温州四中高二文科数学复数推理与证明3月考试题(精选4篇)
1.温州四中高二文科数学复数推理与证明3月考试题 篇一
高二文科期中考试综合练习二班级_____姓名______
1.“铜、铁、铝、金、银能导电,所以一切金属都能导电”此推理方法是()
A.演绎推理B.类比推理C.归纳推理D.以上都不对
2.已知复数zi,则复数z的模为()1+i
A
111B
.D.+i 2223、设条件甲:x=0,条件乙:x+yi(x,y∈R)是纯虚数,则()
A、甲是乙的充分非必要条件B、甲是乙的必要非充分条件
C、甲是乙的充分必要条件D、甲是乙的既不充分,又不必要条件
4、如图所示,U是全集,A,B是U的子集,则阴影部分所表示的集合是
()
A、ABB、ABC、BCUAD、ACUB
5.已知a,b为实数,2a2b是log1alog1b的()
2A.充分不必要条件B。必要不充分条件C。充要条件D。不充分不必要条件
6.命题:“若a2b20(a,bR),则ab0”的逆否命题是()
A.若ab0(a,bR),则a2b20B.若ab0(a,bR),则a2b20
C.若a0或b0(a,bR),则a2b20D.若a0,且b0(a,bR),则a2b20
7.由平面直角坐标系中,圆的方程为(xa)(yb)r,推测空间直角坐标系中球的方程为()
A.(xa)(yb)(zc)rB.(xa)(yb)(zc)r
C.(xa)(yb)rD.(xa)(yb)(zc)r
8.已知直线a,b,平面,且b,那么“a//b”是“a//α”的()
A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件
9、若2+3i是方程x2+mx+n=0的一个根,则实数m,n的值为()
A、m=4,n=-3B、m=-4,n=13C、m=4,n=-21D、m=-4,n=-5 ***33
3110.已知p:不等式 x2xm0的解集为R;q:指数函数fxm 为增函数.则42x
p是q的()
A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件
11.i为虚数单位,则22(1i)
12..原命题:“设a、b、cR,若a
题中,真命题共有_____个 b,则ac2>bc2”以及它的逆命题,否命题、逆否命
13.已知复数w满足2w4(3w)i(i为虚数单位),则|wi|=________________
14.已知集合Ax|x1,Bx|xa,且ABR,则实数a的取值范围是_____________
15.已知命题p:log(m2)5log(m2)3;命题q:函数yx24x2的定义域为0,m,值域为6,2;若pq为真命题,同时pq为假命题,则实数m的取值范围是.16.已知全集UR,函数f(x)x1
x2的定义域为集合A,集合Bxxa.(1)若a1,求;
(2)若,求实数a的取值范围。
2217.已知复数z(4m)(mm6)i.(1)若m1,求复数1的虚部;z
(2)若z为纯虚数,求实数m的值
18.已知命题p:4x6,q:x2x1a0(a0),若非p是q的充分不必要条件,求a的取值范围。
2.高二文科推理与证明练习题 篇二
增城市华侨中学陈敏星
一、选择题(每小题3分,共30分)
1.有个小偷 在警察面前作了如下辩解:
是我的录象机,我就一定能把它打开。
看,我把它大开了。
所以它是我的录象机。
请问这一推理错在哪里?()
A大前提B小前提C结论D以上都不是
2.数列2,5,11,20,x,47,┅中的x等于()
A28B32C33D27
3.否定“自然数a,b,c中恰有一个偶数”时正确的反设为()
A a,b,c都是奇数B a,b,c都是偶数Ca,b,c中至少有两个偶数Da,b,c都是奇数或至少有两个偶数 4的最小值是()x
1A2B3C4D5 4.设x1,yx
5.下列命题:①a,b,cR,ab,则ac2bc2;②a,bR,ab0,则ba2;③aba,bR,ab,则
abanbn;④ab,cd,则.cd
A0B1C2D
36.在十进制中2004410010010210,那么在5进制中数码2004折合成十进制为()
A29B254C602D2004 0123
b52,7.已知{bn}为等比数列,则b1b2b929。若an为等差数列,a52,则an的类似结论为()
A a1a2a929 B a1a2a929C a1a2a929 D a1a2a929
8.已知函a,b,c均大于1,且logaclogbc4,则下列等式一定正确的是()
AacbBabcCbcaDabc
9.设正数a,b,c,d满足adbc,且|ad||bc|,则()
AadbcBadbcCadbcDadbc
x(xy)31,例如344,则()(cos2sin)的最大值是()10.定义运算xy y(xy)24
A4B3C2D1
二、填空题(每小题4分,共16分)
11.对于“求证函数f(x)x在R上是减函数”,用“三段论”可表示为:大前提是___________________,小前提是_______________,结论是12.命题“△ABC中,若∠A>∠B,则a>b”的结论的否定是
13.已知数列
an的通项公式
an
(nN)
2(n1),记
f(n)(1a1)(1a2)(1an),试通过计算f(1),f(2),f(3)的值,推测出
f(n)_______________._
14.设f(x)
122
x,利用课本中推导等差数列前n项和公式的方法,可求得
f(5)f(4)f(0)f(5)f(6)的值是________________.)
