土木工程中大体积混凝土结构施工技术论文

2024-08-26

土木工程中大体积混凝土结构施工技术论文(精选8篇)

1.土木工程中大体积混凝土结构施工技术论文 篇一

公路桥梁工程中大体积混凝土裂缝的原因与防治

本文通过时本市大型钢筋混凝土结构桥梁梅东大桥的`现场施工管理,从设计,施工的角度,分析了造成桥粱结构中大体积混凝土裂缝的原因,并提出如何预防,检查和处理大体积混凝土裂缝的主要的技术措施.

作 者:黄孝玉 作者单位:揭阳市公路勘察设计院,广东,揭阳,522031刊 名:科技信息英文刊名:SCIENCE & TECHNOLOGY INFORMATION年,卷(期):“”(7)分类号:U4关键词:桥梁工程 大体积混凝土 裂缝 原因 预防 检查 控制 处理

2.土木工程中大体积混凝土结构施工技术论文 篇二

1存在的问题和原因

由于土木工程建筑施工中应用的大体积混凝土结构, 通常是一个整体的浇筑施工结构, 一般会受到外力的约束影响和内部张力的制约, 时间一长遇到热胀冷缩就会出现严重的裂缝变形。产生裂缝问题的原因, 主要包括以下几方面:

( 1) 在大体积混凝土的施工项目中, 建筑物的结构与体积通常都呈现出比较厚与比较重的情况, 这种大体积的建筑会使地基的承重加大, 对地基造成一定的影响, 从而增加了混凝土结构的约束作用。 一般外部原因造成混凝土受到约束重力非常大, 如来自施工项目外观及框架上的要求等等, 再加上由于受到内部自身热胀冷缩的影响, 也会增加内部结构的约束作用, 这样就会出现严重的裂缝问题。

( 2) 在混凝土结构水化制作的过程中, 有一少部分的热量会通过水泥散发, 这是由于大体积混凝土施工结构的横断面比较厚, 所以外表的系数就会相应的减少, 这样很不利于内部热量的散发, 而混凝土大部分的热量都集中到了混凝土施工结构的内部, 在施工以后内部混凝土在熟化作用下还会产生一定的热量, 致使混凝土内部出现了非常高的温度释放不出去, 由此引起了内外温差较大。在混凝土固化的过程中这种温度得不到释放与缓解, 从而形成了内部膨胀而外部冷却收缩的现象, 最终会导致裂缝的形成。

( 3) 土木工程施工使用这种大体积混凝土结构, 在浇筑施工的时候会受到外界温度差异的影响, 一旦外界温度突然降低, 就会使得混凝土结构内部和外面的温度差异过大, 就会出现比较明显的温差作用力, 如果这种作用力比较大, 就使得混凝土结构出现裂缝的几率变大。

( 4) 大体积混凝土施工结构在硬化水泥成分的时候, 有五分之一的水分是必需的, 而剩下的80% 的水分需要蒸发干净, 如果水分处理控制不好, 很容易出现混凝土结构自身收缩的问题, 实际上这种混凝土结构的收缩和制作材料联系很密切, 如果在制作混凝土的时候应用的是比较细密的材料, 出现收缩的可能性和使用比较粗略的矿渣成分制作的混凝土后期出现收缩的可能性会不一样。

2技术对策

2. 1控制温差作用影响

在对混凝土施工结构进行现场浇筑施工的时候, 由于很容易受到施工现场温度变化情况的制约, 一旦温度过高就会给混凝土结构带来比较大的作用力, 所以要注意不在温度特别高的户外施工条件下进行混凝土浇筑, 而且要加强施工材料的降温和冷凝, 确保混凝土浇筑的温度科学适中, 防止混凝土结构后期出现裂缝现象。

2. 2控制施工结构材料

应用大体积混凝土结构进行混凝土建筑施工, 要严格控制混凝土材料的配比, 事先要要求专业人员提前做好现场测试, 多次重复试验和分析比对再决定选用合适的配比材料, 以确保混凝土结构能够符合土木工程施工的标准, 增强混凝土结构的坚固性能, 而且搅拌混凝土的时候, 也应当遵循规定的施工流程, 确保各种材料能够完全融合, 避免出现离析造成裂缝情况。

2. 3控制外界约束作用

防止大体积混凝土结构在土木工程施工中出现严重的内部和外部约束作用, 最根本的措施就是减少混凝土结构受到温差和地基性能的制约。

2. 4控制水泥配比数量

由于水泥自身存在着一定的水热作用, 尽量控制在混凝土结构中的应用数量, 降低水化作用的几率, 同时要注意使用减水剂等各种辅助材料来增强水泥材料的坚固程度, 或者运用一定的技术手段, 使混凝土内部结构中的热量能够充分释放, 确保在搅拌的时候能够比较均匀, 防止出现使用中的离析情况, 导致裂缝影响工程质量。

2. 5控制防御裂缝能力

( 1) 做好施工材料配比。施工制作混凝土前要事先进行配比试验, 优中选优, 保证施工坚固程度, 满足设计标准和现场施工规范。 ( 2) 增加一些辅助材料。应用大体积混凝土结构进行土木工程施工, 可以适当添加各种纤维材料来改善混凝土结构的防裂效果, 使其能够增加防御外界拉力的影响。 ( 3) 注意辅助制剂比例。要采取行之有效的措施防止混凝土结构自身收缩产生裂缝问题。

3结语

运用大体积混凝土结构进行土木建筑工程施工, 对施工质量是一个有效保证。

摘要:本文结合土木工程中大体积混凝土结构施工中存在的问题, 有针对性地提出了解决措施, 对保证土木工程施工质量, 避免出现安全质量事故, 具有一定的参考价值。

关键词:土木工程,混凝土结构,技术分析

参考文献

[1]梁绍团.土木工程中大体积混凝土结构施工技术分析[J].科学与财富, 2014, (6) .

[2]杨文锦.土木工程中大体积混凝土结构施工技术分析[J].城市建设理论研究, 2013, (12) .

3.土木工程中大体积混凝土结构施工技术论文 篇三

【关键词】建筑工程;大体积混凝土;施工技术

0.前言

建筑工程中的大体积混凝土结构中,由于结构截面大,水泥用量多,水泥水化所释放的水化热会产生较大的温度变化和收缩作用,所以容易产生裂缝,影响到工程质量。因此,在进行大体积混凝土的施工过程中,必须严格控制大体积混凝土的施工技术,保证建筑工程的施工质量。由于混凝土属于脆性材料,混凝土结构产生不同程度、不同形式的裂缝相当普遍,在某些情况下,裂缝会导致非常严重的后果,因此,研究大体积混凝土结构的自缩裂缝控制具有重要的社会意义和经济意义。

1.影响大体积混凝土自缩的因素

1.1水泥对自缩的影响

不同种水泥净浆的自缩能力是不同的,铝酸盐水泥和早强水泥的自缩值较大,而中热、低热水泥的自缩值较小,矿渣水泥后期的自缩值较大(21d龄期时的自缩值大于普通水泥的自缩值)。水泥的细度对自缩值也有影响,较细的水泥在早期表现出较大的自缩速度。

1.2外加剂对自缩的影响

掺加高效减水剂来增大流动度时,高效减水剂可稍微降低自缩值,但不同类型、不同掺加量的高效减水剂对自缩的作用差别很小。干缩减少剂可减小自缩值50%,这可能与干缩减少剂可减小毛细水的表面张力有关。膨胀剂对自缩的作用取决于它的种类,某些氧化钙型的膨胀剂可以减小自缩;而其他类型的膨胀剂虽在早期有膨胀,但随后的收缩速度与空白样相同。引气剂对混凝土的自缩没有影响。

1.3矿物掺合料对自缩的影响

在水泥中加入比表面积在400平方米/千克以上的矿渣时,其120d的自缩值随矿渣的掺量(不大于70%)增大而增大;而在水泥中加入比表面积为338平方米/千克的矿渣时,其120d的自缩值不随矿渣的掺量(不大于70%)改变而增大。在水泥中掺加硅灰将使混凝土的自缩值增大;硅灰的掺量越大,水泥浆自缩值越大。混凝土的自缩值随粉煤灰掺量的增大而降低,特别是早期自缩值降低得非常明显。3d龄期后掺加粉煤灰混凝土的自缩增长速度高于空白混凝土。粉煤灰掺量超过20%后,减小自缩的效果并不显著。在水泥中加入偏高岭土,在偏高岭土(比表面积为12平方米/克)含量为10%时,水泥浆(水胶比为0.55)的自缩值最大。在水泥中加入经过防水处理的粉末,可以减少自缩。经过防水处理的偏高岭土对自缩的减小作用在后期消失了;而经过防水处理的硅质粉末对自缩的减小作用能保持很长时间,其取代量为10%时就对自缩有明显的减小作用。

