有理数加法(二)教学设计(共10篇)
1.有理数加法(二)教学设计 篇一
有理数加法教学设计
东陵区(浑南新区)嘉华学校
张艳丽
2012-9-27
有理数加法教学设计
一.教材分析
“有理数的加法”是北师大版七年级数学上册第二章有理数及其运算的第四节内容,本节内容安排三个课时,本课时是本节内容的第一课时,本课设计主要是通过知识竞赛中得分的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。“ 有理数加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(20 分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计. 注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.所以根据这个情况本节课的设计就采取了第二种方案。
二.学情分析
学生刚升入初中不久,对于新的教学方法还不太熟悉,在新时期下,学习过程更注重对于学生能力的培养,而不是单纯的强调学生掌握一些定式的法则,学习知识是为了解决实际问题,而学生又缺少分析问题的能力,所以小组讨论就是学生锻炼能力的重要方式,但小组讨论往往不知道从何说起,这就需要老师给学生设定合适的话题,让学生有的放矢,而学生在课前已经进行了教材的阅读,对于教材内容没有新鲜感,所以这时我从问题入手,举出一个看似搞笑的结果,让学生产生兴趣,积极参与,培养学生归纳及自主探索和合作交流能力。
三.教学目标 1.知识与技能
(1)通过知识竞赛中小组得分的计算,经历探索有理数加法法则和运算律的过程,体会分类和归纳的思想方法,使学生掌握有理数加法法则,并能运用法则进行计算。
(2)理解有理数的加法法则和运算律,在有理数加法法则的教学过程中,注意培养学生的运算能力。
(3)能熟练进行整数加法运算,并能用运算律简化运算。
2.过程与方法
通过观察,比较,归纳等得出有理数加法法则,能运用有理数加法法则解决实际问题。
3.情感与态度
认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
4.重点与难点
会用有理数加法法则进行运算.异号两数相加的法则.类比小学阶段学习的加法,比较其中的差别,注重不同点的教学,即异号两数相加时的绝对值相减的问题。
四.教学过程
(一)创设问题情境 首先设置一个大家都感兴趣的话题:某次数学竞赛,有三种参赛队,比赛规则规定,每答对一题得4分,答错一题扣4分,不答不得分也不扣分。最后得了冠军的队一道题都没答,而第二名还答对了三道题,这是一个什么样的情况?请设计一个具体情况,使这种情况合理符合题意。
问题出来之后请学生小组讨论分析,每个组的答案可能不一致,比如说第二名可以是答对三题但答错了五道题,那么得分就是-8分,而第三名可以是答错了一题,一个也没答对。然后由学生给出计算过程,即(+12)+(-20)=-8分,也可以有其它举例。
(二)师生共同探究有理数加法法则
之前我们已经学习了有理数的一些知识,比如绝对值等,以上面的问题为例,来不分析不同情况下的得分情况:(1)答错3题时:
(-4)+(-4)+(-4)=-12分(2)答对5题时: 4+4+4+4+4=20分
(3)答对3题,答错5题时,答对的3题与答错的3题抵消为0,剩下的两个答错题得分为-8,即12+(-20)=-8 由学生讨论其它情形的得分情况及计算方法。总结:先确定得分是正还是负的,再考虑绝续值。法则得出: 加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加; 2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数。
(三)、应用法则解决问题
例1(教科书的例1)
解:(1)(-10)+(-1)(两个加数同号,用加法法则的第2条计算)=-(10+1)(和取负号,把绝对值相加)=-11(2)180+(-10)(两个加数异号,用加法法则的第2条计算)=+(180-10)(和取正号,把大的绝对值减去小的绝对值)=+170(3)5+(-5)
=0(互为相反数的两个数相加得0)(4)0+(-2)
=-2(一个数同0相加,仍得这个数)
例1.计算下列算式,先判断正负说理由,再计算绝对值。(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);
(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2); 总结:给以上各题分类,即同号还是异号,再选择法则的相应内容去解决问题。
强调异号两数相加时符号的确定及绝对值的确定。
(四)、小结
1.本节课你学到了什么?
2.本节课你有什么感受?(由学生自己小结)
(五)练习设计
1、基础练习:
教材36页知识技能1.计算
(1)(-8)+(-9);(2)(-17)+21;(3)(-12)+25(4)45+(-23);
(5)-45+23;(6)(-29)+(-31);(7)(-39)+(-45);(8)(-28)+37;(9)(-13)+0 通过计算学生总结法则哪部分的应用最易出错,从而提示学生注重异号两数相加时符号的确定及绝对值的确定。教材第2、3题自己完成
数学理解中设计-4+3的情境,是为了锻炼学生解决实际问题的能力。可以有多种,比如气温的变化,得分的变化,水位的变化等。
2、提升练习
1.用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b ______0;(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;(4)如果a<0,b>0,|a|>|b|,那么a+b ______0. 2.已知如图:
那么a+b ______0;
a
0
b
五、教学反思:
本节教案设计注重引导学生参与探索、归纳有理数加法法则的过程,紧跟教学改革的脚步,把培养学生能力做为主要内容,同时注重合做交流,小组讨论,学习的过程是培养学生能力的过程,同进也兼顾数学学习的基础,计算能力的培养,让学生掌握加法法则,类比有理数范围的加法和小学阶段的加法的区别,并能用法则进行计算。
2.有理数加法(二)教学设计 篇二
一、提出问题
大家小学学习过小数、分数、自然数的加法运算, 现在看来这些运算都是在非负数的范围内进行的.负数引入之后, 数扩大到了有理数的范围, 能否对任意的有理数进行加法运算?这种运算的法则又是怎样的呢?这就是本节课要研究的内容.这一过程旨在由学生的旧知引入新知, 很自然的激起学生探究的欲望, 调动学生学习的主动性.
二、课题的引入
首先在引入问题上, 我们费了一番脑筋.一开始, 我们想从吸引学生的兴趣出发, 引导大家举一些足球赛场上得分、失分的例子.一位老师在和足球迷的丈夫讨论后提到, 最好不要讨论某个足球队在整个赛事上的得分情况, 因为胜一场积3分, 平一场积1分, 输一场积0分, 积分方法比较复杂, 不利于学生列式子, 总结法则.后来我们又想不如引导学生们讨论一场足球赛中的净胜球情况, 但是考虑到这样的话, 课堂讨论时, 可能学生会花好多时间去列举一些其本质是一类的例子, 或者有可能不能完全举出我们心里想要他们举出的那六个算式, 这样可能讨论的效率不高, 而且对数学思维的培养可能作用不是太大, 所以最后足球的引入还是被我们否定了.
我们决定用书上的引入, 但做了一点小小的变化.给出实际问题:一位同学在一条东西向的跑道上, 先走了20米, 又走了30米, 问:你能否确定他现在的位置位于出发点的哪个方向?与原来的位置相距多少米?
三、探索规律
分组讨论, 由小组的代表说出本组成员的想法, 我发现学生所回答的答案中包括了全部可能的答案, 这时我趁势提问回答出答案的同学是如何想出来的, 并把他们的回答一一写在黑板上, 用1, 2, 3, ……来区分出不同的分类情况.
还有同学补充说这名同学没说全, 还有好多种呢, 比如先向东走30米, 再向西走20米, 马上有同学反驳说, 不对, 刚刚题目都说啦, 先走的是20米, 后走的是30米, 马上那名同学恍然大悟地说:“哦, 我搞错啦, 你已经说全了!”
再次提出问题:你能把刚才四种可能转化为数学表达式吗? (能) 在写之前咱们还有什么事没做呢?因为本节课是在前面学习了有理数的意义的基础上进行的, 学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念, 所以马上就有学生回答为了表示相反意义的量, 所以要用到正负数, 得规定正方向, 比如向东的方向为正.我又引导说:“光有正方向就够了吗?”又有一名同学补充说还要规定一下出发点为原点, 这样就可以把朝哪个方向走表示成有理数了. (是一个建模的过程)
提问:求两次运动的结果, 应该用哪种运算?学生们在小学就知道要用加法, 找同学在黑板上列出算式, 根据实际意义写出算式的结果, 分别得到四个等式:
(+20) + (+30) =+50; (+20) + (-30) =-10; (-20) + (+30) =+10; (-20) + (-30) =-50.
指出:这几名同学所列的式子就是两个有理数相加求和的问题, 当然它们的答案是从实际生活意义出发考虑得到的, 但是并非任何一个有理数加法算式都能从生活中找到实例, (同学们笑) 所以找到有理数的加法规律看来很必要.
指导学生看书上的黑体字, 比较一下书上的表达方式与我们自己的表达方式有什么区别.同学很快发现我们总结时没有提到互为相反数的两数相加和为零, 也没有提到任何一个有理数与零的和仍是该数.还有同学说书上第二条前面还说绝对值不相等的异号两个数, 我们却没有限定
提出问题:那书上说的3, 4两条对不对呢?
同学们纷纷回答说:“对!”追问为什么, 他们说“比如第一次向东走20米, 第二次不动, 那结果还是出发点以东20米, 或者第一次向东走20米, 第二次向西走20米, 那结果就是回到出发点了”.
提问:那是不是我们总结时漏了这两种情况呢?是不是我们说得不对呢?同学们继续分组讨论.一会儿, 全班基本上分了两个派别.并且进行了激烈的讨论.有代表发言说, 我认为我们总结得不够全面, 少了两条, 细节的表达上也没有注意, 以后要注意改进……
事实上, 对于后面这段关于表达方式差异的讨论, 是我们精心设计的, 一方面在引入问题上, 书上是把5, 6两种情况单列出来的, 比如不动, 或是先向东20米, 又向西20米, 我们总感觉有点突兀, 跟主干问题没有太大的联系, 通过学生对法则中3, 4两种特殊情况的讨论, 巧妙地避免了由老师说出这两种特殊情况, 从他们嘴里说出来, 印象会更深, 而且讨论的过程本身就是熟悉和理解法则的过程, 肯定他们的说法的正确性, 对他们今后的探索更是一种激励.最后教师点一下规则, 强调注意两个方面:一是和的符号, 二是和的绝对值与原加数绝对值之间的关系.
