三角形几何证明压轴题

2024-10-09

三角形几何证明压轴题(精选15篇)

1.三角形几何证明压轴题 篇一

外国语中学中考数学压轴题专集

1.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.

(Ⅰ)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;

(Ⅱ)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.

2.如图1,在Rt△ABC中,∠ACB=90°,半径为1的圆A与边AB相交于点D,与边AC相交于点E,连结DE并延长,与线段BC的延长线交于点P.

(1)当∠B=30°时,连结AP,若△AEP与△BDP相似,求CE的长;

(2)若CE=2,BD=BC,求∠BPD的正切值;

1(3)若tan∠BPD=,设CE=x,△ABC的周长为y,求y关于x的函数关系式.

3B C P B C P B C

1图2(备用)图3(备用)

3.已知:如图①,在平面直角坐标系xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P,Q分别从A,O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;

(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;

(3)如图②,现有∠MCN=60°,其两边分别与OB,AB交于点M,N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M,N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没变化,请求出其周长;若发生变化,请说明理由.

P

5.如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.

(1)若c=a1,求证:a=kc;

(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;

(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1,使得k=2?请说明理由.

A

c

1C B1C11

6.如图1,在△ABC中,AB=BC,且BC≠AC,在△ABC上画一条直线,若这条直线既平..分△ABC的面积,又平分△ABC的周长,我们称这条线为△ABC的“等分积周线”.

(1)请你在图1中用尺规作图作出一条△ABC的“等分积周线”;

(2)在图1中过点C能否画出一条“等分积周线”?若能,说出确定的方法;若不能,请说明理由;

(3)如图2,若AB=BC=5cm,AC=6cm,请你找出△ABC的所有“等分积周线”,并简要说明确定的方法.

C图2 图1

7.如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,点P以一定的速度沿AC边由A向C运动,点Q以1cm/s的速度沿CB边由C向B运动,设P、Q同时运动,且当一点运动到终点时,另一点也随之停止运动,设运动时间为t(s).

(1)若点P以3cm/s的速度运动

4①当PQ∥AB时,求t的值;

②在①的条件下,试判断以PQ为直径的圆与直线AB的位置关系,并说明理由.

(2)若点P以1cm/s的速度运动,在整个运动过程中,以PQ为直径的圆能否与直线AB

相切?若能,请求出运动时间t;若不能,请说明理由.

A

备用B

8.如图1、2是两个相似比为1 :2的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.

(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E、F,如图4.

求证:AE +BF =EF ;

(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE +BF =EF 是否仍然成立?若成立,请给出证明;若不成立,请

说明理由;

D A B A D

图2 图3 图

1A D B A F

图4 图

5(3)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由. D ;

F

C

9.(河南省)222222B B

(1)操作发现·

如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.

(2)问题解决 保持(1)中的条件不变,若DC=2DF,求

(3)类比探究

保持(1)中的条件不变,若DC=n·DF,求

AD的值. ABAD的值; AB

2.三角形几何证明压轴题 篇二

中学数学新课标将原初中平面几何中的部分内容, 移到高中作为选讲内容.其中有些是现行初中课标教材删减的内容, 如:直角三角形中的射影定理, 圆的弦切角、相交弦、切割线定理.查阅2009年实施课标高考的各省平面几何选作题, 发现初中生也都能做.

例1 (2009年广东文) 如图1, 点A、B、C是圆O上的点, 且AB=4, ∠ACB=30°, 则圆O的面积等于__.

解法1: (利用圆周角与圆心角的关系) 连结OA、OB, 因为∠ACB=30°, 所以∠AOB=60°, △AOB为等边三角形.因此圆O半径 r=OB=AB=4, 从而圆O的面积S=πr2=16π.

解法2: (用三角形中的正弦定理) 设△ABC外接圆圆O半径为 r, 则由正弦定理有

2r=ABsinACB=4sin30°=8,

得 r=4.故圆O面积S=πr2=16π.

例2 (2009年广东理) 如图2, 点A、B、C是圆O上的点, 且AB=4, ∠ACB=45°, 则圆O的面积等于__.

简析:可参考例1的两种解法, 求得圆O的半径r=22, 则圆O面积为8π.

点评:以上两例, 在初中平面几何中也属于基本题.可见高考题中的题目也有简单题, 甚至连初中生也很容易做出.

例3 (2009年江苏卷) 如图3, 在四边形ABCD中, △ABC≌△BAD.求证:AB//CD.

证明1:由△ABC≌△BAD, 得∠ACB=∠BDA, 则A、B、C、D四点共圆, 因而∠CAB=∠CDB.

再由△ABC≌△BAD, 又得∠CAB=∠DBA.

所以∠CDB=∠DBA, 从而AB//CD.

证明2:同上证得A、B、C、D四点共圆, 得∠ADC+∠ABC=180°.

又由全等三角形得∠DAB=∠ABC,

则∠ADC+∠DAB=180°, 所以AB//CD.

点评:证明1和证明2的关键是利用了四点共圆, 则同弧所对的圆周角相等.再由内错角或同旁内角的方法证得两线平行.实际上, 本例还有多种证法, 如分别由两个全等三角形的顶点C、D作底边AB上的高, 由高相等, 立得结论;又如过对角线的交点作AB的垂线, 可证四边形关于这条垂线成轴对称.

例4 (2009年宁夏海南) 如图4, 已知△ABC的两条角平分线AD和CE相交于H, ∠B=60°, F在AC上, 且AE=AF. (1) 证明:B、D、H、E四点共圆; (2) 证明:CE平分∠DEF.