1.4其他因素对自缩的影响

温度对水泥浆体的自缩影响很大,在15~40℃范围内,水泥浆体的自缩值和自缩速度随温度的增加而增加。水灰比对自缩值的影响比较大,随水灰比减小,混凝土的自缩值和自缩速度增大。随养护龄期的增加,自缩值逐渐增大,早期自缩值增加得非常快,以后发展比较缓慢引。混凝土中骨料的含量对混凝土自缩值的影响很大,随着骨料的含量增加,混凝土的自缩值减小。骨料的种类对混凝土的自缩也有影响,人工轻骨料混凝土的自缩值比普通混凝土小,且轻骨料混凝土的自缩值随着轻骨料的含水率和干密度的增加而减小。在混凝土中掺加6%体积分量的钢纤维,可以降低自缩值20%左右。

2.大体积混凝土结构施工应采取的措施

随着高层建筑与大型设备基础的增多,大体积混凝土断面大,水泥用量多,水泥水化后释放的水化热会使混凝土产生较大的温度应力和收缩应力,导致混凝土产生表面裂缝和贯穿裂缝,影响结构的整体性、耐久性和抗渗性。常用的措施如下:

2.1降低水泥水化热

选用中低水化热的水泥,如矿渣硅酸盐水泥、火山灰硅酸盐水泥或粉煤灰水泥等。充分利用混凝土的后期强度减少水泥用量,每立方混凝土每减少10kg水泥用量,混凝土水化温度将降低1℃。尽量选用粒径大且级配良好的粗集料,掺加粉煤灰等掺加料,掺减水剂。在不影响钢筋布置的情况下,掺入不超过总体积20%的大石块。在混凝土内部预埋冷却水管,通入循环冷却水带走热量。

2.2降低混凝土入模温度

夏季砂石材料应避免阳光直射,并可喷涂水雾或冷气预冷;用低温或冰水搅拌混凝土。保证模内通风,加速模内热量散发;渗入缓凝型减水剂,避免水化热集中产生。

2.3加强施工中温度控制

大体积混凝土浇筑后,要保温长期养护,缓慢降温避免混凝土内外温度、湿度梯度过大。加强测温控温,及时调整保湿养护措施,将混凝土内外温差控制在25℃以下。合理安排施工顺序,使浇筑的混凝土均匀上升,避免过大高差。

2.4改善约束条件

分层分块浇筑,合理设置施工缝及后浇带,以放松约束条件并减少水化热的聚集。对大体积混凝土基础,可在与岩石地基或混凝土垫层之间设置滑动层,如刷沥青、铺卷材等,以消除嵌固作用,释放约束力。

2.5提高混凝土的极限拉伸强度

选择良好级配的粗集料,严格控制砂石含泥量,可掺入适量的膨胀剂,振捣要密实。采用二次投料法加强早期养护。根据大体积混凝土形状,在易发生裂缝部位增配构造钢筋,承受收缩应力。

2.6地下室顶板的混凝土浇筑的控制

按照地下室超大型长无缝混凝土的施工方案。地下室顶板的浇筑顺序是,浇筑完地下一层墙板至地下室顶板梁下口后,进行地下室顶板的混凝土浇筑。在顶板的浇筑过程中,主要是要控制好早期裂缝的产生,从混凝土收缩裂缝的形成时间看,裂缝往往发生在混凝土初凝到终凝这段时间内。在施工方案讨论过程中,将顶板二次或三次搓平、抹压,特别是初凝抹压作为控制早期收缩裂缝的一项重要控制措施,这对于弥合部分早期裂缝是不可缺少的工艺。

2.7细部处理

(1)外墙与边柱的配筋率不同,收缩差也不同,其连接处应插入1~1.5米Φ10×200锚入柱内20厘米的水平增强钢筋,防止因应力集中发生纵向裂缝。(2)由于底板配筋为双向Φ25锚入基础梁一、二排主筋之间,使底板与柱节点处板面混凝土保护层过大,可在柱边1米范围铺Φ8×200双向钢筋网片,防止板面出现裂缝。(3)所有外墙对拉螺杆突出部分都要割掉,用ZY掺量为10%的1:2水泥砂浆封堵;所有穿外墙管道按要求作防水处理。

2.8加强混凝土蓄热保温的养护工作

混凝土浇捣后,在混凝土表面覆盖塑料膜一层,加盖两层草袋(或麻袋),并定期浇水养护,避免表面热量散发过快,缩小内外温差。根据测温情况,若仍需要加强保温效果,可相应增加覆盖物层数。模板必须在混凝土块体的最高温度下降到接近混凝土表面温度时方可拆除。由于采取了循环水混凝土体降温措施及有效的保温养护措施,最大温差控制在10℃之内。在揭除保温层后,未发现有害裂缝和表面裂缝,混凝土试块的试验数据也符合要求。混凝土浇捣结束后28d进行超声波仪探测也未发现混凝土内存在有害裂缝,这说明在该工程中采取的一系列措施是有效可行的。

【参考文献】

[1]刘建军.确保坝式路堤质量的施工措施[J].甘肃科技,2005,(11).

[2]郭艳秋,高淑华,史军.影响混凝土抗压强度因素分析及控制措施[J].民营科技,2010,(08).

[3]杜娟,李红喜.水泥混凝土冬季低温施工措施[J].科技风,2010,(18).

[4]林杰,宋晓红.浅析混凝土裂缝的防治措施[J].黑龙江科技信息,2010,(31).

4.土木工程中大体积混凝土结构施工技术论文 篇四

大体积混凝土通常是指混凝土结构中最小断面也大于1m的混凝土结构,大体积混凝土的特点在于混凝土的浇筑量较大,结构尺寸较大,混凝土内部的钢筋布置较多,施工质量影响因素较多。由于混凝土体积相对较大,因而在混凝土浇筑结束后,在水泥水化热的作用下很容易由于温度应力以及混凝土的收缩特性出现裂缝。对于水利工程施工而言,在重力坝、涵洞、水槽以及水闸等项目施工中,通常存在着较多的大体积混凝土施工内容。因此,为了提高水利工程施工质量,确保水利工程建设项目的安全可靠,必须重视大体积混凝土施工管理,避免大体积混凝土裂缝的发生,保证混凝土施工质量满足使用要求。

2大体积混凝土裂缝产生原因分析

(1)水泥水化热导致的混凝土温度应力。水泥水化过程中会释放出大量的热量,然而由于大体积混凝土的结构尺寸较大,而且表面系数也较小不利于混凝土内部水化热量的散失,因此混凝土浇筑结束后,水化热难以散失造成混凝土内部温度升高,混凝土的内外温差增大,根据相关实验研宄表明,混凝土内外温差能够达到60-65°C左右,如果施工处理不当,当温度应力超过混凝土的极限抗拉强度时,就会导致混凝土开裂。

(2)混凝土的收缩特性造成的开裂。由于水泥混凝土在浇筑结束后,大部分的水分会蒸发,水分的蒸发则会导致混凝土的收缩,产生收缩变形,特别是对于大体积混凝土,收缩变形量较大,变形过大则会导致内部应力产生致使混凝土开裂。

(3)大体积混凝土内部约束条件的影响。混凝土的温度变形或者是混凝土的收缩变形,都会受到一定的约束作用,在约束作用下混凝土内不会产生一定的应力,当约束条件导致的内部应力超过混凝土的极限承载时,便会造成混凝土出现裂缝。

3大体积混凝土施工技术研究

3.1优化混凝土的配合比设计

(1)混凝土原材料的选用。对于水泥的选用,应该选用水泥水化热相对较低的低热硅酸盐水泥或低热矿渣硅酸盐水泥,而且应该保证用于大体积混凝土施工的水泥水化热低于270kJ/kg。对于外掺剂的选用,应该结合水利工程具体情况通过水泥适应性以及实际应用效果选择,外加剂可以选择使用缓凝高效减水剂,尽可能的通过原材料的选择降低混凝土的水化热。

(2)大体积混凝土配合比的设计。配合比的设计应该以降低混凝土的水化热、确保混凝土的施工和易性以及提及稳定性作为设计目标,经过优选综合确定混凝土的配合比设计。1)在确保大体积混凝土结构强度等级的前提下,应该尽可能地降低水泥用量以及水胶比,降低水泥水化热的产生。2)在保证大体积混凝土的施工和易性,能够满足混凝土泵送浇筑的前提下,尽可能减少砂率,尽可能地控制在35%-40%左右,以减小大体积混凝土的变形。3)尽可能地降低混凝土的用水量,对于没有特殊要求的大体积混凝土应该将缓凝时间控制在20小时左右。

(3)大体积混凝土的生产与运输。对于用于水利工程大体积混凝土的生产,应该严格按照相关规范要求,对沪宁图进行试验检测,确保混凝土的强度等级、坍落度、水化热、收缩、泌水量、可泵性等指标满足大体积混凝土工程施工要求。混凝土的运输必须采用具有防风、防晒、防雨与防寒功能的混凝土搅拌运输车运输,在运输过程中为了避免混凝土的离析以及初凝,应该保持混凝土在运输过程中的搅拌。如果运抵混凝土浇筑施工现场的坍落度不满足使用要求或者是出现严重的离析,应该停止用于大体积混凝土的浇筑改作他用,以免影响水利工程施工质量。