四、巩固练习
例 (1) (+12) + (+20) ; (2) (+4.3) + (-3.4) .
为加深学生对加法法则的熟悉和应用, 叫同学上黑板板演, 同学们一起订正, 提醒大家书写时的格式, 如加数是负数时要用括号括起来, 要不就会出现一个非负数前连着有两个符号了.之后提问:你觉得再做有理数加法时, 应该注意些什么?同学们就反映说, 首先要确定符号, 然后就是小学的加减法了.
五、小节
总的来看, 教学采用“问题情景———建立模型———解释、应用与拓展”的模式展开, 注重引导学生参与探索、归纳有理数加法法则的过程, 主动获取知识.这样, 学生在这节课上不仅学懂了法则, 而且能感知到研究数学问题的一些基本方法.这种方案减少了应用法则进行计算的练习, 所以学生掌握法则的熟练程度可能稍差, 这是教学中应当注意的问题.但是, 在后续的教学中学生将千万次应用“有理数加法法则”进行计算, 故这种缺陷是可以得到弥补的.
3.对《有理数加法》教学的尝试 篇三
教学设计思路和理念:
一、提出问题
大家小学学习过小数、分数、自然数的加法运算,现在看来这些运算都是在非负数的范围内进行的。负数引入之后,数扩大到了有理数的范围,能否对任意的有理数进行加法运算?这种运算的法则又是怎样的呢?这就是本节课要研究的内容。这一过程旨在由学生旧知引入新知,很自然的激起学生探究的欲望,调动学生学习的主动性。
二、课题的引入
首先在引入问题上,我们费了一番脑筋。
一开始,我们想从吸引学生的兴趣出发,引导大家举一些足球赛场上的得分,失分的例子。一位老师在和足球迷的丈夫讨论后提到,最好不要讨论某个足球队在整个赛事上的得分情况,因为胜一场积3分,平一场积1分,输一场积0分,积分方法比较复杂,不利于学生列式子,总结法则。后来我们又想不如引导学生们讨论一场足球赛中的净胜球情况,比如我方进了3个球,对方进了2个球,那我们的净胜球就是1球,再如我方进了二2个球,对方进了4个球,那么我们的净胜球就是-2球,但是考虑到这样的话,课堂讨论时,可能学生会花好多时间去列举一些其本质是一类的例子,比如我方进3球,对方进2球,我方进4球,对方进3球,或者有可能不能完全举出我们心里想要他们举出的那六个算式,这样可能讨论的效率不高,而且从数学的思维角度上来看,这种无序的讨论,对数学思维的培养可能作用不是太大;我们又不愿意一开始就在黑板上把所有的可能都列齐了,让学生仅仅充当译题的角色,所以最后呢,足球的引入还是被我们否定了。
我们决定用书上的引入,但做了一点小小的变化。
给出实际问题:
一位同学在一条东西向的跑道上,先走了20米,又走了30米,能否确定他现在的位置位于出发点的那个方向,与原来的位置相距多少米?
三、探索规律
分组讨论,由小组的代表说出本组成员的想法,我发现学生所回答的答案中包括了全部可能的答案,这时我趁势提问回答出答案的同学是如何想出来的,并把他们的回答一一写在黑板上,用1、2、3、……来区分出不同的分类情况。
①先向东走20m,再向东走30m;
②先向东走20m,再向西走30m;
③先向西走20m,再向东走30m;
④先向西走20m,再向西走30m
还有同学补充说这个同学没说全,还有好多种呢,比如先向東走30米,在向西走20米,马上同学就反驳说,不对,刚刚题目都说啦,先走的是20米,后走的是30米,马上那名同学恍然大悟说,哦,我搞错啦,你已经说全了!
4.有理数加法教学反思 篇四
数学学习过程应当是一个生动活泼的、主动的和富有个性的过程,而不能再是单一的、枯燥的,以被动听讲和练习为主的方式,它应该是一个充满生命力的过程。本节课在教学中以故事引入,在学生已有的知识经验建构新知主动探索有理数加法交换律和结合律,从而引起他们学习的兴趣,把他们被动地接受学习变成一种主动探索获取知识的过程。
数学与人和现实生活之间是有着紧密的联系的,把贴近学生熟悉的,现实生活,引入教学,不断沟通生活中的数学与教科书的联系使生活和数学融为一体,是“新课标”所倡导的理念之一。本课教学时的最大特点是让学生体会生活中的数学,有益于学生理解数学、热爱数学,从而把数学当成自己发展的重要动力源泉。
本节课中如何更有效地调动“弱势群体”的积极性,是我们进一步要探讨的方向。
5.有理数加法教学反思1 篇五
本节课的主要内容是有理数加法的法则和利用数轴表示直观的阐释有理数加法的法则,以学生易于接受的实际生活例子引入有理数加加法。为此,本节课安排较多的时间用于探索加法法则,以学生作为探索的主体,结合学生的实际,因材施教,根据学生的基础,提出不同要求,为每一个学生创造发挥自己的空间,很大程度上调动了学生的学习积极性,特别是学生的创造性得到了充分的展示,增强了学生的求知欲。这正是新课程理念所倡导的,即课程不再只是知识的载体,而是教师和学生共同探究新知识的过程,只有真正被学生经历、理解和接受了的东西才称得上是课程。
经过探究、讨论、相互交流,对有理数的加法运算,同学们基本都能理解并掌握,但仍然有的同学不善于利用加法法则来进行运算,而是仍然采用将算式赋予实际意义,再通过自己的生活经验来解决。特别是异号两数相加的和的符号的确定,模糊不清,这可能是由于引例造成的思维定势,所以需要强调计算要以法则为依据,加强用法则的熟练程度。
6.有理数加法(二)教学设计 篇六
1.教学目标
知识技能 通过实例,了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.数学思考
1、正确地进行有理数的加法运算.2、由数形结合的思想方法得出有理数加法法则.解决问题 能运用有理数加法解决实际问题.情感态度 通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来.2.教学重点/难点
重点 了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.难点 有理数加法中的异号两数如何进行加法运算.3.教学用具 4.标签
教学过程 问题与情境 活动1:
我们已经熟悉正数的运算,然而实际问题中加法运算的数有可能超出正数范围.例如:足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数.章前言中,红队进4个球,失2个球,蓝队进1个球,失1个球,于是红队的净胜球为4+(-2),黄队的净胜球数为1+(-1)。这里用到正数与负数的加法.活动2: 看下面的问题:
1、一个物体作左右方向的运动,我们规定向左为负,向右为正,向右运动5米记作5m,向左运动5米记作-5m.如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么? 两次运动后物体从起点向右运动了8m,写成算式就是: 5+3=8
①
2、如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是什么? 两次运动后物体从起点向左运动了8m,写成算式就是:(-5)+(-3)=-8
②
这个运算也可以用数轴表示,其中假设原点为运动起点(见教科书图1.3-1).活动3:
1、如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向右运动了2m,写成算式就是: 5+(-3)=2
③
这个运算也可以用数轴表示,其中假设原点为运动起点(见教科书图1.3-2)
2、探究:利用数轴,求以下情况时物体两次运动的结果:
⑴先向右运动3m,再向左运动5m,物体从起点向
运动了
m; ⑵先向右运动5m,再向左运动5m,物体从起点向
运动了
m; ⑶先向左运动5m,再向右运动5m,物体从起点向
运动了
m.如果物体第1秒向右(或左)运动5m,第2秒原地不动,两秒后物体从起点向右(或左)运动了5m.活动4:
你能从算式①至⑦中发现有理数加法的运算法则吗? 有理数加法法则:
⑴同号两数相加,取相同符号,并把绝对值相加.⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.⑶一个数同0相加,仍得这个数.活动5:
1、例1 计算: ⑴(-3)+(-9); ⑵(-4.7)+3.9 解:⑴(-3)+(-9)=-(3+9)=-12; ⑵(-4.7)+3.9=-(4.7-3.9)=-0.8。
2、例2 足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数.解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为:(+4)+(-2)=+(4-2)=2; 黄队共进2球,失4球,净胜球数为:(+2)+(-4)=-(4-2)=
; 蓝队共进
球,失
球,净胜球数为:
=
.1、练习:(1)(+2)+(-8)(2)(+7)+(-9)(3)(-7)+(-8)(4)(+1.5)+(+4.25)
课堂小结
这节课我们学习了哪些知识?你能说一说吗? 教师引导学生回忆本节课所学内容.学生回忆、交流。
教师和学生一起补充完善,使学生更加明晰所学知识.课后习题 1)(-3)+(-8)(2)(+18)+(-9)(3)(+12)+(+8)(4)(-1)+(-4.25)
板书
课题
有理数的加法(1)
1、法则
例2
2、例1
7.有理数的加法” 教学案例与评析 篇七
一.感知生活,导入新课
(播放一段录象)画面上一个十一、二岁的小朋友站在一个文具店里,销售文具。画外音——小明的父亲下岗后,在学校后门租了一个小门面,开了一间文具店,若是把每月的租金分摊到每天的上午和下午,这样不卖出文具时,小店在这半天也是亏本的。小明是一个懂事和孩子,今年暑假抓紧完成作业后,就给父亲去帮忙。还专门对一周七天的亏盈做了如下统计。星期一,上午赚了80元, 下午赚了60元;星期二,上午亏了20元, 下午亏了30元;星期三,上午赚了80元, 下午亏了25元;星期四,上午亏了45元, 下午赚了30元;星期五,上午赚了30元, 下午亏了30元;星期六,上午不赚不亏, 下午赚了60元;星期日,上午亏了20元, 下午不赚不亏;老师:同学们,如果赚了30元记为+30元,亏了20元记为-20元,请你们帮小明统计一下这一周每天的亏盈情况。并用数学式子表示出来。(学生讨论)学生A:星期一小明父亲的文具店赚了140元,用式子表示为: +140 =(+80)+(+60)……①
老师: 大家对这个式子有什么看法没有?
