之间的研磨,将粉料粉碎粉碎效率比球磨机或振动磨都高.(3)三束加工技术:可用于刻蚀、打孔、切割、焊接、表面处理等.l)电子束加工技术:电子束加工时,被加速的电子将其能量转化成热能,以便除去穿透层表面的原子,因此不易得到高精度.但电子束可以聚焦成很小的束斑(巾0.1林m)照射敏感材料.用电子刻蚀,可加工出0.1林m线条宽度.而在制造集成电路中实际应用.2)离子束加工技术:因离子直径为0.Inm数量级.故可直接将工件表面的原子碰撞出去达到加工的目的.用聚焦的离子束进行刻蚀,可得到精确的形状和纳米级的线条宽度.3)激光束加工技术:激光束中的粒子是光子,光子虽没有静止质量,但有较高的能量密度.激光束加工常用YAG激光器认封.06林m)和Cq激光器位一10.63林m).激光束加工不是用光能直接撞击去掉表面原子,而是光能使材料熔化、汽化后去掉原子.(4)LIGA(Lithographie,Galvanoforming,Abforming)技术.这是最新发展的光刻、电铸和模铸的复合微细加工技术.它采用深度同步辐射X射线光刻,可以制造最大高度为1000林m、高宽比为200的立体结构,加工精度可达0.1林m.刻出的图形侧壁陡峭,表面

光滑.加工微型器件可批量复制,加工成本低.目前,在LIGA工艺中再加入牺牲层的方法,使加工出的微器件一部分可脱离母体而能转动或移动.这在制造微型电动机或其他驱动器时极为有用.LIGA技术对微型机械是非常有用的工艺方法.1与常规精加工的比较

纳米级加工中.工件表面的原子和分子是直接加工的对象.即需切断原子间的结合.纳米加工实际已到了加工的极限.而常规的精加工欲控制切断原子间的结合是无能为力的,其局限性在于: l)高精度加工工件时,切削量应尽量小而常规的切削和磨削加工,要达到纳米级切除量,切削刀具的刀刃钝圆半径必须是纳米级,研磨磨料也必须是超细微粉.目前对纳米级刃口半径还无法直接测量.2)工艺系统的误差复映到工件,工艺系统的受力/热变形、振动、工件装夹等都将影响工件精度.3)即使检测手段和补偿原理正确,加工误差的补偿也是有限的.4)加工过程中存在不稳定因素.如切削热,环境变化及振动等.由此可见.传统的切削/磨削方法,一方面由于加工方法的局限或由于加工机床精度所限,显示出在纳米加工领域应用裕度不足.另一方面,由于科技产业迅猛发展,加工技术的极限不断受到挑战.有研究表明,磨削可获得o.35nm的表面粗糙度,但对如何实现稳定、可靠的纳米机加工以及观察研究材料微加工过程力学性能则始终受到实验手段的限制.因此纳米机加工必须寻求新的途径即直接用光子、电子、离子等基本粒子进行加工.例如,用电子束光刻加工超大规模集成电路.2.微纳米加工技术的分类

自人类发明工具以来,加工是人类生产活动的主要内容之一.所谓加工是运用各种工具将原材料改造成为具有某种用途的形状.一提到加工,人们自然会联想到机械加工.机械加工是将某种原材料经过切削或模压形成最基本的部件,然后将多个基本部件装配成一个复杂的系统.某些机械加工也可以称为微纳米加工.因为就其加工精度而言,某些现代磨削或抛光加工的精度可以达到微米或纳米量级.但本文所讨论的微纳米加工技术是指加工形成的部件或结构本身的尺寸在微米或纳米量级.微纳米加工技术是一项涵盖门类广泛并且不断发展中的技术.在2004年国际微纳米工程年会上,曾有人总结出多达60种微纳米加工方法.可见实现微纳米结构与器件的方法是多样的.本文不可能将所有微纳米加工技术一一介绍.对这些加工技术的详细介绍目前已有专著出版.笔者在此仅将已开发出的微纳米加工技术归纳为三种类型作概括性的介绍

(1)平面工艺

以平面工艺为基础的微纳米加工是与传统机械加工概念完全不同的加工技术.图1描绘了平面工艺的基本步骤.平面工艺依赖于光刻(lithography)技术.首先将一层光敏物质感光,通过显影使感光层受到辐射的部分或未受到辐射的部分留在基底材料表面,它代表了设计的图案.然后通过材料沉积或腐蚀将感光层的图案转移到基底材料表面.通过多层曝光,腐蚀或沉积,复杂的微纳米结构可以从基底材料上构筑起来.这些图案的曝光可以通过光学掩投影实现,也可以通过直接扫描激光束,电子束或离子束实现.腐蚀技术包括化学液体湿法腐蚀和各种等离子体干法刻蚀.材料沉积技术包括热蒸发沉积,化学气相沉积或电铸沉积.图1平面工艺的基本过程:在硅片上涂光刻胶、曝光、显影,然后把胶 的图形通过刻蚀或沉积转移到其他材料

(2)探针工艺

探针工艺可以说是传统机械加工的延伸,这里各种微纳米尺寸的探针取代了传统的机械切削工具.微纳米探针不仅包括诸如扫描隧道显微探针,原子力显微探针等固态形式的探针,还包括聚焦离子束,激光束,原子束和火花放电微探针等非固态形式的探针.原子力探针或扫描隧道电子探针一方面可以直接操纵原子的排列,同时也可以直接在基底材料表面形成纳米量级的氧化层结构或产生电子曝光作用.这些固体微探针还可以通过液体输运方法将高分子材料传递到固体表面,形成纳米量级的单分子层点阵或图形.非固态微探针如聚焦离子束,可以通过聚焦得到小于10nm的束直径,由聚焦离子束溅射刻蚀或化学气体辅助沉积可以直接在各种材料表面形成微纳米结构.聚焦激光束已经广泛应用于传统加工工业,作为切割或焊接工具.高度聚焦的激光束也可以直接剥蚀形成微纳米结构,例如近年来出现的飞秒激光加工技术.利用激光对某些有机化合物的光固化作用也可以直接形成三维立体微纳米结构.只要加工的工具足够小,即使传统机械加工技术也有可能制作微米量级的结构.例如,利用聚焦离子束的微加工能力可以制造尖端小于10Lm的高速钢铣刀.这种微型铣刀可以加工小于100Lm的沟槽或台阶结构.探针工艺与平面工艺的最大区别是,探针工艺只能以顺序方式加工微纳米结构.而平面工艺是以平行方式加工,即大量微结构同时形成.因此平面工艺是一种适合于大生产的工艺.但探针工艺是直接加工材料,而不是像平面工艺那样通过曝光光刻胶间接加工.3纳米级加工的关键技术

(l)测量技术

纳米级测量技术包括纳米级精度的尺寸和位移的测量、纳米级表面形貌的测量.纳米级测量技术主要有两个发展方向:1)光干涉测量技术:可用于长度、位移、表面显微形貌的精确测量.用此原理测量的方法有双频激光干涉测量、光外差干涉测量、X射线干涉测量等.2)扫描探针显微测量技术:主要用于测量表面微观形貌.用此原理的测量方法有扫描隧道显微镜(STM)和原子力显微镜(AFM)等.(5)扫描隧道显微加工技术(sTM).扫描隧道显微加工技术是纳米加工技术中的最新发展,可实现原子、分子的搬迁、去除、增添和排列重组,可实现极限的精加工或原子级的精加工.近年来这方面发展迅速,取得多项重要成果.1990年美国Eigler等人,在低温和超真空环境中,用STM将镍表面吸附的xe(氛)原子逐一搬迁,最终以35个Xe原子排成IBM3个字母,每个字母高snm.Xe原子间最短距离约为Inm,以后他们又实现了原子的搬迁排列.在铂单晶的表面上,将吸附的一氧化碳分子用sTM搬迁排列起来,构成一个身高snm的世界上最小人的图样.此“一氧化碳小人”的分子间距仅为0.snm.将STM用于纳米级光刻加工时,它具有极细的光斑直径,可以达原子级,可得到10nm宽的线条图案.4微型机械和微型机电系统