3.2大体积混凝土施工作业

(1)大体积混凝土施工技术准备。在开展大体积混凝土工程施工作业前,应该根据规范规定的验算方法对大体积混凝土的温度、温度应力及收缩应力进行验算,并通过计算明确大体积混凝土的升温峰值,里表温差及降温速率的控制指标,通过相应的指标制定完善的温控技术措施。对于水利工程施工而言,通常情况下温控指标未混凝土浇筑体在入模温度基础上的绝热温升值最大值为45°C,混凝土浇筑块体的里表温差(不含混凝土收缩的当量温度)为30°C,混凝土浇筑体的降温速率为2.0°C/d。

(2)大体积混凝土模板工程施工。大体积混凝土模板工程施工过程中,出了应该按照国家现行规范进行必要的稳定性、强度以及刚度验算外,还应该结合大体积混凝土对于保温养生的要求设置必要的保温措施。拆模的时间也不能仅仅以大体积混凝土的强度形成作为时间标准,而应该综合考虑温度控制要求,在大体积混凝土结构强度形成,而且内外温差满足标准要求后方可拆模。

(3)大体积混凝土的浇筑。大体积混凝土的浇筑可以财务分层连续浇筑或者是推移式连续浇筑的方式进行作业,分层浇筑又可以分为全面分层、分段分层以及斜向分层等几种形式。无论采取那种浇筑方式,都应该尽可能的缩短混凝土的浇筑间隔时间,并保证在混凝土初凝之前完成大体积混凝土的浇筑。通常情况下大体积混凝土的浇筑是按照由低到高的浇筑顺序,沿着混凝土结构的长边一侧向短边一侧浇筑,如果混凝土能够确保持续供应,也可以采取多点多边同时浇筑的方式。为了保证大体积混凝土的施工质量,应该合理的控制混凝土的浇筑分层厚度,如果采用泵送混凝土,通常情况下需要控制分层厚度在60Cm左右,如果采用非泵送混凝土,则分层浇筑的厚度不应该超过40cm,以免厚度过大造成混凝土的振捣效果难以达到。对于大体积混凝土的振捣,应该采用二次振捣工艺,保证振捣的时间和位置,防止漏振、过振和欠振,避免振捣不足造成大体积混凝土结构强度不足。

(4)特殊气候条件下的大体积混凝土施工。对于酷热、低温或者是大风等特殊天气条件下进行大体积混凝土施工作业时,必须采取特殊的技术措施来确保大体积混凝土施工质量合格。酷热天气则应该主要是采取降温措施,通过风冷、加冰等一系列措施降低混凝土原材料的浇筑温度,尽可能的降低降低混凝土入模温度,并严格控制在30C以下。低温天气条件下,则应该采取热水拌合、加热集料等措施来提高大体积混凝土的入模温度,并保证温度不得低于规范规定的最低温度5°C,在大体积混凝土浇筑结束后立即用塑料薄膜及保温材料进行保湿保温养护。大风天气开展大体积混凝土作业,则应该采取妥善的防风措施,并通过增加混凝土表面的抹压次数,及时覆盖塑料薄膜和保温材料等措施来保持混凝土表面湿润,防止风干。

3.3大体积混凝土的养护

为了避免大体积混凝土出现裂缝,养护应该采取保温保湿养护的方式。混凝土的保温养护通常采用塑料薄膜、麻袋、阻燃保温被覆盖在已经浇筑完成的混凝土之上,也可以采取挡风保温棚或遮阳降温棚作为大体积混凝土的保温措施。在混凝土浇筑施工前,在混凝土内部设置温度传感器或者是测温管,及时监测混凝土的内外温差,确保大体积混凝土的里表温差及降温速率满足大体积混凝土对于温控指标的要求,当大体积混凝土的表面温度与环境温差小于30C时,可以拆除保温养护措施。对于混凝土的保湿养护,通常情况下保湿养生时间不少于两周,在养生的过程中定期的对塑料薄膜或养护剂的完整情况进行检查,确保大体积混凝土的表面处于湿润状态。

4结语

5.土木工程中大体积混凝土结构施工技术论文 篇五

摘 要:1存在的问题和原因 由于土木工程建筑施工中应用的大体积混凝土结构,通常是一个整体的浇筑施工结构,一般会受到外力的约束影响和内部张力的制约,时间一长遇到热胀冷缩就会出现严重的裂缝变形。产生裂缝问题的原因,主要包括以下几方面: (1)在大体积混凝土的

关键词:土木工程论文

1存在的问题和原因

由于土木工程建筑施工中应用的大体积混凝土结构,通常是一个整体的浇筑施工结构,一般会受到外力的约束影响和内部张力的制约,时间一长遇到热胀冷缩就会出现严重的裂缝变形。产生裂缝问题的原因,主要包括以下几方面:

(1)在大体积混凝土的施工项目中,建筑物的结构与体积通常都呈现出比较厚与比较重的情况,这种大体积的建筑会使地基的承重加大,对地基造成一定的影响,从而增加了混凝土结构的约束作用。一般外部原因造成混凝土受到约束重力非常大,如来自施工项目外观及框架上的要求等等,再加上由于受到内部自身热胀冷缩的影响,也会增加内部结构的约束作用,这样就会出现严重的裂缝问题。

(2)在混凝土结构水化制作的过程中,有一少部分的热量会通过水泥散发,这是由于大体积混凝土施工结构的横断面比较厚,所以外表的系数就会相应的减少,这样很不利于内部热量的散发,而混凝土大部分的热量都集中到了混凝土施工结构的内部,在施工以后内部混凝土在熟化作用下还会产生一定的热量,致使混凝土内部出现了非常高的温度释放不出去,由此引起了内外温差较大。在混凝土固化的过程中这种温度得不到释放与缓解,从而形成了内部膨胀而外部冷却收缩的现象,最终会导致裂缝的形成。

(3)土木工程施工使用这种大体积混凝土结构,在浇筑施工的时候会受到外界温度差异的影响,一旦外界温度突然降低,就会使得混凝土结构内部和外面的温度差异过大,就会出现比较明显的温差作用力,如果这种作用力比较大,就使得混凝土结构出现裂缝的几率变大。

(4)大体积混凝土施工结构在硬化水泥成分的时候,有五分之一的水分是必需的,而剩下的80%的水分需要蒸发干净,如果水分处理控制不好,很容易出现混凝土结构自身收缩的问题,实际上这种混凝土结构的收缩和制作材料联系很密切,如果在制作混凝土的时候应用的是比较细密的材料,出现收缩的可能性和使用比较粗略的矿渣成分制作的混凝土后期出现收缩的可能性会不一样。

2技术对策

2.1控制温差作用影响

在对混凝土施工结构进行现场浇筑施工的时候,由于很容易受到施工现场温度变化情况的.制约,一旦温度过高就会给混凝土结构带来比较大的作用力,所以要注意不在温度特别高的户外施工条件下进行混凝土浇筑,而且要加强施工材料的降温和冷凝,确保混凝土浇筑的温度科学适中,防止混凝土结构后期出现裂缝现象。

2.2控制施工结构材料

应用大体积混凝土结构进行混凝土建筑施工,要严格控制混凝土材料的配比,事先要要求专业人员提前做好现场测试,多次重复试验和分析比对再决定选用合适的配比材料,以确保混凝土结构能够符合土木工程施工的标准,增强混凝土结构的坚固性能,而且搅拌混凝土的时候,也应当遵循规定的施工流程,确保各种材料能够完全融合,避免出现离析造成裂缝情况。

2.3控制外界约束作用

防止大体积混凝土结构在土木工程施工中出现严重的内部和外部约束作用,最根本的措施就是减少混凝土结构受到温差和地基性能的制约。

2.4控制水泥配比数量

由于水泥自身存在着一定的水热作用,尽量控制在混凝土结构中的应用数量,降低水化作用的几率,同时要注意使用减水剂等各种辅助材料来增强水泥材料的坚固程度,或者运用一定的技术手段,使混凝土内部结构中的热量能够充分释放,确保在搅拌的时候能够比较均匀,防止出现使用中的离析情况,导致裂缝影响工程质量。

2.5控制防御裂缝能力

(1)做好施工材料配比。施工制作混凝土前要事先进行配比试验,优中选优,保证施工坚固程度,满足设计标准和现场施工规范。(2)增加一些辅助材料。应用大体积混凝土结构进行土木工程施工,可以适当添加各种纤维材料来改善混凝土结构的防裂效果,使其能够增加防御外界拉力的影响。(3)注意辅助制剂比例。要采取行之有效的措施防止混凝土结构自身收缩产生裂缝问题。

3结语

6.土木工程中大体积混凝土结构施工技术论文 篇六

现代科技学院本科毕业论文

题 目:大体积混凝土结构裂缝控制与研究

学 部: 工程技术学部

学生姓名: 王宗盛 专 业:

