08鼓楼政治一模

2024-07-07

08鼓楼政治一模

1.08鼓楼政治一模 篇一

九年级(下)期中试卷

数学

注意事项:

本试卷共6页,全卷满分120分,考试时间为120分钟,考生答题全部答在答卷纸上,答在本试卷上无效.

一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答卷纸相应位置上).......

1.下列算式结果为2的是()

10A.2B.2C.2D.

22.如果两圆的半径分别为2cm和5cm,圆心距为8cm,那么这两个圆的位置关系是()

A.外离B.外切C.相交D.内切

3的说法中,错误的是()..

A

是无理数B

是15的算术平方根

C.1

5D

.3

44.由直角三角形中的已知元素,求出所有未知元素的过程,叫做解直角三角形,已知一个直角三角形中:①两条边的长度,②两个锐角的度数,③一个锐角的度数和一条边的长度.利用上述条件中的一个,能解这个直角三角形的是()

A.①②B.①③C.②③D.①②③

5.如图是一个三棱柱的展开图,若AD10,CD2,则AB的长度

CDA可以是()

A.2

B.

3C.4

D.5

6.甲、乙、丙、丁四人到文具店购买同一种笔记本和钢笔,购买的数量及总价分别如下表所示.若

二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答卷纸...相应位置上)....17.的相反数是.

38.一个等腰三角形的两边长分别是2cm和3cm,则它的周长是cm.

9.分解因式:a24b2

10.计算 11.如图,△ABC中,C90°,D是BC上一点,E为AB的中点,AD、CE相交于点F,且ADDB.若B20°,则DFE°.

第 1 页,共5页

B

612.写出反比例函数y的2条不同类型的性质:①;②

x

13.常见的“幂的运算”有:①同底数幂的乘法,②同底数幂的除法,③幂的乘方,④积的乘方.在“a2a3a5a10”的运算过程中,运用了上述幂的运算中的(填序号).

14.如图,顺次连接菱形ABCD的各边中点E、F、G、H.若ACa,BDb,则四边形EFGH的面积是.

AB

F

D

15.二次函数yxbxc的图象如图所示,试确定b、c的符号;b,(填不等号)c0.

0,16.如图,在平面直角坐标系中,一个圆与两坐标轴分别交于A、B、C、D四点.已知A2,B6,0,C0,3,则点D的坐标为.

三、解答题(本大题共11小题,共88分,请在答卷纸指定区域内作答,解答时应写出文字说明,证明过.......程或演算步骤)

14

117.(5分)计算:. 

x2x2x2

axby7x

218.(5分)已知关于x、y的方程组,的解是,求ab的值.

bxay8y1

19.(6分)妈妈给小莉100元去超市购买笔记本,已知笔记本每本12元. 请你根据以上信息,提出一个用一元一次不等式解决的问题,并写出解答过程. .......

20.(7分)甲、乙两篮球运动员上赛季每场比赛的得分如下: 甲15,24,25,31,31,36,36,37,39,44,50. 乙8,13,14,16,23,26,28,33,38,39,51. 小莉用如图的方式来表示甲、乙的得分.(1)请在右侧补全乙的得分;

2(2)用不等号填空:x甲x乙;s甲s乙;(3)请说出此种表示方式的优点.

21.(7分)排球比赛规定每局需决出胜负.水平相当的甲、乙两队进行排球比赛,规定五局三胜,求甲队以3:0战胜乙队的概率.

22.(8分)如图,正方形ABCD的边长为12,其内部有一个小正方形EFGH,其中E、F、H分别在BCCD、AE上.若BE9,求小正方形EFGH的边长.

A

D

H

E

F 23.(8分)“五一”节,小莉和同学一起到游乐场玩,游乐场的大型摩天轮的半径为20m,匀速旋转1周需要12min.小莉乘坐最底部的车厢(离地面0.5m)开始1周的观光,5min后小莉离地面的高度是多少?

(精确到0.1m

1.41

41.7322.236)

24.(12分)【童话故事】“龟兔赛跑”:兔子和乌龟同时从起点出发,比赛跑步,领先的兔子看着缓慢爬行的乌龟,骄傲起来,在路边的小树下睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟已先到达终点.

【数学探究】

我们假设乌龟、兔子的速度及赛场均保持不变,小莉用图1刻画了“龟兔赛跑”的故事,其中x(分)表示乌龟从起点出发所行的时间,y1(米)表示兔子所行的路程,y1(米)表示乌龟所行的路程.

(1)分别求线段BC、OD所表示的y1、y2与x之间的函数关系式;(2)试解释图中线段AB的实际意义;

(3)兔子输了比赛,心里很不服气,它们约定再次赛跑,①如果兔子让乌龟先跑30分钟,它才开始追赶,请在图2中画出兔子所行的路程y1与x之间的函数关系的图象,并直接判断谁先到达终点;

②如果兔子让乌龟从路边小树处(兔子第一次睡觉的地方)起跑,它们同时出发,这一次谁先到达终点呢?为什么?

y兔子乌龟

y(兔子乌龟

1))

25.(8分)已知A、B、C三点均在O上,且△ABC是等边三角形.(1)如图,用直尺和圆规作出△ABC;(不写作法,保留作图痕迹)

上一点,连接PA、PB、PC.探究PA、PB、PC之间的等量关系并说明理由.(2)若点P是BC

26.(10分)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整...数),每个月的销售利润为y元. .

(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)若每个月的利润为2200元,求每件商品的售价应定为多少元?

(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大利润是多少元?27.(12分)【问题提出】

规定:四条边对应相等,四个角对应相等的两个四边形全等.

我们借助学习“三角形全等的判定”获得的经验与方法对“全等四边形的判定”进行探究. 【初步思考】

在两个四边形中,我们把“一条边对应相等”或“一个角对应相等”称为一个条件,满足4个条件的两个四边形不一定全等,如边长相等的正方形与菱形就不一定全等.类似地,我们容易知道两个四边形全等至少需要5个条件.

【深入探究】

小莉所在学习小组进行了研究,她们认为5个条件可分为以下四种类型: Ⅰ一条边和四个角对应相等; Ⅱ二条边和三个角对应相等; Ⅲ三条边和二个角对应相等; Ⅳ四条边和一个角对应相等.

(1)小明认为“Ⅰ一条边和四个角对应相等”的两个四边形不一定全等,请你举例说明.(2)小红认为“Ⅳ四条边和一个角对应相等”的两个四边形全等,请你结合下图进行证明. 已知:如图,.

求证:. 证明:

D

A1

D1

B

(3)小刚认为还可以对“Ⅱ二条边和三个角对应相等”进一步分类,他以四边形ABCD和四边形A1B1C1D1为例,分为以下四类:

①ABA1B1,ADA1D1,AA1,BB1,CC1; ②ABA1B1,ADA1D1,AA1,BB1,DD1; ③ABA1B1,ADA1D1,BB1,CC1,DD1; ④ABA1B1,CDC1D1,AA1,BB1,CC1;

其中能判定四边形ABCD和四边形A1B1C1D1全等的是,概括可得“全等四边形的判定方法”,这个判定方法是.

(4)小亮经过思考认为也可以对“Ⅲ三条边和二个角对应相等”进一步分类,请你仿照小刚的方法先进行分类,再概括得出一个全等四边形的判定方法.

上一篇:数据挖掘研究的现状与发展趋势_郑继刚下一篇:杜郎口中学考察报告