水力学知识点总结

2024-07-04

水力学知识点总结(精选7篇)

1.水力学知识点总结 篇一

水力学基础知识就在下面,各位高中的同学们,我们看看下面的高中力学知识点总结吧!

高中力学知识点总结

一、质点的运动(1)------直线运动

1)匀变速直线运动

1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as

3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t

7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:

(1)平均速度是矢量;

(2)物体速度大,加速度不一定大;

(3)a=(Vt-Vo)/t只是量度式,不是决定式;

(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

2)自由落体运动

1.初速度Vo=0 2.末速度Vt=gt

3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh

注:

(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动

1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)

3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)

5.往返时间t=2Vo/g(从抛出落回原位置的时间)

注:

(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、质点的运动(2)----曲线运动、万有引力

1)平抛运动

1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt

3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/

25.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

7.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo

8.水平方向加速度:ax=0;竖直方向加速度:ay=g

注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动

1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf

3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

3)万有引力

1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

2.万有引力定律:F=Gm1m2/r2(G=6.67×10-11Nm2/kg2,方向在它们的连线上)

3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

注:

(1)天体运动所需的向心力由万有引力提供,F向=F万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

三、力(常见的力、力的合成与分解)

1)常见的力

1.重力G=mg(方向竖直向下,g=9.8m/

s2≈10m/s2,作用点在重心,适用于地球表面附近)

2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

4.静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为最大静摩擦力)

5.万有引力F=Gm1m2/r2(G=6.67×10-11Nm2/kg2,方向在它们的连线上)

6.静电力F=kQ1Q2/r2(k=9.0×109Nm2/C2,方向在它们的连线上)

7.电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

8.安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

9.洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

注:

(1)劲度系数k由弹簧自身决定;

(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

(3)fm略大于μFN,一般视为fm≈μFN;

(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;

(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);

(6)安培力与洛仑兹力方向均用左手定则判定。

2)力的合成与分解

1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2(F1>F2)

2.互成角度力的合成:

F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2

3.合力大小范围:|F1-F2|≤F≤|F1+F2|

4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

注:

(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

2.水力学知识点总结 篇二

一、体验力的概念及要素

1.力的概念.

力的概念的提出要从实践开始.学生要先体验力的存在, 然后理解力的概念.比如, 做一组体验“弹力”对照实验:学生自身向另一个物体发力.一接触, 一不接触.让学生们理解:力是物体对物体的作用.没有作用就没有力的存在.

2.力的三要素.

在知道力的概念后, 就要体会力本身具有的特征——力的三要素, 让学生们对比三组不同的实验.分别就力的大小不同、方向不同与作用点不同展开研究.过程中教学“控制变量法”.而且要让学生感受到:力, 作用在哪儿, 哪儿就有形变;力的方向与大小, 也影响着形变的方向与程度的大小或是速度变化的快慢.这里要提醒学生利用“转化法”理解力的三要素.

二、体验力的效果

让学生们体验弹力的作用效果.此过程中, 学生能理解力的作用有两个效果:物体发生形变、物体的运动状态发生改变.

学生对力的作用效果所用的语言描述是生活化的, 这需要教师重点强调:运动状态就是指速度.让学生体验速度的改变, 是指速度的大小或方向的改变.

三、体会力的分类

初中物理关于力的分类就是从力的产生开始的.力的产生是因为地球吸引———重力;力能恢复形变———弹力;力能阻碍物体相对运动———摩擦力.建议直接告之有这三种力, 然后让学生逐个实验体会.从力的产生原因上去体会三种力的概念区别.从力的大小与方向上判断影响三种力的因素.

重力, 地球上的物体都受到地球的吸引, 质量越大, 重力越大———G=mg.

弹力, 因为形变而要求恢复原状的力———这个概念一定要给学生解释清楚.在弹力中, 着重强调三个———拉力、压力与浮力.举拉力时, 提到弹簧秤的工作原理———弹簧的伸长与所受的拉力成正比———胡克定理:F=kx, 介绍k代表不同的弹簧.拉力大小与形变程度有关系;提到压力是为了说明力的问题, 强调拉与压的本质都是形变.浮力, 说明是液体或气体对浸没其中的物体的压力的综合表现.体会浮力的方向与大小F浮=ρ液gV排, 理解之后, 学生才更易记忆这个公式.

摩擦力的方向上, 强调相对运动与相对运动趋势.大小上, 建议分析出摩擦力公式:F=μN.

学生通过以上公式很容易记得是谁影响了它们的大小.而没有公式, 学生们掌握这三个力要差得多.

四、感知物理概念与规律

理解下面的概念与规律从力的效果开始.

1.理解压强.

力的作用效果之一就是使物体发生形变, 形变的程度就是指压强.学生复习时, 教师先不说压强, 让学生分析影响形变的因素:力的大小与受力面积大小, 然后启发学生说出压强公式P=F/S.液体内部压强公式由固体间压强公式推理得出:P=ρ液gh深.

2.理解牛顿第一定律.

(1) 牛顿第一定律.力的另一作用效果是使物体运动状态发生改变.强调物体的运动状态就是指物体的速度.从两个方面说, 一方面, 力能改变物体的速度;另一方面是, 没有力, 物体的速度就不改变.进而引出“牛顿第一定律”.写牛顿第一定律时, 我建议还是用一个公式:F=0, υ为定值.理解为:物体不受外力时, 物体的速度不变化;物体受到外力时, 物体运动状态发生改变.F≠0, υ变化.

通过这个公式, 强调:力不是维持运动的原因.

(2) 物体受平衡力时, 合外力F=0, 物体可能发生形变, 但运动状态不改变.

(1) 二力平衡.

物体在两个力的作用下仍然能不改变运动状态, 即速度不变.这两个力相互“抵消”, 那两个力作用在一个物体上, 在一条直线上, 大小相等, 方向相反.

(2) 杠杆与滑轮.

应该说这是“三力平衡”.杠杆是受到三个力的作用, 支点受力、动力与阻力.但是, 因为杠杆的定义是可以固定点转动的硬棒, 更多情况下说它是“轻质硬棒”, 即不考虑它的质量, 就有了杠杆平衡条件:F1L1=F2L2.

定滑轮:相当于支点在中间的等臂杠杆;动滑轮相当于支点在外边的不等臂杠杆.

3.理解力学、功与功率.

力学功的概念:力与物体在力的方向上通过的距离的乘积W=FS.学习它, 其实就是学习力F的方面与S的方向一致性.这在高中会重点学习, 但又会遇到习题:力的方向与运动方向垂直情况.教师为了让学生会解决这样的问题, 给学生说点儿“投影”知识也是必要的.

功率表示力对物体做功的快慢P=W/t.物体运动快慢与速度有关, 启发学生写出P=Fv.

4.理解机械效率.

3.水力学知识点总结 篇三

【关键词】初中物理 力学知识 有效教学 策略

义务教育阶段的物理学科的目的就是让学生打好学习物理知识和技巧的基础,通过基本的科学探究,感受科学的严谨和神奇力量。这是门为了全面提升学生的综合素质的自然基础学科。教是手段,学才是目的。在教学过程中,除了传授知识之外,那就是发展能力。鉴于以上观点,笔者对于初中物理力学有效教学策略提出一些看法。

一、巧妙地引题,进行启发式诱导

“学起于思,思源于疑。”巧妙地引题对构建有效课堂有着重要的作用。课题的把握若做到了,那么接下来的知识传授就很方便了,学生能够很快地掌握该学的知识理论,老师也可以轻松地完成教学要求。在每堂课前,教师可以通过比较形象的问题引起同学们的兴趣,抓住他们的注意力,让学生很快地进入到学习状态中。比如,很多优秀的教师在《压强》知识上这么问学生的:在雪地里为什么运动员不会被陷进积雪中呢?像这样的问题很快就能激发学生们的思考,进而慢慢了解关于压强的相关知识理论。在教《物体的浮与沉》时,我们可以先通过轮船在海面上行走的实景,然后再让我们学生感受一下在轮船行走的感觉,让学生了解到物理浮沉只是生活上随处可见的场景,从而激起他们去思考物理的浮沉的条件是什么。这样接着再引出 “浮沉”这个话题相信已经是事半功倍了。