三、解答题:
15(8分)若两平行直线a,b之一与平面M相交,则另一条也与平面M相交。16(8分)设a,b都是正数,且ab,求证:abab。
17(8分)若x
18(10分)已知xR,试比较x与2x2x的大小。
19(10分)设{an}是集合{22|0st,且s,tZ}中的所有的数从小到大排成的数列,即a13,a25,a36,a49,a510,a612,,将数列{an}各项按照上小下大,左小右大的原则写成如下三角形数表:
t
s
abba
51,求证:14x-2。454x56
9101
2__________________
⑴写出这个三角形数表的第四行、第五行各数;
⑵求a100.exa
20(10分)设a0,f(x)是R上的偶函数。
aex
⑴求a的值;
⑵证明f(x)在(0,)上是增函数。
参考答案:
11、减函数的定义 ;函数f(x)x在R上满足减函数的定义
12、a≤b13、f(n)
三、解答题:
15、证明:不妨设直线a与平面M相交,b与a平行,今证b与平面M相交,否则,n214、322(n1)
设b不与平面M相交,则必有下面两种情况: ⑴b在平面M内,由a//b,则a//平面M,与题设矛盾。
16、设a,b都是正数,且ab,求证:abab。
ab
ba
aabbabaaabbba()ab,abb
aa
若ab,1,ab0,则()ab1,得aabbabba;
bbaa
若ab,1,ab0,则()ab1,得aabbabba.bb17、略
18、log23log827log927log916log34,log23log34.19、第四行:17182024第五行:3334364048
3.温州四中高二文科数学复数推理与证明3月考试题 篇三
《推理与证明》质量检测试题参赛试卷
陕棉十二厂中学(宏文中学)命题人:司琴霞
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3至6页。考试结束后.只将第Ⅱ卷和答题卡一并交回。
第Ⅰ卷(选择题 共60分)
注意事项:
1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2.由>,,„若a>b>0且m>0,则与之间大小关
10811102521a+ma系为()
A.相等B.前者大 C.后者大D.不确定
3、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是()。
(A)假设三内角都不大于60度;(B)假设三内角都大于60度;
(C)假设三内角至多有一个大于60度;(D)假设三内角至多有两个大于60度。
5、用数学归纳法证明“(n1)(n2)(nn)212(2n1)”(nN)时,从 “nk到nk1”时,左边应增添的式子是
n
京翰教育网 http:///
A.2k1 D.
2k2k
1()B.2(2k1)
C
.
2k1k1
成立
8、在十进制中20044100010101022103,那么在5进制中数码2004折合成十进制为()
A.29B.254C.602D.20049、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●
○○○○○●„若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是()
6、某个命题与正整数n有关,如果当nk(kN)时命题成立,那么可推得当nk1时命题也成立.现已知当n7时该命题不成立,那么可推得
7、已知n为正偶数,用数学归纳法证明1
121314
1n
12(1n
2
1n
4
12n)时,若已假
()
B.当n=6时该命题成立 D.当n=8时该命题成立
A.当n=6时该命题不成立 C.当n=8时该命题不成立
A.12B.13C.14D.1510、数列an中,a1=1,Sn表示前n项和,且Sn,Sn+1,2S1成等差数列,通过计算S1,S2,S3,猜想当n≥1时,Sn=()A.
21
2()
n1n
设nk(k2为偶
数)时命题为真,则还需要用归纳假设再证
A.nk1时等式成立 C.n2k2时等式成立
n
1B.
212
n1
n
C.
n(n1)2
n
D.1-
B.nk2时等式成立 D.n2(k2)时等式
二、填空题(每小题5分,共4小题,满分20分)
京翰教育网 http:///
11、设等差数列{an}的前n项和为Sn ,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论有:设等比数列{bn}的前n项积为
T16
Tn,则T4,________,________成等比数列.