学生A1:有,140要写在(+80)+(+60)的右边。老师: 说说你的道理。
学生A1:星期一的140元收入是由上午60元和下午的80元,两个加数得出的。应该是先要有加数相加后再有和,所以140要写在这个式子的右边。老师: 这位同学说得非常好。后面我们也要按照计算的先后顺序正确的书写每一个式子。
评析:教师看到①式后,没有直接纠正过来,而是让学生思考,发表看法,得出正确的书写形式。学生B:星期二小明父亲的文具店亏了50元,用式子表示为:(-20)+(-30)=-50 ……②
学生C:星期三小明父亲的文具店赚了55元,用式子表示为:(+80)+(-25)=+55
……③
学生D:星期四小明父亲的文具店亏了15元,用式子表示为:(-45)+(+30)=-15
……④
学生E:星期五小明父亲的文具店不赚也不亏,用式子表示为:(+30)+(-30)=0
……⑤
学生F:星期六小明父亲的文具店赚了60元,用式子表示为: 0+(+60)=+60
……⑥
学生G:星期日小明父亲的文具店亏了20元,用式子表示为:(-20)+ 0 =-20 ……⑦
评析:由于这些问题都是学生所熟悉的,他们也回答得很正确。正好利用这七个问题引导学生对有理数的加法法则概括和理解 二.合作交流,解读探究
老师:再请同学们归纳一下,上面七个式子表示了几种不同的有理数相加,同学H:上面七个式子表示了两个正数相加,两个负数相加,一正一负的两个有理数相加,0和一个有理数相加四种有理数相加。老师:这位同学的分法较好,同学们还有更好的分法吗 ?
同学J:我把这七个式子分为三种不同的有理数相加。我认为两个正数相加和两个负数相加就是同号两数相加,其次是一正一负的两个有理数相加,第三是0和一个有理数相加。
老师:这位同学把两个正数相加和两个负数相加,归纳为“同号两数相加”非常好,那么还有没有更好的分法呢? “有”学生K大声地说。老师:请你说说看。
学生K:我把它们分为四种有理数相加:两个正数相加和两个负数相加就是同号两数相加,一个正数相加和一个负数相加应分为两种情况。其中象(+30)+(-30)=0可分为互为相反数相加,另外一种是、不是互为相反数的异号两数相加,最后一种是0和一个有理数相加。
老师:这位同学分得非常好。特别是把“互为相反数的和等于0”从一正一负的两个有理数相加中分出来是有好处的。互为相反数虽说是一正一负,但它们的绝对值相等,最主要的是,它们的和为0。这为后面的有理数的混合运算提供极大的方便。
评析:让学生逐步概括出有理数加法的四种情形。特别是把互为相反数的和为0概括为有理数加法的一种类型,既有必要,又能给我们在后面的有理数运算中带来方便。
老师:四类不同的有理数相加,怎样求它们的和呢?请同学思考回答并举例。同学L:同号两数相加,取相同的符号,并把绝对值相加; 如:(+12)+(+30)=+(12+30)=42(-8)+(-23)=-(8+32)=-31 同学M:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
如:(+1/3)+(-5/3)=-(5/3-1/3)=-4/3(-44)+(+56)=+(56-44)=+12 同学N:互为相反数的两个数的和为零; 如:(+6.8)+(-6.8)= 0.(+17)+(-17)= 0 同学O: 一个数与零相加,仍得这个数.如:(-9)+ 0=-9, 0+(+19)=19.评析:“有理数的加法”法则通过一个学生非常熟悉的教育资源入手,让学生边想边做,边做边想,轻轻松松地掌握了这个法则。大大降低了课堂教学的难度。三.小结:有理数加减法则
1、同号两数相加,取相同的符号,并把绝对值相加;
2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
3、互为相反数的两个数相加得零;
4、一个数与零相加,仍得这个数。(强调:一个有理数由符号与绝对值两部分组成,所以进行加减运算时,必须先确定和的符号,再确定和的绝对值)
反思:以上就是本人对“有理数的加法”这一节课教学的部分实录。课后我回忆以前对这内容的教学,完全按照课本上的设计,从东西走向入手,得到一个算式,再结合数轴得到结果,然后再得到加法法则。整个课堂教学就是教师带领学生在数轴上从东走向西,从西走到东。学生愿不愿意走,是不是走得懵头转向,只要教师自己知道走就可以了。相比之下,这次我利用小明给他父亲的文具店打工这一教学资源,由于学生对这一件事非常熟悉,所以他们情绪很高,兴趣也很浓。课堂上没有看到学生茫然的情况。我自己也觉得这堂课比以前任何一次都教得轻松:“好象他们都会,我没有为他们做什么似的”。
8.有理数加法(二)教学设计 篇八
1、通过学生实际表演,老师指导学生画出示意图后,让学生列出相关式子,得出相应结论,分小组讨论有理数的加法法则。
2、老师参与学生讨论,鼓励学生用自己的语言描述出来,最后老师再用规范语言总结出有理数的加法法则,并板书在黑板上。有理数加法法则:
1、同号两数相加,取原来的符号,并把绝对值相加。
2、绝对值不等的数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小绝对值。互为相反数的两个数相加得0.3、一个数和0相加,仍得这个数。
二、知识应用、技巧培训: 例1 计算:
(1)(8)(9)(2)(8)9(3)(8)8(4)8(9)(5)(8)0(6)(8.5)(9.6)教学设计:
1、让学生在练习本上独立完成后,并与同伴交流结果,同时让学生代表上黑板板演出来。
2、鼓励学生应用有理数加法法则计算,明确每一步的算理。
3、师生共同评价学生所做答案的正确性,老师总结进行有理数加法时,要遵循“一定二求三和差”,即 黄队共进了___个球,失了___球,净胜球数为:__________________ 蓝队共进了___个球,失了___球,净胜球数为:__________________(注:这题主要以老师分析,师生共同解决为主)
9.有理数加法教案 篇九
襄汾三中
伊娟丽
教学目标 :
1.使学生掌握有理数加法法则,并能运用法则进行计算;
2.在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及
教学重点和难点 :
重点:有理数加法法则. 难点:异号两数相加的法则.
教学方法:三疑三探教学 教学过程 :
一、创设情景,导入新课
1.复习引入 前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.
2.学生设疑 两个有理数相加,有多少种不同的情形? 为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为+3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了2球,那么全场
共赢了5球.也就是(+3)+(+2)=+5.(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)+(-1)=-3. ② 现在请同学们说出其他可能的情形. 答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1; ③
上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1; ④上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3; ⑤ 上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2; ⑥ 上半场赢了3场,下半场输了3场,全场是平局,也就是 +3+(-3)=0. ⑦ 上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归 纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算? 这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则: 1 .同号两数相加,取相同的符号,并把绝对值相加; 2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0; 3.一个数同0 相加,仍得这个数. 二.解疑合探例:
1、计算下列算式的结果,并说明理由:
(1)(+4)+(+7);(2)(-4)+(-7);(3)(+4)+(-7);(4)(+9)+(-4);(5)(+4)+(-4);(6)(+9)+(-2);(7)(-9)+(+2);(8)(-9)+0;(9)0+(+2); 学生逐题口答后,教师小结:
进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符 号,再计算“和”的绝对值.
解:(1)(-3)+(-9)(两个加数同号,用加法法则的第2条计算)=-(3+9)(和取负号,把绝对值相加)=-12.
下面请同学们计算下列各题:
(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9);
(2)全班学生书面练习,四位学生板演,教师对学生板演进行讲评.
三.质疑再探: 说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)四.运用拓展: 1.引导学生自编习题。
2、小结 这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题. 应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事.