证明: (1) 在△ABC中, 由∠B=60°, 知

∠BAC+∠ACB=120°.

又AD、CE是角平分线, 所以∠HAC+∠ACH=60°, 则∠AHC=120°.

于是∠EHD=∠AHC=120°.

因为∠EHD+∠B=180°, 所以B、D、H、E四点共圆.

(2) 由B、D、H、E四点共圆, 得∠AHE=∠B=60°.

再连结BH, 知BH平分∠B, 则

∠HED=∠HBD=30°.

又由AE=AF, AH平分∠EAF, 得AH⊥EF, 则∠HEF=30°.

可见∠HED=∠HEF=30°, 所以CE平分∠DEF.

点评:对于 (1) 小题, 也可利用三角形的外角关系来证∠BDH+∠BEH=180°.另外, (1) 小题的结论为 (2) 小题的证明提供了重要条件, 这是系列问中常见的情形.应注意在解证后一小题时, 不要忽视前一小题的结论.

例5 (2009年辽宁省) 如图5, 已知△ABC中, AB=AC, D是△ABC外接圆劣弧AC上的点 (不与点A, C重合) , 延长BD至E. (1) 求证:AD的延长线平分∠CDE; (2) 若∠BAC=30°, △ABC中BC边上的高为2+3, 求△ABC外接圆的面积.

解: (1) 由条件知ABCD是圆内接四边形, 则∠CDF=∠ABC, ∠EDF=∠ADB=∠ACB.

又AB=AC, 知∠ABC=∠ACB, 故∠CDF=∠EDF, 从而AD的延长线DF平分∠CDE.

(2) 如图6, 设△ABC外接圆的圆心为O, 连结AO并延长交BC于H.由AB=AC, 知AH⊥BC.连结OC, 则∠OCA=∠OAC=15°.又∠ACB=75°, 则∠OCH=60°.设圆半径为 r, 则ΟΗ=32r.由r+32r=2+3, 得 r=2.从而外接圆面积为4π.

评析:上述各例都与圆有关.这是因为圆可与全等三角形, 相似三角形, 四边形等知识交汇, 构建成综合性较强的试题, 从而能较全面地考查学生分析探究、综合归纳、逻辑推理能力.下面一组高考题供研习.

1. (2008年广东) 已知PA是圆O的切线, 切点为A, PA=2, AC是圆O的直径, PC与圆O交于点B, PB=1, 则圆O的半径R=__.

2. (2008年宁夏、海南) 如图7, 过圆O外一点M作它的一条切线, 切点为A, 过点A作直线AP垂直直线OM, 垂足为P. (1) 证明:OM·OP=OA2; (2) N为线段AP上一点, 直线NB垂直直线ON, 且交圆O于点B.过点B的切线交直线ON于K.证明:∠OKM=90°.

3. (2008年江苏) 如图8, 设△ABC的外接圆的切线AE与BC的延长线交于点E, ∠BAC的平分线与BC交于点D.求证:ED2=EC·EB.

4. (2007年广东) 如图9, 圆O的直径AB=6, C为圆周上一点, BC=3.过C作圆的切线 l, 过A作 l 的垂线AD, AD分别与直线 l、圆交于点D、E, 则∠DAC=__, 线段AE的长为__.

5. (2007年宁夏、海南) 如图10, 已知AP是⊙O的切线, P为切点, AC是⊙O的割线, 与⊙O交于B、C两点, 圆心O在∠PAC内部, 点M是BC的中点. (1) 证明A, P, O, M四点共圆; (2) 求∠OAM+∠APM的大小.

练习题提示与答案:

1.连AB, 用特殊直角三角形;也可用切割线定理.答:3.

2.用直角三角形中射影定理.

3.用切割线定理.

4.用Rt△AEB≌Rt△BAC, 30°, 3.

5. (1) 连OP、OM, 用对角互补; (2) 90°.

3.三角形几何证明压轴题 篇三

图1

背景1 如图1,点P是正方形ABCD对角线上任意一点. 求证:PA=PC.

证明 因为四边形ABCD是正方形,所以AB=CB,∠ABP=∠CBP=45°,又因为BP=BP,

所以△ABP≌△CBPPA=PC.

背景2 接上题,以P为圆心,以PA为半径画弧交AB,如图2(或AB的延长线)于点Q. 求证:PQ⊥PC.

图2图3

证明 因为PA=PQ,所以∠1=∠3,

又因为△ABP≌△CBP∠1=∠2∠1=∠2=∠3,而∠3+∠4=180°∠2+∠4=180°,又因为∠QBC=90°,

所以∠QPC=90°PQ⊥PC,

当点Q在AB的延长线上时,如图3,

因为∠2=∠3;∠4=∠5,所以△BQH∽△CPH,所以∠QPC=90°PQ⊥PC.

背景3 反过来,若将一个直角顶点放在正方形的对角线上移动,一条直角边过点C ,另一条直角边与正方形的边(或边的延长线)AB交于点Q. 求证:PQ=PC.

证明 如图4,5,过P作MN平行于BC交AB、CD于M、N,因为∠1+∠QPC=∠2+∠PNC∠1=∠2,

又因为∠MBP=45°MP=MB=NC,

而∠QMP=∠PNC=90°△QMP≌△PNCPQ=PC.

图4图5

从上述的几个背景看出,当∠QPC=90°时,一定有PQ=PC,即PQPC=ADAB;但反过来当PQPC=ADAB,即PQ=PC时,因为有PA=PC时∠APC=90°不一定成立,所以∠QPC=90°不一定能够成立.