(l)微型机械.现在微型机械的研究已达到较高水平,已能制造多种微型零件和微型机构.已研制成功的三维微型机械构件有微齿轮、微弹簧、微连杆、微轴承等.微执行器是比较复杂、难度大的微型器件,研制成功的有微阀、微泵、微开关、微电动机等.(2)微型机电系统.MEMS是在微电子工艺基础上发展起来的多学科交叉的前沿研究领域.是纳米加工技术走向实用化,能产生经济效益的主要领域.比如:l)微型机器人是一个非常复杂的机电系统.美国正在研制的无人驾驶飞机仅有蜻蜓大小,并计划进一步缩小成蚊子机器人,用于收集情报和窃听.医用超微型机器人是最有发展前途的应用领域.它可进入人的血管,从主动脉管壁上刮去堆积的脂肪,疏通患脑血栓病人阻塞的血管.日本制定了采用机器人外科医生的计划,并正在开发能在人体血管中穿行、用于发现并杀死癌细胞的超微型机器人.2)微型惯性仪表:惯性仪表是航空、航天、航海中指示方向的导航仪器,由于要求体积小、重量轻、精度高、工作可靠.因此是微型机电系统应用的理想领域.现在国外已有微型加速度几何微型陀螺仪的商品生产,体积和重量都很小,但尚需提高精度.由于MEMs的发展已初具基础,微型器件的发展也已达到一定水平,同时有微电子工业制造集成电路的经验可借鉴,各产业部门又有使用MEMS的要求,因此现在MEMS的发展条件已具备.4.微纳米加工技术发展趋势

微纳米加工技术是一项不断发展中的技术.新技术取代老技术,先进技术取代落后技术是客观发展规律.加工技术本身从来都只是手段,其目的是服务于科学研究或工业产品开发与生产.因此新的科研课题或新的工业产品开发会不断对加工技术提出新的要求.新的加工技术将会不断出现.5.参考文献

6.纳米科技论文 篇六

——基于老师的纳米科技课程

纳米技术,作为将来新产业革命的一门科学技术,现在已经得到了广泛关注。

简介

纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。21 世纪将是纳米技术的时代,随着其制备和改性技术的不断发展,纳米材料在诸多领域将会得到日益广泛的应用,在机械、电子、光学、磁学、化学和生物学领域有着广泛的应用前景。本文主要介绍纳米材料,纳米科技的基本概念,分类以及各种纳米科技在机械领域的应用。阐述纳米技术的发展趋势。

纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学等。

纳米技术(nanotechnology),也称毫微技术,是研究结构尺寸在0.1至100纳米范围内材料的性质和应用的一种技术,即纳米材料。纳米材料是指晶粒尺寸为纳米级(10-9米)的超细材料,它的微粒尺寸大于原子簇,小于通常的微粒,一般为100一102nm。它包括体积分数近似相等的两个部分:一是直径为几个或几十个纳米的粒子;二是粒子间的界面。前者具有长程序的晶状结构,后者是既没有长程序也没有短程序的无序结构。纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。纳米材料的用途很广,主要用途有:医药使用纳米技术能使药品生产过程越来越精细,并在纳米材料的尺度上直接利用原子、分子的排布制造具有特定功能的药品。纳米材料粒子将使药物在人体内的传输更为方便,用数层纳米粒子包裹的智能药物进入人体后可主动搜索并攻击癌细胞或修补损伤组织。使用纳米技术的新型诊断仪器只需检测少量血液,就能通过其中的蛋白质和DNA诊断出各种疾病。家电 用纳米材料制成的纳米材料多功能塑料,具有抗菌、除味、防腐、抗老化、抗紫外线等作用,可用为作电冰箱、空调外壳里的抗菌除味塑料。电子计算机和电子工业 可以从阅读硬盘上读卡机以及存储容量为目前芯片上千倍的纳米材料级存储器芯片都已投入生产。计算机在普遍采用纳米材料后,可以缩小成为“掌上电脑”。环境保护 环境科学领域将出现功能独特的纳米膜。这种膜能够探测到由化学和生物制剂造成的污染,并能够对这些制剂进行过滤,从而消除污染。机械工业 采用纳米材料技术对机械关键零部件进行金属表面纳米粉涂层处理,可以提高机械设备的耐磨性、硬度和使用寿命。

纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。

从迄今为止的研究来看,关于纳米技术分为三种概念:

第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。

第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的“加工”来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。

第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。DNA分子计算机、细胞生物计算机的开发,成为纳米生物技术的重要内容。

纳米科技的发展

其发展历史可分为下面几个阶段。

纳米技术的灵感,来自于已故物理学家理查德·费曼1959年所作的一次题为《在底部还有很大空间》的演讲。这位当时在加州理工大学任教的教授向同事们提出了一个新的想法。从石器时代开始,人类从磨尖箭头到光刻芯片的所有技术,都与一次性地削去或者融合数以亿计的原子以便把物质做成有用的形态有关。费曼质问道,为什么我们不可以从另外一个角度出发,从单个的分子甚至原子开始进行组装,以达到我们的要求?他说:“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”

70年代,科学家开始从不同角度提出有关纳米科技的构想,1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工;

1982年,科学家发明研究纳米的重要工具——扫描隧道显微镜,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用;扫描隧道显微镜发明后,诞生了一门以0.1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。

1990年,纳米技术有了关键突破。IBM公司阿尔马登研究中心的科学家成功地对单个的原子进行了重排,纳米技术取得一项关键突破。他们使用一种称为扫描探针的设备慢慢地把35个原子移动到各自的位置,组成了IBM三个字母。这证明费曼是正确的,二个字母加起来还没有3个纳米长。不久,科学家不仅能够操纵单个的原子,而且还能够“喷涂原子”。使用分子束外延长生长技术,科学家们学会了制造极薄的特殊晶体薄膜的方法,每次只造出一层分子。目前,制造计算机硬盘读写头使用的就是这项技术。著名物理学家、诺贝尔奖获得者理查德· 费曼预言,人类可以用小的机器制作更小的机器,最后将变成根据人类意愿,逐个地排列原子,制造产品,这是关于纳米技术最早的梦想。

1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生;

1991年,碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是钢的10倍,成为纳米技术研究的热点,诺贝尔化学奖得主斯莫利教授认为,纳米碳管将是未来最佳纤维的首选材料,也将被广泛用于超微导线、超微开关以及纳米级电子线路等;

1993年,继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文、1990年美国国际商用机器公司在镍表面用36个氙原子排出“IBM”。

1997年,美国科学家首次成功地用单电子移动单电子,利用这种技术可望在20年后研制成功速度和存贮容量比现在提高成千上万倍的量子计算机;

1999年,巴西和美国科学家在进行纳米碳管实验时发明了世界上最小的“秤”,它能够称量十亿分之一克的物体,即相当于一个病毒的重量;此后不久,德国科学家研制出能称量单个原子重量的秤,打破了美国和巴西科学家联合创造的纪录;

1999年,纳米技术逐步走向市场,全年基于纳米产品的营业额达到500亿美元; 我国纳米技术的研究始于80年代,纳米材料研究起步较早,其次是纳米材料和结构的表征,纳米器件以及纳米药物。在国家科技部、中国科学院、国家自然基金委员会和国家教育部等部门的大力支持下,起动了国家级重大项目10多项,地方政府和企业家的介入,纳米实用化技术和纳米材料应用技术得到了有效发展。目前已有几百家公司参与了纳米材料技术的研发,已有一些产品开始进入市场。过去的10多年,在纳米材料的制造技术取得了长足进步,在国际上有一定地位。

近年来,一些国家纷纷制定相关战略或者计划,投入巨资抢占纳米技术战略高地。日本设立纳米材料研究中心,把纳米技术列入新5年科技基本计划的研发重点;德国专门建立纳米技术研究网;美国将纳米计划视为下一次工业革命的核心,美国政府部门将纳米科技基础研究方面的投资从1997年的1.16亿美元增加到2001年的4.97亿美元。中国也将纳米科技列为中国的“973计划”,其间涌出了像“安然纳米”等一系列以纳米科技为代表的高科技企业。