3、作业 1.计算:
(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);
(5)67+(-73);(6)(-84)+(-59);(7)33+48;(8)(-56)+37.. 计 算 :
(1)(-0.9)+(-2.7);(2)3.8+(-8.4);(3)(-0.5)+3;
(4)3.29+1.78;(5)7+(-3.04);(6)2.9)+(-0.31);
(7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0. 4.用“>”或“<”号填空:
10.《有理数加法》说课稿 篇十
作为一名人民教师,总不可避免地需要编写说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。快来参考说课稿是怎么写的吧!以下是小编精心整理的《有理数加法》说课稿,欢迎阅读,希望大家能够喜欢。
《有理数加法》说课稿1一、说教材:
(一)地位和作用有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一。
熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的重点之一。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。(二)课程目标:
1、知识与技能目标:
⑴了解有理数加法的意义。
⑵经历探索有理数加法法则的过程,理解并掌握有理数加法的法则。
(3)运用有理数加法法则正确进行运算(主要是整数的运算)。
2、过程与方法目标:
⑴在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
(2)在探索过程中感受数形结合和分类讨论的数学思想。
(3)渗透由特殊到一般的唯物辩证法思想
3、情感态度与价值观目标:
(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。
(2)让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。
(3)培养学生合作意识,体验成功,树立学习自信心。
(三)教学重点、难点:重点:理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则
二、说教法:
在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。
1、新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价与小组评价相结合)。
2、行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括)。
3、省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。
4、信:在本节课的探究法则与运用法则中体验成功,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)=+5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误)。
同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。另外利用多媒体来辅助教学,使教学内容直观形象化,使学生在比较真实的环境里面体验数学的生活性。
三、说学法:
本节课同号两数相加学生易理解,难点是异号两数相加,所以在教学时要注意以下几点:
第三、范例讲解和随堂练习始终是学以至用的有效方法。范例讲解与随堂练习都是学生强化理解法则、正确运用法则的地方。范例讲解时应引导学生步步说理,随堂练习时应引导学生通过自我反省、小组评价、来克服解题时的错误,有必要教师给与规范矫正。
四、说教学程序:
本节课我将“新、行、省、信”四字教育法运用到教学中,教学过程划分为以下几个环节:(简述如下)
1、引入新知---新(创设新的问题情境)。今年恰好举行了世界杯,所以通过足球净胜球问题引入教学,情境活泼、自然。在学生回答(-1)+(+1)=0和(+1)+(-1)=0时渗透“正负抵消”的思想引入讨论整数加法的几种情形。
2、探究新知---行
(1)类比小学学习加法的“实物数数法”(1用一个表示,-1用一个表示,那么2就用两个表示的方法)和“正负抵消”法形象直观得出一组有理数加法的结果,教学时除(+2)+(+3)教师示范得出外,其他几例均可学生自主得出,教师在聆听学生讲述自己的方法时及时给与积极的评价。
(2)联系前面数轴,运用数轴也可以形象得出上述四组数的结果。在教学时要强调加法的“叠加性”,此处学生易出错。如在讲(-2)+(-3)时学生虽然明白-2表示从原点出发往西移动2个单位,但在加上-3时易犯“又从原点出发”的错误,教学时可以采取以下策略:一是先讲点的移动再移动然后用数学式子表示,在此基础上出示其它几个算式,让学生运用点的移动说明运算结果;二是联系孩提时学数数(数手指)的方法进行类比。在此处的教学师应加强引导,在讲完第一个式子的表示过程后其他三个让学生依照刚才教师的方法和思路独立完成,在学生发表见解时师可以让其他学生给出矫正和评价。
3、得出新知---省
在前面形象得出结果的基础上教师诱导学生从四个例子中发现一般的结论。教师引导学生观察:问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?一个有理数同0相加,和是多少?在引导学生观察前可以让学生小组合作、交流、讨论。教师可以参与到学生当中的讨论中,在讨论中师可诱导学生先看式子的和的符号与两个加数的符号的关系,再诱导学生看和的绝对值与两个加数的绝对值的关系。如果学生有困难,师可引导学生分类:同号类、异号类、相反数类,观察符号与绝对值特征,再请学生发表自己或小组成员的见解。此处应肯定学生朴素的语言特别应表彰有独特见解和说得完备的学生。最后师生一起用比较规范的语言总结有理数加法法则。
4、运用新知---信此处的“信”
主要是指在运用法则解决问题时对照法则“步步说理”,从而树立学生学好法则用好法则的信心。特别是异号两数相加时更要着重强调、矫正、理清思路和步骤。然后师生一起“解后思”:在做题时应该注意什么(此处又是“省”),在随堂练习时教师关键是反馈矫正、积极评价,5、联系实际、小小拓展;为落实“数学来源于生活、生活处处有数学”的理念,此处可安排两道实际应用题:如:请根据式子(-4)+3举出一个恰当的生活情境;(此例有很多好情境,教师应对举例举得好的学生给与积极评价)。又如:土星表面的夜间平均温度为-150度,白天比夜间高27度,那么白天的平均温度是多少?
6、教学小结、知识回顾:
教师让学生畅所欲言的谈在这节课的得与失、感到困惑和疑难的地方、运用法则的关键和步骤等等。师在学生发言的基础上再提炼。运算时的基本思路:①确定类型、②确定符号、③确定绝对值。7、课外作业为进一步巩固知识,布置适当作业。教师还可提问供学生课外思考以挑战老师:学习完今天的知识后,老师认为“两个有理数相加,和一定大于其中一个加数”,老师的说法正确吗?请聪明的你举例说明。文章来源
《有理数加法》说课稿2一.教材的地位和作用
有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。二.教学目标 1、认知目标:
(1)理解有理数加法的意义;
(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;2、能力目标:
(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、情感目标:
(1)通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造。(2)体会有理数加法的数形思想。
三.教学重点、难点:
整节课都是围绕着有理数加法法则进行的,因此根据《教学大纲》的要求,本节课的重点是:有理数加法法则的理解与运用。突破策略:?利用多媒体手段,借助于动画演示,化抽象为具体.?讲清楚探究有理数加法法则的方法和过程。由于学生第一次接触带有符号的两个数
相加,必须克服小学里长期形成的算术加法的思维定势的影响,特别是异号两数相加的符号和绝对值因此我确定本节课的难点是:异号两数相加加法法则的理解和应用。突破策略;?精选各种有趣的题型,让学生通过训练,尝试成功.?利用多媒体手段,借助于动画演示,化抽象为形象,化难为易。
教学方法
我在本节课主要采用“引导——发现教学法”,并借助于计算机课件,通过“问题情境—建立模型—解释、应用与拓展”的模式展开教学。
本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当主角,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具多媒体 ,让学生在多媒体演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
在整个教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。
学习方法
七年级学生是智力发展的关键年龄,逻辑思维从经验型逐步向理论型发展。观察能力,记忆能力和想象能力也随着迅猛发展。他们生性好动,注意力易分散,爱发表见解,希望得到老师的表扬。所以在教学中我抓住学生的这一生理特点,一方面应用直观生动的形象幻灯图象,引发学生的兴趣,使他们的注意力始终集中在课堂上。另一方面通过小组竞赛和互举例子创造条件和机会,让学生发表见解,发挥学生学习的主动性。
本节课学生主要采用“探究学习法”,学生通过多媒体的演示;主动探索,发现规律;并及时进行归纳总结,使学生的主体地位得以体现又让学生充分感受探究有理数加法法则的过程,符合学生的认知过程。并且将单调的练习转换成学生互相提问,互相比赛的方式,使学生的学习热情得以调动。
采用这种学习方法的优点是:学生主动参与知识的发生、发展过程,在解决问题的过程中学习,在探究的过程中,激发学生学习兴趣和创作新热情。掌握这种学习方法后,对学生的终生学习、终生发展有积极的意义。
教学过程
《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设为以下五个环节:发现新知—再探新知—应用新知—深化拓展—小结巩固。
《有理数加法》说课稿31. 教学目标
1.1地位、作用
在初中阶段,要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把实际问题转化成数学问题的数学意识,增强学生对数学的理解和解决实际问题的能力.运算能力的培养主要是在初一阶段完成.有理数的运算是初等数学的基本运算,掌握有理数的运算,是学好后续内容的重要前提.有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,也是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习.1.2学情分析
在初中数学教学中,非智力因素在认知过程中起十分重要的作用,而兴趣在非智力因素中占有特殊的地位,它是学生学习自觉性和积极性的核心因素,是学习的强化剂.因此,从初一开始培养学生对数学的兴趣,是其学好数学的重要保障.围绕这一点,在教学中要让不同程度的学生都有体验成功的机会,教学中教师为导、学生为主,充分认识初一学生这个年龄段的心理特征:好奇心强;好胜心强;抽象思维能力弱,过分依赖直观;意志薄弱,缺乏毅力.另一方面,课本知识的传授是符合学生的认知发展特点的.在前期段,学生已经储藏了两个正数的加法,较大数减较小数的减法,引入了负数,有必要再学习有理数的加法,然后过渡到有理数的其它运算,再到式的运算、方程、函数的运算;同时,负数、数轴、绝对值的学习又为这节课的学习方法奠定了基础.1.3教学目标
根据本节所处的地位与作用,结合学生的具体学情,确定本节课的教学目标如下:
知识目标:通过将生活中的问题转化为有理数加法的全过程,使学生直观形象地理解有理数加法的意义,掌握有理数的加法法则,并能正确运用.能力目标:通过情境的设计,培养学生的探索创新精神.在学生学习的过程中,渗透分类思想、数形结合思想与及综合、归纳、概括的能力.情感目标:通过教师引导下的探索,让学生感受到数学学习的价值与乐趣.1.4教材处理
根据本节教材的内容,我把有理数的加法划分为两个课时,第一课时学习有理数的加法法则并能准确进行两个数的加法运算;第二节课学习有理数的加法运算律并能准确进行多个数的加法运算.2. 重点、难点
2.1教学重点:有理数加法法则的理解与运用(而不是简单地记忆法则).2.2教学难点:异号两数加法的实际意义及法则的归纳.3. 教学方法与教学手段
本课采用多媒体辅助教学,从学生熟悉的人物出发,激发学生探索欲;通过层层铺垫,引导学生利用已学数学工具探索新知;在学生探索的基础上,有意识地引导学生对多样化的结果进行分类整理;在法则的提炼过程中,培养学生类比、归纳和概括的学习能力.在本节的设计过程中,利用了一道开放性习题引出课题,让学生在研究中学习,对学生进行能力培养,充分跨越学生的最近发展区.4. 教学过程:
4.1创设情境,让学生的思维“动”起来
[生活情境]刘翔是世界男子青年锦标赛110米栏的冠军,是中国人的骄傲.从他的体育精神中我们应该学习他坚忍不拔的刻苦精神,激励学生爱国、立志.将跑道抽象为数轴,起跑点为原点,将生活问题数学化.说明:这种从生活到数学的建模,从学生感兴趣的题材出发,为创设下文的探索情境作一个兴奋点的刺激,让每个学生都有信心并且能够积极尝试、探索.4.2体验进程,让学生的思维“活”起来
“数学是问题的心脏”,是教学的出发点,由问题引入课题能使学生产生较强的未知欲.[开放式探索] 刘翔在一条东西方向的跑道上往返跑步进行训练,他连续跑了两段路,共跑了80米.问刘翔两次以后的位置可能在哪里?