二、灵活引入课题,启发诱导策略

一堂课的成功与否,引入课题发挥着重要作用。课题引入得好,接下来的课程教学任务就水到渠成的完成了,学生进入了学习情境,教师的课堂就能轻松自如的完成教学目标。笔者认为在教学过程中主要有以下三种引入课题的策略。一是故事启发法。在学习《浮力》《阿基米德原理》的知识时,先给学生讲一个故事:有一天,阿基米德去浴室洗澡。他跨入浴桶,随着身子浸入浴桶,一部分水就从桶边溢出,阿基米德看到这个现象,头脑中像闪过一道闪电,“我找到了”他忘记了自己裸露着身子,从浴桶中一跃而出奔向街头,狂呼“我找到了、我找到了”,发现真理时精神上的快乐是一般人无法想象的。这一次呼声实际上也就宣告了阿基米德原理的诞生。阿基米德到底是怎样检测出王冠是不是纯金的呢?学完本节知识,我们就明白了。二是多媒体诱导法。在学习《物体的浮与沉》时,可以首先给学生播放轮船自由的在海面上航行,然后又给学生播放了潜水艇可以自由在水中上浮和下潜的实景,然后又给学生播放了热气球上升的场景,让学生身临其境,感受生活中物体的浮沉现象随处可见,物理其实就在我们身边。那么物体的浮沉条件又是怎样的呢?从而引入课题。学生对这节课就会产生浓厚的兴趣,激发学生学习的热情。三是引入问题法。上课之前恰当地通过问题引出本节课学习的知识,这既让学生感觉新奇,又能很快抓住学生的注意力,让学生很快进入到学习状态。例如:在学习《压强》的知识时,给学生抛出这样的问题:1. 在雪地里行走,人很容易陷入积雪中,为什么有了宽宽的滑雪板,运动员就不仅不会陷进雪里,而且还能在雪地上滑行?2. 用中指和大拇指轻轻的夹着钢笔的两端,为什么两个手指的感受不相同呢?这两个疑问让学生很快思考其中的原因,进而考虑可能与受力面积有关,从而引入压强的学习。

三、注意教学过程,正确处理传授知识与发展能力的策略

教师是课堂的指导者,学生是积极的倾听者、思考者、质疑者和批判者,是不停地运用自己的智慧进行思维的人,他是学习的真正主人;真正的教学不仅仅是为了知识,而是把传授知识的过程同时变成发展能力的过程。物理中的力学知识不能让学生死记硬背,否则,并不能很好地将知识转化为能力;只有通过积极主动地思考、探究和亲身体验来的知识,才能转化为学生的能力。另外,对课堂教学活动过程与结果做出的系列的价值判断行为是教学中必不可少的。评价行为贯穿着整个教学活动的始终,而不只是在教学活动之后。在力学教学的课堂上,要对课堂教学的各个环节及其发展变化进行价值判断是必不可少的教学行为方式。物理教学要加强对自己教学行为的检验和评价。

四、要巧举例子,联系生活,轻松学习

在学习液体压强知识时,有学生问:在液体内部液体的压强随深度的增加而增大吗?同一深度液体向各个方向的压强相等吗?而气体内部向各个方向压强相等吗?笔者这样回答学生:在液体内部,同一深度,就像我们在同一个班级里的同学,我们班里的每一个同学都是自由自在的,都是平等的,也就是在同一深度液体向各个方向的压强相等。但是班里又是有班规的,又是有纪律的,谁也不能例外,就如液体的压强随深度的增加而增大。真正到了寒暑假,各位同学自由安排自己的学习,就比如液体成为了气体,气体向各个方向压强相等。通过举例、类比,学生学习物理知识就比较轻松,不再感觉抽象难懂了。

总之,在以后的物理教学实践中,在本文所探出的中学物理学科高效教学理论的基础上,继续研究中学物理光、热、机电学以及其他可提升的方面,对于中学物理高效教学来说是重要的内容。

【参考文献】

[1]张玲. 初中物理有效教学研究[D]. 硕士学位论文,华中师范大学,2010.

4.理论力学复习总结(知识点) 篇四

静力学

第1 章静力学公理与物体的受力分析

1.1 静力学公理

公理1 二力平衡公理 :作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。F=-F’

工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。

公理 2 加减平衡力系公理 :在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。

推论 力的可传递性原理 :作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。

公理3 力的平行四边形法则 :作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。

推论 三力平衡汇交定理

:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。

公理4 作用与反作用定律 :两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。

公理5 钢化原理

:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。对处于平衡状态的变形体,总可以把它视为刚体来研究。

1.2 约束及其约束力

1.柔性体约束

2.光滑接触面约束 3.光滑铰链约束

第2章

平面汇交力系与平面力偶系

1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即FR=F1+F2+…..+Fn=∑F 2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。3.力对刚体的作用效应分为移动和转动。力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。(Mo(F)=±Fh)

4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F’)。

例2-8

如图2.-17(a)所示的结构中,各构件自重忽略不计,在构件AB上作用一力偶,其力偶矩为500kN•m,求A、C两点的约束力。

构件BC只在B、C两点受力,处于平衡状态,因此BC是二力杆,其受力如图2-17(b)所示。

由于构件AB上有矩为M的力偶,故构件AB在铰链A、B处的一对作用力FA、FB’构成一力偶与矩为M的力偶平衡(见图2-17(c))。由平面力偶系的平衡方程∑Mi=0,得

﹣Fad+M=0 则有

FA=FB’N=471.40N 由于FA、FB’为正值,可知二力的实际方向正为图2-17(c)所示的方向。

根据作用力与反作用力的关系,可知FC=FB’=471.40N,方向如图2-17(b)所示。

第3章平面任意力系

1. 合力矩定理:若平面任意力系可合成为一合力。则其合力对于作用面内任意一点之矩等于力系中各力对于同一点之矩的代数和。2.平面任意力系平衡的充分和必要条件为:力系的主失和对于面内任意一点Q的主矩同时为零,即FR`=0,Mo=0.3.平面任意力系的平衡方程: ∑Fx=0, ∑Fy=0, ∑Mo(F)=0.平面任意力系平衡的解析条件是,力系中所有力在作用面内任意两个直角坐标轴上投影的代数和分别等于零,各力对于作用面内任一点之矩的代数和也是等于零.例3-1 如图3-8(a)所示,在长方形平板的四个角点上分别作用着四个力,其中F1=4kN,F2=2kN,F3=F4=3kN,平板上还作用着一力偶矩为M=2kN²m的力偶。试求以上四个力及一力偶构成的力系向O点简化的结果,以及该力系的最后合成结果。

解(1)求主矢FR’,建立如图3-8(a)所示的坐标系,有

F’Rx=∑Fx=﹣F2cos60°+F3+F4cos30°=4.598kN F’Ry=∑Fy=F1-F2sin60°+F4sin30°=3.768kN 所以,主矢为

F’R=主矢的方向

cos(F’R,i)=

=0.773, ∠(F’R,i)=39.3°

=5.945kN

cos(F’R,j)==0.634,∠(F’R,j)=50.7°

(2)求主矩,有

M0=∑M0(F)=M+2F2cos60°-2F2+3F4sin30°=2.5kN²m

由于主矢和主矩都不为零,故最后的合成结果是一个合力FR,如图3-8(b)所示,FR=F’R,合力FR到O点的距离为

d= =0.421m 例3-10 连续梁由AC和CE两部分在C点用铰链连接而成,梁受载荷及约束情况如图3-18(a)所示,其中M=10kN²m,F=30kN,q=10kN/m,l=1m。求固定端A和支座D的约束力。解 先以整体为研究对象,其受力如图3-18(a)所示。其上除受主动力外,还受固定端A处的约束力Fax、Fay和矩为MA的约束力偶,支座D处的约束力FD作用。列平衡方程有

∑Fx=0,Fax-Fcos45°=0

∑Fy=0,FAy-2ql+Fsin45°+FD=0

∑MA(F)=0,MA+M-4ql ²+3FDl+4Flsin45°=0 以上三个方程中包含四个未知量,需补充方程。现选CE为研究对象,其受力如图3-(b)所示。以C点为矩心,列力矩平衡方程有

∑MC(F)=0,-ql ²+FDl+2Flsin45°=0联立求解得

FAx=21.21kN,Fay=36.21kN,MA=57.43kN²m,FD=﹣37.43kN

第4章 考虑摩擦的平衡问题

1.摩擦角:物体处于临界平衡状态时,全约束力和法线间的夹角。tanψm=fs 2.自锁现象:当主动力即合力Fa的方向、大小改变时,只要Fa的作用线在摩擦角内,C点总是在B点右侧,物体总是保持平衡,这种平衡现象称为摩擦自锁。

例4-3 梯子AB靠在墙上,其重为W=200N,如图4-7所示。梯长为l,梯子与水平面的夹角为θ=60°已知接触面间的摩擦因数为0.25。今有一重650N的人沿梯上爬,问人所能达到的最高点C到A点的距离s为多少?