下面我们将背景弱化:

背景4 若将一个直角顶点放在长方形的对角线上移动,一条直角边过点C ,另一条直角边与长方形的边(或边的延长线)AB交于点Q,如图6,7. 求证:PQPC=ADAB.

图6图7

证明 易证:△QMP∽△PNCPQPC=MPNC=MPMB=ADAB.

背景5 如图8,矩形ABCD的AB=a,AD=b,点P在对角线BD上运动,点Q在射线AB上运动,若PQPC=ADAB,试探索a,b满足什么条件时,会有PQ⊥PC.

探索 正常情况下,PQPC=ADAB=MPMB=MPNC△QMP∽△PNC∠QPC=90°PQ⊥PC.

但若点Q关于MN的对称点Q1也在射线AB上时,如同上述背景一样,连PQ1,∠Q1PC=90°就不一定成立了.

这里:MQPN=PQPC=ba;PNDN=PNAM=BCCD=ba.

两式相乘:MQAM=b2a2≤1b2-a2≤0(b+a)(b-a)≤0b≤a.

从这两个背景看出,当∠QPC=90°时,一定有PQPC=ADAB;但反过来当PQPC=ADAB时,∠QPC=90°若遇到b>a时就一定能成立.

图8图9

背景6 如图9,四边形ABCD是梯形,AD∥BC,∠ABC=90°,若将一个直角顶点放在对角线BD上移动,一条直角边过点C ,另一条直角边与腰AB(或AB的延长线)交于点Q. 求证:PQPC=ADAB.

证明 易证:△QMP∽△PNCPQPC=MPNC=MPMB=ADAB.

图10

背景7 如图10,四边形ABCD是梯形,AD∥BC,∠ABC=90°, AB=a,BC=b,AD=x,点P在对角线BD上运动,点Q在射线AB上运动,若PQPC=ADAB,试探索x与a、b之间应该满足什么条件时,一定会有PQ⊥PC .

探索 正常情况下,PQPC=ADAB=MPMB=MPNC△QMP∽△PNC∠QPC=90°PQ⊥PC.分析:若点Q关于MN的对称点Q1也在射线AB上时,如同上述背景一样,连结PQ1,∠Q1PC=90°就不一定成立了. 所以这里我们应该关注使∠Q1PC=90°不一定成立的点Q1“最低”位置,其实它就在A点. 并且要使得点Q1的位置“最低”,那么点P的位置只能与点B重合(如图11). 图11图12

这时△Q′DP∽△PQC,且PQ′=PQxa=abx=a2b,

又因为PQPC=ADAB,而当AD>a2b时,在AB、BC都是定值的情况下,PQ也就变大了,即Q′点就不在射线AB上了(而是在射线BA上了),那样∠Q′PC=90′就不一定成立了(如图12).

2009年上海市中考数学压轴题:

25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)

已知∠ABC=90°,AB=2,BC=3,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足PQPC=ADAB(如图13所示).

(1)当AD=2,且点Q与点B重合时(如图14所示),求线段PC的长;

(2)在图13中,连结AP.当AD=32,且点Q在线段AB上时,设B、Q点之间的距离为x,S△APQS△PBC=y,其中S△APQ表示△APQ的面积,S△APC表示△APC的面积,求y关于x的函数解析式,并写出函数定义域;

(3)当AD

图13图14图15

第一步:对所给的主条件进行分析,做“先期准备”,我们发现当“点P为线段BD上的动点,点Q在射线AB上,且满足PQPC=ADAB(如图13所示)”时,一定有∠QPC=90°.

第二步:做第一小题时,我们知道AD=AB时一定有PB=PC,又因为有∠BAD=90°∠ABD=45°∠PBC=90°-45°=45°∠PCB=45°BPC=90°,

又因为BC=3PC=32=322. 出题者的本意是想给同学一个∠QPC=90°的提示的. 但是这个提示不明显,直接影响了后面的作图和解决问题,第一小题“铺垫”的目的没有很好地达到.

图16

第三步:第二小题的条件在主条件上加了一个AD=32,所以我们还要对这个AB=2,BC=3,AD=32的等腰梯形单独地做个分析:如图16,这时的△ADB是各边之比3︰4︰5的直角三角形,(它也可以推出△PQC也是各边之比为3︰4︰5的直角三角形)又因为BC=2AD,也容易证明△DBC为等腰三角形,DC=DB等等.

第四步:画出所有运动状态,在“极限图形”中求出x等于多少?y存在还是不存在?

要注意这里的“点P为线段BD上的动点,点Q在线段AB上”,所以有三个图:

在图17中x=0,y是存在的,在图19中

PQPC=ADAB=34PQ52=34PQ=158,

而AD=32=128AQ=98x=78,这时y也是存在的.

所以x的取值范围应该是:0≤x≤78.

在图18中我们容易知道:y=12(2-x)h112×3×h2=2-x3•h1h2=2-x3•ADAB=2-x3×34=2-x4.

第五步:在做第三小题时,由于题中已经明确有“点Q在线段AB的延长线上时、如图15所示”两个明确条件,所以我们在背景中考虑的另类情况在这里就没有必要讨论了.