设计意图:这是一道条件不唯一,结果也不唯一的开放性题型,对学生有一定的挑战性.它的优点在于:只要理解题意,任何一个学生都能答对至少一种正确答案;同时它的答案又分多种情况,学生由于思维的不完备性,很容易丢失答案,并且这种错误在别人的提醒中能马上恍然大悟.这是一道能锻炼学生思维的灵活性、严谨性及答案适用分类讨论、培养学生概括能力的好题.在本题中,包含学生对有理数加法的意义的理解及探索有理数加法加数的几种类别(从正负性上区分),在求和的过程中,让学生有机会经历从实物模拟到表象操作再到符号操作的转化.教学方法:用课件帮助学生思维从“实物操作”过渡到“表象操作”并优化思路;给予学生充分的思考机会;善于抓住学生思维的弱势因势利导.预计困难:①学生直观思维理解“共跑了80米”就是在离出发点80米远的地方.这是一个距离与位移的概念混淆并且教学中不宜新增概念.②条件中的“两段”和“80米”分别对应加法中的什么量?有的学生不理解题意,可能放弃.处理方法:①教学中学生思维上的弱点也可能会成为他这堂课思维的亮点,让学生在练习纸上尝试“实物操作”思维方式,自己突破思维瓶颈.②在学生正确理解80米的条件使用方法后,再让学生比较80与加数的绝对值、和的绝对值的关系,在理解能力上更上一层楼.③区别不同程度的学生,可以从“列式子”,“列等式”,问“为什么”逐步递进,让尽可能多的学生尝试最近发展区.教学注意点:要明确本堂课的教学重点和目标,对开放题的探索浅尝止,不深究问题的所有可能性,剪辑学生答案尽快引出课题.4.3探究规律,让学生的思维“跳”起来
用分类讨论的方法进行有理数的加法规律的归纳是本节课的重点和难点,教师要依据学生现有得出的学习发现组织语言,减少指示或命令性语言,争取把课堂静止或学生不理解时间减至最少.在答案的汇总过程中,要肯定学生的探索,爱护学生的学习兴趣和探索欲.让学生作课堂的主人,陈述自己的结果.对学生的不完整或不准确回答,教师适当延迟评价;要鼓励学生创造性思维,教师要及时抓住学生智慧的火花的闪现,这一瞬间的心理激励,是培养学生创造力、充分挖掘潜能的有效途径.预先设想学生思路,可能从以下方面分类归纳,探索规律:
① 从加数的不同符号情况(可遇见情况:正数+正数;负数+负数;正数+负数;数+0)
② 从加数的不同数值情况(加数为整数;加数为小数)
③ 从有理数加法法则的分类(同号两数相加;异号两数相加;同0相加)
④ 从向量的迭加性方面(加数的绝对值相加;加数的绝对值相减)
⑤ 从和的符号确定方面(同号两数相加符号的确定;异号两数相加符号的确定)
教学中要避免课堂热热闹闹,却陷入数学教学的浅薄与贫乏.4.4注重反思,让学生的思维“深”下去
[反思应用1] 例1:计算(-3)+(-9);(-4.7)+3.9;
[反思应用2] 例2:足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数?
设计意图:当数学知识转化为表象知识时,一定要让学生从形式化过渡到符号化与数字化.这两例都是课本例题,教学过程中现在要减少学生的表象思维,让他们尽可能习惯用法则做题.培养学生的“数学化”意识.4.5拓展应用相结合,让学生的思维得以升华
[练习1]计算 15+(-22);(-13)+(-8);;
[练习2]用算式表示下列结果:
⑴ 温度由-4C上升7 C ⑵收入7元,又支出5元
[练习3]火眼金睛找错误:
+
=-1.7
②文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米又接着向西走了60米,此时小明的位置在()
A.文具店 B.玩具店 C.文具店西边40米处 D.玩具店西边60米处
C组: ①找规律:从表1中找规律,并按规律在表2的空格里填上合适的数
② 为了体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西走向的马路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,-4,+13,-10,-12,+3,-13,-17
⑴如果最后一名老师送到目的地时,小王距出车地点的距离是多少?
⑵若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?
设计意图:分层设计练习,满足不同基础水平和不同思维层次的同学的需要.A类题训练学生的定向思维,培养基本技能;B类题主要训练学生的发散思维,培养学生的灵活性;C类题具有一定的挑战性,培养学生思维的深刻性,同时在挑战的过程中,培养学生的意志力.[板书设计]
有理数的加法(一)+ 3 = 5
(-2)+(-3)=-5+(-3)=-1
(-2)+ 3 =1
(-2)+ 2 = 0
0 + 3 = 3
0 +(-3)=-3
同号两数相加
绝对值不相等的异号两数
异号两数相加
绝对值相等的异号两数
一个数同0相加
(法则归纳)
先定符号,再算绝对值
教学设计的说明
布鲁纳的认知理论认为:人的认知过程要经历一个从“实物操作”到“表象操作”再到“符号操作”的过程,这时知识才真正内化到人的认知结构.我觉得,这种认知规律是我在这堂课的教学的设计过程中应该遵循并且努力实现的.《有理数的加法》是一堂纯粹的运算技能课,如何在这种我们认为理所当然而学生茫然无知的课上让学生感觉自己是知识的主人,有主动探索发现的权利是我备课时反复琢磨的一个主题,怎么才能把一堂传统的“教、记、练”的课有效地发挥教师的引导作用从而使课堂富有生命力真正培养学生的各方面能力更是我所追求的.我想,数学就应该是这样一种在具体、半具体、半抽象、抽象中间的铺排,是穿梭于实物与算式之间的一种形式化过渡.弗兰德对师生语言互动进行分类时认为,课堂上教师的讲与学生的讲有三种交流方式:回应、中立、自发,在这堂课上,我希望学生能自发地运用语言表述他们的需要与探索,我充分设想学生的可能困难同时又充分相信学生、充分调动学生的积极性与参与意识,让他们的思维动起来、跳起来再沉下去,让学生思维从形式化过渡到符号化、数字化,让学生真正成为课堂的主人.
《有理数加法》说课稿4一、教学目标
(一)知识与技能
1、使学生掌握有理数加法法则,并能运用法则进行计算;
2、在有理数加法法则的教学过程中,注意培养学生的运算能力。
(二)过程与方法
1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
2、在探索过程中感受数形结合和分类讨论的数学思想。
(三)情感、态度与价值观
1、认识到通过师生合作交流,学生主动参与探索获得数学知识,从而提高学生学习数学的积极性。
2、创设教学情境,使学生更好地体验教学内容中的情境,理解数学的意义与数学实际应用。
二、教学重点
会用有理数加法法则进行运算。
三、教学难点
异号两数相加的法则。
四、教学方法
探究法、引导发现法
五、教具准备
多媒体课件、导学案
六、教学过程
(一)创设情景,引入新课。
小明沿着一条直线,先走两米,又走了三米,能否确定小明现在位于原来位置的哪个方向,与原来位置相距多少米?请把你们认为可能的所有答案说出来。
(二)探究新知
1、大家开始画数轴,以原点为起点,规定向右的方向为正方向,向左的方向为负方向。
(1)若两次都是向右走,很明显,一共向右走了5米。
记作:(+2)+(+3)= +5
(2)若两次都是向左走,很明显,一共向左走了5米。
记作:(-2)+(-3)=-5
(3)若第一次向右走2米,第二次向左走3米,在数轴上,我们可以看到,小明位于原来位置的左方1米处。
记作:(+2)+(-3)=-1
(4)若第一次向左走2米,第二次向右走3米,在数轴上,我们可以看到,小明位于原来位置的右方1米处。
记作:(-2)+(+3)= +12、从刚才画数轴的过程中,我们知道了加法实际上是相继活动的合并。我们可以借助数轴来得知两个有理数相加的结果。请模仿刚才演示的过程,向右表示加数中的正数,向左表示加数中的负数,在数轴上表示两个数相加的过程,得到结果。
1、(-4)+(-1)2、(+5)+(-3)3、(-4)+(+7)4、(-6)+33、通过实践,我们发现,能借助数轴很方便地得知有理数加法结果。但对于如1700 +(-1800),1.2 +(-5.34)这样的数字在数轴上就不容易表示出来了,怎样才能迅速准确地计算出来呢?
师生讨论、归纳出有理数的加法法则:
①同号两数相加,取相同的符号,并把绝对值相加;
②绝对值不等的异号两数相加,取绝对值较大的加数的符号,并把较大的绝对值减去较小的绝对值;
除此之外,有理数相加,还有其他情况
(1)第一次向左走3米,第二次向右走3米,则小明仍位于出发点。
记作:(-3)+(+3)= 0
(2)第一次向右走3米,第二次向左走3米,则小明仍位于出发点。
记作:(+3)+(-3)= 0
(3)第一次向左(向右)走了3米,第二次在原地不动,则小明位于原来位置的左方(或右方)3米。
记作:(-3)+0 = +3 或(+3)+0 = 0
归纳为:
③互为相反数的两个数相加得0;
④一个数同0相加,仍得这个数。
(三)运用新知
1、例题讲解:(利用多媒体展示)
例1: 计算下列各题:
(1)180 +(-10);(2)(-10)+(-1);
(3)5 +(-5);(4)0+(-2)。
教师引导学生先观察符号特征,再教师示范写出过程,并强调题的类型每一步的理由。
解:(1)180+(-10)(异号型)
=+(180-10)(取绝对值较大的数的符号,=170 并用较大的.绝对值减去较小的绝对值)
(2)(-10)+(-1)(同号型)
=-(10+1)(取相同的符号,并把绝对值相加)
=-1
对于(3)、(4)小题,让学生解答。
在讲完例题后,教师引导学生反思刚才做题时的基本思路。教师在学生回答的基础上提炼为三句话:①确定类型、②确定符号、③确定绝对值。
2、练习
(1)(口答)确定下列各题中的符号,并说明理由:
①(+3)+(+6); ②(-6)+(-7)
③(+12)+(-7)④(+5)+(-10)
(2)计算下列各式:
①(-25)+(-7); ②(-13)+5;
③(-23)+ 0;④ 45 +(-45)。
(3)土星表面的夜间平均温度为-150度,白天比夜间高27度,那么白天的平均温度是多少?
(4)某升降机第一次上升6米,第二次下降7米,第三次又上升5米,此时升降机在初始位置的_____方(填“上”或“下”)相距____米。
(四)课时小结:
1、这节课你学到了什么?
2、对于这节课你有什么困惑?