T1212、设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则
f(4)=;
三、解答题(共6小题,满分80分)
15、(14分)观察以下各等式:
sin30cos60sin30cos60sin20
cos50sin20cos50
34343
4,sin15cos
45sin15cos45
202000
分析上述各式的共同特点,猜想出反映一般规律的等式,17、当n>4时,表示)。
f(n)=(用含n的数学表达式、从
1=
1,设
a,b,x,y∈R,且
31-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),„,推广到第n个等式为_________________________.18、(13分)已知正数a,b,c成等差数列,且公差d0,,不可能是等差数列。
111abc14、类比平面几何中的勾股定理:若直角三角形ABC中的两边
AB、AC互相垂直,则三角形三边长之间满足关系:
AB
AC
BC
。若三棱锥A-BCD的三个侧面ABC、ACD、ADB20、(14分)已知数列{an}满足Sn+an=2n+1,(1)写出a1, a2,两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为
京翰教育网 http:///
a3,并推测an的表达式;
(2)用数学归纳法证明所得的结论。(14分)
京翰教育网 http:///
数学选修2-2质量检测题参考答案及评分标准
2011.03.10
一、选择题:
T8T1
21二、填空题:11、12、5;(n2)(n1)
T4T8213、14916...(1)
14、n
1.n
2ABD
(1)
n1
.(123...n)
S
2BCD
S
2ABC
S
2ACD
三、解答题:
22
15、猜想:sincos(30)sincos(30)
4………………4分
证明:
sincos(30)sincos(30)
1cos2
2
1cos(602)
sin(302)sin30
00
1
cos(602)cos2
2sin(302)sin30
[sin(302)
..]
1
[sin(302)]22
1
sin(302)
sin(302)
………………………..14分
17、设a=cos,b=sin,x=cos,y=sin,„„„„„4分 则axbycoscossinsin=cos()1„„13分
京翰教育网 http:///
∴2ac=b(c+a)=2b„„„„„5分∴ac=b„„„„„7分∴(b-d)(b+d)= b„„„„„9分∴b+bd-bd-d∴ d
=b„„„„„10分
=0即 d=0这与已知d0矛盾„„„„„11分
2116
故 假设错误,原命题成立。„„„„„13分
19、(1)当n=1时,左=1,右=1,左=右,当n=2时,左=1+
+=,右=2,边
左<右,所以命题成立;„„„„„3分
((1
k))(k
当
k1
nk1)k
时,左
21221
1111k
(k
kk)k2kk1=右边,所以当2222
„„„7分
„„10分
2项
所以nk1时命题正确„„„„„12分
+
4.温州四中高二文科数学复数推理与证明3月考试题 篇四
13.3 直接证明与间接证明
一、选择题
1.“所有9的倍数都是3的倍数,某奇数是9的倍数,故该奇数是3的倍数.”上述推理()
A 小前提错B 结论错
C 正确D 大前提错
解析 大前提,小前提都正确,推理正确,故选C.答案 C
2.在用反证法证明命题“已知a、b、c∈(0,2),求证a(2-b)、b(2-c)、c(2-a)不可能都大于1”时,反证时假设正确的是()
A.假设a(2-b)、b(2-c)、c(2-a)都小于
1B.假设a(2-b)、b(2-c)、c(2-a)都大于
1C.假设a(2-b)、b(2-c)、c(2-a)都不大于
1D.以上都不对
解析 “不可能都大于1”的否定是“都大于1”,故选B.答案 B
3.下列命题中的假命题是().
A.三角形中至少有一个内角不小于60°
B.四面体的三组对棱都是异面直线
C.闭区间[a,b]上的单调函数f(x)至多有一个零点
D.设a,b∈Z,若a+b是奇数,则a,b中至少有一个为奇数
解析 a+b为奇数⇔a,b中有一个为奇数,另一个为偶数,故D错误. 答案 D
4.命题“如果数列{an}的前n项和Sn=2n2-3n,那么数列{an}一定是等差数列”是否成立().
A.不成立B.成立C.不能断定D.能断定 解析 ∵Sn=2n2-3n,∴Sn-1=2(n-1)2-3(n-1)(n≥2),∴an=Sn-Sn-1=4n-5(n=1时,a1=S1=-1符合上式).
又∵an+1-an=4(n≥1),∴{an}是等差数列.
答案 B
1115.设a、b、c均为正实数,则三个数a+b+c+). bca
A.都大于2B.都小于
2C.至少有一个不大于2D.至少有一个不小于2 解析 ∵a>0,b>0,c>0,11111a+b+c+a+b+++=++ ∴bcaab
1c+≥6,c
当且仅当a=b=c=1时,“=”成立,故三者不能都小于2,即至少有一个不小于2.答案 D
6.设a=lg 2+lg 5,b=ex(x<0),则a与b大小关系为()
A.a>b
C.a=bB.a<bD.a≤b
解析 ∵a=lg 2+lg 5=lg 10=1,而b=ex<e0=1,故a>b.答案 A
7.定义一种运算“*”:对于自然数n满足以下运算性质:(n+1)*1=n*1+1,则n*1=().
A.nB.n+1C.n-1D.n2
解析 由(n+1)*1=n*1+1,得n*1=(n-1)*1+1=(n-2)*1+2=„=n.答案 A
二、填空题
8.用反证法证明命题“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为.解析 由反证法的定义可知,否定结论,即“a,b中至少有一个能被3整除”的否定是“a,b都不能被3整除”.答案 a、b都不能被3整除
9.要证明“3+7<25”可选择的方法有以下几种,其中最合理的是________(填序号).