土木工程

班级学号: 20*** 指导教师姓名: 刘京红 王印

指导教师职称: 教授 副教授

2015 年 5月 20日

大体积混凝土结构裂缝控制研究

土木工程1001班 李军辉 指导教师:刘京红 王印

摘要:随着我国经济的发展,工程建设规模也越来越大型化、复杂化。这使得工业与民用建筑中的大体积混凝土温度裂缝问题日益突出并成为具有相当普遍性的问题。大体积混凝土温度裂缝问题十分复杂,它涉及到和工程结构相关的方方面面。对大体积混凝土基础的温度裂缝控制更是涉及到岩土、结构、建筑材料、施工、环境等多专业、多学科。大体积混凝土在硬化过程释放的水化热会产生较大的温度变化,由此产生的温度应力是导致混凝土出现裂缝的主要因素,从而影响结构的整体性、防水性和耐久性,并成为结构的隐患。因此,大体积混凝土在施工中必须考虑裂缝控制。总结分析了大体积混凝土温度裂缝产生的原因以及控制措施,根据具体情况把这些措施灵活应用于具体大体积的基础工程施工,在施工中对材料选择、配合比、外加剂、施工布置、浇筑工艺、养护等几个环节采取了严格的控制措施,并同时对基础典型位置的内外温度差进行了监测。针对基础工程所采取的温控措施和监测结果,为同类工程的施工提供了参考,也为进一步的理论研究提供了依据。

关键词:

大体积混凝土;裂缝控制;水化热;温度应力

Research on Control to Cracks of Massive Concrete Structure

Abstract :With economic development of China, the scale of construction works is become more and more large and complicated.This makes the temperature cracks of massive concrete structure in industrial buildings become increasingly prominent with a universal problem.The problem of temperature cracks of Massive concrete is very complicated.It involves all aspects of the engineering structure.The control to massive concrete foundation temperature cracks is more related to rock, structure, building materials, construction, environmental, and other multi-disciplinary.The heat of hydration is released in the hardening process of massive concrete will cause a greater temperature changes.The resulting temperature stress is the main factors to cause concrete cracks, then it affect integrity, waterproof and durability of the structure, and it become a hidden danger of structure.Cracks control must be considered during the construction of massive concrete structure.The mechanism and control measures of temperature cracks of massive concrete foundation in this paper are analyzed.According to circumstances, these measures are applied in construction of the specific massive concrete foundation.Strict control measures are taken during the construction in the choice of materials, mix, additives, construction layout, pouring technology, conservation and other links, at the same time, temperature difference between the internal and external of the foundation in the typical locations are monitored.The monitoring results show that the temperature differences are all reasonable, cracks are avoided.In addition, control measures of temperature cracks are taken that are reasonable and effective.The temperature control measures and monitoring results not only provides a convenient for the similar construction projects, but also provides reference data for further theoretical research.Keywords: massive concrete;cracks control;hydration heat;temperature stress

目录

第 1 章

论................................................................................................1

1.1 课题的背景与实际意义.........................................................................1

1.1.1 大体积混凝土的定义................................................................1 1.1.2 大体积混凝土在工程上的应用................................................1 1.2 国内外研究现状.....................................................................................2

1.2.1 国内情况......................................................................................2 1.2.2 国外情况......................................................................................2 1.3 本文研究的内容和研究方法.................................................................2

1.3.1 研究的内容..................................................................................2 1.3.2 研究的方法..................................................................................3

第 2 章 大体积混凝土裂缝产生的原因分析及预测........................................4

2.1 裂缝的种类.............................................................................................4

2.1.1 微观裂缝......................................................................................4 2.1.2 宏观裂缝......................................................................................4 2.2 大体积混凝土裂缝产生的原因分析.....................................................4

2.2.1 水化热的影响..............................................................................5 2.2.2 内外约束的影响..........................................................................5 2.2.3 外界气温变化的影响..................................................................5 2.2.4 混凝土的收缩变形影响..............................................................5

第 3 章 大体积混凝土裂缝控制措施................................................................6

3.1 大体积混凝土裂缝控制措施.................................................................6

3.1.1 设计措施......................................................................................7 3.1.2 材料控制措施..............................................................................7 3.1.3 施工措施......................................................................................8 3.1.4 监测措施....................................................................................9 3.2 混凝土结构裂缝处理.........................................................................10 参考文献..............................................................................................................1

1第 1 章

1.1 课题的背景与实际意义

许多混凝土结构建筑物在建设工程中和使用工程中出现了不同程度、不同形式的裂缝,这是一个相当普遍的现象。它是长期困扰着建筑工程技术人员的技术难题。近代科学关于混凝土强度的细观研究以及大量工程实践所提供的经验都说明,结构物的裂缝是不可避免的,裂缝是一种人们可以接受的材料特征,如对建筑物抗裂要求过严, 必将付出巨大的经济代价; 科学的要求应是将其有害程度控制在允许范围内。这些关于裂缝的预测、预防和处理工作,统称之为“建筑物的裂缝控制”,这方面的科学研究工作是有重要的现实意义和技术经济意义,大体积混凝土结构裂缝主要是由于变形作用引起的。

1.1.1 大体积混凝土的定义

对于大体积混凝土的定义,美国混凝土学会有过这样的规定:“任何就地浇筑的大体积混凝土,其体积之大,必须要求采取措施解决水化热及随之引起的体积变形问题,以最大限度地减少开裂。”[1]日本建筑学会标准的定义是:“结构断面的最小尺寸在 800mm以上,同时水化热引起的混凝土内最高温度与外界气温之差预计超过 25℃的混凝土,称之为大体积混凝土。”[2]我国工程界认为当混凝土结构断面尺寸大于 1m 时,就称之为大体积混凝土。[3]文献指出:在工业与民用建筑结构中,一般现浇的连续墙结构、地下构筑物及设备基础等是容易由温度收缩应力引起裂缝的结构,通称为“大体积混凝土结构”。

从国内外对大体积混凝土的定义来看,大体积混凝土在几何尺寸上较大,同时考虑了水泥水化热引起的体积变化与裂缝问题。

1.1.2 大体积混凝土在工程上的应用

在水利工程中,大体积混凝土主要用于混凝土大坝的浇筑,如三峡大坝混凝土的浇筑,其混凝土浇筑规模之大举世瞩目;在桥梁工程中,主要用于桥墩的大体积混凝土浇筑;在工业与民用建筑结构中,大型设备基础、高层建筑箱形基础底板、筏式基础底板、连续墙以及地下隧道都属于大体积混凝土结构。随着经济实力的增强,我国高层或超高层建筑大量涌现,工程规模日趋扩大,结构形式也日趋复杂,大型工业与民用建筑中的一些基础,其体积达几千 m ³以上者屡见不鲜,而一些超高层的民用建筑的筏式基础混凝土的体积有的达 1 万 m 3以上,厚度达 2~4m,长度超过 100m。如上海金茂大厦大体积混凝土筏式基础,厚度达 4m,混凝土总量为 13500 m 3。

1.2 国内外研究现状

1.2.1 国内情况

我国对于混凝土开裂方面研究较多,而在建筑工程中,对于荷载作用下已硬化混凝土开裂方面有些成果外,随着大规模基本建设的进行,商品混凝土的应用所带来的新问题,国内对非荷载作用下混凝土开裂的研究主要集中在开裂的原因和控制措施上。

黄土元教授[4]从混凝土材料本身分析了早期混凝土开裂的原因,施工单位为了提高工期过渡地追求早强水泥,水泥生产厂商为了适应市场的需要也追求早强,甚至“超早强”。而对早强混凝土早期性能的研究相对不足。不少水泥的 3 天强度已超过国家标准很多,过高的早期强度容易产生早期裂缝。同时高早强容易引起混凝土后期性能的劣化。

1.2.2 国外情况

从国外有关规范及一些重大工程的实际设计看出,对待建筑结构变形作用引起的裂缝问题,客观上存在着两类学派:

第一类,设计规范规定得很灵活,没有验算裂缝的明确规定,设计方法留给设计人员自由处理。对伸缩缝和沉降缝的设置,没有严格规定,基本上按经验设置,有许多工程不留伸缩缝,不留沉降缝,基本上采取“裂了就堵,堵不住就排”的实际处理手法。一些有关的裂缝计算则只作为参考资料而不作为规定。

第二类,设计规范有明确规定,对于荷载裂缝有计算公式并有严格的允许宽度限制。对于变形引起的裂缝没有计算规定,只要按规范每隔一定距离留一条伸缩缝,荷载差别大,留沉降缝就认为问题不复存在了,即留缝就不裂的设计原则。