(五)布置作业
课本练习1题、2题。
《有理数加法》说课稿5一、教材分析
分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。
2、就第二章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分----有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
从以上两点不难看出它的地位和作用都是很重要的。
接下来,介绍本节课的教学目标、重点和难点。(结合微机显示)
教学大纲是我们确定教学目标,重点和难点的依据。教学大钢规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:“(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;(4)渗透数形结合的思想。2、能力目标是:(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想;(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是是;有理数加法法则的理解。
二、教材处理
本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
三、教学方法和数学孚段
在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。
四、教学过程的设计。
1、引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。
2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。
3、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。
4、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。
《有理数加法》说课稿6各位考官上午好,我是参加初中数学科目考试的七号考生。我今天说课的题目是《有理数加法》,下面我将从说教材、说学情、说教法、说学法、说教学课程、说板书设计六个方面来进行阐述。
《有理数加法》是人教版七年级上册第一章第三节的内容。本节课主要介绍了有理数加法的基本运算法则。这节知识是在有理数、数轴、相反数及绝对值等概念学习的基础上进行的,并且是之后学习有理数混合运算、科学记数法及开方的基础。因此,本节课起到承上启下,铺路建桥的作用,意义重大。
教学三维目标中知识与技能目标:学会应用有理数的加法运算法则进行计算。过程与方法目标:巧设具体问题的情境,并结合数轴,学生通过思考、分析、联想的过程,加深对有理数加法的理解,并将所学知识运用于生活中。情感态度与价值观目标:学生养成主动参与的意识,培养对数学的兴趣。
通过以上对教材及教学目标的分析,本节课的教学重点是掌握有理数加法的运算法则,并能够灵活运用。难点是培养在实际生活中运用有理数加法解决问题的能力。
掌握学生的基本情况,对于把握和处理教材有重要的作用。七年级的学生可以解决日常生活中常见的正数的简单计算问题,也对有理数概念有了基本的了解,但运算因其本身有些抽象,学生计算起来还是有些困难。同时这一阶段的学生思维活跃,抽象思维从经验型逐步向理论型成长,但仍需要感性经验的辅助。所以本节课程可以通过设计具体的实际情境来引导学生理解有理数的加法运算,在这个过程中,学生主动参与的意识能够得到充分发挥,并且可以提高他们对于较抽象问题的解决能力。
基于以上分析,以及遵循新课改的精神:要注重学生的主体性和主动性,我将在本节课的教学中采用以归纳总结法为主,以启发式教学法、讲练结合法、情境教学法为辅,充分调动学生的学习积极性。
教师是学生学习的引导者和促进者,为了帮助学生更好地学,结合本课内容,我将学法确定为:学生以自主、探究、合作、交流的学习方法为主,这有利于学生自主意识的成长。
教学过程可以分为五个环节,首先是创设情境,导入新课。一个良好精彩的导入,能够激发学生的学习兴趣和欲望,是一节课成功的开始。根据《有理数加法》这节课的特点,我将采用图片方式进行导入。播放几组足球比赛的图片,规定进球数为正数,失球数为负数,它们的和为净胜球数,有一支球队现在的比赛情况是进球4个失球1个。提问同学,该队净胜球数的表达式是什么呢?设置这一环节激发了学生的好奇心,让他们兴味盎然地投入到之后的学习中去。
接着进入课文新授,深入感知环节。
第一步,在学生讨论导入提出的问题后我提问学生回答之前的问题,得到4+(-1)的答案,这就引出了有理数加法的表达式,学生出于对这个表达式答案的好奇,能更(专注地)进入到下面的学习(依据)。
第二步,因上面的式子中出现了负数,我会提问学生(方法),负数让他们联想到了之前的什么知识,引导学生们说出数轴,此时规定在数轴上向右运动记为正,向左运动记为负。随后假设左右运动的六种情况。问同学,这六种运动过程在数轴上怎么表示?用之前有理数的加法式子怎么表示?每种情况下最后的结束点分别离原点多远?让同学们分组讨论,随后来回答。这步可以引出有理数的相同符号的加法,不同符号的加法,两个相反数的加法以及有理数与0的加法。这为后面学生理解加法法则奠定了基础。
第三步,根据同学的回答将前面五个式子以及答案完整的写在黑板上,让同学们继续讨论从中根据数字前面的正负符号能发现什么规律。同学谈论交流,我进行引导和总结归纳得出有理数加法的运算法则即:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数。这一步通过例子有利于学生深入得理解有理数加法法则,加深印象。
为了让学生巩固新知,我会在新授结束后,根据教材分梯度选取习题,给学生进行课堂练习,在练习后我会进行及时讲解。有利于学生加深对新知识的印象,更好的完成本节课的重点。
同学们掌握本节课的知识后,我将提问他们收获了什么,由同学自主总结本节课所学习的的内容,我给予补充评价。同时让同学自己谈谈所遇到的问题,进行同桌之间的讨论。有利于学生的自主思考,以及合作交流,并能通过反思来更好的巩固本节的知识。
本节课的课后作业是学生回家思考现实生活中可以用有理数加法来解决的问题,编写成题目并解答。这样有利于解决这节课的难点。
我的板书设计采用的方法是线索式(方法),遵循简洁、明了、大方的原则,能很好的为突出教学重点服务。
以上就是我的说课内容,谢谢各位评委老师。
《有理数加法》说课稿7教学目的1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.2.通过有理数的加法运算,培养学生的运算能力.教学重点与难点
重点:熟练应用有理数的加法法则进行加法运算.难点:有理数的加法法则的理解.教学过程
(一)复习提问
1.有理数是怎么分类的?
2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?
3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?
-3与-2;3与-3;-3与0;
-2与+1;-+4与-3.(二)引入新课
在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算.(三)进行新课
有理数的加法(板书课题)例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?
两次行走后距原点0为8米,应该用加法.为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:
1.同号两数相加
(1)某人向东走5米,再向东走3米,两次一共走了多少米?
这是求两次行走的路程的和.5+3=8
用数轴表示如图 :略
从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?
显然,两次一共向西走了8米
(-5)+(-3)=-8
用数轴表示如图 :略
从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.总之,同号两数相加,取相同的符号,并把绝对值相加.例如,(-4)+(-5),同号两数相加
(-4)+(-5)=-(),取相同的符号
4+5=9把绝对值相加
(-4)+(-5)=-9.口答练习:
(1)举例说明算式7+9的实际意义?
(2)(-20)+(-13)=?
2.异号两数相加
(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?
由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.5+(-5)=0
可知,互为相反数的两个数相加,和为零.(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?
由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.就是 5+(-3)=2.(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?
由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.就是 3+(-5)=-2.请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?
最后归纳
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0
例如(-8)+5绝对值不相等的异号两数相加
(-8)+5=-()取绝对值较大的加数符号
8-5=3 用较大的绝对值减去较小的绝对值
(-8)+5=-3.口答练习
用算式表示:温度由-4℃上升7℃,达到什么温度.(-4)+7=3(℃)
3.一个数和零相加
(1)某人向东走5米,再向东走0米,两次一共向东走了多少米?
显然,5+0=5.结果向东走了5米.(2)某人向西走5米,再向东走0米,两次一共向东走了多少米?
容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.请同学们把(1)、(2)画出图来
由(1),(2)得出:一个数同0相加,仍得这个数.总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.有理数加法运算的三种情况:
特例:两个互为相反数相加;
(3)一个数和零相加.每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.(四)例题分析
例1 计算(-3)+(-9).分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).解:(-3)+(-9)=-12.例2
分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调两个较大一个较小)
解: 解题时,先确定和的符号,后计算和的绝对值.(五)巩固练习
1.计算(口答)
(1)4+9;(2)4+(-9);(3)-4+9;(4)(-4)+(-9);
(5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;
2.计算
(1)5+(-22);(2)(-1.3)+(-8)
(3)(-0.9)+1.5;(4)2.7+(-3.5)
《有理数加法》说课稿8各位领导、老师,大家好!
今天我将要为大家讲的课题是有理数的加法,首先,我对本节教材进行一些分析。
本节课选自人民教育出版社出版的〈义务教育课程标准实验教科书〉数学七年级(上)。这一节课是本册书第一章第三节第一课时的内容。下面我就从以下六个方面——教材结构与内容简析、教学目标、教学重点难点及关键、教法、学法、教学过程的设计向大家介绍一下我对本节课的理解与设计。
一、教材结构与内容简析
在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。
2、就第一章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分——有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
3、数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:
(1)渗透由特殊到一般的辩证唯物主义思想
(2)培养学生严谨的思维品质。
二、教学目标
根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:
1、基础知识目标:
(1)理解有理数加法的意义;
(2)理解并掌握有理数加法的法则;
(3)应用有理数加法法则进行准确运算;
(4)渗透数形结合的思想。
2、能力目标是:
(1)培养学生准确运算的能力;
(2)培养学生归纳总结知识的能力;
3、德育目标是:渗透由特殊到一般的辩证唯物主义思想
4、个性品质目标:培养学生严谨的思维品质。
三、教学重点、难点、关键
有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难点是:有理数加法法则的理解。
四、教法
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。在教学过程中,我注重体现教师的导向作用和学生的主体地位。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习,不断克服学生学习中的被动情况,使其在教学过程中在掌握知识的同时发展智力、受到教育。
五、学法
本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力,而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我都在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
六、教学过程的设计
1、引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。
2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全身心的投入到思考问题中去,让学生亲身参加了探索发现及获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。
3、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。同时针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。
4、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。说课对我仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。
《有理数加法》说课稿9各位评委、老师:
大家好!今天我授课的课题是“有理数的加法(二)“。下面我就从以下三个方面——教材分析与教材处理、教学方法和教学手段、教学过程的设计向大家介绍一下我对本节课的理解与设计。
一、教材分析与处理
有理数的加法运算律在整个知识系统中的地位和作用是很重要的。初中阶段主要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。
根据教学大纲的要求,来确定本节课的教学目标。教学总目标为通过本节课的学习,学生能运用加法运算律简化加法运算,并能够理解加法运算律在加法运算中的作用。具体从以下三方面而言:一、知识技能:让学生熟练掌握三个或三个以上有理数相加的运算,并能灵活运用加法的交换律和结合律使运算简便;培养学生的类比能力。二、过程方法: 培养学生的观察能力和思维能力,经历对有理数的运算,领悟解决问题应选择适当的方法。三、情感态度:使学生逐渐形成事物变化、相互联系和相互转化的观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。教学重点:有理数的加法运算律的理解与掌握。教学难点:灵活运用加法运算律使运算简便。
二、教学方法和数学手段
在教学过程中,我注重体现教师的导向作用和学生的主体地位。本节是先让同学们运用已学过的知识进行有理数的加法运算,并引导学生进行自主探究,发现有理数的运算律,并进行总结。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。
三、教学过程的设计
1、回顾:回顾上节课的内容—有理数的加法法则。让同学回忆之前的内容,渐渐进入学习状态。
2、引入:在引入上,让同学们运用加法法则进行计算,并提出问题,引导学生进行观察和思考。让学生自已动脑思考问题,使同学在解决问题的同时产生一种成就感,从而更加积极主动的学习,并且营造了良好的学习氛围。
3、授课:法则的得出重在体现知识的发生,发展,形成过程。通过同学的观察和思考,并在老师的指导下总结出有理数的运算律:加法交换律和加法结合律在有理数范围内适用。并准备一些相应的例题,主要采取讲练结合的方式,边做边总结。
4、课堂小结:归纳总结由学生完成,老师做适当的补充和引导。最后教师对本节课进行最后的说明和归纳。
5、随堂练习:在习题的配备上,我特别注意针对性,所以习题的配备虽简却精。主要让学生在练习的过程中能够对本堂课的内容理解进一步加深,同时注重调动学生的积极性,使学生在一种比较活跃的氛围中学习,并解决问题。
6、作业设计:作业的设计旨在学生对本节课的知识进行复习和巩固,主要起到延续课堂的作用,让同学们对知识的掌握更加牢固。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。
《有理数加法》说课稿10尊敬的各位领导、老师:大家好!