图17图18图19

4.高中几何证明题 篇四

(2)求证,平面D1B1E垂直平面DCB1

证明:

1):连接AD1,AD1²=AD²+DD1²=B1C1²+C1E²=B1E²

所以AD1=B1E

同理可证AB1=D1E

所以四边形AB1ED1为平行四边形,AB1//A1E

因为AB1在平面ACB1上

所以D1E//平面ACB1

2):连接A1D,A1B1//CD,面A1B1CD与面CDB1为同一个平面

由(1)可知面D1B1E与面AD1B1E为同一平面

正方形ADD1A1的对角线AD1⊥A1D

在长方体ABCD-A1B1C1D1中,CD⊥面ADD1A1,所以CD⊥AD1

AD1与A1D相交,所以AD1⊥AB1ED1

所以面A1B1CD⊥AD1B1E

即:面D1B1E⊥面DCB1

我现在高二,以前老师教几何证明没学好,现在想亡羊补牢.但不知道这类型题应抓什么学,找什么记,哪些是基础,证明的步骤....只有多练,真的,几何证明题有很多固定的结题模式,但是参考书不会给你列出来,老师也不讲,你随便买一本几何专题的练习书来做,或者,如果你定力不好的话,可以去报一个补习班,专门补习几何专题的。

我从你想知道的这些知识觉得你有点急于求成,但是学好几何不是一天两天的事,其实高考的几何也不会很难的。

做得多,有了感觉,考试的时候自然得心应手,这是实话。

已知pA⊥平面ABCD,且四边形ABCD为矩形,M,N分别是AB,pC的中点.(1)证MN⊥CD.(2)若∠pDA=45度,求证MN⊥平面pCD

第一问,我证出来了.麻烦能讲下解这类题的思路

满意答案好评率:100%

对于这种空间几何题,用向量解决是一种通法,不知你学过没。但对于这一题,立体几何的知识足够解决了,记住面线垂直判定的方法,本质为证明线线垂直,找到平面内的两条相交直线与那条直线垂直,即可得证。此题(2)问,只要找pD和CD即可,注意∠pDA=45度这个条件即可证pD⊥MN。不懂追问。

继续追问:

∠pDA=45度这个条件即可证pD⊥MN?

5.初中几何证明题 篇五

证明:延长AO,交圆O于M,连接BM,则:∠ABM=90°,且∠M=∠ACB.∠AEC=∠ADB=90°,∠EAC=∠DAB,则⊿AEC∽⊿ADB,AE/AD=AC/AB;

又∠EAD=∠CAB,则⊿EAD∽⊿CAB,得∠AED=∠ACB=∠M.∴∠AED+∠BAM=∠M+∠BAM=90°,得AO⊥DE.--------(1)

连接DG,EG.点G为BC的中点,则DG=BC/2;(直角三角形斜边的中线等于斜边的一半)同理可证:EG=BC/2.故DG=EG.又F为DE的中点,则FG⊥DE.(等腰三角形底边的中线也是底边的高)-----------------(2)所以,AO∥FG.(2)已知梯形ABCD中,对角线AC与腰BC相等,M是底边AB的中点,L是边DA延长线上一点连接LM并延长交对角线BD于N点

延长LM至E,使LM=ME。

∵AM=MB,LM=ME,∴ALBE是平行四边形,∴AL=BE,AL∥EB,∴LN/EN=DN/BN。

延长CN交AB于F,令LC与AB的交点为G。

∵AB是梯形ABCD的底边,∴BF∥CD,∴CN/FN=DN/BN。

由LN/EN=DN/BN,CN/FN=DN/BN,得:LN/EN=DN/BN,∴LC∥FE,∴∠GLM=∠FEB。

由AL∥EB,得:∠LAG=∠EBF,∠ALM=∠BEM。

由∠ALM=∠BEM,∠GLM=∠FEB,得:∠ALM-∠GLM=∠BEM-∠FEB,∴∠ALG=∠BEF,结合证得的∠LAG=∠EBF,AL=BE,得:△ALG≌△BEF,∴AG=BF。

∵AC=BC,∴∠CAG=∠CBF,结合证得的AG=BF,得:△ACG≌△BCF,∴ACL=∠BCN。

(3)如图,三角形ABC中,D,E分别在边AB,AC上且BD=CE,F,G分别为BE,CD的中点,直线FG交

AB于P,交AC于Q.求证:AP=AQ

取BC中点为H

连接HF,HG并分别延长交AB于M点,交AC于N点

由于H,F均为中点

易得:

HM‖AC,HN‖AB

HF=CE/2,HG=BD/

2得到:

∠BMH=∠A

∠CNH=∠A

又:BD=CE

于是得:

HF=HG

在△HFG中即得:

∠HFG=∠HGF

即:∠PFM=∠QGN

于是在△PFM中得:

∠APQ=180°-∠BMH-∠PFM=180°-∠A-∠QGN

在△QNG中得:

∠AQP=180°-∠CNH-∠QGN=180°-∠A-∠QGN

即证得:

∠APQ=∠AQP

在△APQ中易得到: AP=AQ

(4)ABCD为圆内接凸四边形,取△DAB,△ABC,△BCD,△CDA的内心O,O,O,O.求证:OOOO为矩形. 123

41234

已知锐角三角形ABC的外接圆O,过B,C作圆的切线交于E,连结AE,M为BC的中点。求证角BAM=角EAC。

设点O为△ABC外接圆圆心,连接OP;

则O、E、M三点共线,都在线段BC的垂直平分线上。

设AM和圆O相交于点Q,连接OQ、OB。

由切割线定理,得:MB² = Q·MA ;

由射影定理,可得:MB² = ME·MO ;

∴MQ·MA = ME·MO,即MQ∶MO = ME∶MA ;