①反证法,②分析法,③综合法.
答案 ②
10.设a,b是两个实数,给出下列条件:
①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.其中能推出:“a,b中至少有一个大于1”的条件是______.(填序号)
12解析 若a=b=a+b>1,2
3但a<1,b<1,故①推不出;
若a=b=1,则a+b=2,故②推不出;
若a=-2,b=-3,则a2+b2>2,故④推不出;
若a=-2,b=-3,则ab>1,故⑤推不出;
对于③,即a+b>2,则a,b中至少有一个大于1,反证法:假设a≤1且b≤1,则a+b≤2与a+b>2矛盾,因此假设不成立,故a,b中至少有一个大于1.答案 ③
11.如果aa+bb>b+a,则a、b应满足的条件是________. 解析 首先a≥0,b≥0且a与b不同为0.要使aa+bb>b+a,只需(aa+bb)2>(ab+ba)2,即a3+b3>a2b+ab2,只需(a+b)(a2-ab+b2)>ab(a+b),只需a2-ab+b2>ab,即(a-b)2>0,只需a≠b.故a,b应满足a≥0,b≥0且a≠b.答案 a≥0,b≥0且a≠b
12.若a,b,c是不全相等的正数,给出下列判断:
①(a-b)2+(b-c)2+(c-a)2≠0;
②a>b与a
③a≠c,b≠c,a≠b不能同时成立.
其中判断正确的是_______.
解析①②正确;③中a≠c,b≠c,a≠b可能同时成立,如a=1,b=2,c=3.选C.答案 ①②
三、解答题
13.在△ABC中,三个内角A、B、C的对边分别为a、b、c,113a+bb+ca+b+c试问A,B,C是否成等差数列,若不成等差数列,请说明理由.若成等差数列,请给出证明.
解析 A、B、C成等差数列.
证明如下:
∵
∴
∴113+=,a+bb+ca+b+ca+b+ca+b+c+=3.a+bb+cc
a+bb+c+a=1,∴c(b+c)+a(a+b)=(a+b)(b+c),∴b2=a2+c2-ac.在△ABC中,由余弦定理,得
a2+c2-b2ac1cosB= 2ac2ac
2∵0°
|a|+|b|14.已知非零向量a,b,且a⊥b,求证:2.|a+b|证明 a⊥b⇔a·b=0,|a|+|b|要证2.|a+b|只需证|a|+|b2|a+b|,只需证|a|2+2|a||b|+|b|2≤2(a2+2a·b+b2),只需证|a|2+2|a||b|+|b|2≤2a2+2b2,只需证|a|2+|b|2-2|a||b|≥0,即(|a|-|b|)2≥0,上式显然成立,故原不等式得证.
15.若a、b、c是不全相等的正数,求证:
lga+b2+lgb+c2+lgc+a2>lg a+lg b+lg c.证明 ∵a,b,c∈(0,+∞),∴a+b2ab>0,b+c2≥bc>0,a+c2ab>0.又上述三个不等式中等号不能同时成立.
∴a+bb+cc+a2·2·2>abc成立.
上式两边同时取常用对数,a+bb+cc+a>lg(abc),得lg222
∴lga+b2+lgb+c2+lgc+a2>lg a+lg b+lg c.16.(12分)已知二次函数f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点,若f(c)=0,且0<x<c时,f(x)>0.1(1)证明:是f(x)=0的一个根; a
a1(2)试比较与c的大小;
(3)证明:-2<b<-1.解析(1)证明 ∵f(x)的图象与x轴有两个不同的交点,∴f(x)=0有两个不等实根x1,x2,∵f(c)=0,∴x1=c是f(x)=0的根,c11又x1x2=x2=≠c,aaa
1∴是f(x)=0的一个根. a
11(2)假设<c,又>0,aa
由0<x<c时,f(x)>0,111知f>0与f=0矛盾,∴c,aaa
11又∵≠c,∴>c.aa
(3)证明 由f(c)=0,得ac+b+1=0,∴b=-1-ac.又a>0,c>0,∴b<-1.二次函数f(x)的图象的对称轴方程为
bx1+x2x2+x21x=-=<=x2= 2a22a
b1即-<.又a>0,2aa
【温州四中高二文科数学复数推理与证明3月考试题】推荐阅读:
温州教师资格两学考试1月5日起报名08-26
山东省聊城四中高二物06-23
北京四中历史试题08-18
“三环节”教学改革实践与反思【宁阳四中】10-23
全面解读十八届四中全会精神与主题11-17
贵州省六盘水盘县四中2017-2018学年下学期期末考试 高一生物有答案12-21
北京四中07-28
温州乐园作文06-12
温州历年作文10-27