纳米科技的应用

纳米科技的利用非常广泛,尤其在机械方面的应用,给机械的发展输入了心的血液!纳米技术在微机械领域中的应用及其广泛。随着纳米技术应用途径的不断拓宽,微机械的开发在全世界方兴未艾。例如,进入人体的医疗机械和管道自动检测装置所 需的微型齿轮、电机、传感器和控制电路 等。制造这些具有特定功能的纳米产品,其 技术路线可分为两种:一是通过微加工和 固态技术,不断将产品微型化;二是以原 子、分子为基本单元,根据人们的意愿进行 设计和组装,从而构筑成具有特定功能的 产品。纳米技术在微机械领域中的应用主要分为两种:1;采用微加工技术制造纳米机械(1)微细加工。(2)微型机器人。(3)微型电机。;2 采用自组装技术制造纳米机械(1)生物器件。(2)纳米分子电动机。

纳米技术在包装机械领域中的应用也进入关键时期。采用纳米材科技术对包装机关键零部 件(如轴承、齿轮、弹簧等)进行金属表面纳米粉涂层处理,可以提高设备的耐磨性、硬度和寿命。碳纳米管还具有较高的机械强度和较高的热导率。由于具有非常大的长度—直径比,可以制造出任何复杂形状的零件,是复合材料理想的增强纤维。目前,用价格低廉的纳米塑料制成的齿轮、陶瓷轴承、纳米陶瓷蚊辊、电雕辊等印刷包装机械零件已走进企业,开始代替金属材料。现代胶印机上应用着很多传感器.如控制飞达纸堆的自动升降、气泵供气时间检测、合压时间检测、空张检测、墨量控制等。纳米陶瓷具有良好的耐磨性、较高的 强度及较强的韧性可用于制造刀具、包装 和食品机械的密封环、轴承等以提高其耐 磨性和耐蚀性,也可用于制作输送机械和 沸腾干燥床关健部件的表面涂层。

纳米技术在机械行业中的发展前景非常广阔。

(1)机械及汽车工业的滑配原件如:轴承、滑轨上应用纳米陶瓷镀膜能产生超底的磨擦界面,大大减低磨损并能提高负载。

(2)塑胶流道的低粘应用:例如T型模、拉丝模,套筒和热胶道,可有效减少积料碳化的产生几率。

(3)射出成型时发生的粘模、包封短射、镜面雾化及拖痕均具有革命性的改善,尤其是在滑块及顶针上所展现的干式润滑,更是任何金属所无法表现的优异性。

(4)IC封装胶、橡胶及发泡塑料由于具有极高的粘着性,因此必须借助大量脱 模剂来帮助脱模,纳米陶瓷的荷叶效应可减少脱模剂的使用及模具清理时间。

(5)纳米陶瓷的低摩擦、低沾粘特性使塑胶在模具内的流动性大幅提升,特别是高精度模具例如薄光板、塑胶镜片、汽车聚 光灯罩等模具应用后对产品的不良率上均有明显的改善。

纳米技术的高速发展对机械行业产生了巨大的影响,首先是纳米材料近10 年的迅速发展,为机械行业从宏观向微观制造发展提供了可能。目前纳米粉(即纳米颗粒)、纳米复合材料、纳米结构材料体系,创造了很多新材料,为电子、生物、能源、信息新产品的开发,提供了可能,这就给机械行业带来了广泛的市场前景,需要从事制造的科学工作者去研究如何发挥新材料的特性,根据市场需求,设计制造出新产品。特别是我国纳米材料的研究处于国际先进水平,在某些领域还处于前列,这更为我国在新的产业革命竞争中提供了制胜的机遇。其次,纳米技术还对制造方法,工艺与手段带来巨大冲击。以往的制造模式 是从大往小去做产品,以去除工艺为主。现在,有可能从小往大去做产品,可以从纳米尺度往上增加去做零件或产品。以往是以硬物质为主,现在软物质也占重要地位。软物质就是以微弱作用力就可改变其形状与特性的物质。随着纳米技术在各个领域的深入研究,将会有更多更新的制造方法工艺和手段的出现。

“展望”纳米新生活:我认为最具有发展前景的是纳米机器人。在发生战争是具有特殊使命的纳米间谍被散播到敌方或竞争对手中去,它们的任务是侦察敌情和搜集情报。当然,在治病时纳米机器人也会大显身手。这些机器人比血红细胞还要小,它们各司其职:有的负责监视病情,有的负责向特定的部位传输药物,有的则负责清除病毒、血栓、垃圾等有害物质。在制造某些精密的东西时,纳米机器人也会贡献自己的一份力量,把一切的不可能变为现实。

结束语

7.纳米电子/纳米光电子技术研究 篇七

关键词:纳米技术,纳米光电子,技术,研究

在以往的微电子技术中, 随着科学技术的不断进步与发展, 通过更多的理论研究研发出了新的领域。纳米技术将真空电子器件具有的电子输运的基本原理和微电子器件的相关技术相互融合, 同时融合了微细加工技术以及一些比较特殊的工艺, 最终成为了如今的新型技术。

一、纳米光电子的相关概念

如今的光电子技术由光电子集成逐渐向新兴的纳米光技术方向逐渐发展。并且纳米光电子在传统的半导体材料的基础上不断演变发展而来, 成为了新兴纳米电子学未来发展的新的趋势。纳米光电子主要是研究在所有纳米结构中各个电子以及光子存在的相互作用。将光电子以及纳米电子的相关技术相互结合共同组成了纳米光电子技术。传统的半导体硅并不具备发光的基本功能, 但是引进了纳米技术以后, 能够发出一种非常耀眼的光, 同时开设了一门新兴的纳米光电子。

二、纳米光电子技术的发展

新时代的纳米电子技术能够快速的制作各种单电子存储, 同时还可以制作一些非常精巧完美的微电子机械以及电机械系统。随着现代纳米技术的不断进步与发展, 集成电路也将成为一种比较先进的半导体器件, 并成为了未来发展的新方向。

如今的信息社会对于所有使用的集成电路具有的集成度的各种要求也逐渐增高, 这就导致人们不断突破尺寸具有的极限途径。在新的社会形势下, 纳米电子以及纳米电子光技术应运而生, 并成为了半导体科学以及各种工程研究的重要领先技术。光电子技术属于电子技术以及光电子技术的结合体。

二十世纪以后, 光电子技术逐渐发展, 并取得了一定的进步。将光电子技术以及纳米技术巧妙的相互融合最终形成了纳米光电子技术, 成为了未来电子技术不断发展的新领域。如今的二十一世纪, 也为光电子技术以及纳米光电子技术发展提供了新的机遇。

三、纳米光电子各个器件的具体分类

3.1 纳米光电技术探测器

如今的纳米光电技术探测器主要是利用纳米光电子的基本材料进而不断发展而来。这种微型的探测器主要由纳米丝以及各种纳米棒共同组成, 例如, 超高灵敏度红外探测器等。

3.2纳米发光器件

引进纳米光电子的相关技术并利用纳米光的基本材料, 利用纳米光刻技术, 最终研制出新兴的纳米发光器件。主要有利用纳米粒子等材料制作完成的一种硅发光二极管, 使用各种纳米尺寸制成的可以实现调谐的纳米发光二极管。

3.3纳米光子器件

纳米量子机构以及量子电路等各种集成技术都蕴含着非常深奥的研究内容。例如, 利用三维光电子自身的晶体天线, 还可以利用光子晶体技术二极管, 以及无损耗产生的光电波, 光开关等, 这些都属于先进的纳米光子器件, 在量子保密通信中的各种重要的关键器件, 都是利用纳米光子器件完成的。

3.4纳米显示器

纳米显示器主要包括碳纳米管显示器, 还有一种碳纳米发生显示器等。如今的纳米电子学还有纳米光子学以及先进的磁学微电子, 自身具有的极限线宽都是70nm, 这种先进的技术通过几十年的研究就完成了。为了能够在最短的时间内完成新兴的器件, 使用单原子具体的操作方式成为重要的研究方向, 并且, 利用这种先进的技术能够制成计算机, 并且能够有效的提升计算机自身的计算能力, 甚至可以提高上千倍, 但是需要使用的功率只有现在计算机的使用功率的百万分之一。如果使用先进的纳米磁学, 计算机具体的信息存储量甚至能够达到上千倍。使用纳米光电子能够提升通信带宽的上百倍。