又∵ ∠OMQ = ∠AME,∴△OMQ ∽ △AME,可得:∠MOQ = ∠MAE。

设OM和圆O相交于点D,连接AD。

∵弧BD = 弧CD,∴∠BAD = ∠CAD。

∵∠DAQ =(1/2)∠MOQ =(1/2)∠MAE,∴∠DAE = ∠MAE∠DAE = ∠CAD-∠DAQ = ∠CAM。

设AD、BE、CF是△ABC的高线,则△DEF称为△ABC的垂足三角形,证明这些高线平分垂足三角形的内角或外角 设交点为O,OE⊥EC,OD⊥DC,则CDOE四点共圆,由圆周角定理,∠ODE=∠OCE。

CF⊥FC,AD⊥DC,则ACDF四点共圆,由圆周角定理,∠ADF=∠ACF=∠OCE=∠ODE,AD平分∠EDF。

其他同理。

平行四边形内有一点P,满足角PAB=角PCB,求证:角PBA=角PDA

过P作PH//DA,使PH=AD,连结AH、BH

∴四边形AHPD是平行四边形

∴∠PHA=∠PDA,HP//=AD

∵四边形ABCD是平行四边形

∴AD//=BC

∴HP//=BC

∴四边形PHBC是平行四边形

∴∠PHB=∠PCB

又∠PAB=∠PCB

∴∠PAB=∠PHB

∴A、H、B、P四点共圆

∴∠PHA=∠PBA

∴∠PBA=∠PDA

补充:

补充:

把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.

已知点o为三角型ABC在平面内的一点,且向量OA2+BC2=OB2+CA2=OC2+AB2,,则O为三角型ABC的()

只说左边2式子 其他一样

OA2+BC2=OB2+CA2 移项后平方差公式可得

(OA+OB)(OA-OB)=(CA+BC)(CA-BC)化简

得 BA(OA+OB)=BA(CA-BC)

移项并合并得BA(OA+OB+BC-CA)=0

即 BA*2OC=0 所以BA和OC垂直

同理AC垂直BO BC垂直AO哈哈啊是垂心

设H是△ABC的垂心,求证:AH2+BC2=HB2+AC2=HC2+AB2.

作△ABC的外接圆及直径AP.连接BP.高AD的延长线交外接圆于G,连接CG. 易证∠HCB=∠BCG,从而△HCD≌△GCD.

故CH=GC.

又显然有∠BAP=∠DAC,从而GC=BP.

从而又有CH2+AB2=BP2+AB2=AP2=4R2.

6.高考几何证明题 篇六

高考几何证明题

输入内容已经达到长度限制

∠B=2∠DCN

证明:

∵CN⊥CM,∴∠2+∠3=90°,∴∠1+∠4=90°;

又∠1=∠2,∴∠3=∠4,∴∠BCD=2∠DCN;

∵AB//DE,∴∠B=∠BCD;

于是∠B=2∠DCN。

11

输入内容已经达到长度限制

∠B=2∠DCN

证明:

∵CN⊥CM,∴∠2+∠3=90°,∴∠1+∠4=90°;

又∠1=∠2,∴∠3=∠4,∴∠BCD=2∠DCN;

∵AB//DE,∴∠B=∠BCD;

于是∠B=2∠DCN。

12、

空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。

如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.

立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。

以下用向量法求解的简单常识:

1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得 或对空间一定点O有

2、对空间任一点O和不共线的三点A,B,C,若: (其中x+y+z=1),则四点P、A、B、C共面.

3、利用向量证a‖b,就是分别在a,b上取向量 (k∈R).

4、利用向量证在线a⊥b,就是分别在a,b上取向量 .

5、利用向量求两直线a与b的夹角,就是分别在a,b上取 ,求: 的问题.

6、利用向量求距离就是转化成求向量的模问题: .

7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.

13

空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。

如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.

立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。

以下用向量法求解的简单常识:

1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得 或对空间一定点O有

2、对空间任一点O和不共线的三点A,B,C,若: (其中x+y+z=1),则四点P、A、B、C共面.

3、利用向量证a‖b,就是分别在a,b上取向量 (k∈R).

4、利用向量证在线a⊥b,就是分别在a,b上取向量 .

5、利用向量求两直线a与b的夹角,就是分别在a,b上取 ,求: 的问题.

6、利用向量求距离就是转化成求向量的模问题: .

7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.

首先该图形能建坐标系

如果能建

则先要会求面的法向量

求面的法向量的方法是 1。尽量在土中找到垂直与面的向量

2。如果找不到,那么就设n=(x,y,z)

然后因为法向量垂直于面

所以n垂直于面内两相交直线

可列出两个方程

两个方程,三个未知数

然后根据计算方便

取z(或x或y)等于一个数

然后就求出面的一个法向量了

会求法向量后

1。二面角的求法就是求出两个面的法向量

可以求出两个法向量的夹角为两向量的数量积除以两向量模的乘积

如过在两面的.同一边可以看到两向量的箭头或箭尾相交

那么二面角就是上面求的两法向量的夹角的补角

如果只能看到其中一个的箭头和另一个的箭尾相交

那么上面两向量的夹角就是所求

2。点到平面的距离就是求出该面的法向量

然后在平面上任取一点(除平面外那点在平面内的射影)

求出平面外那点和你所取的那点所构成的向量记为n1

7.谈谈如何引导学生证明几何题 篇七

1.从题设和结论找思路

题目拿来,不要急于下手,仔细分析;从题设出发,看能推出什么结论;再看看结论:还需要什么条件,然后往中间凑,这种两头挤中间凑的方法是几何证明题的一种最常用的方法,也是一种很重要的方法。

如7.8节 切线的判定和性质(P91)

例1、已知:如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB.