今天我说课的课题是有理数的加法。本节课选自湖南教育出版社出版的数学七年级(上)第一章第四节第一课时的内容。下面我就从教材分析、教法学法、教学程序和教学反思四个方面向大家介绍我对本节课的理解与设计。
教材分析
(一)地位和作用
有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后面学习实数、代数式运算、方程、不等式、函数等知识奠定基础.有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。
就本章而言,有理数的加法是本章的重点。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键在于这一节的学习。
(二)教学目标
1、知识与能力目标:
(1)了解有理数加法的意义。
(2)理解并掌握的有理数加法的法则,并会运用法则进行准确运算,提高学生的运算能力。
2、过程与方法目标:
(1)经历法则探索的过程,培养学生归纳总结知识的能力。
(2)体验初步的算法思想。(转化)
(3)在探索过程中感受数形结合和分类讨论的数学思想。
(4)渗透由特殊到一般的唯物辩证法思想。
3、情感与态度目标:
(1)让学生体会到数学知识来源于生活,服务于生活,培养学生对数学的热爱。
(2)培养学生协作意识,体验成功,树立学习自信心。
(三)教学重点、难点:
重点:理解和运用有理数的加法法则。
难点:异号两数相加的法则。
教法与学法
我在本节课主要采用“引导——发现教学法”,并借助多媒体课件来展开教学。学生主要采用“合作探究学习法”来学习本节内容。
教学程序:
我采用的教学模式分为“引——探——结——用”四个环节。
(一)、引出课题(2分钟)
例如,足球比赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。
如果,红队进4个球,失2个球;蓝队进1个球,失1个球。则红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1)。
这里用到正数和负数的加法。
那么,怎样计算4+(-2)呢?
此环节大约2分钟。
(二)、探索规律、得出法则。
(15分钟)现规定正能量为正,负能量为负。
(1)若两个好人携带正能量分别为+20、+30,则相加的结果是()。
写成算式:(+20)+(+30)=()
(2)若两个坏人携带负能量分别为-20、-30,则相加的结果是()。
写成算式:(-20)+(-30)=()
这两个算式,运算有什么特点呢?
同号两数相加,好比作同伙人:正数+正数,正能量增大;
负数+负数,负能量增大。
最后概括为①定符号;②把绝对值相加。
(3)若一个好人携带正能量+30一个坏人携带负能量-10。
则两人较量的结果是()赢,还剩()能量。
写成算式:(+30)+(-10)=()。
(4)若一个好人携带正能量+20一个坏人携带负能量-40。
则两人较量的结果是()赢,还剩()能量。
写成算式:(+20)+(-40)=()。
这组算式,运算有什么特点呢?
异号两数相加,好比两人在打仗,谁的力量强大,谁就赢。如果正能量大,符号就定为正;如果负能量大,符号就定为负,又让学生理解两人打仗,彼此力量会彼此抵消,彼此消损。那么赢的一方还剩多少能量呢?故而把绝对值做减法。强调用大的绝对值减去小的绝对值。
最后概括为①定符号;②把绝对值相减。
再看两种特殊情形:
(5)若一个好人携带正能量+30,一个坏人携带负能量-30。则两人较量的结果是(),还剩()能量。
写成算式:(-30)+(+30)=()。
(6)20+0=()0+(-15)=()
新课程倡导让学生从“要我学”向“我会学”转变,而教师是学生学习的组织者、引导者和合作者。由于教材上利用数轴和绝对值来探究法则过于抽象,不易引起学生的兴趣。借鉴之下,我选用了学生感兴趣的卡通动画人物,激发学生的学习兴趣,营造一种轻松愉快的学习氛围;我让学生来当裁判,学生必须把6次的情况都完成后,才能得到结果,这样每个学生的注意力一直会很集中。若学生有困难,则小组内探讨交流、补充,让学生能逐步引导概括出有理数的加法法则。上述过程,大约20分钟的时间,将突出重点,突破难点。
(三)小结(3分钟)
有理数的加法法则
1、同号两数相加:
取加数的符号,并把绝对值相加。
2、异号两数相加:
取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两个数相加得0。
4、一个数同零相加:仍得这个数
(四)、用
1、加深理解,巩固法则。(5分钟)
(1)填表
(2)思考:在进行有理数加法运算时,应分几步完成?
此题的设计是为了学生更好地理解、掌握有理数加法法则。同时,让学生知道,凡是有理数运算都要首先确定结果的符号。学生独立完成表格后,我将解题步骤,分步板书在黑板上,让学生对解题格式引起重视。
2、变式训练,应用法则。(15分钟)
例1.计算
(+20)+(+12)(-8)+(-12)
(-3.75)+(-0.25)(-1/2)+(-2/3)
(-7)+0
例2.计算
(-5)+9 7+(-10)
(-3/4)+1/2 3/5+(-3/5)
数学家皮亚杰认为:“不断的训练才能够逐渐的发展出一个合理的数学模型”。练习和科学的重复练习始终是数学学习的有效办法。为了让学生熟练应用法则准确计算,我设计了2个例题.例1是同号两数相加;例2是异号两数相加。这两种最典型的类型,以起到巩固法则和规范格式的作用。我让学生尝试独立完成,让基础组的学生板演后,并让别的学生找错误,这样充分调动了学生的积极性,活跃了课堂气氛。同时,通过学生纠错的过程,让学生对错误加深记忆,将知识转化为技能。
3、小组闯关,检测目标。(5分钟)
在新课程下,教学的本质是学习活动,学生是否有效的学习,教学目标是否落实到位,检测目标成为一节课的一个重要环节。
我设计了两个闯关小游戏。一个是学生口答抢答,另一个是男生出题女生抢答,反之女生出题男生抢答,通过男女同学竞争中巩固、应用法则。
三点教学反思
1、情境探究问题的设置
我用卡通动画人物来引入问题情境,使学生能够形象的理解有理数加法法则。在思考问题时,首先应让学生对好人、坏人在一起有几种情况有一个明确的认识,培养学生考虑问题的完整性。然后再逐一的进行探索,通过学生谈论交流,最后得到有理数的四条加法法则。
2、例题安排的设置
我安排了同号两数相加和异号两数相加两种最典型的类型,以起到巩固法则和规范格式的作用。
3、数学语言表达的训练
为了培养学生的数学语言的表达能力,在课堂中我尽可能的让学生用自己的话来表达。这样可以及时纠正学生错误,引导学生规范的表达。
《有理数加法》说课稿11《有理数的加法法则》选是九年义务教育华师大版上学期第2章第6节的内容,本节内容安排两个课时,本课时是本节内容的第一课时。
有理数的加法运算是建立在算术加法运算和有理数意义的基础上展开的,学好有理数的加法运算是学习其他有理数运算,以及后继要学到的实数、代数式、方程、不等式、函数等知识的前提。有理数的加法运算是建构在生产、生活实例上,展现了数学来源于实践,又应用于实践的过程。
本节课的教学目标为:
认知目标:1.理解有理数加法的意义,2.理解并掌握有理数加法法则,3.应用有理数加法法则进行准确运算。
能力目标:1.让学生体会数形结合思想、转化思想与分类思想,2.培养学生准确运算能力和归纳总结知识的能力。
情感目标:通过丰富的数学活动培养学生对数学的热爱和树立学习的自信心。
本节课的重点:有理数加法法则的理解和应用。突破策略:1.利用多媒体手段,借助于动画演示,化抽象为具体。2.讲清楚探究有理数加法法则的方法和过程。由于七年级的学生是第一次接触到带有符号的两个数相加,必须克服小学里长期形成的算术加法运算的思维定势,而解决异号两数相加时有关符号和绝对值的问题有一定难度,因此,本节课的难点是对异号两数相加加法法则的理解和应用。突破策略:1.精选各种有趣体型,让学生通过训练,尝试成功。2.利用多媒体手段,借助于动画演示,化抽象为形象,化难为易。
根据弗赖登塔尔的数学教育理论:“数学起源于现实,数学教育的过程是学习‘数学化’的过程,而学生学习数学是一个‘再创造’的过程。”所以本节课我主要采用“引导——发现法”并借助于计算机课件,通过“问题情境——建立模型——解释、应用与拓展”的模式展开教学。
七年级的学生是智力发展的关键年龄,他们活泼好动,注意力易分散,爱发表见解,并希望得到老师的表扬。所以我抓住学生的这一生理特点,努力创造条件和机会,让学生发表见解,发挥学习的主动性;并适当运用多媒体演示,吸引学生的兴趣,使学生的注意力始终集中在课堂上。
《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设计如下:
第一个环节发现新知,在这个环节里我设置了两个活动。活动一,根据“兴趣是学生最好的老师”我选用学生感兴趣的足球比赛引入课题。让学生通过对得分的观察,体会到如果加法运算仅局限在小学当中的算术加法运算是不够的,从而顺理成章的引入今天的课题:有理数的加法。
活动二:探索交流。美国学者奥苏伯尔称:必要的经验和预备知识,为先行组织者,而学生已经在2.1至2.5中学了有理数的意义,这些都为学生探索法则架起了桥梁作用的组织者,在此基础上,我设置了六个探究活动。即以原点为起点,一只小狗在数轴上左右走动来表示情况,规定向左为负,向右为正。这样借助数轴帮助学生理解。既渗透了分类思想又渗透了数形结合思想,最后再由学生对整个规律进行总结归纳补充,从而得出了有理数加法法则。
法则得出后,我设置了一个小活动,比比谁聪明,让学生观察法则中1、2用简短的两句话进行概括,教师在充分肯定学生的回答后给出:同号不变值相加,异号取大值相减。在此基础上再让学生更加深入地熟悉法则,教师继续强调符号与绝对值。
这时只能说学生对法则有了初步的了解,为了加深学生对法则的理解,我设置了第二个环节再探新知。整个法则中尤其强调的是符号与绝对值,为能让学生更加直观地认识到这一点,我让他们解决创设情景中的动漫表格的问题,以个别提问的方式让学生通过表格的填写,体会到整个和的组成就是由符号与绝对值两部分,从而体现了本节课的重点与难点,加深了学生对法则的理解。
在此基础上,我设置了第三个环节应用新知,首先我设置了一道例题(1)(-6)+(-8)(2)(-3.4)+4.3(3)(+1/2)+(-2/3),由于课前有让学生预习,所以例题是由学生自主完成,作完后由基础较薄弱的学生进行板演,对于板演时出现错误的题目,可由学生自行更正,最后师生共同评述。例题以这样的形式完成,可以使得全体学生尤其是学有困难的学生都能达到基本的学习目标,获得成功的喜悦。
紧接着,我设计了练习。课前我按照学习程度均衡的原则,将本班分成A、B、C、D四个小组。我设置了一道抢答题,由组间进行抢答,对于抢答成功的小组给予福娃奖励,最后以福娃个数多的小组获胜,以此激发学生学习的兴趣。
根据七年级学生的年龄特征,为能更大限度地吸引学生的兴趣,我还设置了这样一个活动:男生出题,女生回答;女生出题,男生回答。将整节课推向了高潮。在学生兴趣正浓时,我设置了一个小游戏,玩有理数牌,请同桌间的两个同学,各自抽取一张牌,进行求和比赛,看谁算得又快又准。教师在学生之间巡回参与活动。这样设计符合学生年龄特征的游戏,体现了新课改理论,让学生在“学在玩”在“玩中学”。
设置练习时,除了在形式上做了充分的考虑之外,我还注意到学生的思维是一个循序渐进的过程。所以除了刚才所设置的基础训练之外,我还设置了变式练习。第一题((-5)+()=-8)以填空的形式出现,如果题目是,那么大部分学生马上可以得到-8,所以以这样的形式出现就对学生的解题造成了困难。通过对这道题目的解答,可加深学生对法则的理解,并为紧接着要学的有理数减法作好铺垫,同时也培养了学生发散思维的能力。第2题(一只小狗在一条东西向的跑道上,先走了50米,又走了30米,他现在位于原来位置的哪个方面,与原来位置相跑多少?)与之前的探究活动相呼应,须分四种情况进行讨论。从而培养了学生的分类思想。