另外, 除了以上介绍的各种器件, 还可以从广义上分析, 纳米器件还有分子电子器件, 这种器件无论是在材料上还是在使用的原理上都与上述的半导体量子器件存在较大的差异。

四、结束语

综上所述, 以往的各种科学技术为二十一世纪的高科技奠定了良好的基础, 并提供了有效的理论依据。虽然, 如今的纳米电子技术以及纳米光电子技术仍然处于初级发展阶段, 但是, 随着各种纳米技术的不断发展, 以往传统的集成技术早就已经无法适应时代发展的新需求, 这就需要纳米电子技术以及纳米光电子技术的不断发展, 不断满足社会时代发展变化的新的需求, 在新的社会形势下, 这种新兴的技术也终将会逐渐普及并改善人们的生产生活。

参考文献

[2]郭维康.固体纳米电子器件和分子器件.微纳电子技术, 2010;39 (4) :1一8.

[3]程开富.纳米电子l纳米光电子技术.飞通光电子技术, 2012;2 (2) :76一580.

8.纳米制造论文 篇八

摘要 近几年,Au/SiO2纳米材料一直被看作成尺寸制约性的代表材料,它不仅在生物学传感器方面有广泛应用,在非线性光学方面也有很大的应用价值。研究纳米点的制备技术在纳米电子和纳米机械器件制备方面有重要意义。本文旨在阐述了纳米点的发展应用及自组装生成Au纳米点。

关键词 纳米点 应用

近几年,射频磁控溅射制备金属纳米颗粒复合膜是许多方法中最好方法之一,可以在可控条件下和低温环境中获得均匀的覆盖薄膜,可以将金属颗粒均匀分散到半导体衬底中,这样就比其它方法更能有效的控制金属含量,而使复合膜中的金属量达到很高的值。也可以用生长的Au/SiO2一维纳米材料作为模板,基于VLS生长机制催化生成理想的纳米点或者纳米线。这种用模板催化方式生长纳米线或者纳米点的工艺较其它方法更简单。利用模板合成纳米结构的方法给我们创造了更好的条件来控制复合纳米的性质,进而在纳米机械器件和纳米电子制备方面有重要意义。本文浅述了纳米点的可能的发展应用前景并初探了自组装生成Au纳米点工艺。

一、复合材料纳米点的发展应用前景

納米点,也称半导体量子点(纳米微晶),是一种比较小的纳米微粒。纳米微晶的基本性质基于本身量子点的量子效应,当微粒尺寸进入到纳米级别时,将会引起宏观量子隧道效应、尺寸效应和表面效应,进而展现出许许多多不同于宏观材料的物理化学性质,在生命科学、量子器件、医药等方面具有非常好的应用前景,同时将对电子信息技术、生命科学的发展产生深远的影响。

(一)在生命科学中的应用

在生命科学领域纳米微晶的主要应用前景就是在生物科学中作荧光探针,传统的荧光探针激光光谱窄,且不连续,而纳米微晶的激光光谱宽且连续,颜色可调,而且量子点的光化学稳定性高,不易分解。同时纳米点很有可能使筛选药物成为可能。将不同光谱的纳米点与不同靶分子的药物相结合,就可以一次性检测药物分子。纳米点还可以应用在医学成像方面。因为可见光只能穿透厚度为毫米级的组织,而红外光线则可以穿透厚度为厘米级的组织,因此我们可将在红外区发光的纳米点标记到要检测组织的组分上,同时用红外光激发,通过成像的方法来检测组织内部的情况,从而达到诊断的目的。纳米点在生物芯片发展历程中也可以大显身手。例如在研究蛋白质与蛋白质相互作用的生物芯片中,尽管生物芯片上有非常非常多的蛋白质,可是由于受传统荧光探针性能的限制,通常一次只能将一种或几种标记了荧光探针的蛋白质与生物芯片相作用,从而进行检测。要研究多个蛋白质就必须重复操作,降低了效率。如果我们在芯片的应用中引入了纳米点情况则可能不同,基本可以做到“很多”对“很多”。纳米微晶还可以应用于溶液矩阵,即将不同的纳米点或纳米点微粒标记在每一种生物分子上,并置于溶液中,形成所谓溶液矩阵。进行标记了的生物分子在溶液状态下很容易保持生物分子的正常三维构象,从而具备了正常的生物功能,这是其优于平面芯片的地方。

(二)半导体纳米点的器件应用

纳米点的生长工艺及其性质成为当今纳米材料的研究热点,目前最常用的制备纳米点的方法是自组织生长方式。纳米点中较低的态密度和能级的尖锐化,导致了纳米点的结构对其中的载流子产生三维量子限制效应,从而使其光学性能和电学性能发生了变化,而纳米点在正入射情况下才能发生明显的带内跃迁。这些性质都使纳米点在各种光电器件、单电子器件以及其他器件方面具有极为广阔的应用前景。

纳米点复合材料及纳米点激光器是半导体技术领域中的一个前沿性课题。纳米点复合材料基于它的量子隧穿、尺寸效应、以及非线性光学效应等是新一代固态量子器件的基础,在未来的光电子学、新一代超大规模集成电路和纳米电子学等方面有着极其重要的应用前景。我们采用自组装方法直接生长纳米点复合材料,可将纳米点的横向尺寸缩小到几十纳米之内,接近纵向尺寸,并可获得无位借、无损伤的纳米点,现己成为纳米点复合材料制备技术的重要手段之一,缺点就是纳米点的均匀性不好控制。以纳米点结构为有源区的纳米点激光器理论上具有更高的光增益、更宽的调制带宽、更高的特征温度和更低的阂值电流密度等优点,将使激光器件的性能有一个质的飞跃,对未来半导体激光器件市场的发展方向产生巨大的影响。近几年来,日本、欧洲、美国等国家都开展了自组装纳米点材料和纳米点激光器件的研究,取得了很大进展。

当然在除了采用面发射激光器、纳米点材料研制边发射外,在其他的光电子器件上纳米点也得到了非常非常广泛的应用。

二、自组装法生长Au纳米点工艺

半导体纳米点的生长工艺及其性质成为当今纳米材料的研究热点,目前比较流行的纳米点制备工艺一般有三种:一是在超晶格结构或量子阱的基础上用高分辨电子束曝光直接刻蚀的工艺,量子点的分布、形状可控,但容易损伤而引入玷污和缺陷;二是用溶胶凝胶的化学方法制备半导体纳米点,但杂质很多,工艺仍不成熟;三是利用晶体生长的S-K模式进行应变原位自组装生长纳米点,也是最成熟、简便的方法。