求证:直线AB是⊙O的切线.

这题由已知条件OA=OB,就可以推出△OAB是等腰三角形,又由CA=CB,就可以推出OC是等腰△OAB的底边AB边上的高,而结论是要求证直线AB是⊙O的切线,也就是要求证OC上AB,这就立马想到添辅助线连结OC,同已知推出的结论相吻合,到达了求解的目的。

又如7.11节 弦切角(P108)

例2、已知:如图,⊙O和⊙O'都经过A、B两点,AC是OO'的切线,交⊙O于点C,AD是⊙O的切线,交⊙O'于点D.

求证:AB2=BC·BD

这题先从结论来考虑,要求证四条线段AB、BC、BD、AB成等积式,就是看这四条线段所在的△ABC和△DBA是否相似,而要证明两三角形相似,主要是从角度考虑。再来看已知条件,AC是⊙O'的切线,则由弦切角定理,可以得到∠2=∠D.AD是⊙O的切线,可以推出∠1=∠C,而这四个角又刚好分别是那两个三角形的角,这样问题就得到了解决。

再如7·8节 切线的判定和性质(P93)

例2、如图,AB为⊙O的直径。C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.

求证:AC平分∠DAB.

这题要求证AC平分∠DAB,就是要求证∠1=∠2.而已知条件AD⊥DC,DC是切线C是切点,就想到DC垂直于过切点的半径,所以这题应该连结OC(同本节的例1综合在一起得到,在解有关圆的切线问题时,常常需要作出过切点的半径),则可推出AD∥OC,.因此有∠2=∠3,而∠1=∠3,于是得出结论。

像这样的例子这一章还有不少,而且初一、初二的几何课本也有很多我在这儿就不一一赘述了.

2.从知识点找思路

如果上述的方法行不通,那我们就想一想:这个题目它考的是什么知识点?它是在哪一章节里出现的?那我们就从这一节的有关定理、定义入手。

比如P104如何去求证圆的外切四边形的两组对边的和相等这个题目好象不知从何下手,然而,这是7.10切线长定理这一小节的题,我们应该运用这一节的知识点,从切线长定理寻找突破口,于是不难得出AP=AL,BM=BL,CM=CN,DP=DN.再利用等式的性质,就得出了命题的结论.

再比如,P87习题7.2B组第5题

如图:⊙O和⊙O'都经过AB两点,过点B作直线交⊙O于点C,交⊙O于点D,G为圆外一点,GC交⊙O于点E,GD交⊙O'于点F.

求证:∠GEA+∠GFA=180°.

本题也是一样,要求证这两个角互补,那么这两个角是不是邻补角?是不是平行线的同旁内角?是不是圆内接四边形的两个对角?都不是,那怎么办?这个题是出在圆内接四边形这一节,而本节学了圆内接四边形的对角互补,并且任何一个外角都等于它的内对角这个定理。那么这两个角是不是圆内接四边形的外角?这个时候很多同学恍然大悟,纷纷抢着回答:“连结AB”则问题一目了然,∠GEA=∠ABC,∠GFA=∠ABD.于是得出结论。

还有7.4节圆心角、弧、弦、弦心距之间的关系(P72)

例1、如图:点O是∠EPF的平分线上的一点,以O为圆心的圆和角的两边分别交于点A、B和C、D.

求证:AB=CD.

这题已经PO是∠EPF的平分线,就应该想到角平分线的性质定理:角半分线上的点到角两边的距离相等,而这题要求证的两条相等线段AB和CD又是⊙O的两条弦,结合这一节课所学的定理的推论马上就想到作出弦AB和CD的弦心距OM和ON,问题又解决了。

3.从辅助线寻找思路

我时常告诉学生,你们可以从一些辅助线寻找突破口。如:7.3节 垂直于弦的直径

在这一小节里,计算有关弦的问题时,常常需要作“垂直于弦的直径”作为辅助线。实际上,往往只须从圆心作一条与弦垂直的线段。作了这条辅助线后,那么这条弦的一半、以及弦的弦心距、还有过这条弦的端点的半径这三条线段就构成了一个直角三角形,再通过解直角三角形,得出我们所要求解的线段。如P61 例1、P65 例4、P67 习题7.1 A组第13题、第15题、第16题、以及B组第2、3、4题、P198 复习题七第1、2题等都可以通过三条特殊的线段,解直角三角形,得出我们所要求解的结论。在这里我就不再一一例举了。

以上三点是我在圆这一章的教学体会。笔者始终认为要想使学生学好数学,作为一个中学数学教师,应该从初一抓起,每一个例题都要给学生分析透彻,讲细、讲透,找一些精练的题目给学生做一做、练一练,让学生一步一个脚印,踏踏实实,把基础打扎实、打牢固,这样不至于到了初三,很多同学的几何学不下去。

8.初中数学几何证明题 篇八

对于证明题,有三种思考方式:

(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

几何证明题入门难,证明题难做,是许多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。

一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可龋我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。

二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。

三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。

四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。

9.全等三角形证明题练习(提高题) 篇九

1.如图所示,△ABC≌△ADE,BC的延长线过点E,∠ACB=∠AED=105°,∠CAD= 10°,∠B=50°,求∠DEF的度数。

O

2.如图,△AOB中,∠B=30°,将△AOB绕点O顺时针旋转52°得到△A′OB′边 A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为。