有关温度对混凝土结构变形的影响,各国也有相应的规定。对于大体积混凝土的浇筑温度,美国规定不超过 32℃;日本土木工程学会施工规范规定不超过 30℃,日本建筑学会规范规定不超过 35℃。前苏联规范规定:浇筑表面系数大于 3 的结构时,混凝土从搅拌站运出时的温度不超过 30~35℃;原西德规范规定:新拌混凝土卸车时的温度不得超过 30℃。在我国,《水工混凝土结构工程施工及验收规范》(SDJ207-82)规定:大体积混凝土浇筑温度不宜超过 28℃;而在《高层建筑混凝土结构技术规程》(JGJ3-2002)中仅规定:“基础大体积混凝土连续浇筑时,应实测内部温差”,但并无具体控制值。

1.3 本文研究的内容和研究方法

1.3.1 研究的内容

1).结合工程实践研究大体积混凝土裂缝产生的原因

大体积混凝土施工过程中,由于混凝土中水泥的水化作用是放热反应,大体积混凝土自身又具有一定的保温性能,因此其内部温升幅度较其表面的温升幅度要大得多,而在混凝土升温峰值过后的降温过程中,内部降温速度又比其表层慢得多,在这些过程中,混凝土各部分的热胀冷缩(称为温度变形)及由于其相互

约束及外界约束的作用而在混凝土内部产生的应力(称为温度应力),是相当复杂的。一旦温度应力超过混凝土所承受的拉力极限值时,混凝土就会出现裂缝。这是混凝土浇筑后由于温升影响产生的第一种裂缝。

由于温升影响产生的第二种裂缝是收缩裂缝。这种裂缝产生在混凝土的降温阶段,即当混凝土降温时,由于逐渐散热而产生收缩,再加上混凝土硬化过程中,由于混凝土内部拌合水的水化和蒸发,以及胶质体的胶凝等作用,促使混凝土硬化时收缩。这两种收缩,在收缩时由于受到基底或结构本身的约束,会产生很大的收缩应力(拉应力),如果产生的收缩应力超过当时的混凝土抗拉强度,就会在混凝土中产生收缩裂缝,这种收缩裂缝有时会贯穿全断面,成为结构性裂缝,带来严重的危害。

2).研究大体积混凝土裂缝控制的技术措施

设计方面:采用留永久变形缝作法或设置后浇带;合理的平面和立面设计,避免截面的突变,从而减少约束应力:合理布置分布钢筋,尽量采用小直径、密间距,变截面处加强分布筋;避免用高强混凝土,尽可能选用中低强度混凝土,采用 60 天或 90 天强度;采用滑动层来减小基础的约束。

材料方面:科学地选用材料配比,用较低的水灰比、水和水泥用量;选用中热或低热的水泥品种;掺加外加剂;掺加粉煤灰减少水泥用量;严格控制砂石骨料的含泥量。

施工方面:用保温隔热法对大体积混凝土进行养护;控制水化热温升,混凝土中心与表面的最大温差不高于 25℃;控制降温速度;用草袋和塑料薄膜进行保温和保湿;用冷却水管来降低水化热,或使用微膨胀混凝土;采用分层浇筑或跳仓浇筑方法。

1.3.2 研究的方法

本文结合大庆石化高压聚乙烯装置防爆坝承台施工实践,采取相应的裂缝控制措施,监控大体积混凝土温度,分析温度曲线,研究分析了大体积混凝土温度裂缝的产生机理,分析裂缝的主要影响因素。从设计、原材料、配合比、外加剂、施工工艺等几方面研究大体积混凝土的温度应力、开裂原因和裂缝控制措施,验证裂缝控制措施的效果。

第 2 章 大体积混凝土裂缝产生的原因分析及预测

2.1 裂缝的种类

文献[6]指出,按混凝土的裂缝宽度不同,可将混凝土裂缝分为“微观裂缝”和“宏观裂缝”两种。

2.1.1 微观裂缝 世纪 60 年代以来,通过混凝土的现代试验研究设备(如各种实体显微镜、X 光照相设备等),可以证实在尚未承受荷载的混凝土结构中存在着肉眼看不见的微观裂缝。其宽度为 0.05 m m 以下。微观裂缝主要有粘结裂缝,水泥石裂缝和骨料裂缝三种。

2.1.2 宏观裂缝

混凝土中宽度不小于 0.05 m m 的裂缝是肉眼可见裂缝,亦称宏观裂缝。宏观裂缝是微观裂缝不断扩展的结果。

宏观裂缝又可分为表面裂缝、深层裂缝和贯穿裂缝三种,见图2-1

2.2 大体积混凝土裂缝产生的原因分析

大体积混凝土施工阶段产生的温度裂缝,是其内部矛盾发展的结果。一方面是混凝土由于内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点的约束阻止了这种应变,一旦温度应力超过混凝土能承受的极限抗拉强度,就会产生不同程度的裂缝。

2.2.1 水化热的影响

水泥在水化反应过程中会产生大量的热量。这是大体积混凝土内部温升的主要热量来源。试验证明每克普通硅酸盐水泥放出的热量可达 500J。由于大体积混凝土截面厚度大,水化热聚集在结构内部不易散发,所以会引起混凝土结构内部急骤升温。在水利工程中一般为 15~25℃ [7]。而建筑工程中一般为 20~30℃,甚至更高。试验表明,水泥水化热在 1~3 天内放出的热量最多,大约占总热量的 50%左右,混凝土浇筑后的 3~5 天内,混凝土内部温度最高。

建筑结构混凝土强度等级日趋提高,但有许多结构不适当的选择了过高的强度等级。习惯上认为:“强度等级越高安全度越大,就高不就低,提高混凝土强度没坏处”。

2.2.2 内外约束的影响

各种混凝土结构在变形变化中,必然受到一定的约束,从而阻碍其自由变形,阻碍变形的因素称为约束条件。约束又分为内约束和外约束。

1).外约束

一个物体的变形受到其他物体的阻碍,一个结构的变形受到另一个结构的阻碍,这种结构与结构之间,物体与物体之间的相互牵制作用称作“外约束”。由于各种建筑结构所处的具体条件不同,便在结构之间产生不同程度的约束,按约束程度的大小,外约束又分为无约束(自由体)、弹性约束和全约束(嵌固体)三种。

2).内约束

一个物体或一个构件本身各质点之间的相互约束作用,称为“内约束”。沿着一个构件截面各点可能有不同的温度和收缩变形,引起连续介质各点间的内约束应力。结构物的裂缝中,非贯穿的表面裂缝占 60%~70%。其开裂原因主要是变形变化引起的自约束应力。当各种大体积混凝土厚度大于或等于 500mm时,就可能由于水化热的不均匀降温和不均匀收缩引起的显著的自约束应力,导致表面开裂。

2.2.3 外界气温变化的影响

大体积混凝土结构在施工阶段,外界气温的变化对防止大体积混凝土开裂有着重大影响。因为外界气温愈高,混凝土的浇筑温度也愈高;而如果外界温度下降,又增加混凝土的降温幅度,特别是气温骤降,会大大增加外层混凝土与内部混凝土的温度梯度,因而会造成过渡的温度应力,易使大体积混凝土出现裂缝。

混凝土的内部温度是由水化热的绝热温升、浇筑温度和结构物的散热温度等各种温度的叠加之和组成,而温度应力则是由温差所引起的温度变形造成的;温差愈大,温度应力也愈大。同时,在高温条件下,大体积混凝土由于厚度大,不易散热。

2.2.4 混凝土的收缩变形影响

1).混凝土的收缩

大部分混凝土结构裂缝的原因是由于变形作用引起的,而变形作用包括温度、湿度及不均匀沉降等。在几种变形中,湿度变化引起的裂缝又占主要部分。混凝土重要组成部分是水泥和水,通过水泥和水的水化作用,形成胶凝材料,将松散的砂石骨料胶合成为人工石体——混凝土。

混凝土中含有大量空隙、粗孔、及毛细孔,这些空隙中存在水分,水分的活动影响到混凝土的一系列性质,特别是产生“湿度变形”的性质对裂缝控制有重要作用。混凝土中的水分有化学结合水、物理—化学结合水和物理力学结合水三种。

2).收缩的种类

①自生收缩

混凝土硬化过程中由于化学作用引起的收缩,是化学结合水与水泥的化合结果,也称为硬化收缩,这种收缩与外界湿度变化无关。

②塑性收缩

混凝土浇筑后 4~15 小时左右,水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发现象,引起失水收缩,是在初凝过程中发生的收缩,也称之为凝缩,此时骨料与胶合料之间也产生不均匀的沉缩变形,都发生在混凝土终凝之前,即塑性阶段,故称为塑性收缩。

③碳化收缩

大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形称为碳化收缩。

④干缩(失水收缩)

水泥石在干燥和水湿的环境中要产生干缩和湿涨现象,最大的收缩是发生在第一次干燥之后,收缩和膨胀变形是部分可逆的。

3)、收缩的影响因素

水泥用量越大,用水量越大,表现为水泥浆量越大,塌落度大,收缩越大,因此避免雨中浇筑混凝土,遇小雨,应采取防雨措施(特别是下料部位)并调整水灰比。

4)、混凝土的体积变形

混凝土在水泥水化过程中要产生一定的体积变形,成为“自由体积变形”。混凝土的收缩机理比较复杂,其主要原因,可能是内部空隙水蒸发变化时引起的毛细管引力。收缩在很大程度上是有可逆现象的。如果混凝土收缩后,再处于水饱和状态,还可以回复膨胀并几年达到原有的体积。干湿交替将引起混凝土体积的交替变化,这对混凝土是很不利的。