9.纳米分析技术 篇九

摘 要 介绍了纳米材料的安全性,重点对纳米食品的3种分析检测手段(成像、分离和表征

技术)进行了较为详细的综述,并对该领域的工作进行了展望。

关键词 纳米材料,纳米食品,分析手段

进入21世纪以来,纳米技术已经在材料、化工、生物、医药、食品、通信、能源等众多

领域展现出广阔的应用前景,并对各学科领域的发展产生了深远的影响。在食品工业中真正

运用了纳米技术的产品只占消费品的一小部分,主要包括纳米包装材料、纳米营养物和纳米

添加剂等[1]。目前,全球有200多家公司致力于纳米技术在食品工业中的应用。根据著名咨询

公司HelmutKaiser一项调查显示,仅在食品饮料包装行业, 2004年纳米产品的全球销售额就

高达8·6亿美元,而在2002年,纳米产品的全球销售额只有1·5亿美元[2]。

纳米食品,也称纳米尺度(10-9-10-7m)的食品,是以人类可食用的天然物、合成物和生物生

成物等原料采用纳米技术加工制成的,并根据人体健康进行不同配制的食品。由于纳米粒子

具有独特的表面效应和量子尺寸效应,研究发现,食品和营养素经过纳米化以后,亦表现出更

高生物活性,甚至显现出常态物质没有的活性。所以纳米食品除了包括普通食品的功能外还

有以下功能:预防疾病、调节机体、康复病体的功能;降低保健食品的毒副作用功能;提高人体

对矿质元素的吸收利用率和杀菌除味等。新兴纳米技术下生产的食品的安全性一直受到消费

者和研究人员的高度关注。本文就纳米食品的分析检测方法进行综述,以期为纳米食品的发

展提供技术支持。纳米材料的安全性

纳米材料是将材料的尺度在空间进行约束,并到一定的临界尺寸后,材料的结构和性质

也随之发生从宏观到微观的转变。粒径的减小也是引起纳米材料的安全性问题的主要原因。

Frampton通过对大气中尘埃粒子的研究发现,当大气中的尘埃粒子粒径<10μm时,尘埃粒子

对肺部有明显的毒性。材料对生物体的毒性强烈地依赖于材料的尺寸[3]。

在一般情况下,纳米材料不会表现出明显的毒性。但纳米材料的潜在毒性、在生物体内的富集及其对食物链的影响,人们却自知甚少,研究者称这种毒性为“生态毒性”。Brunner等

研究发现,不同类型的纳米粒子能够透过细胞膜,导致细胞内自由基含量的增加,最终造成生

物体的毒性[4-6];同时,纳米粒子还会在生物体的组织中富集。Chen研究发现, SiO2纳米颗粒会

导致核质蛋白的团聚,从而损害细胞核的功能[6]。富勒烯和TiO2纳米颗粒会对蚤、大口鲈鱼

和其他水生动物产生一定的毒性[7]。而纳米材料有时也会扮演降低污染物毒性的角色: Zhang

通过对鲤鱼的活体实验发现,TiO2纳米颗粒会大量富集游离的镉离子[8];纳米银也显示出较强的抗菌能力,研究者已将这种抗菌能力应用到人们健康保护和水生环境治理中[9]。

纳米食品中采用的纳米技术是一种全新的技术,如同转基因食品,其安全性和接受程度

受到消费者的质疑。纳米食品在活性、吸收利用率等增加的同时还应该考虑到有害物质的吸

收、渗透等问题。一方面粒径减小使得食品原料本身具有的毒素,农残和重金属成分更易被

吸收,加剧了纳米化后的安全隐患。另外,纳米食品中营养成分纳米粒子可以通过传统吸收途

径之外的其他途径进入人体,并穿过生物膜屏障,使人体的防御能力降低,引起机体功能紊乱,出现健康问题。

维蒙特大学的消费经济学家科洛丁斯基在佛罗达里达州奥兰多市的食品安全大会上说,〔〕纳米技术是一种新的基因工程10。美国消费联盟的资深科研人员汉森称,不要因为某种物质

在自然尺寸状态下是安全的,就以为处理成纳米尺寸后也一定是安全的,所有科学家都赞同,物质的大小也是安全重要因素之一。例如,大量接触含有纳米碳(如富勒烯)的食品或化妆品,会造成与石棉一样的危害[10]。美国消费者保护组织称,纳米食品已经悄悄打入市场,促请美国

当局强制厂商标明食品是由纳米技术制造的。因此,有必要借助于先进的分析仪器,深入了解纳米食品在复杂体系中的行为及其对人体和环境的潜在影响。纳米食品分析检测技术

纳米材料的理化性质包括尺寸大小、尺寸分布、表面特征、形状、溶解度、活性、团聚状态和化学组成等诸多信息。为了更多地获得这些信息,应用多种分析手段来检测和表征纳米材料成为一种必然。将分析手段分为成像、分离和表征3种技术。

2·1 样品前处理

样品处理是整个分析过程中最薄弱环节和时间决定步骤,也是误差的主要来源。而环境因素对纳米材料的结构和组成等性质的影响很大。因此,前处理或消化后“纳米食品”得到的结果常常不同于原位检测的结果[11]。避免或减少样品的前处理,可以有效地减少人为干扰因素。如果不得不对样品进行前处理,仔细地记录前处理的每一环节对“追踪”人为干扰因素至关重要。同时,一些新的样品前处理技术应用到纳米材料的分析检测技术,尤其是涉及到成像邻域: Paunov采用凝胶捕获技术结合扫描电镜(SEM)对乳液进行了成像[12];Bickmore采用固定技术结合原子力显微镜(AFM)对水溶液中的黏土矿物质进行了成像[13];Lonsdale应用高压冷冻和冷冻基质技术,借助于透射电镜(TEM)对稀有的糊粉原生质体进行了成像,这种技术保留了细胞结构的完好和蛋白质的抗原性,优于传统的化学固定和去水技术[14];Wang

采用低温透射电镜,对掺杂Fe的TiO2纳米颗粒进行了“原位成像”[15]。当然,这些新的样品前处理技术也有望在纳米食品的分析检测技术中得到广泛的应用。

2·2 成像技术

纳米材料的尺寸都在可见光的衍射极限以下,普通光学显微镜无法观测纳米材料。目前,电子显微和扫描探针显微技术是运用最多的成像技术。依赖于这些技术,可以得到亚纳米的分辨率。利用扫描电镜(SEM)、透射电镜(TEM)和原子力显微镜(AFM)3种常见的成像技术,人们可以得到纳米材料的许多性质,诸如团聚的状态、分散、吸附、尺寸、结构和形状。

Parris通过SEM观测到包埋香精油的蛋白纳米微球的形态,更深入了解这种香精油的抗氧化性。TEM可以对各种纳米粒子进行成像,可观测到不同形状的纳米管状牛乳蛋白,制备出嵌入活性酶的多肽自组装材料。利用TEM,研究者还可以控制最终合成的纳米β-环糊精的形态和尺寸分布。

对于TEM和SEM而言,必须在真空条件下操作,因此大大阻碍了这2种技术的推广。样品必须进行去水、低温固定或嵌入等前处理;而前处理的引入,不可避免地改变了样品的原有性质。如果在全液体状态下成像,就需要应用AFM技术。AFM属于扫描探针显微镜的一类,振荡的悬臂掠过样品的表面,在针尖和表面之间,可以检测到<10-12N的静电力。基于以上原理, AFM可以提供3D表面形态(大约0·5 nm的高度分辨率)。AFM的主要优势在于提供 湿的或潮湿状态下的样品的亚纳米结构。如果样品是液体状态,样品就很难固定在基质上,甚至到处流动,有时甚至吸附在振荡的悬臂上。以上会导致“涂污效应”的产生和振荡悬臂性质的改变。人们采用非接触式扫描,来减小“涂污效应”。AFM可以用于表征蛋白、多糖和脂质体的结构,AFM很早就用于成像纳米管状α-乳清蛋白的分子结构,还可以研究脂质体包埋体系的形态、尺寸、稳定性和动力学过程。

以上3种成像技术均属于损伤性技术,因此同一样品不能多次分析。电子显微技术的另一个缺点是“充电效应”,这种效应源于组织成像时,由于电子辐射导致静态电场的累积。如果将样品的表面包裹导电性材料,可以消除充电效应,但是同时会导致部分信息的缺失。此外, 3种成像技术普遍存在成本高、耗时等缺点,因此很难成为最常用的分析手段。

2·3 分离技术

常见的分离技术如高效液相色谱(HPLC)、场流分级分离(FFF)、毛细管电泳(CE)、水动力色谱(HDC)、凝胶电泳(gel electrophoresis, GE),借助于传统的检测器,这些分离技术不仅能够快速、灵敏、无损伤地定性检测各种环境中的纳米粒子(包括纳米食品),而且能对其定量。其缺点在于,由于溶剂的引入和不同介质的相互作用,使样品原始环境发生改变,最终导致分析结果的偏差。将各种分离技术的灵敏度、简单程度、分析时间、成本消耗和应用程度进行对比(表1所示),不难看出HPLC和FFF是两类优势明显的分离技术。

表1 三种分析检测手段的对比1)