解 整体受力如图4-7所示,设C点为人所能达到的极限位置,此时

FsA=fsFNA,FsB=fsFNB

∑Fx=0,FNB-FsA=0

∑Fy=0,FNA+FsB-W-W1=0 ∑MA(F)=0,-FNBsinθ-FsBlcosθ+Wcosθ+W1scosθ=0 联立求解得

S=0.456l

第5章 空间力系

1.空间汇交力系平衡的必要与充分条件是:该力系的合力等于零,即FR=∑Fi=0 2.空间汇交力系平衡的解析条件是:力系中各力在三条坐标轴上投影的代数和分别等于零.3.要使刚体平衡,则主失和主矩均要为零,即空间任意力系平衡的必要和充分条件是:该力系的主失和对于任一点的主矩都等于零,即FR`=∑Fi=0,Mo=∑Mo(Fi)=0 4.均质物体的重力位置完全取决于物体的几何形状,而与物体的重量无关.若物体是均质薄板,略去Zc,坐标为xc=∑Ai*xi/A,yc=∑Ai*yi/A 5.确定物体重心的方法(1)查表法

(2)组合法:①分割法;②负面积(体积)法(3)实验法

例5-7 试求图5-21所示截面重心的位置。

解 将截面看成由三部分组成:半径为10mm的半圆、50mm³20mm的矩形、半径为5mm的圆,最后一部分是去掉的部分,其面积应为负值。取坐标系Oxy,x轴为对称轴,则截面重心C必在x轴上,所以yc=0.这三部分的面积和重心坐标分别为

A1=mm ²=157mm ²,x1=-=-4.246mm,y1=0 A2=50³20mm ²=1000mm ²,x2=25mm,y2=0 A3=-π³5 ²mm ²=-78.5mm ²,x3=40mm,y3=0 用负面积法,可求得 Xc==

第二篇

运动学 第6章 点的运动学

6.2直角坐标法

运动方程 x=f(t)y=g(t)z=h(t)

消去t可得到轨迹方程 f(x,y,z)=0 其中

例题6-1 椭圆规机构如图6-4(a)所示,曲柄oc以等角速度w绕O转动,通过连杆AB带动滑块A、B在水平和竖直槽内运动,OC=BC=AC=L。求:(1)连杆上M点(AM=r)的运动方程;(2)M点的速度与加速度。

解:(1)列写点的运动方程

由于M点在平面内运动轨迹未知,故建立坐标系。点M是BA杆上的一点,该杆两端分别被限制在水平和竖直方向运动。曲柄做等角速转动,Φ=wt。由这些约束条件写出M点运动方程x=(2L-r)coswt

y=rsinwt 消去t 得轨迹方程:(x/2L-r)²+(y/x)²=1

(2)求速度和加速度

对运动方程求导,得

dx/dt=-(2L-r)wsinwt dy/dt=rsinwt 再求导a1=-(2L-r)w²coswt

a2=-rw²sinwt 由式子可知a=a1i+a2j=-w²r

6.3自然法

2.自然坐标系:b=t³n 其中b为副法线 n为主法线 t 3.点的速度 v=ds/dt

切向加速度 at=dv/dt

法向加速度

an=v²/p 习题6-10

滑道连杆机构如图所示,曲柄OA长r,按规律θ=θ’+wt 转动(θ以rad计,t以s计),w为一常量。求滑道上C点运动、速度及加速度方程。

解:

第七章 刚体的基本运动

7.1刚体的平行运动:刚体平移时,其内所有各点的轨迹的形状相同。在同一瞬时,所有各点具有相同的速度和相同的加速度。刚体的平移问题可归结为点的运动问题。

7.2刚体的定轴转动:瞬时角速度 w=lim△θ∕△t=dθ/dt

瞬时角加速度a=lim△w∕△t=dw/dt=d²θ/dt²

转动刚体内任一点速度的代数值等于该点至转轴的距离与刚体角速度的乘积 a=√(a² +b²)=R√(α²+w²)θ=arctan|a|/b =arctan|α|/w²

转动刚体内任一点速度和加速度的大小都与该点至转轴的距离成正比。

例题7-1如图所示平行四连杆机构中,O1A=O2B=0.2m ,O1O2=AB=0.6m ,AM=0.2m ,如O1A按φ=15πt的规律转动,其中φ以rad计,t以s计。试求t=0.8s时,M点的速度与加速度。

解:在运动过程中,杆AB始终与O1O2平行。因此,杆AB为平移,O1A为定轴转动。根据平移的特点,在同一瞬时M、A两点具有相同的速度和加速度。A点做圆周运动,它的运动规律为

s=O1A²φ=3πt m

所以

VA=ds/dt=3π

m/s

atA=dv/dt=0

anA=(V A)²/O1A=45

m/s

为了表示Vm、am 的2,需确定t=0.8s时,AB杆的瞬时位置。当t=0.8s时,s=2.4πm O1A=0.2m , φ=2.4π/0.2=12π,AB杆正好第6次回到起始位置O点处,Vm、am的方向如图所示。

第8章点的合成运动

8.1合成运动的概念:相对于某一参考系的运动可由相对于其他参考系的几个运动组合而成,这种运动称为合成运动。

当研究的问题涉及两个参考系时,通常把固定在地球上的参考系称为定参考系,简称定系。吧相对于定系运动的参考系称为动参考系,简称动系。研究的对象是动点。动点相对于定参考系的运动称为绝对运动;动点相对于动参考系的运动称为相对运动;动参考系相对于定参考系的运动称为牵连运动。动系作为一个整体运动着,因此,牵连运动具体有刚体运动的特点,常见的牵连运动形式即为平移或定轴转动。

动点的绝对运动是相对运动和牵连运动合成的结果。绝对运动也可分解为相对运动和牵连运动。在研究比较复杂的运动时,如果适当地选取动参考系,往往能把比较复杂的运动分解为两个比较简单的运动。这种研究方法无论在理论上或实践中都具有重要意义。

动点在相对运动中的速度、加速度称为动点的相对速度、相对加速度,分别用vr和ar表示。动点在绝对运动中的速度、加速度称为动点的绝对速度和绝对加速度,分别用va和aa表示。换句话说,观察者在定系中观察到的动点的速度和加速度分别为绝对速度和绝对加速度;在动系中观察到动点的速度和加速度分别为相对速度和相对加速度。

在某一瞬时,动参考系上与动点M相重合的一点称为此瞬时动点M的牵连点。如在某瞬时动点没有相对运动,则动点将沿着牵连点的轨迹而运动。牵连点是动系上的点,动点运动到动系上的哪一点,该点就是动点的牵连点。定义某瞬时牵连点相对于定参考系的速度、加速度称为动点的牵连速度、牵连加速度,分别用ve和ae表示。

动系O’x’y’与定系Oxy之间的坐标系变换关系为

x=x0+x’cosθ-y’sinθ

y=y0+x’sinθ+y’cosθ

在点的绝对运动方程中消去时间t,即得点的绝对运动轨迹;在点的相对运动方程中消去时间t,即得点的相对运动轨迹。

例题8-4 矿砂从传送带A落到另一传送带B上,如图所示。站在地面上观察矿砂下落的速度为v1=4 m/s,方向与竖直线成30角。已知传送带B水平传动速度v2=3 m/s.求矿砂相对于传送带B的速度。