3.如图所示,在△ABC中,∠A=90°,D,E分别是AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是。

4.如图所示,把△ABC绕点C顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=。

A

D C C B B D A E5.已知,如图所示,AB=AC,AD⊥BC于D,且AB+AC+BC=50cm,而AB+BD+AD=40cm,则AD=.6.如图,Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C,作过点A的直线的垂线BD,CE,垂足为D,E,若BD=3,CE=2,则DE=.7.如图所示,在△ABC中,AD为∠BAC的角平分线,DE⊥AB于E,DF⊥AC于F, △ABC的面积是28cm2,AB=20cm,AC=8cm,求DE 的长。

B D C

8.如图所示,已知,AD为△ABC的高,E为AC上一点,BE交AD于F ,且有BF=AC,FD=CD.求证:BE⊥AC

B

D

E

C

9.△DAC, △EBC均是等边三角形,AE,BD分别与CD,CE交于点M,N,求证:(1)AE=BD(2)CM=CN(3)△CMN为等边三角形(4)MN∥BC

C

B

10.已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交

MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形;

(3)将△ACM绕点C按逆时针方向旋转90 O,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).

11.如图所示,已知△ABC和△BDE都是等边三角形。下列结论:① AE=CD;②BF=BG;③BH平分∠AHD;

④∠AHC=600,⑤△BFG是等边三角形;⑥ FG∥AD。其中正确的有()A 3个B 4个C 5个

D 6个

A

B

D

12.已知:BD,CE是△ABC的高,点F在BD上,BF=AC,点G在CE的延长线上,CG=AB.求证:AG⊥AF

C

13.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG。求证:(1)AD=AG,(2)AD与AG的位置关系如何。

G

F

EA

B

14.如图,已知E是正方形ABCD的边CD 的中点,点F在BC上,且∠DAE=∠FAE.求证:AF=AD+CF

C

A D

E

B

F

C

15.如图所示,已知△ABC中,AB=AC,D是CB延长线上一点,∠ADB=60°,E是AD上一点,且DE=DB,求证:AC=BE+BC

E D

B

C

16.如图所示,已知在△AEC中,∠E=90°,AD平分∠EAC,DF⊥AC,垂足为F,DB=DC.求证:BE=CF.C

F

17.已知:如图3-50,AB=DE,直线AE,BD相交于C,∠B+∠D=180°,AF∥DE,交BD于F.求证:CF=CD.

18.已知:如图,BF⊥AC于点F,CE⊥AB于点E,且

BD=CD求证:⑴△BDE≌△CDF⑵点D在∠A的平分线上

E

D

B

AC

F

10.巧用图形变换思想证明几何题 篇十

请看下面的例子.

例1如图1,△ABC中,AB=AC,∠BAC=90°,D、E是BC上的点,且∠DAE=45°.试证明:以BD、DE、EC为边构成的三角形是直角三角形.

1.运用轴对称变换进行证明

证法1将△ABD、△ACE分别以AD、AE为对称轴翻折到△AFD、△AF′E.(如图1)

∵∠BAC=90°,∠DAE=45°,AB=AC,

∴∠BAD+∠CAE=45°,

∴ AB、AC翻折后重合于AF.

又∠DFE=∠AFD+∠AFE=∠B+∠C=90°,

∴△DFE是直角三角形.

又DF=BD,EF=EC.

∴BD、DE、EC为边构成的三角形是直角三角形.

2.运用旋转变换进行证明

证法2如图2,将△ABD绕点A逆时针旋转90°,使AB与AC重合,D点落到点F处.连接EF.

∵△ACF≌△ABD,∴ AF=AD,FC=BD.

在△AEF和△AED中,∠EAF=∠EAC

+∠CAF=∠EAC+∠BAD=45°=∠EAD, AF=AD,AE为公共边,∴△AEF≌△AED.

∴EF=DE,于是在△FEC中,∠FCE=∠FCA+∠ACE=45°+45°=90°.

∴△FCE是直角三角形.

∴BD、DE、EC为边构成的三角形是直角三角形.

3.运用平移变换进行证明

例2如图3,梯形ABCD中,AD∥BC,且∠B+∠C

=90°,E、F分别是AD、BC的中点,求证:EF=■(BC-AD).

证明:将AB沿AE方向平移到EG,将DC沿DE方向平移到EH.(即过E作EG∥AB,EH∥DC,交BC于G、H).

∵AD∥BC,∴四边形ABGE和四边形EHCD都是平行四边形.

∵E是AD中点,∴BG=AE=ED=HC.

∵F是BC中点,∴GF=BF-BG=FC-HC=FH.即F是GH的中点.

∵∠EGH=∠B,∠EHG=∠C,

又∠B+∠C=90°,∴∠EGH+∠EHG=90°,∴△GEH是直角三角形.

∴ EF是直角三角形斜边GH上的中线,∴ EF= GH.

而GH=BC-BG-HC=BC-(AE+ED)=BC-AD.

∴ EF= (BC-AD).

说明:本题也可以对图形作以下平移(如图4):过A作AH∥DC,AG∥EF,交BC于H、G,然后证明AG是Rt△BAH斜边BH上的中线.

图形的轴对称变换、旋转变换、平移变换过程中,保持的是图形的全等,它与全等三角形的性质、判定有着密切的联系.