简称灵敏度简单程度分析时间成本消耗应用程度

分离技术HPLC○√○√√

FFF○√√√○

HDC○√√√×

CE×√○√○

GE○√×√○

成像技术TEM√√××√

SEM√√××○

AFM○√○×○

表征技术MALDI-MS√○××√

ESI-MS√√√○○

DESI-MS√○√××

IM-MS√○√×○

PCS○√○√√

AU○○××○

NMR×○○×○

XRD√×××○

SAXS○××××

注: 1)√,良好;○,中等;×,较差。

食品邻域内,用于分离纳米材料的HPLC主要有2种: SEC(尺寸排阻色谱)和IEC(离

子交换色谱)。众所周知,尺寸排阻色谱是尺寸分离常用的技术。这种技术已经应用到量子点、碳纳米管和聚苯乙烯纳米颗粒的尺寸表征。尽管有着良好的分离效率,但尺寸排阻色谱存在以下缺点:溶剂与流动相之间存在强烈的相互作用,测定的粒径分布较窄,不能同时分离纳 米粒子和其团聚物。借助于紫外-可见光检测器(UV-Vis)或独特的荧光检测器(FL), SEC和IEC均可监控纳米蛋白材料的洗脱情况。与光子相关光谱(PCS)相结合, SEC可以检测纳米脂质体包埋体系,并给出详细、准确的尺寸分布。SEC还可以与示差折光检测器(RI)或多角度光散射(MALS)联用表征多糖。高灵敏的检测器,如电喷雾质谱(ESI-MS)和基质辅助激光解吸附-飞行时间质谱(MALDI-TOF-MS)与SEC联用后,可以得到多糖的组成、尺寸和重复单元次序等重要信息。

20世纪60年代诞生的场流分级分离技术(FFF),现已在理论、仪器技术和实际应用方面都有了较大的发展,尤其在分离复杂的大分子物质方面,驱动技术的基本要素。与色谱一样,FFF是一种洗脱技术;与场驱动技术一样,需要一外加场或梯度。在场流分级分离中,分离是在外加场的诱导下与流体联合作用进行的。场流分级分离技术是一个分离技术的大家族,它包括多种分支技术。根据引入的外加场的不同,主要有沉淀场流分级分离、流动场流分级分 离、热力场、流分级分离、电力场流分级分离等。同高灵敏的检测技术(诸如ICP-MS和多

角度激光散射)结合,FFF已经成功应用到地球化学和天然胶体研究,同样也应用到功能化纳米粒子的行为研究。应用范围从新鲜水样和海水中的胶体物质,到土壤悬浮物的尺寸分离。Peng利用双电场FFF技术分离了不同尺寸的纳米管;此外,人们利用FFF技术分析了诸多纳米粒子,如SiO2、金属、金属氧化物和炭黑等。FFF的主要缺点:积聚壁的相互作用,通道内的连续再平衡,某些情况下的样品前处理,平衡过程中的样品补加和通道内样品团聚的可能性增大。

与SEC不同,毛细管电泳技术,不存在固定相间的相互作用。但由于分离不单单建立在尺寸的基础上,数据干扰更加复杂。水动力色谱(HDC)利用无孔刚性固体颗粒来填充其分离柱,让含有被测乳液的淋洗液在高压下通过床层,由于水动力效应,使粒径不同的粒子流出速度不同,从而实现了对聚合物乳液或胶体悬浮液中的粒子分级或分离。同SEC相比,测定的粒径分布很宽,涵盖了5-1 200 nm的范围。HDC的主要缺点就是峰的分辨率较差。HDC同最常用的UV-Vis检测相结合,已经应用到(荧光)纳米材料、胶体悬浮液和生物大分子的尺寸分离。此外,这种技术同DLS相结合,应用到脂质纳米胶囊的尺寸分离。

2·4 表征技术

光子相关光谱(PCS)、质谱(MS)、分析性超滤(AU)、核磁共振(NMR)、X射线衍射(XRD)和小角度X射线散射(SAXS)是几种常见的表征技术。在表1 中不难看出:MS结合PCS后,几乎可以满足所有的分析要求。

2·4 表征技术

光子相关光谱(PCS)、质谱(MS)、分析性超滤颗粒粒径分布的标准方法,可以提供快速的原位和实时检测[24]。PCS,是一种无损检测技术,可以快速、准确提供纳米脂质体或蛋白包埋体尺寸大小。PCS还可以提供纳米多糖包埋体系的尺寸大小及其分布和稳定性表等信息。借助于这项技术,通过研究纳米壳聚糖包埋体系,人们可以改善纳米保健或功能食品效和提高其安全性。用PCS测颗粒的大小时,随着悬浮液颗粒浓度的增大,除了发生重散射外,颗粒之间还会因为互相碰撞而聚集在一起,形成团聚颗粒,影响测试结果。所得颗粒大小只是一定条件状态下相对值,并非颗粒的真实值。只有辅以其他表征手段,才能确定颗粒的实际大小和分布状况。

4种质谱技术-电喷雾质谱(ESI-MS)、基质辅助激光解吸附质谱(MALDI-MS)、解吸电喷雾质谱(DE-SI-MS)和离子迁移质谱(IMS-MS)均已应用到纳米材料的表征中。分析检测固体和液体纳米材料,常用2种软电离方式-电喷雾(ESI)和基质辅助激光解吸附(MALDI)。ICP电离源可以用于纳米食品的金属元素分析,与MS技术结合后,样品可以直接注入离子源中,再与HPLC等技术联用后,可用于元素的价态分析。FFF-ICP-MS作为一种交叉技术,已经应用到样品的尺寸分离及定量分析,这种分析检测最大限度地保留了样品的原始状态。核磁振(NMR)技术,能够提供固体或悬浮状纳米样品的动态和三维结构信息。Carter利用NMR

技术表征了空气和水中的硅纳米颗粒。扩散NMR技术可以有效地表征胶体物质的尺寸和相互作用。Lead利用脉冲梯度场NMR技术测定了腐殖酸的扩散系数。X射线光谱分为X射线光电子光谱(XPS)、X射线荧光光谱(XRF)、X射线吸收光谱(XAS)、X射线散射光谱(XRD)。小角度X射线散射(SAXS)技术,可用于固体或液体纳米材料的结构表征。对单一分散体系而言, SAXS可以提供材料的尺寸、形状和结构信息;而对多分散体系而言, SAXS只能提供尺寸 的可能性分布信息。

2·5 离心和过滤等其他技术

离心和过滤技术可以用于纳米材料的制备和分离,其优点在于低成本和高效。超离心

技术能够提供最大可达1×106g的相对离心力,从而可以对胶体粒子进行沉降分离和分析,现已广泛地用于蛋白质分子的分离与分析。传统的膜过滤可以分离尺寸范围在0·2-1μm的颗粒,滤又称微孔过滤,膜的平均孔径为0·05-14μm,能阻挡住悬浮物、细菌、部分病毒及胶体的透过。超滤也是一种加压膜分离技术,膜的平均孔径为1-10 nm,用于分离大分子溶质。纳滤作为一项新型的膜分离技术,介于反渗透和超滤之间的压力驱动膜分离过程,纳滤膜的孔径围在几个纳米左右纳滤技术主要应用于水的软化、净化以及分子质量在102的物质分离、分级和浓缩、脱色和去异味等。新兴的错流过滤和传统过滤技术的差别在于:传统方式是一种静态过滤,悬浮液和垂直滤层直接接触,这通常被认为是“死亡”过滤,在这个过程中无法移动越积越厚的滤层,导致滤层逐渐堵塞。而在错流过滤中,悬浮液在滤柱的孔道中做高速的循环运动,悬浮液以从过滤膜片表面切过的方式,通过膜片和多孔的基体作为滤液排出,由孔道中的高速流动引起的湍流不断的冲洗膜片表面,从而防止了堵塞。错流过滤已经成为分离胶体和颗粒的标准方法,其效果已经通过AFM技术得到了验证。利用错流过滤技术荧光分析检测湖水、河水和海水中胶体,已有相关报道。Sung利用电场辅助的错流过滤技术,成功分离了多 种纳米粒子。先进的离心和过滤技术也有望在纳米食品的分析检测技术中得到广泛的应用。3 展望