解:以矿砂M为动点,动系固定在传送带B上。矿砂相对地面的速度v1为绝对速度;牵连速度应为动参考系上与动点相重合的哪一点的速度。可设想动参考系为无限大,由于它做平移,各点速度都等于v2。于是v2等于动点M的牵连速度。

由速度合成定理知,三种速度形成平行四边形,绝对速度必须是对角线,因此作出的速度平行四边形如图所示。根据几何关系求得

Vr=√(ve²+va²-2vevacos60º)=3.6 m/s Ve与va间的夹角

β=arcsin(ve/vr*sin60º)=46º12’

总结以上,在分析三种运动时,首先要选取动点和动参考系。动点相对于动系是运动的,因此它们不能处于同一物体;为便于确定相对速度,动点的相对轨迹应简单清楚。

8.3当牵连运动为平移时,动点的绝对加速度等于牵连加速度和相对加速度的矢量和。

第9章

刚体的平面运动

9.1刚体平面运动的分析:其运动方程x=f1(t)

y=f2(t)θ=f3(t)完全确定平面运动刚体的运动规律

在刚体上,可以选取平面图形上的任意点为基点而将平面运动分解为平移和转动,其中平面图形平移的速度和加速度与基点的选择有关,而平面图形绕基点转动的角速度和角加速度与基点的选择无关。

9.2刚体平面运动的速度分析:

平面图形在某一瞬时,其上任意两点的速度在这两点的连线上的投影相等,这就是速度投影定理。Vcosa=vcosb

例9-1 椭圆规尺AB由曲柄OC带动,曲柄以匀角速度ω0绕轴O转动,如图9-7所示,OC=BC=AC=r,求图示位置时,滑块A、B的速度和椭圆规尺AB的角速度。

解 已知OC绕轴O做定轴转动,椭圆规尺AB做平面运动,vc=ω0r。

(1)用基点法求滑块A的速度和AB的角速度。因为C的速度已知,选C为基点。

vA=Vc+VAC 式中的vc的大小和方向是已知的,vA的方向沿y轴,vAC的方向垂直于AC,可以作出速度矢量图,如图9-7所示。

由图形的几何关系可得

vA=2vccos30°=

ω0r,Vac=Vc,Vac=ωABr 解得

ωAB=ω0(顺时针)

(2)用速度投影定理求滑块B的速度,B的速度方向如图9-7所示。

[vB]BC=[vC]BC

Vccos30°=vBcos30° 解得

Vb=vC=ω0r 例9-5 图9-15所示机构中,长为l的杆AB的两端分别与滑块A和圆盘B沿竖直方向光滑移动,半径为R的圆盘B沿水平直线做纯滚动。已知在图示的位置时,滑块A的速度为vA,求该瞬时杆B端的速度、杆AB的角速度、杆AB中点D的速度和圆盘的角速度。

解 根据题意,杆AB做平面运动,vA的方向已知,圆盘中心B的速度沿水平方向,则杆AB的速度瞬心为P点,有

ωAB==

vB=ωAB²BP=vAtanθ

vD=ωAB²DP=

²=

圆盘B做平面运动,C点为其速度瞬心,则ωB==tanθ

第三篇

动力学

第10章 质点动力学的基本方程

1.牛顿第一定律:不受了作用(包括受到平衡力系作用)的质点,将保持静止或做匀速直线运动。又称惯性定律。

2.牛顿第二定律:质点的质量与加速度的乘积,等于作用于质点的力的大小,加速度的方向与力的方向相同。F =ma

3.牛顿第三定律:两个物体间的作用力与反作用力总是大小相等、方向相反,沿着同一直线,同时分别作用在这两个物体上。

例10-2:曲柄连杆机构如图10-2(a)。曲柄OA以匀角速度ω转动,OA=r,AB=l,当λ=r/l比较小时,以O为坐标原点,滑块B的运动方程可近似表示为

X=l(1-)+r(cosωt+)如滑块的质量为m,忽略摩擦及连杆AB的质量,试求当ψ=ωt=0和时,连杆AB所受的力。

以滑块B为研究对象,当ψ=ωt时,其受力如图10-2(b)所示。由于连杆不计质量,AB应为二力杆,所以受平衡力系作用,它对滑块B的拉力F沿AB方向。滑块啱x轴的运动方程

Max=-Fcosβ

由滑块B的运动方程可得

Ax==-rω²(cosωt+λcos2ωt)当ωt=0时,ax=-rω²(1+λ),且β=0,得

F=mrω²(1+λ)杆AB受拉力。

同理可得,当ωt=时,F=-,杆AB受压力

例10-5 物块在光滑水平面上并与弹簧相连,如图10-5所示。物块的质量为m,弹簧的刚度系数为k。在弹簧拉长变形量为a时,释放物块。求物块的运动规律。

解 以弹簧未变形处为坐标原点O,设物块在任意坐标x处弹簧变形量为|x|,弹簧力大小为F=k|x|,并指向O点,如图10-5所示,则此物块沿x轴的运动微分方程为 m

=Fx=-kx 令ω²n=,将上式化为自由振动微分方程的标准形式 上式的解可写为X=Acos(ωnt+θ)

+ω²nx=0 其中A、θ为任意常数,应由运动的初始条件决定。由题意,当t=0时,=0,x=a,代入上式,解得θ=0,A=a,代入式中,可解得运动方程为X=acosωnt

第11章 动力定理

1.2.① ②

pmvc动量:等于质点的质量与其速度的乘积.质点系的动量定理:

微分形式:质点系的动量对时间的一阶导数等于作用在该质点系上所有外力的矢量和.积分形式:质点系的动量在任一时间间隔内的变化,等于在同一时间间隔内作用在该指点系上所有外力的冲凉的矢量和.(冲凉定理)3.质心运动守恒定律:如果所有作用于质心系的外力在x轴上投影的代数和恒等于零,即∑F=0,则Vcx=常量,这表明质心的横坐标xc不变或质心沿x轴的运动时均匀的。

例11-5:已知液体在直角弯管ABCD中做稳定流动,流量为Q,密度为ρ,AB端流入截面的直径为d,另一端CD流出截面的直径为d1。求液体对管壁的附加动压力。

解 取ABCD一段液体为研究对象,设流出、流入的速度大小为v1和v2,则

V1=,v2=

建立坐标系,则附加动反力在x、y轴上的投影为F’’Nx=ρQ(v2-0)= F’’Ny=ρQ [0-(-v1)]

例11-7:图11-6所示的曲柄滑块机构中,设曲柄OA受力偶作用以匀角速度w转动,滑块B沿x轴滑动。若OA=AB=l,OA及AB都为均质杆,质量都为m1,滑块B的质量为m2。试求此系统的质心运动方程、轨迹及此系统的动量。

设t=0时杆OA水平,则有=wt。将系统看成是由三个质点组成的,分别位于杆OA的中点、杆AB的中点和B点。系统质心的坐标为

Xc=cosωt=lcosωt Yc=sinωt=lsinωt 上式即系统质心C的运动方程。由上两式消去时间t,得

[xc] ²+[] ²=1 即质心C的运功轨迹为一椭圆,如图11-6中虚线所示。应指出,系统的动量,利用式(11-15)的投影式,有

Px=mvcx=(2m1+m2)=-2(m1+m2)lωsinωt Py=mvcy=(2m1+m2)=m1lωcosωt 例11-11:平板D放置在光滑水平面上,板上装有一曲柄、滑杆、套筒机构,十字套筒C保证滑杆AB为平移,如图示。已知曲柄OA是一长为r,质量为m的均质杆,以匀角速度w绕轴O转动。滑杆AB的质量为4m,套筒C的质量为2m,机构其余部分的质量为20m,设初始时机构静止,试求平板D的水平运动规律x(t)。