第 3 章 大体积混凝土裂缝控制措施

3.1 大体积混凝土裂缝控制措施

实践经验表明,现有大体积混凝土结构的裂缝,绝大多数是由温度裂缝原因而产生的。防止产生温度裂缝是大体积混凝土研究的重要课题,我国自 20 世纪 60 年代开始进行研究,目前已积累了很多成功的经验。工程上常用的防止混凝土裂缝的措施主要有:①采用中、低热的水泥品种;②对混凝土结构进行合理的分缝分块;③在满足强度和其它性能要求的前提下,尽量降低水泥用量;④掺加适宜的外加剂;⑤控制混凝土的出机温度和浇筑温度;⑥选择适宜的集料;⑦预

埋水管、通水冷却、降低混凝土的出机温度和浇筑温度;⑧采用表面保护、保温隔热措施,降低内外温差;⑨采取防止大体积混凝土裂缝的结构措施。

3.1.1 设计措施

1).设置后浇带

在现浇整体式钢筋混凝土结构中,只在施工期间保留的临时性施工缝,称为“后浇带”。该“后浇带”根据具体条件,保留一定时间后,在进行填充封闭,后浇成连续整体的无伸缩缝结构。因为这种缝只在施工期间存在,所以是一种特殊的施工缝。但是,又因为它的目的是取消结构中的永久性变形缝,与结构的温度收缩应力和差异沉降有关,所以它又是一种设计中的伸缩缝和沉降缝,一种临时性的变形缝。它既是施工措施,又是设计手段。

2).合理配置钢筋

在常温和允许应力状态下,钢筋的性能是比较稳定的,其与混凝土的热膨胀系数相差不大。

3).设置滑动层

为了减小混凝土由于边界存在约束而产生温度应力,在与外约束的接触面上全部设置滑动层,则结构计算长度可折减约一半。

4).避免应力集中

在结构的孔洞周围,变断面转角部位,转交处等,由于温度变化和混凝土收缩,会产生应力集中而导致混凝土裂缝。为此,可在空洞四周增配斜向钢筋、钢筋网片;在变断面处避免断面突变,可作局部处理使断面逐渐过渡,同时增配一定量的抗裂钢筋,这对防止裂缝产生是有很大作用的。

5).设置缓冲层

设置缓冲层,即在高低底板交接处、底板地梁处等,用 30~50mm 厚的聚苯乙烯泡沫塑料作垂直隔离,以缓冲基础收缩时的侧向压力。

6).设置应力缓和沟

3.1.2 材料控制措施

1).水泥品种选择和用量控制

大体积混凝土结构引起裂缝的主要原因是:混凝土的导热性能较差,水泥水化热的大量积聚,使混凝土出现早期温升和后期温降现象。因此,控制水泥水化热引起的温升,即减少混凝土内外温差,对降低温度应力,防止产生温度裂缝将起到十分重要的作用。

2).掺加外加料

大体积混凝土一般体积都较大,其主要特征:结构厚、混凝土量大,水泥水化热使结构产生温升和收缩变形,因此混凝土裂缝控制是一个十分关键的技术。为了保证混凝土的整体性,密实性和耐久性不受影响,在大体积混凝土中掺入外加剂和外掺料,充分利用它们各自的优点,相互补充并采取科学的施工工艺及合理的混凝土养护措施来控制裂缝,防止渗漏,从而保证大体积混凝土的施工质量。混凝土中常用的外加料主要是外加剂和掺合料。

3).集料的选择

大体积混凝土所需的强度并不是很高的,所以组成混凝土的砂石料比高强

混凝土要高,约占混凝土总质量的 85%左右,正确选用砂石料对保证混凝土质量、节约水泥用量、降低水化热量、降低工程成本是非常重要的。集料的选用应根据就地取材的原则,首先 考虑成本较低、质量优良、满足要求的天然砂石料。3.1.3 施工措施

1).控制混凝土出机温度和浇筑温度

为了降低大体积混凝土的总温升,减少结构物的内外温差,控制混凝土出机温度和浇筑温度同样非常重要。

① 控制混凝土的出机温度

根据搅拌前混凝土原材料总的热量与搅拌后混凝土总的热量相等的原理,可用下公式计算

T0=[(CS+CWQS)WSTS+(Cg+CwQg)WgTg+CcWcTc+Cw(WwQsWc-QgWs)Tw]/(CsWs+CgWg+CwWw+CcWc)

(3-1)

式中

CS,Cg,Cc,Cw—分别为砂、石、水泥、和水的比热,J/Kg·℃;

Ws,Wg,Wc,Ww—分别为每 m3砂、石、水泥、和水的用量,Kg;

TS,Tg,Tc,Tw—分别为砂、石、水泥、和水的拌合温度,℃;

QS,Qg—分别为砂、石的含水量,%。

计算时一般取 CS= Cg= Cc=800(J/Kg·℃);

Cw=4000(J/Kg·℃)。

由以上计算公式可以看出,在混凝土原材料中,砂石的比热比较小,但占混凝土总质量的 85%左右;水的比热较大,但它占混凝土总质量的 6%左右。因此,对混凝土出机温度影响最大的是石子的温度,砂的温度次之,水泥的温度影响最小。为了降低混凝土的出机温度,其最有效的办法就是降低砂、石的温度。如在气温较高时,为防止太阳的直接照射,可在砂石堆料场搭设简易的遮阳装置,砂石温度可降低 3~5℃。在拌合前用冷水冲洗粗集料,在储料仓中通冷风预冷,再加上冰屑拌合,可使混凝土的出机温度达到 7℃的要求。

② 控制混凝土的浇筑温度

混凝土从搅拌机出料后,经搅拌车或其它工具运输、卸料、浇筑、平仓、振捣等工序后的混凝土温度称为混凝土浇筑温度。

2).大体积混凝土配合比的控制

① 当大体积混凝土的强度等级为 C20 以上时,经设计单位同意,可利用混凝土 60天的后期强度作为混凝土强度评定、工程交工验收及混凝土配合比设计的依据。这样有利于降低大体积混凝土工程施工中因水泥水化热引起的温升,达到降低温度应力的目的,同时也节约施工及保温养护费用。

② 大体积混凝土配合比的选择,在保证基础工程设计所规定强度、耐久性等要求和满足施工工艺特性的前提下,应按照合理使用材料、减少水泥用量和降低混凝土的绝热温升的原则进行选择。

3).混凝土的浇筑与养护 ① 浇筑方案

混凝土的浇筑方法可用分层连续浇筑或推移式连续浇筑

对于工程量较大、浇筑面积也大、一次连续浇筑层厚度不大(一般不超过 3m),且浇筑能力不足时的混凝土工程,宜采用推移式连续浇筑法。

采取分层浇筑混凝土时,水平施工缝的处理 ③

混凝土的拌制、运输

4).大体积混凝土的冬期施工

在工业与民用建筑钢筋混凝土结构的冬期施工中,主要是防止早期混凝土被冻问题;而在大体积混凝土的冬期施工中,情况有所不同,除了防止早期混凝土被冻坏外,还存在着控制温差、防止裂缝的问题,而且防冻与防裂之间往往还存在着矛盾。在设计和施工中,必须妥善解决这个矛盾,兼顾防冻与防裂两方面的要求。这是大体积混凝土冬期施工的主要特点。

⑴ 大体积混凝土冬季施工的原则

连续 5 天日平均气温 5℃以下,即进入混凝土的冬期施工阶段。

大体积混凝土冬期施工应兼顾防冻与防裂两方面的要求,因此应遵循以下三条基本原则:

①砂、石等原材料中不能含有冻块,混凝土拌和物也应该具有一定的温度,以保证在运输和浇筑过程中不致冻结。

②混凝土在达到临界强度之前不能受冻,以免混凝土内部结构受到破坏,最终强度受到损失。

③混凝土的内外温差和最高温度均不能超过规定数值,以免发生裂缝,破坏结构的整体。

⑵ 大体积混凝土冬期施工的技术措施

为了使上述冬期施工的原则得到满足,必须采取一系列技术措施。

①混凝土出机温度与浇筑温度的选择

②基础及冷壁的预热

在浇筑混凝土以前,对基础、预埋铁件及与新混凝土接触的冷壁(老混凝土、预制混凝土模板等),应用蒸汽清除所有的冰、雪、霜冻,并使其表面温度上升。

③原材料加热

水的加热可用锅炉、电热或蒸汽,砂料加热可用封闭的蛇形管,石料加热使用蒸汽最方便。

④运输中的保温

运输中的热量损失与运输工具有关。如使用大型运输罐,热损失一般不大。⑤浇筑过程中减少热量损失

混凝土是分层浇筑的,每层厚度 200-500mm,由于厚度薄,散热面积大,浇筑过程中的热量损失是很大的。

⑥保温养护

混凝土浇筑完毕以后,应采取严格的保温养护措施,使混凝土强度得到充分发展。

3.1.4 监测措施

大体积混凝土的温控施工中,除应进行水泥水化热的测定外,在混凝土浇筑过程中还应进行混凝土浇筑温度的监测,在养护过程中应进行混凝土浇筑块体升降温、内外温差、降温速度及环境温度等监测。这些监测结果能及时反馈现场大体积混凝土浇筑块内温度变化的实际情况,以及所采用的施工技术措施的效果,为工程技术人员及时采取温控对策提供科学依据。