由于纳米材料拥有众多优良性能,越来越多的纳米食品将走入百姓的生活。纳米材料的潜在毒性及其对食物链的影响使人们有必要认识纳米材料在复杂体系中的行为。为了获得这些信息,人们采用了多种技术分析和表征纳米食品。将3种分析手段———成像、分离和表征技术进行对比,不难发现对纳米食品特殊地前处理,利用HPLC或FFF技术将纳米材料分离开,再利用MS结合PCS的表征技术,就可以得到纳米食品中纳米材料的理化性质的基本全貌了。一种理想的、可用于分析和表征“纳米食品”的分析仪器必须满足以下条件:能同时检测纳米材料的物理和化学特性;能实时、快速检测纳米食品。但目前还没有一种仪器能够满足理想仪器所具有的所有条件,现有的分析仪器都存在以下或多或少的不足:(1)需要对样品进行前处理,增添了人为因素;(2)有损检测,样品只能分析一次;(3)只能提供材料的某些特征信息;(4)不能分析非均一相的样品。因此,这些关键性技术都有待于研究人员去突破和解决。参考文献

[1] 孙勇,李华佳,辛志宏,等·纳米食品的活性与安全性

研究[J].食品科学, 2006, 27(12): 936-939.[2] 曾晓雄·纳米技术在食品工业中的应用研究进展[J].湖南农业大学学报(自然科学版), 2007, 33(1): 90-

95.[3] FramptonMW, StewartJC, OberdorsterG, etal·Inhala-

tion of ultrafine particles alters blood leukocyte expression

of adhesionmolecules in humans [J].EnvironHealth Per-

spect, 2006, 114: 51-58.[4] BrunnerT J, W ick P, ManserP, etal·In vitro cytotoxici-

ty of oxide nanoparticles: Comparison to asbestos, silica,and the effect ofparticle solubility [J].Environ SciTech-

no,l 2006, 40: 4 374-4 381.[5] HardmanR·A toxicologic review ofquantum dots: Toxicity

depends on physicochemical and environmental factors

[J].EnvironHealth Perspect, 2006, 114: 165-172.[6] ChenM, vonMikecz A·Formation of nucleoplasmic pro-tein aggregates impairs nuclear function in response to SiO2 nanoparticles [J].Exp CellRes, 2005, 305: 51-62.[7] Lovern S B, KlaperR·Daphniamagnamortalitywhen ex-posed to titanium dioxide and fullerene(C-60)nanopar-ticles [ J].Environ Toxicol Chem, 2006, 25: 1 132-137.[8] Zhang Xuezh,i Sun Hongwen, Zhang Zhiyan, et al·En-hanced bioaccumulation ofcadmium in carp in the presence of titanium dioxide nanoparticles [ J].Chemosphere, 2007, 67: 160-166.[9] Lyon D Y, Adams L K, Falkner J C, et al·Antibacterial activity of fullerene water suspensions: Effects of prepara-tionmethod and particle size [ J].Environ Sci Technol· 2006, 40: 4 360-4 366.[10] http: //news·hexun·com /2008-08-01/107839942.ht-m.l

[11] Burleson D J, DriessenM D, Penn R L·On the charac-terization of environmental nanoparticles [ J].J Environ SciHealthA, 2004, 39: 2 707-2 753.[12] Paunov V N, Cayre O J, Noble P F, et al·Emulsions stabilised by food colloid particles: Role of particle ad-sorption and wettability at the liquid interface [ J].J

Colloid Interface Sc,i 2007, 312: 381-389.[13] Bickmore B R, HochellaM F, Bosbach D, et al·Meth-ods forperforming atomic forcemicroscopy imaging of clay minerals in aqueous solutions [ J].Clays Clay Miner· 1999, 47: 573-581.[14] Lonsdale J E, McDonald K L, JonesR L·High pressure freezing and freeze substitution reveal new aspects of fine structure andmaintain protein antigenicity in barley aleu-rone cells [J].Plant J, 1999, 17: 221-229·

10.纳米材料论文 篇十

材料化学0911 0920213110 魏正宇

摘要:纳米材料是指构成材料的颗粒粒度都在纳米级,或者是含有一定比例的纳米级颗粒的材料。纳米材料的优点有表面活性增大,还会有量子尺寸效应等。本文通过对纳米材料的特殊性质以及光纤通信,纳米半导体的光催化特性上的重要 的作用进行了描述同时也介绍了多种制备纳米材料的方法。

一.纳米材料概述

纳米材料是近几年材料科学中最富有活力,研究内涵十分丰富的研究热点之一。“纳米”是一个尺寸单位,最早以“纳米”来命名的材料是在20世纪80年代,它是指颗粒尺寸限制在10~100nm范围内,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。

纳米材料的发展大致可以分为三个阶段:第一阶段(1900年以前)主要是在实验室内制备各种材料的纳米颗粒粉体,研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。第二阶段(1994年)关注的热点是如何利用纳米材料的奇特物理,化学和力学性能,设计纳米复合材料。在第三阶段(从1994年到现在),纳米组装系统,人工组装合成的纳米结构的材料体系越来越受到人们的关注。费曼曾预言“如果有一天人们能按照自己的意愿排列原子和分子......,那将会创造什么样的奇迹”。

二.纳米材料的分类

纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。

纳米粉末:又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。

纳米纤维:指直径为纳米尺度而长度较大的线状材料。

纳米膜:纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。

纳米块体:将纳米粉末高压成型或控制金属液体结晶得到的纳米晶粒材料。

三.纳米材料的特性 1)小尺寸效应

纳米微粒的尺度一般在1~100nm之间,用它做成的纳米材料会演示出特殊的性质。当超微粒子的尺寸和光波波长和德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小的时候,声、光、磁、电、热等特性会呈现新的尺寸效应。例如纳米材料的熔点会降低,如金的熔点是1333K,而纳米金只有603K。银的熔点是969.8K,纳米银的熔点只有273K。利用纳米金属熔点降低的性质,我们可以在低温的条件下来烧结制备合金,而且也可以使不互溶的金属冶炼成合金。例如钛合金的制备应该会更加容易,而因为熔点降低的话,以前没有办法制备的性能更好的合金就会被制备出,这应该会给我们的航天材料带来革新,给航天事业带来新的突破。

2)表面效应

纳米微粒粒度小,表面积大,位于表面的原子数迅速增加。随着粒径减小,比表面积大大增加。纳米粒子表面原子与总原子数之比随着纳米粒子尺寸的减小而大幅度增加。粒径为1纳米时,表面将占20%,粒径为1纳米时,表面的体积百分数增加到99%。由于庞大的比表面积,表面原子数增加,无序度增加,键态严重失配,配位不足,出现许多活性中心极不稳定,很容易与其他原子结合,从而出现一些奇特现象。比如金属纳米粒子在空气中可以燃烧,铁纳米粒子可以作为催化剂在低温下分解二氧化碳等。

3)量子尺寸效应

纳米微粒对某种波长的光的吸收带有蓝移(发光带或吸收带由长波移向短波长)现象,对各种波长光的吸收带有宽化现象,纳米微粒利用此特性吸收紫外光。通常把随着颗粒尺寸减少,能隙加大而发生蓝移的现象称为量子尺寸效应。

四.纳米材料的用途

由于纳米材料的比表面积很高,使得表面积增到,处于界面上的原子多,表面活性高。这一点最适合用来做催化剂,这样它的活性一定很高,这样就可以使反应条件更加容易。例如乙烯的氢化反应,通常用铂作催化剂,在873K进行。如果改用纳米铂黑作为催化剂,这个反应在室温下就可以进行了。又如,粒径为30nm的镍可把有机化学加氢和脱氢反应速度提高15倍。