解 去整体为质点系,说受的外力有各部分的重力和水平面的反力。因为外力在水平轴上的投影为零,且初始时静止,因此质点系质心在水平轴上的坐标保持不变。建立坐标系,并设平板D的质心距O点的水平距离为a,AB长为l,C距O点的水平距离为b,则初始时质点系质心的水平轴的坐标为

Xc1==

设经过时间t,平板D向右移动了x(t),曲柄OA转动了角度wt,此时质点系质心坐标为

Xc2= 因为在水平方向上质心守恒,所以xc1=xc2,解得:X(t)=(1-cosωt)

P207习题11-3

第12章 动量矩定理

1.质点和质点系的动量矩:

⑴指点对点O的动量矩失在z轴的投影,等于对z轴的动量矩,即「Lo(mv)」=Lz(mv)

⑵质点系对固定点O的动量矩等于各质点对同一点O的动量矩的矢量和.即:Lo=∑Lo(mv)2.绕定轴转动刚体对于转轴的动量矩等于刚体对转轴的装动惯量与角速度的乘积.(Lz=wJz)3.平行轴定理:刚体对于任一轴的转动惯量,等于刚体对通过质心并与该轴平行的轴转动惯量,加上刚体的质量与两轴间距离平方的乘积.4.动量矩定理:质点对某定点的动量矩对时间的一阶导数等于作用于质点的力对同一点的矩.例12-2:已知均质细杆和均质圆盘的质量都为m,圆盘半径为R,杆长3R,求摆对通过悬挂点O并垂直于图面的Z轴的转动惯量。

解 摆对Z轴的转动惯量为

Jz=Jz杆+Jz盘

杆对Z轴的转动惯量为

Jz杆=ml ²=m(3R)²=3mR ² 圆盘对其质心的转动惯量为

Jzc2=mR ² 利用平行轴定理

Jz盘= Jzc2+m(R+l ²)=mR ²+16mR²=所以

mR²

Jz= Jz杆+Jz盘=3mR ²+

mR²= mR ²

例12-3:质量为M1的塔伦可绕垂直于图面的轴O转动,绕在塔轮上的绳索于塔轮间无相对滑动,绕在半径为r的轮盘上的绳索于刚度系数为k的弹簧相连接,弹簧的另一端固定在墙壁上,绕在半径为R的轮盘上的绳索的另一端竖直悬挂质量为M2的重物。若塔轮的质心位于轮盘中心O,它对轴O的转动惯量Jo=2mr,R=2r,M1=m,M2=2m.求弹簧被拉长s时,重物M2的加速度。解

塔轮做定轴转动,设该瞬时角速度为w,重物作平移运动,则它的速度为v=Rw,它们对O点的动量矩分别为Lo1,Lo2,大小为 Lo1=-Jo²w=-2mr2ω,Lo2=-2mR2w=-8mr2ω² 系统对O点的外力矩为

M0()=F²r-m2g²R=ksr-4mgr 根据动量矩定理L0=ΣM0()

得10mr²=(4mg-ks)r α==

因重物的加速度a2=Rα,所以:a2=Rα=

第13章 动能定理

1.质点系动能的微分,等于作用在质点系上所有力所做元功的和,这就是质点系微分形式的动能定理.(13-23)2.质点系积分形式的动能定理:质点系在某一运动过程中动能的改变量,等于作用在质点系上所有力在这一过程中所做的功的和.(13-24,13-25)3.力的功率等于切向力与力作用点速度大小的乘积(13-28)4.作用在转动刚体上力的功率等于该力堆转轴的矩与角速度的乘积.(13-29)5.质点系动能对时间的一阶导数等于作用在指点系上所有力的功率的代数和(功率方程13-30)

例13-5:重物A和重物B通过动滑轮D和定滑轮C而运动。如果重物A开始时向下的速度为v0,试问重物A下落多大距离时,其速度增大一倍。设重物A和B的质量均为m1,滑轮D和C的质量均为m2,且为均质圆盘。重物B于水平间的动摩擦因数位f,绳索不能伸长,其质量忽略不计。

以系统为研究对象。系统中重物A和B作平移,定滑轮C做定轴转动,动滑轮D做平面运动。初瞬时A的速度大小为v0,则滑轮D轮心的速度大小为v0,角速度为ωD=;定滑轮C的角速度为ωC=;重物B的速度大小为2v0。于是运动初瞬时系统的动能为

T1=m1v0²+m2v0²+(m2rD²)()²+(m2rC²)()²+m12v0 ²=(10m1+7m2)速度增大一倍时的动能为T2=(10m1+7m2)设重物A下降h高度时,其速度增大一倍。所有的力所做的功为

∑=m1gh+m2gh-f’m1g²2h=[m1g(1-2f’)+m2g]h 由式有

(10m1+7m2)= [m1g(1-2f’)+m2g]h 解得h=

例13-7:在对称杆的A点,作用一竖直常力F,开始时系统静止。求连杆OA运功动到水平位置时的角速度。设连杆长均为l,质量均为m,均质圆盘质量为m1,且作纯滚动。

以系统为研究对象。由系统从静止开始运动,故初瞬时系统的动能为

T1=0 当杆OA运动到水平位置时,杆端B为杆AB的速度瞬心,因此轮B的角速度为零。设此时杆OA的角速度为w,由于OA=AB,所以杆AB的角速度亦为w,系统此时的动能为

T2=JOAω²+JABω²=()ω²+()ω²=ω²

所有的力所做的功为 ∑=2(mg)+Flsinα=(mg+F)lsinα

由 ω²-0=(mg+F)lsinα

5.热力学及统计物理第二章知识总结 篇五

热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律,而且其它热力学函数也可以由这三个基本热力学函数导出。

焓:自由能:

吉布斯函数:

下面我们由热力学的基本方程(1)即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分

 焓、自由能和吉布斯函数的全微分

o

焓的全微分

由焓的定义式,求微分,得,将(1)式代入上式得o 自由能的全微分

(2)由得

(3)o 吉布斯函数的全微分

(4)从方程(1)(2)(3)(4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH,dF,和dG独立变量分别是S,V;S,P;T,V和T,P 所以函数U(S,V),H(S,P),F(T,V),G(T,P)就是我们在§2.5将要讲到的特性函数。下面从这几个函数和它们的全微分方程来推出麦氏关系。

二、热力学(Maxwell)关系(麦克斯韦或麦氏)(1)U(S,V)

利用全微分性质(5)

用(1)式相比得(6)

再利用求偏导数的次序可以交换的性质,即

(6)式得(2)H(S,P)

(7)

同(2)式相比有

由得(8)

(3)F(T,V)

同(3)式相比

(9)

(4)G(T,P)

同(4)式相比有

(10)

(7),(8),(9),(10)式给出了热力学量的偏导数之间的关系,称为麦克斯韦(J.C.Maxwell)关系,简称麦氏关系。它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。例如,只要知道物态方程,就可以利用(9),(10)式求出熵的变化,即可求出熵函数。

§2.2麦氏关系的简单应用

证明

1.求

选T,V为独立变量,则内能U(T,V)的全微分为

(1)

熵函数S(T,V)的全微分为(2)又有热力学基本方程由(2)代入(3)式得

(3)

(4)(4)相比可得(5)(6)由定容热容量的定义得

(7)2.求

选T、P为独立参量,焓的全微分为

(8)

焓的全微分方程为(9)

以T、P为自变量时熵S(T、P)的全微分表达式为

(10)将(10)代入(9)得(11)(8)式和(11)式相比较得(12)

(13)

(14)3求

由(7)(14)式得(15)把熵S看作T,V的函数,再把V看成T,P的函数,即对上式求全微分得

∴代入(15)式得

由麦氏关系得即得证

(16)

4、P,V,T三个变量之间存在偏导数关系

可证

(17)

§2.3气体的节流过程和绝热膨胀过程

气体的节流过程(节流膨胀)和绝热膨胀是获得低温的两种常用方法,我们利用热力学函数来分析这两种过程的性质

一,气体的节流(焦耳---汤姆逊效应)