11.几何证明题的方法 篇十一

1.几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2.掌握分析、证明几何问题的常用方法:

(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;

(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;

(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

12.初二上几何证明题007 篇十二

1.如图,已知AB=AC,D是AB上一点,DE⊥BC于E,ED的延长线交CA的延长线于F,求证:△ADF是等腰三角形.

A

C BE

2.C已知:如图DC⊥CA,EA⊥CA,CD=AB,CB=AE,说明BD⊥BE的理由.

E

BAC

3.C已知:如图,在△ABC中,∠ABC=45°,AD⊥BC,BE⊥AC.求证:BH=AC. A

H

4.C如图,△ABC的两条高AD、BE相交于H,且AD=BD.试说明下列结论成立的理由. ⑴∠DBH=∠DAC;⑵△BDH≌△ADC.

BDC

5.C已知,如图,△ABC的两条高BD和CE相交于F,CF = AB,求证:DB = DC.

A

D

E

B

6.C如图,在△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC交AC于点D,CE⊥BD交BD延长线于点E. 求证:BD=2CE.

E

13.谈几何证明题的一题多证 篇十三

例:试证两边上的高相等的三角形是等腰三角形。

已知:在€%=ABC中,BD⊥AC,CE⊥AB且BD=CE。

求证:€%=ABC是等腰三角形。

分析:要证三角形是等腰三角形,可证其两内角相等,要证两内角相等,可证含此两角的某两个三角形全等,这是一条思路;因为所给条件是两高相等,所以用面积公式证明更为简捷,这是另一条思路;或者根据条件中的直角三角形,用三角函数或勾股定理来证明,这又是一条思路;如发现四点共圆,则运用等弦对等弧,等弦对等圆周角,也能证明此题;如果注意到所给条件特殊,那么用解析法也易证明。

14.七年级下几何证明题 篇十四

七年级下几何证明题

学了三角形的外角吗?(三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于和它不相邻的任何一个内角)

角ACD>角BAC>角AFE

角ACD+角ACB=180度

角BAC+角ABC+角ACB=180度

所以角ACD=角BAC+角ABC

所以角角ACD>角BAC

同理:角BAC>角AFE

所以角ACD>角BAC>角AFE

2

解∶v1w连接AC

∴五边形ACDEB的内角和为540°

又∵∠ABE+∠BED+∠CDE=360°

∴∠A+∠C=180°

∴AB∥CD

v2w过点D作AB的垂线DE

∵∠CAD=∠BAD,∠C=∠AED

AD为公共边

∴Rt△ACD≌Rt△AED

∴AC=AE,CD=DE

∵∠B=45°∠DEB=90°

∴∠EDB=45°

∴DE=BE

AB=AE+BE=AC+CD

v3w∵腰相等,顶角为120°

∴两个底角为30°

根据直角三角形中30°的角所对的边为斜边的一半

∴腰长=2高

=16

v4w根据一条线段垂直平分线上的点到线段两个端点的距离相等

∴该交点到三角形三个顶点的距离相等

3

解∶v1w先连接AC

∴五边形ACDEB的内角和为540°

∵∠ABE+∠BED+∠CDE=360°

∴∠A+∠C=180°

∴就证明AB∥CD

♂等l♀运e -05-30 17:33

4

(1)解:过E作FG∥AB

∵FG∥AB

∴∠ABE+∠FEB=180°

又∵∠ABE+∠CDE+∠BED=360°

∴∠FED+∠CDE=180°

∴FG∥CD

∴AB∥CD

(2)解:作DE⊥AB于E

∵AD平分∠CAB,CD垂直AC,DE垂直AB

∴CD=DE,AC=AE

又∵AC=CB,DE=EB,AC⊥CB,DE⊥EB

∴∠ABC=∠EDB=45°

∴DE=EB

∴AB=AE+EB=AC+CD

(3)16CM

(4)3个顶点

5

如图 已知在四边形ABCD中,∠BAD为直角,AB=AD,G为AD上一点,DE⊥BG交BG的延长线于E,DE的延长线与BA的延长线相交于点F。

1.求证AG=AF

2.若BG=2DE,求∠BDF的度数

3.若G为AD上一动点,∠AEB的.度数是否变化?若变化,求它的变化范围;若不变,求出它的度数,并说明理由。

解:由题意得

1)∠BAD=∠DAF=90°

∵∠5=∠6(对顶角)

∠1=∠2=90°

∴∠3=∠4

∵AB=AD

∴△BAG≌△DAF(ASA)

∴AG=AF

2)由1)可知BG=DF,∴DF=2DE

∴BE为△BDF的中线

又∵BE⊥DF

∴BE为△BDF的高线

∵△BDF的中线与高线重合

∴△BDF是等腰三角形

又∵∠DBF=45°

∴∠BDF=∠F=(180°-∠DBF)/2=67.5°

3)变化

15.几何证明题解题口诀 篇十五

(作者:河南省唐河县刘军义)

几何做题很容易,证明过程写详细。数学原理巧运用,前后贯通有条理!题目信息不放过,必与结果有联系。学科符号用恰当,统一规范又适宜: 因为所以单点对,大小符号尖相抵; 图形符号缩字同,角线名称字母替。证理恰切书规范,美观整洁又得体!解释:

1、题目信息:指题目中给的证明条件。

2、结果:指要证明的内容。

3、因为所以单点对:指“∵”和“∴”竖写时情况。

4、尖相抵:指“>”和“<”横写时的情况。

5、图形符号缩字同:指“□”“◇”“△”等代替图形名称时占一个汉字的位置。

上一篇:党建3十x红色小故事下一篇:与人为善主题班会