纳米材料颗粒对光的吸收特别好,利用这种性质,可制作红外线检测元件,红外吸收材料及现代隐形战斗机上的雷达吸收材料。这对国家的军事力量带来了新的力量。现在在我们国家新研发的歼-14战斗机中采用国际最先进的等离子隐身技术,并结合低RCS隐身技术,使正面雷达反射截面积仅为0.06平方米,并且歼-14同样使用了先进的红外隐身技术,通过喷流冷却矩形喷口,垂尾、平尾、尾撑向后延伸,可遮蔽发动机喷口的红外线辐射,蒙皮采国产新型红外抑制涂料,有效降低了超音速巡航时产生的红外辐射。相信在不久的将来,我国的航天科技上运用到纳米材料,会使吸波频带宽、吸收率高、隐身效果好,使用会更加简便、不会影响飞行器的飞行性能,还可能在一定程度上减少的飞行阻力。

同时呢,纳米材料在防晒化妆品,塑料,金属防腐及荧光灯中得到了广泛的应用。如在塑料表面增加一层含有纳米微粒的透明涂层,吸收紫外光,就可防止塑料老化。

五.纳米微粒制备方法

纳米材料的合成和制备一直是纳米科技的一个重要的课题。新材料制备工艺的研究与探索对控制纳米材料的微观结构和性能有着重要的影响。选 择适当的工艺对材料的运用方向起到至关重要的作用,目前主要的方法有低压气体中蒸发法、溅射法、微乳液法、溶胶一凝胶法、化学气相沉积法等。

1.物理制备方法

1)低压气体中蒸发法

此种制备方法是在低压的氢、氮等惰性气体中通过电阻加热法、等离子喷射法、高频感应法、电子束法、激光法等办法加热金属,使其蒸发后形成超微粒(1~1000nm)或纳米微粒。当然不同的加热方法制备出的超微粒的量、种类、粒径分布及大小等都存在一些差别。

2)溅射法

溅射法是物理气相沉积的一种。所谓“溅射”是指核能粒子轰击固体表面,使固体原子(或分子)从表面射出的现象。这些被溅射出来的原子将带有一定的动能,并且具有方向性。应用这一现象将溅射出来的物质沉积到基片的方法称为溅射法。

2.化学制备方法

1)微乳液法(反相胶束法)微乳液法,又称反相胶束法,是一种制备纳米材料的液相化学法。所谓反相胶束法是指两种互不相溶的溶剂在表面活性剂的作用下形成乳液,也就是双亲分子将连续介质分割成微小空间形成微型反应器,反应物在其中反应生成固相,由于成核、晶体生长、聚结、团聚等过程受到微反应器的限制,从而形成包裹有一层表面活性剂,并且有一定凝聚态结构和形态的纳米粒子。

反胶束法制备纳米微粒的优点有:实验装置简单、能耗低、操作简单、粒径大小可控、粒子分散性好、分布窄、易于实现连续化生产操作等特点。

2)溶胶一凝胶法(胶体化学法)溶胶一凝胶法其基本原理是: 用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,经水解直接形成溶胶或解凝形成稳定的透明溶胶系,然后使溶质聚合凝胶化,再将凝胶干燥、焙烧固化制备出分子或纳米亚结构的材料。溶胶一凝胶转化

溶胶中含有大量的水,凝胶化过程中,使体系失去流动性,形成一种开放的骨架结构。实现凝胶的途径有两个:一是化学法,通过控制溶胶中的电解质浓度;二是物理法,迫使胶粒间相互靠近,克服斥力,实现胶凝化。

3)化学气相沉积法

化学气相沉积法是指直接利用气体或通过各种手段将物质变为气体,让一种或数种气体通过热、光、电、磁和化学等的作用而发生热分解、还原或其他反应,从气相中析出纳米粒子,冷却后得到纳米粉体。用此法可以制取金属纳米粉末、金属和非金属的氢、氧、氮、碳化物的纳米粉末,以及各类纳米薄膜。六.纳米半导体

纳米半导体材料基于独特的纳米结构,其能带结构会发生改变,使其物理、化学性质相对于普通体相半导体材料发生了明显的变化。1)光催化特性

通过减小半导体催化剂的颗粒粒径,可以显著提高其光催化效率。近几年来,对TiO等半导体纳米粒子的光催化性质的研究表明,纳米粒子的光催化活性比相应的体相材料高得多。半导体纳米粒子具有优异的光催化活性的原因主要有: 纳米半导体粒子尺寸到纳米量级时,量子尺寸效应就变得显著,这使得导带和价带之间的能隙变宽,生成光生电子和空穴能量更高,具有更高的氧化、还原能力。

当颗粒粒径小于载流子复合前迁移的距离时,电子与空穴复合几率降低,有效提高光催化效率,粒子半径减小,光生电子从晶体内扩散到表面的时间越短,电子与空穴分离的效果越好,从而提高光催化效率。

半导体催化剂粒径减小,催化剂的表面积提高,使比表面积对反应速率的约束减小,表面缺陷和活性中心增加,这些对提高光催化活性都是有利的。2)光催化技术的运用

a)污水处理

随着经济和社会的发展,工业污水和生活污水排放量越来越多,它们的污染源主要来源于防腐剂、洗涤剂、除草剂、杀虫剂、农药和染料等。这其中很多有机物是利用生物处理技术难以消除的。研究表明,利用半导体材料的光催化性质来处理废水中的有关有机污染物有可能成为一种有效的方法。半导体光催化材料在光照条件下,产生电子和空穴,它们具有较强的氧化和还原能力,不仅可以还原有毒的重金属离子,同时还能降解大多数有机物,并最终生成无毒无味的水和二氧化碳及一些简单的无机物。

b)气体净化

近几十年来,环境污染问题日趋严重,有害气体净化日益受到人们的重视。纳米半导体光催化降解技术为这一问题的解决提供了良好的途径。光催化能在室温下利用空气中的水蒸汽和氧去除污染物,与需要在较高温度下进行、操作步骤复杂的其它多相催化方法比较,具有显著的优越性。

空气污染可分为两类:室内有害气体和大气污染气体。室内有害气体主要包括装饰材料等放出的甲醛及生活环境中产生的甲硫醇、硫化氢、氨气,室内汗臭、香烟臭味、冰箱异味等。二氧化钛通过光催化作用可将吸附于其表面的这些物质分解氧化,从而使空气中这些物质的浓度降低,减轻或消除环境不适感。大气污染气体主要指由汽车尾气与工业废气等带来的氮氧化物和硫氧化物。利用纳米二氧化钛的光催化作用可将这些气体氧化,形成蒸气压低的硝酸或硫酸,这些硝酸或硫酸可在降雨过程中除去。另外,将光催化大气净化材料应用于建筑物外墙表层,可实现大气净化与建材功能一体化,具有广阔的应用前景。

c)抗菌

抗菌是指二氧化钛在光照下对环境中微生物的抑制或杀灭。在人们的居住环境中存在着各种有害微生物,对人类生活产生不良影响。光催化杀菌是利用光激发后,催化剂表面生成的活性羟基、超氧离子、过羟基和双氧水的强氧化能力与生物大分子如脂类、蛋白质、酶类以及核酸大分子发生反应,直接损害或通过一系列氧化链式反应而对生物细胞结构引起广泛的损伤性破坏。比起传统方法,光催化灭菌具有抗菌与杀菌效果迅速、杀菌能力强、同时还可以分解由细菌释放出的有毒复合物等特点。利用纳米二氧化钛的光催化性能可充分抑制或杀灭环境中的有害微生物,使环境微生物对人的危害降低。近年来,纳米二氧化钛的抗菌性能不断被人们开发和利用,随着抗菌荧光灯、抗菌纤维、抗菌建材、抗菌涂料和 抗菌陶瓷卫生设施的相继出现,纳米二氧化钛的抗菌性能将会得到更加广泛的应用。

七.纳米材料的发展未来

纳米材料有自洁。防垢,防附着,耐高温,耐摩擦,耐冲击的优良性能,从20世纪90年代开始,各国科学家纷纷投入“纳米战”。有人把纳米材料称为“工业味精”,因为把它“撒”入许多传统材料中,老产品会换上令人惊叹的新面貌。在当前的形势下,纳米材料的研究应该推向工业化,相信,在不久的将来,纳米材料在新材料,化工,能源,信息等领域将会发挥更大的作用。

上一篇:关于班子存在的主要问题下一篇:宽容与调和的阅读答案