1、定义:如图所示

有一由绝热材料制成的管子,中间用一多孔塞(节流阀)隔开,塞子一边维持较高的压强P,另一边维持较低的压强P,在压力的作用下,气体由高压的一边经过多孔塞流向低压的一边。由于多孔塞对气流的巨大的阻力,气体的宏观流速极小,因而对应的动能可以略去。我们把气体在绝热条件下,气体由稳定的高压经过多孔塞流到稳定的低压一侧的过程称为气体的节流过程。

2、特点:

  它是不可逆的,这是显然的,因为气体通过多孔塞时,要克服阻力作功,这种功转变成热。

初态与末态等焓,证明如下

开始在多孔塞左边取一定量的气体,压强为其压强、体积、内能分别为外界对这部分气体所作的功是一定律有

,,体积为,内能为.气体通过多孔塞后,,气体在节流过程前后,内能增加为,因为过程是绝热的,根据热力学第移项后得

根据焓的定义式得(1)

焓是一个状态量,可见节流前后气体的焓不发生变化,但对于气体在过程中所经历的非平衡态焓是没有定义的。这儿指的是初态和终态气体的焓相等。

 J-Th效应

实验表明:气体经节流后,其温度可能升高,也可能降低,也可能不变,我们称在节流过程中温度随压强改变的现象为焦耳—汤姆逊效应。这个效应用焦汤系数

来表示,它的定义为(2)

上式的右方表示在等焓过程中温度随压强的改变,应当注意的是在节流过程中气体的压强总是降低的(dp<0),因而 1)当时,表明节流后气体的温度降低了,气体节流后变化了,称为正效应;

2)时,即在节流后气体变热了,叫做负效应;

3)时,气体经节流后温度不变,叫做零效应;

一种气体节流后温度如何变化与状态方程及气体节流前后的状态有关。

3,与态式的关系

取T,P为状态参量,状态函数焓可表为H=H(T,P)。应用数学公式,其偏导数间应存在下述关系:

及定量热容量

(3)

又由体胀系数定义代入上式得

(3)(4)给出了焦—汤系数与物态方程及热容量的关系 将1mol理想气体物态方程代入(3)得

说明理想气体在节流过程前后温度不变,理想气体没有焦—汤效应。

 J—Th图

(3)式右边的参量是可以由实验测量的,我们可以画出T—P曲线,如图是的J—Th图,图中实验代表等焓线,可由实验直接测定,等函数的斜线转换温度,虚线处等函数的斜线,使的温度称为焦汤效应的,的曲线称为转换曲线,如图所示虚线即表示转换曲线。虚线左边节流过程降温(正效应),虚线右边流的降温效应使气体降温而液化。

二、气体的绝热膨胀,节流过程升温(负效应)。所以可以利用节另一种使气体降温的有效方法是使气体作准静态的(可逆)绝热膨胀(等熵膨胀),因为绝热过程所以,所以准静态绝热过程系统的熵不变。分析绝热膨胀过程中气体的温度随压强的变化关系,取T,P为状态参量,状态函数熵可表为S=S(T,P)。其全微分方程

由,和麦氏关系

代入上式得(5)

上式右方总是正的,所以,这表示气体在绝热膨胀中随着压强的减小,它的温度总是降低的,也就是气体绝热膨胀变冷了。

§2,4基本热力学函数的确定

我们通过热力学第一和第二定律,态函数的全微分特性及Maxwell关系,导出热力学函数的微积分方程表达式,并通过此函数给出内能和熵的直接测量参数的表达式,即可认为这个热力学函数可被测定了。

1、以T,V为状态参量,基本热力学函数的测定

物态方程为(1)

内能的全微分为

(2)沿一条任意的积分路线求积分,可得

(3)

(3)式既内能的积分表达式。以T,V为变量熵的全微分为

(4)

求线积分得此即熵的积分表达式

(5)

由(3),(5)式可知,如果测得物质的和物质方程即可求得内能函数和熵函数.

2、以T,P为状态参量,基本热力学函数的确定

物态方程为(6)

以T,P为独立参量时,先求H是很方便的焓的全微分为

(7)求线积分得此即焓的积分表达式

(8)

由即可求得内能

熵的全微分为(9)

上式求线积分,得此即熵的积分表达式。

(10)

由式(8)(10)可知,只要测得物质的和物态方程,就可以求得物质的焓,内能和熵。

同样方法,利用态函数的全微分特性,热力学定律的微分表达式及Maxwell关系,可求得所有热力学函数的表达式。通过这些表达式,利用直接测得的物理量和物态方程,可完全地确定热力学函数。

3、举例,求Van(范)氏气体系统的内能U和熵S 解:范氏气体的物态方程为

由麦氏关系得

§2.5特性函数

一、特性函数

1、定义

特性函数:适当选择独立变量(称为自然变量)之后,只要知道一个热力学函数,就可以通过求偏导数求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。这个热力学函数称为特性(征)函数。

内能U作为S,V的函数,焓H作为S,P的函数,自由能F做为T,V的函数,吉布斯函数G作为T,P的函数都是特性函数。在应用上最重要的特性函数是自由能F和吉布斯函数G,相应的独立变量分别是T,V和T,P,下面分别说明之。

2、已知自由能F(T,V)以T,V为独立参量,(1)

全微分方程:(2)

可以求得系统的熵及压强为(3)

求出的压强P是以T,V为参量的函数,实际上就是物态方程。

由自由能的定义式,得

内能(4)

称为吉布斯—亥姆霍兹(H.Helmholtz)第一方程。

3、已知吉布斯函数G(T,P)

以T,P为独立参量(5)

G的全微分方程为(6)

可以求系统的熵和体积,(7)

由吉布斯函数定义式得

内能(8)

又(9)

(10)

自由能和焓也可以由吉布斯函数G(T,P)求得 其中(10)称为吉布斯—亥姆霍兹第二方程。

二、求表面系统的热力学函数

表面张力是在液体表面发生的现象,液体表面是液体与其它相的分界面实际上是很薄的一层,其中性质在与表面垂直的方向上有急剧的变化。在理论处理上把这一薄层理想化,作为一个几何面而假设在分界面两方的两相都是均匀的,假设使液相的质量包括全部质量,因此表面作为一个单独相时不包括有液相的质量。

把表面当作一个相时,它有面积A,内能U,熵S,表面张力系数,已知在等温的条件下,使液体表面积增大dA,表面张力的功与自由能的减少有如下关系:

实验表明:表面张力系数则(1)

仅与温度有关,与表面积大小无关,积分上式并取积分常数为0,即表面张力系数等于单位面积的自由能。

写出表面系统的基本方程(自由能的全微分)

(2)

由此得(3)

其中S为表面系统的熵,由于只是温度的函数,所以上式中的就可写为。所以

(4)

由自由能的定义式得

(5)

由(1)(4)(5)可以看出,只要知道了表面张力系数,就能得到表面系统所有的热力学量,在这个意义上,我们说代表了表面系统的特性。

§2.6平衡辐射的热力学

一、平衡辐射

1、定义:

在光学中已经讲过,温度高于0K的任何物体都以电磁波的形式向外辐射能量。对于给定的物体而言,在单位时间内电磁辐射能量的多少以及辐射能量按波长的分布等,都取决于物体的温度,因此,这种辐射就称为热辐射。物体作热辐射的同时还吸收外界物体的辐射能,如果物体对电磁波的辐射和吸收达到平衡则称为平衡辐射。

2、空腔辐射 假设有一个封闭的空腔,腔壁保持恒定的温度T,由于腔壁不断发射和吸收辐射能,经过一定的时间后,空腔内的电磁辐射场将与腔壁达到平衡,形成平衡,形成平衡辐射场或空腔辐射,具有共同的温度T。

应用热力学第二定律能够证明:腔内电磁辐射的能量(内能)密度和能量密度按频率的分布只取决于温度,与空腔的其它性质(材料、形状等)无关。用反证法证明:

证明:我们考察用不同材料制成的形状不同的两个空腔A和B,它们有共同的温度,如图所示:

如果能量密度的分布与空腔的材料和形状有关,我们可以假设A的能量密度大于B,这时用细管把A,B连通起来,并在A,B与细管连接处插入一个滤光片,只允许圆频率为

到范围内的电磁波(辐射)通过,能量将从A辐射到B而使A降温,B升温,这样就使温度相同的两个空腔A,B自发地出现了温度差。于是就可以设计一个热机工作于A,B之间,对外作功,两相连的空腔相当于单一热源的热机,这就违背了热力学第二定律的开氏表述(不可能从单一热源吸热使之完全变成有用的功而不引起其它变化)。

所以假设不正确,即证得空腔辐射的能量按频率的分布只可能是温度的函数,而与腔壁的材料和形状无关,3、平衡辐射的热力学函数

由经典电磁理论得知辐射压强P与辐射能量密度u的关系为:

(1)

将空腔辐射看作热力学系统,我们选温度T和体积V为状态参量。由于空腔辐射的能量密度u仅是温度T的函数,则辐射场的总能量U(T,V)(2)能量U实际上就是平衡辐射场的内能。下面我们讨论它是温度T的函数关系,并找出其它的热力学函数。

利用内能的全微分式和麦氏关系得

(3)由(1)式得(4)

由(2)式得(5)

将(1)(4)(5)代入(3)式得

分离变量得

积分,得

(6)

可以看出,空腔辐射的能量密度u与绝对温度T的四次方成正比。代入(2)式得平衡辐射场的内能为

(7)

由将(1)(6)(7)式代入

积分得 当V=0时,就没有辐射场了得

∴熵的表达式为(8)

(9)

(10)

在统计物理学部分将会看到,G=0的结果是与光子不守恒相联系的。

在可逆绝热过程中,平衡辐射场的熵不变,所以由(8)式得平衡辐射场的绝热方程为(11)

我们在理论上已推出能量密度

二、黑体辐射,有u就有全部的热力学函数。

我们无法利用实验直接测量能量密度u,但是可以测量绝对黑体发射出来的辐射通量密度,通过来求得u的值。

1、绝对黑体

绝对黑体:如果一个物体在任何温度下都能把投射到上面的任何频率的电磁波全部吸收,这个物体称为绝对黑体。黑体.swf 自然界中没有真正的黑体,但可以制造具有绝对黑体的装置。

如果是一人造黑体,空腔开有小孔,通过小孔射入空腔的电磁波,需要经过腔壁多次反射才有可能从小孔射出。由于每一次反射腔壁都要吸收一部分电磁波。经过多次反射后从小孔射出的电磁波将全部被空腔所吸收。因此可以把带有小孔的空腔看作一个绝对黑体。这个空腔中的电磁辐射也称为黑体辐射。

2、辐射通量密度.单位时间通过单位面积向一侧辐射的总能量,称为辐射通量密度。由电动力学可知辐射通量密度与辐射能量密度之间的关系为

(12)

将理论得到的代入(12)式得(13)

称为斯特藩常量,通过黑体的辐射通量密度测出(13)式称为斯特藩——玻耳兹曼定律。

§2.7 磁介质的热力学

一、磁介质的全微分方程

忽略磁介质的体积变化功外,类似定义

二次偏导次序不变

二、热容量

(麦氏关系)(1)

由,得

(2)

定义:磁介质的热容量为(3)

将(1)(3)式代入上式得

假设磁介质遵从居里定律,则

(4)

表明:等式右边大于零,所以绝热条件下减少磁场这个效应称为绝热去磁致冷,也是获得低温的方法。

三、有体积变化功时的磁介质全微分方程

6.高中物理力学的知识点 篇六

⑴合成与分解:①合力与分力的效果相同,可以根据需要互相替代。①力的合成和分解遵循平行四边形法则,平行四边形法则对任何矢量的合成都适用,力的合成与分解也可用正交分解法。③两固定力只能合成一个合力,一个力可分解成无数对分力,但力的分解要根据实际情况决定。

⑵合力与分力关系:①两分力与合力F1 +F2 ≥F≥F1 -F2 ,但合力不一定大于某一分力。②对于三个分力与合力的关系,它们同向时为最大合力,但最小合力则要考虑其中两力的合力与第三个力的关系,例如3N、4N、5N三个力,其最大合力F=3+4+5=12N,但最小合力不是等于三者之差,而是等于0。

2.在共点力作用下物体的平衡

⑴物体所处状态:①此时物体所受合力=0。②物处于静止或匀速运动状态,即平衡状态。

⑵两平衡力与作用反作用力:①平衡力作用在同一物体上,其效果可互相抵消,它们不一定是同一性质的力;②作用与反作用力分别作用在两不同的物体上,其效果不能互相抵消(其效果要结合各个物体的其他受力情况分析),但必是同一性质的力。

3.物体的受力分析

⑴确定研究对象:①隔离法:研究对象只选一个物体。②整体法:研究对象是几个物体组成的系统。③应用整体法一般要求这几个物体的运动加速度相同,包括系统中各物体均处于平衡状态(当加速度不同时,也可应用)。

⑵作力的示意图(力图):

①选择对象。②按顺序画:一般按重力、弹力、摩擦力的顺序画受力图,应用整体法时系统中各物体间相互作用力(内力)不要画。③注意摩擦力:是否存在,方向如何。④注意效果力:它是由其他的“性质力”如弹力、重力等提供的,不要把这些“效果力”再重复作为一个单独的力参与受力分析。⑤作图准确。

怎么学好物理的方法技巧

1.见物思理,多观察,多思考,做一个生活的有心人!

物理讲的是“万物之理”,在我们身边到处都蕴含着丰富的、取之不尽用之不竭的物理知识。只要我们保持一颗好奇之心,注意观察各种自然现象和生活现象。多抬头看看天空,你就会发现物理中的“力、热、电、光、原”知识在生活当中处处都有。一旦养成用物理知识解决身边生活中的各种物理现象的习惯,你就会发现原来物理这么有魅力,这么有趣。!

2.学会从“定义”去寻找错因。打好基础。

对于基本公式,规律,概念要特别重视。“死记知识永远学不好物理!”最聪明的学生都会从基本公式和概念上去寻找错误的根源,并且能够做到从一个错题能复习一大片知识——这是一个学生学习物理是否开窍的最重要的标志!

3.把“陌生”变成“透彻”!

遇到陌生的概念,比如“势能”“电势”“电势差”等等先不要排斥,要先去真心接纳它,再通过听老师讲解、对比、应用理解它。要有一种“不破楼兰誓不还”的决心和“打破沙锅问到底”的研究精神。这样时间长了,应用多了,陌生的就变成了透彻的了。

4.把“错题”变成“熟题”!

建立错题本,在建立错题本时,不要两天打鱼三天晒网,要持之以恒,不能半途而废。尤其注意建立错题本的方法和技巧,要有自己的创新、智慧以及汗水凝结在里面,力求做到赏心悦目,让人看了赞不绝口,自己看了会赞美自己的杰作。并且要常翻常看,每看一次就缩小一次错题的范围,最后错题越来越少,直至所有的“错题”变成“熟题”!以后再遇到类似问题,就会触类旁通,永不忘却。

5.不管学那一部分内容都要抓住重点,抓住主干,这是最聪明的做法。

7.水力学知识点总结 篇七

关键词:知识转移,企业与客户的交互,系统动力学

在客户知识管理中, 客户隐性知识的获取对企业的竞争优势具有很重要的作用, 这部分知识的获取是在员工与客户的不断交互过程中进行的。员工通过交互获得的知识通过企业内部的共享、整合, 应用到产品、服务的创新中, 才能满足客户的需求。

一、系统动力学与知识管理

目前利用系统动力学方法研究企业知识转移的还比较少, 罗锐、赵文平[1]对企业与客户隐性知识转移采用了微分动力学的方法, 研究过程中建立了客户隐性知识转移的微分动力学模型, 并且对影响隐性知识转移渐近解的主要参数控制及阀值条件进行分析。王欣、孙冰通过基于企业的平台, 通过分析企业内员工间知识转移过程的影响因素, 应用系统动力学的方法进行建模及仿真, 通过灵敏度分析结果提出了一些对企业内的知识转移有帮助的建议[3]。