3.2 混凝土结构裂缝处理

尽管对大体积混凝土结构采取各种各样的防裂措施,但是工程实践证明,由于各种复杂因素的影响,在混凝土浇筑不久或在施工期间就会出现裂缝。裂缝的一般修补方法有:表面修补法、内部修补法、结构加固法。

参考文献

[1] 叶昌林,沈义.大体积混凝土施工〔M〕.北京:中国建筑工业出版社,1987.1-3.[2] 龚仕杰.混凝土工程施工新技术〔M〕.北京:中国环境科学出版社,1995.156.[3] 关柯.建筑施工手册〔M〕.中国建筑工业出版社, 1996.1.第二版,32.[4] 黄士元.混凝土早期裂缝的成因及防治〔J〕.混凝土, 2000,7: 3~5.[5] 王铁梦.工程结构裂缝控制的综合方法〔J〕.施工技术, 29(5):59.[6] 李继业 , 刘福臣.建筑施工质量问题与防治措施〔 M 〕.中国建材工业出版社,2003.26-28.[7] 朱伯芳,王同生.水工混凝土结构温度应力与温度控制〔M〕.北京: 水利电力出版社, 1976.45.[8] 王铁梦.工程结构裂缝控制〔M〕.北京: 中国建筑工业出版社,1997.136-137.[9] 安明,刘英明,娄林格.混凝土膨胀剂的研究与应用〔J〕.建筑技术开发, 2001.6.[10] 朱伯芳.大体积混凝土温度应力与温度控制〔M〕.北京: 中国电力出版社,1999.[11] 冯桂恒,等.工业建筑大体积混凝土结构施工〔J〕.建筑技术, 1988,2: 12.[12] 曹可之.大体积混凝土结构裂缝控制的综合措施〔J〕.建筑结构,2002,8: 21.[13] 沈旦申.粉煤灰混凝土〔M〕.中国铁道出版社, 1989.4-5.[14] 项霭行.冬季混凝土施工工艺学〔M〕.中国建筑工业出版社,1993.6.[15] 黄国兴, 惠荣炎.混凝土的收缩〔M〕.中国铁道出版社, 1990.31.[16] 吴照.泵送高强大体积混凝土施工的温度检测〔J〕.建筑技术, 1994,7: 9.[17] 冯浩等.混凝土外加剂工程应用手册〔M〕.中国建筑工业出版社,1999.67-68.[18] 肖祁林.基础大体积混凝土温度收缩裂缝控制〔J〕.甘肃科学学报,第 10 卷,4.[19] 邹仁华.大体积混凝土裂缝控制方法的研究〔J〕.西安科技学院学报,第 21 卷,1.[20] 普德术.大体积混凝土施工温度场及温度应力研究〔J〕.低温建筑技术,1997,1.[21] 蒋叶萍.大体积混凝土施工和质量控制〔J〕.西部探矿工程,2002,(001).[22] 王铁梦.抗放原理及其工程应用〔J〕.广东:土木与建筑,2001,3: 3~5.[23] 王铁梦.控制混凝土工程收缩裂缝的 18 个主要因素〔D〕.2003.11: 8.[24] 王铁梦.钢筋混凝土结构的裂缝控制〔D〕.2000.5.3~6

7.土木工程中大体积混凝土结构施工技术论文 篇七

大体积混凝土是指混凝土结构中最小段超过1米的混凝土结构, 其需要浇筑大量的混凝土, 且结构规格较大, 需要设置大量的钢筋, 施工过程中容易受到各种因素的影响。该类大体积混凝土的特点在于抗震性能良好, 强度较高, 可塑性较为理想, 建设成本较低, 经济效益良好。水利工程作为现代建设工程中极为重要的内容了, 其在规模较大, 需要运用到大体积混凝土技术, 施工水平对于整个水利工程的质量有着重要的影响, 对其施工技术及质量措施进行深入的研究也是十分有必要的。

1 各项准备工作

在进行施工之前, 需要做好各项准备工作, 其不仅关系到后期施工的进度, 也直接影响到水利工程的质量, 具体分为以下几点: (1) 混凝土原材料选择。大体积混凝土施工中所需要使用的水泥水一般选择低热硅酸盐水泥或低热矿渣硅酸盐水泥, 要求其化热较低, 且不超过270k J/kg;外掺剂需要根据水利工程的实际情况, 并考察水泥的适应性、使用效果等要素来确定, 可以使用缓凝高效减水剂, 但是最好是利用原材料的性质减少水化热; (2) 科学配合比。混凝土材料的配合比需要以减少水化热、保障施工和易性、提高稳定性为基本原则。具体来说是保障结构强度等级的基础上减少水泥用量和水胶比;需要保持在40%左右, 保障区施工和易性, 并达到泵送浇筑要求, 尽量减少混凝土的变形问题;尽量减少用水量, 如果条件允许, 其缓凝时间不得超过20小时[1]; (3) 拌合生产。混凝土的生产需要根据相应的规范来进行, 并检测其各项指标, 包括坍落度、水化热、收缩量、强度、可泵性等, 保障其符合施工要求; (4) 材料运输。混凝土的运输设备需要能够防风、防晒、防雨、防寒, 运输的过程中也需要保持搅拌的状态。

2 模板施工

大体积混凝土模板工程施工时, 需要严格按照模板的设计图纸进行, 拼接模板的过程中需要注意保障质量, 避免浇筑混凝土后出现漏浆的问题, 并使用适量的水湿润模板, 但是不能出现积水的情况。安装完毕后需要按照国家的相关规范对其稳定性、强度、刚度等进行验算, 并做好相应的保温工作。另外拆模的时间需要根据大体积混凝土达到一定强度的时间、模板内外温差情况等要素来确定, 才能有效的避免出现裂缝问题[2]。

3 浇筑施工

浇筑大体积混凝土时的方法十分丰富, 包括分层连续浇筑、推移式连续浇筑等, 其中分层浇筑又可以细化为全面分层浇筑、分段分层浇筑、斜向分层浇筑等, 可以根据工程的具体特点及施工条件合理选择。在进行浇筑时均需要尽量减少间隔时间, 实现连续浇筑。如果客观条件限制, 也需要保障在混凝土初凝完成全部的浇筑工作。如果采用分层浇筑的方式, 需要严格控制分层的高度, 每层的厚度应保持在60cm左右, 非泵送混凝土的情况下, 其厚度应小于40cm, 便于振捣, 保障浇筑质量[3]。浇筑顺序方面一般是由低到高, 根据混凝土结构, 从长边的一侧建筑至短边的一侧。如果施工条件良好, 可以在若干个点同时进行浇筑。大体积混凝土的振捣一般采用二次振捣工艺, 设置到振捣的位置, 分布需要均匀, 避免出现遗漏的位置, 保障振捣时间, 保障混凝土结构的强度。

4 养护工作

大体积混凝土的养护方式一般是保温保湿, 避免其出现严重的裂缝。在混凝土浇筑时, 需要将其内部设置温度传感器, 或者测温管, 实时正握混凝土内部及外部的温度, 保障其内卫温差及后期的降温速率达到温度控制的要求;浇筑完毕后, 可以使用各种材料覆盖在其表面, 如塑料薄膜、麻袋、阻燃保温被等, 或者设置挡风保温棚、遮阳降温棚等, 保障其温度和湿度适宜, 避免出现干缩裂缝。混凝土的保湿养护时间需要超过两周, 该时间段内需要及时检查塑料薄膜或者养护剂的情况, 避免出现意外情况或者受到气候的影响, 使得其表面过于干燥。一段时间后, 混凝土表面温度和环境温度的差异低于30℃, 即能够出去表面覆盖物, 或者将保温保湿设施拆除掉。

5 特殊情况的施工注意事项

如果施工的过程处于恶劣的气候, 包括高温、低温、大风等, 需要采取一定的措施保障施工质量。高温情况下, 可以采用加冰、风冷等方式降低原材料的温度, 也需要注意混凝土的如模温度不得超过30℃;低温条件下, 拌合混凝土时可以使用热水, 或者对集料进行加热, 提高其入模温度, 保障其大于5℃, 浇筑完成后及时进行保温措施;大风条件下需要加大混凝土表面的模压次数, 浇筑完成后则需要使用塑料薄膜覆盖在表面或者使用保温材料, 保持其湿润度, 减少大风的影响。

6 总结

水利工程项目建设对于发展地区经济及充分利用自然资源有着重要的意义, 其是工程的施工技术也得到了较大的提升。该类工程一般规模较大, 环节较多, 大体积混凝土技术以其各种优势广泛的应用其中, 对工程的质量有着直接的影响。本文仅从一般的角度分析了水利工程中的大体积混凝土施工技术及其裂缝控制措施, 实践的施工中还需要技术人员根据工程的实际情况, 采用先进的工艺、材料等, 制定出相应的施工方案及质量控制措施, 提高施工水平, 优化工程的质量, 保障其强度及可靠性, 带来良好的经济效益和社会效益。

参考文献

[1]付岩, 张健, 张立真.大体积混凝土抗裂技术在水利工程施工中的应用[J].技术与市场, 2013, 20 (05) :221.