为体现数学来源于生活,又服务于生活。我设置了这样一道应用题(星期天,小明与爸爸在安溪中国茶都代售茶叶,爸爸获利120元,而小明却获利-20元,问这一天他们共赚了多少钱?)通过此题,激发学生学习数学的热情。
此节课的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.
这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法。
总之,整个教学旨在,通过创设问题情境,引导学生进行分类、观察、分析,进而归纳从具体到一般的规律,得出有理数加法法则,在学生的学习过程中,充分让学生感受、体会知识的产生和发展过程,注重促使学生积极思维,主动探索,用于发现。
《有理数加法》说课稿12今天我将要为大家说的课题是:有理数的加减法第一课时
首先,我对本节教材进行一些分析
㈠教材结构与内容简析
本节内容在全书及章节的地位:略
㈡教学目标:
1.知识与技能:
使学生掌握有理数加法法则,并能运用法则进行计算;
2.过程与方法:
在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力
3.情感态度与价值观
通过师生合作,联系实际,激发学生学好数学的热情,感受加法无处不在,无处不有。
㈢教学重点:有理数加法法则。
㈣教学难点:异号两数相加的法则。
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
㈤教法
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点,应着重采用活动探究式的教学方法
㈥学法
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
1、理论:记忆加法法则;
2、实践:足球赛记分动笔动手;
3、能力:加法运算能力
㈦教学准备:课件或章前足球赛图
㈧教学设计:
活动一:观摩足球赛:
足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:
(1)上半场赢了3球,下半场赢了2球,那(3)(2)=5.①
(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)(-1)=-3.②现在,请同学们说出其他可能的情形.
答:上半场赢3球,下半场输2球,全场赢球,也就是
(3)(-2)=1;③
上半场输了3球,下半场赢了2球,全场输了1球,也就是
(-3)(2)=-1;④
上半场赢了3球下半场不输不赢,全场仍赢3球,也就是
(3)0=3;⑤
上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)0=-2;
上半场打平,下半场也打平,全场仍是平局,也就是
00=0.⑥
活动二:现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?
这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数。
活动三:
应用举例变式练习
例1计算下列算式的结果,并说明理由:
(1)(4)(7);(2)(-4)(-7);
(3)(4)(-7);(4)(9)(-4);
(5)(4)(-4);(6)(9)(-2);
(7)(-9)(2);(8)(-9)0;
(9)0(2);(10)00.
学生逐题口答后,教师小结:
进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
解:(1)(-3)(-9)(两个加数同号,用加法法则的第2条计算)
=-(39)(和取负号,把绝对值相加)
=-12.
活动四:教学22页例1、例2(详见课本)
活动五:练习:23页1.2
同学们分组讨论,学习了哪些知识?并交流。
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
作业:31页:课外作业选做
针对学生素质的差异进行分层训练,既使学生掌握基本知识,又能够使学生获得基本技能!
《有理数加法》说课稿13一、教学内容
《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。
在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
二、设计理念
七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以”问题串“引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。
三、教学目标与重难点
目标:
1.使学生掌握有理数加法法则,并能运用法则进行计算;
2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;
3.让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
重点:会用有理数加法法则进行运算。
难点:异号两数相加的法则。
四、学情分析
1.学生非常熟悉正数加正数,正数加零的情况。
2.有理数的分类、数轴、绝对值的相关知识已经掌握。
3.学生善于形象思维,思维活跃,能积极参与讨论。
五、教学策略
1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;
2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;
3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。
六、教学流程
1.回顾旧知,启发思维
展示课件上的三个问题,请同学们思考并回答。
(1)有理数是怎么分类的?
(2)有理数的绝对值是怎么定义的?
(3)下列各组数中,哪一个数的绝对值大?
7和4;-7和4;7和-4;-7和-4
【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。
2.创设情境 引入课题
问题一:两个有理数相加,有多少种不同的情形?
答:正+正,负+负,正+负,正+0,负+0,0+0.【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。
问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?
请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)
师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回”研究生“共同研究有理数的加法运算吗?
(出示课题)
【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣。同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。
(二)分析问题探究新知
问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?
学生们各抒己见,总结法则。
1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0.3、一个数同0相加,仍得这个数
老师总结口诀:”同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑“.【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力
(三)运用新知深入体会
例1计算(-3)+(-9)。
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征)。
解:(-3)+(-9)=-12.分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对
解题时,先确定和的符号,后计算和的绝对值。
课堂练习:
1.计算(口答)
(1)4+9;(2)4+(-9);(3)-4+9;(4)(-4)+(-9);
(5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;
2.计算
(1)5+(-22);(2)(-1.3)+(-8)
(3)(-0.9)+1.5;(4)2.7+(-3.5)
3.用”>“或”<“填空:
(1)如果a>0,b>0,那么a+b____0;
(2)如果a<0,b<0,那么a+b____0;
(3)如果a>0,b<0,|a|>|b|,那么a+b____0;
(4)如果a<0,b>0, |a|<|b|,那么a+b____0;
【设计意图】帮助学生熟悉法则,并养成”算必有据“的习惯。更重要的是渗透了研究一般与特殊关系的思想。
问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?
(1)如果a>0,b>0,那么a+b=+(|a|+|b|)
(2)如果a<0,b<0,那么a+b=-(|a|-|b|)
(3)如果a>0,b<0,|a|>|b|,那么a+b=+(|a|-|b|)
(4)如果a<0,b>0, |a|<|b|,那么a+b=-(|b|-|a|)
(5)a+0=a.【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。
(四)延伸拓展敢于挑战
问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?
问题六:小学学过的运算律是否适用于有理数的加法?
【设计意图】由课堂延伸到课外,()不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。
(五)归纳总结感受思想
(1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?
(2)本节课你学习到了哪些数学思想方法?
【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。
(六)布置作业
(1)P56习题1、3
(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。
【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。
七、设计说明
1.通过”问题串“的设置,激发兴趣,引起学生深层次的思考;
2.通过”互举例子“、”小组竞赛"两个活动,鼓励学生主动参与活动。
3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。
【有理数加法(二)教学设计】推荐阅读:
有理数加法法则教学设计与反思08-03
有理数加法训练题06-13
242有理数的加法10-01
练习有理数的加法11-21
有理数的加法初中数学教案07-31
2.4有理数的加法导学案12-18
课 题: 2.4有理数的加法与减法06-29
教学设计有理数10-16
有理数的减法教案设计06-18
初一数学上册有理数的混合运算教学计划09-13