系统动力学是系统科学理论与计算机仿真紧密结合, 研究系统反馈结构与行为的一门学科。系统动力学研究解决问题的方法是一种定性与定量结合, 系统分析、综合与推理的方法, 以定性分析为先导, 定量分析为支持, 两者相辅相成。它的目的在于寻求改善系统行为的机会和途径[2]。它的优势在于可以进行计算机仿真, 并且适用于对数据不足的问题进行研究。建模中常常遇到数据不足或某些数据难于量化的问题, 系统动力学借助于各要素间的因果关系及有限的数据及一定的结构仍可进行推算分析。

本文研究的企业是实施了CKM的企业, 在前人研究基础上, 增加了“交互系统的构建”、“客户知识库的构建”两个情境因素, 丰富了已有模型的内容。

借助系统动力学的方法重点分析企业与客户交互过程的知识转移, 应用该方法对转移过程中的因果关系进行分析, 构建系统模型进行仿真和应用分析, 分析这些因素是如何影响客户知识管理的以及哪些是主要的影响因素, 为制定客户与企业交互策略提供理论依据。

二、因果分析和因果关系图

在企业与客户的知识交互过程中, 客户作为隐性知识的传递方, 知识势能更高, 企业是知识的吸收方。

首先为了满足自身的需求, 或者企业采取相关的激励措施, 客户愿意把自己的一些看法、意见等隐性知识传递给企业甚至通过各种形式参与到企业的运作中。在传递过程中, 客户需要具备一定的发现知识和表达知识的能力。同时, 随着自身知识的不断转移和外界知识的不断更新, 转移双方都需要不断学习, 利用各种渠道提升、更新自身的知识。

随着知识转移的不断进行, 员工接收到的知识越来越多, 由于本身对于知识的容纳程度有限, 如果没有进行及时地传播分享、整理应用, 这部分的知识就会被遗忘。

在交互过程中, 客户的知识存量受客户自学习过程中产生的知识积累等影响;企业的知识存量是由员工知识存量决定的, 然后再经过知识的整合应用产生了新的知识量。员工知识存量主要是由转移知识量和员工知识遗忘量决定的。

转移知识总量受客户的知识编码表达能力、企业员工学习能力、知识差距和转移情境这四个因素共同来决定, 他们与转移的知识量都是正相关的。知识的转移情境是决定知识转移效率的重要因素, 它由五个方面的因素共同决定, 分别是信任互惠的人际关系、企业文化、激励机制、交互系统的构建、客户知识库的建立, 如下图所示:

图1中包含的主要反馈回路有:

客户知识存量→客户自学习积累知识量→客户知识存量

客户知识存量→客户自学习积累知识量→客户知识遗忘量→客户知识存量

员工知识存量→知识差距→知识转移量→员工知识存量

员工知识存量→知识差距→知识转移量→员工知识遗忘量→员工知识存量

员工知识存量→企业整合应用新增知识量→员工知识存量

员工知识存量→企业整合应用新增知识量→员工知识遗忘量→员工知识存量

三、模型假设和系统流图

模型的基本假设: (1) 客户向企业表达想法或者反馈意见, 客户的知识存量高于企业, 存在知识势差。客户为了获取协作价值、为了使自己的需求能够更好地被满足, 存在知识转移的动机, 企业则积极主动地学习和吸收客户转移的有价值的知识。 (2) 由于实施了客户知识管理, 企业内部对员工接受的知识进行吸收和转化并且应用到企业的生产运作中, 实现了知识在量上的增值。该模型的系统流图如下:

该模型有2个状态变量 (L) 即为客户知识存量和员工知识存量;5个速率变量 (R) 分别为:客户自学习积累知识量、客户知识遗忘量、转移知识量、企业整合应用新增知识量、员工遗忘知识量;本文将常量 (C) 设为:企业整合应用知识能力、客户的编码表达能力、客户自学习能力、企业文化、信任互惠的人际关系、激励机制、交互系统构建、客户知识库的建立;辅助变量 (A) 有:知识差距、员工知识学习能力。

四、方程的设计

客户知识存量 (L) =INTEG (客户自学习积累知识量-客户知识遗忘量, 80) ;

客户自学习积累知识量 (R) =客户知识存量*客户自学习能力, 客户自学习能力 (C) =0.05, 企业的整合创新知识能力 (C) 设为0.07;

客户遗忘知识量 (R) =STEP (0.2*客户自学习积累量, 10) , 表示客户从第10步开始遗忘, 0.2为知识遗失率;

员工知识存量 (L) =INTEG (企业整合应用新增知识量+知识转移量-员工知识遗忘量, 20)

企业整合应用新增知识量 (R) =员工知识存量*企业整合应用知识能力, 由上可知企业整合创新能力 (C) 为0.07;

员工知识学习能力 (A) =WITH LOOK UP (Time, ([ (0, 0) - (24, 2) ], (0, 1) , (6, 1.5) , (12, 1.75) , (24, 2) ) , 用表函数来表示员工知识学习能力, 在知识转移过程中, 员工学习知识的能力不断提高;

员工知识遗忘量 (R) =STEP (0.2*企业整合应用新增知识量+0.2*转移知识总量, 10) ;

知识差距 (A) =客户知识存量-员工知识存量;

转移知识量 (R) =DELAY1 (客户编码表达能力*员工知识学习能力*知识差距*转移情境, 2) , 客户在传递自身知识的同时, 会权衡利弊, 考虑是否继续向企业表达传递自己的想法, 所以设定延迟2个单位开始知识的转移;

转移情境 (A) =企业文化*信任互惠的人际关系*交互系统的构建*激励机制*客户知识库的构建, 在仿真时规定它们与转移主体的转移意愿正相关, 取值范围在[0, 1]之间。

五、模型仿真与分析

(一) 模型仿真

该模型的仿真时间为24个月, 客户编码表达能力为0.4, 根据上面设定的参数进行仿真, 结果如下图 (current1) 。

从图中可以看出随着知识的转移, 员工与客户的知识差距呈现出先增后减的趋势, 是因为最开始进行知识转移的时候, 双方没有经验, 所以转移的知识量不是很多, 转移的速率呈现出比较慢的趋势, 后来随着转移的继续, 转移知识量逐渐加大, 由于客户和员工都处在不断接收新知识的环境中, 各自需要不断地调整, 后面转移知识量逐渐平稳, 但是企业内部仍在不断地整合应用知识从而实现知识的创新, 所以知识差距有下降的趋势。

(二) 灵敏度分析

由分析可得, 当客户知识编码表达能力由0.4 (current1) 提高为0.6 (current2) 时其他条件都不变, 从第13、14个月开始客户传递给员工的知识慢慢变少。所以在企业与客户的知识交流过程中, 客户也需要不断地提高自己的知识存量, 通过不断地学习, 扩充知识量, 这样才能使得交互过程继续下去。

当其他条件不变时, 客户知识库的建立由0.5 (current1) 提升到0.7 (current3) 时, 员工知识量和知识转移量的增加效果都没有客户表达能力强, 其原因是情境因素还包括了企业文化、信任互惠的人际关系、交互系统的构建、激励机制等, 由图可以看出转移情境提高一些就可以使知识的转移起到很大的效果。

六、总结

本文基于客户知识管理的角度, 结合前人的研究, 利用系统动力学的方法, 对企业与客户交互过程中的知识转移进行了因果分析、模型的构建和系统仿真。由仿真结果可以看到, 客户知识管理的实施有助于帮助企业更好地实现与客户的交流, 方便企业获取隐性的客户知识。企业结合自身CKM实施情况, 通过建立“以客户为中心”的学习型企业文化、不断完善与客户的交互渠道、加强客户知识库的构建等增强客户知识管理的基础设施能力来帮助员工获取客户知识。

参考文献

[1]罗锐, 赵文平.客户隐性知识转移的微分动力学模型研究[J].第五届中国管理科学与工程论坛, 2007.

[2]刘秉镰, 王燕.区域经济发展与物流系统规划[M].经济管理出版社, 2010.

上一篇:有一个人总是落魄不得志优秀范文下一篇:经管策划书