[2]曹军.某水电站溢洪道牛腿与大坝碾压混凝土整体上升施工方案[J].黑龙江水利科技, 2014 (11) :43-45.

8.土木工程中大体积混凝土结构施工技术论文 篇八

关键词:建筑工程;大体积混凝土;裂缝;降温养护;浇筑方案;施工要点 文献标识码:A

中图分类号:TU375 文章编号:1009-2374(2015)06-0129-02 DOI:10.13535/j.cnki.11-4406/n.2015.0492

1 对温度进行合理的预测、制定合理的养护方法

如果补偿收缩方法及各种约束条件都能够符合有关规定,则降温值和降温速率对大体积混凝土的降温收缩应力大小有着直接的影响。为将大体积混凝土裂缝的发生率降到最低,最有效的方式是在施工前就科学地估计混凝土的浇筑温度并精确计算出混凝土温度上升可能产生的应力,这样才能制定最有效的降低浇筑温度,避免混凝土裂缝的产生,还要注意的是,要设立一套应急方案以防止突发事故的出现。

2 对于保温材料的厚度进行有效的把握,就混凝土表面的温度实施预测

降温值等于建筑温度与水化热温升值的和再减去环境温度,如果混凝土的中心最大温度允许值是47.3℃,浇筑温度为30℃,混凝土中心温度一定是77.3℃。若平均温度是29℃,则两者之间的平均温差便会是48.3℃,但是这种情况必须禁止发生。阻止这种现象发生的最有效方式便是对混凝土进行降温处理,混凝土表层再覆盖上保温材料,就会使混凝土表面的温度大大增加,最终使混凝土的内外温差在适宜的范围内。

一般规定:混凝土内表温差T1-T2要小于等于25℃。若混凝土的厚度很大,则两者之间的温差就会随之增加,所以对大体积混凝土进行降温操作时一定要把握好保温、养护、计算等各项重点工作。最高效科学的养护方式是:在混凝土表面铺设一层塑料薄膜或是厚为3cm的防水岩棉被。这种方法的优势在于保温性很强,不仅能减少混凝土的内外温差还能延缓降温的速度,这样可以有效地防止混凝土开裂。可是这种方式的优势是降温速度减缓了,进而便会导致养护时间增长,但若在实际施工期间采用上述养护方案取得的效果还是很好的。混凝土表面的塑料薄膜可以保持其表面的湿度,并能增强混凝土表面的强度,还能防止前期降温过程中发生干燥收缩,这样也能促使微膨胀剂更好地发挥其补偿收缩的作用,若发生了混凝土表面温度过高的情况,则对降温有着恶劣的影响,这时就需要把部分岩棉掀开,促使降温速度的加快。岩棉被彻底被水湿透后,便会增加导热系数,这样便可以使混凝土浇筑后的降温速度在可以控制的范围内,确保其在1.30~1.50C/d之间。

3 预防大体积混凝土浇筑裂缝的方案

3.1 要科学地确定配合比

控制好砂、石级比例和含泥量,一般条件下要将减水剂及粉煤灰混进混凝土之中,然后确定一个最适宜的混凝土配合比,并尽量减少水泥的用量,这样不仅能减小水化热的温升关,还可以保证设计强度,此外,还能使混凝土的和易性、可泵性都处于最佳状态。

3.2 要减小混凝土入模时的温度

为达到降低浇筑温度的目标,一般要使用低温水、石子洒水的方式去冷却,或者用砂表面覆盖的方式也能使搅拌的温度减小。还要尽量地减少混凝土的运输时间,保证缓凝剂充分地融进混凝土中,保证初凝时间能超过6个小时,减缓浇筑的速度,并达到薄层浇筑的目标,充分挥发浇筑步骤的热量,延缓水化热峰值的出现,增加混凝土的升温期。一般条件下要将大体积混凝土的入模温度控制在18℃以下。

3.3 控制好拆模的时间

以测温数据为依据,若混凝土拆模之后,其表层的温度、大气的温度及混凝土的内温度差小于25℃,才能够将侧模拆除。若表层温度或大气温度与混凝土内部的温度差在最终的降温环节超过了25℃,此时就不能够拆掉侧模,并且应在模板上覆盖上保温材料,以使温差

降低。

3.4 科学地进行混凝土的养护和保温工作

进行混凝土浇筑的养护工作时要重点注意湿养护工作,以此降低混凝土的内外温差,并可以大大增加其早期弹性模量,并加强其抗裂性能,受到降温和干缩的双重影响。若降温及干缩作用共同施加于大体积混凝土,则会使应力加大,而这可能导致后期混凝土裂缝的发生。所以,必须要谨慎、认真地进行混凝土拆模后的养护工作,并保持基础底板区域一直保持湿润状态,如此方可避免降温环节混凝土发生过大的脱水干缩及湿度

变化。

4 避免大体积混凝土浇筑收缩现象的发生

通常情况下,大体积混凝土浇筑动工技术在实施的整个期间,三分之一的收缩现象的根本原因就是因为水分问题。若大体积混凝土内部的水分发生了大区域的蒸发现象,则会导致大体积混凝土发生收缩情况。而且如果大体积混凝土的水分充足的时候,会使得其产生膨胀现象,进而与原来的体积相当。如果这种现象经常发生,就会极大地影响大体积混凝土的结构强度,同样也会制约建筑工程使用寿命。

必须要科学地选取大体积混凝土的浇筑原材料,要考虑到经济性、合理性等因素,这样才能降低收缩现象的产生率。浇筑工程的施工人员在选择大体积混凝土浇筑材料时一定要把握好下列几个关键点:要科学地确定混凝土的配合比。比如在进行大体积混凝土使用的粗骨料的选取工作时,必须要使用连续级配,细骨料要使用中砂级配。除此之外,大体积混凝土的掺合料应为粉煤灰和矿渣粉等,并且要保证各材料配比的适宜性,这样才能使大体积混凝土的原料有较高的结构强度。对于大体积混凝土的水泥选取上,动工人员一定要把握好水化热的降低,确保水泥的凝结时间足够长,进而可以很好地解决建筑工程大体积收缩问题的发生。

5 大体积混凝土养护要点

在进行大体积混凝土的建筑工作时,必须要指派专门的工作者开展测温管的预埋工作。一般会将测温管的长度分成两个型号,在预埋测温线时要严格地按照平面布置图来进行,预埋时还要将测温管和钢筋牢固的捆绑在一起,防止发生位移或损坏现象。每组要使用两根测温线,还要用胶带在测温管的上方进行标记,以更简单地区分深度。必须用塑料对测温管进行防护,要将两者绑在一起,避免湿度影响测温端头。

要指派专业的测温工作者使用电子测温仪开展工作,這样才能保证测温结果及读数的准确性。要求测温工作者有较强的工作责任感,定时对各孔的编号测温,切忌出现虚假或漏写现象。还要严谨认真地填写测温记录,保持书面的整洁,切忌发生涂改等现象。测温工作要求有较强的连续性,测温时要保证混凝土强度满足预设时间,若要停止测温工作,则需要获得专业技术机构的允许。总而言之,在大体积混凝土的浇筑工作中,必须控制好混凝土的配合比,并设立一套科学的动工方案。除此之外,还要保证混凝土浇筑和养护工作的质量,各个工作人员要有严谨的工作态度。还应认识到养护工作和浇筑工作是同等重要的,而混凝土降温则可以为后续工作奠定基础,在这个过程中还要控制好降温速度,做到上述这些,才能够最大化地体现和运用混凝土浇筑技术的优势。

参考文献

[1] 江正荣.建筑施工工程师手册[M].北京:中国建筑工业出版社,2012.

[2] 牛紫龙.混凝土施工中温度裂缝的分析与控制[J].工程建设,2013,(4).

[3] 王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,2012.

作者简介:刘震冰(1981-),男,河南洛阳人,供职于河南三建建设集团有限公司,研究方向:工程管理。

上一篇:(论文)小学语文信息化教学模式及策略下一篇:班主任网络培训体会