高二数学推理知识点大总结(10篇)
1.高二数学推理知识点大总结 篇一
一、公理、定理、推论、逆定理:
1.公认的真命题叫做公理。
2.其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。3.由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。4.如果一个定理的逆命题是真命题,那么这个逆命题就叫原定理的逆定理。
二、类比推理:
一道数学题是由已知条件、解决办法、欲证结论三个要素组成,这此要求可以看作是数学试题的属性。如果两道数学题是在一系列属性上相似,或一道是由另一道题来的,这时,就可以运用类比推理的方法,推测其中一道题的属性在另一道题中也存在相同或相似的属性。
三、证明:
1.对某个命题进行推理的过程称为证明,证明的过程包括已知、求证、证明
2.证明的一般步骤:
(1)审清题意,明确条件和结论;
(2)根据题意,画出图形;
(3)根据条件、结论,结合图形,写出已知求证;
(4)对条件与结论进行分析;
(5)根据分析,写出证明过程
3.证明常用的方法:综合法、分析法和反证法。
四、辅助线在证明中的应用:
在几何题的证明中,有时了为证明需要,在原题的图形上添加一些线度,这些线段叫做辅助线,常用虚线表示。并在证明的开始,写出添加过程,在证明中添加的辅助线可作为已知条件参与证明。
常见考法
(1)灵活运用基础知识进行推理,运用综合法、分析法,从条件和结论两方面出发进行证明;
(2)在中考中,考查类比推理,先设计一个条件、结论明确的问题,以此作为类比对象,然后再对其改造 。比如,图形的变式,添加某些新的属性或改变某些属性,通过与原有问题的比较,推测新问题的结论与解决方法。
2.高二数学知识点总结 篇二
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例.
三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式.
四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式’7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例.
五、平面向量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移.
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式.
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程.
八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质.九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球.
十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理.2.排列;3.排列数公式’4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质.
十一、概率(12课时,5个)1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验.选修Ⅱ(24个)
十二、概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归.
十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性.
十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8函数的最大值和最小值.
3.高二数学知识点总结 篇三
(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)
(3)柱体、锥体、台体的体积公式
(4)球体的表面积和体积公式:V=;S=
4、空间点、直线、平面的位置关系
公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
应用:判断直线是否在平面内
用符号语言表示公理1:
公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
符号:平面α和β相交,交线是a,记作α∩β=a。
符号语言:
公理2的作用:
①它是判定两个平面相交的方法。
②它说明两个平面的交线与两个平面公共点之间的关系:交线公共点。
③它可以判断点在直线上,即证若干个点共线的重要依据。
公理3:经过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。
公理3及其推论作用:
①它是空间内确定平面的依据
②它是证明平面重合的依据
公理4:平行于同一条直线的两条直线互相平行
空间直线与直线之间的位置关系
①异面直线定义:不同在任何一个平面内的两条直线
②异面直线性质:既不平行,又不相交。
③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
④异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。
求异面直线所成角步骤:
A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。
B、证明作出的角即为所求角
C、利用三角形来求角
(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
(8)空间直线与平面之间的位置关系
直线在平面内――有无数个公共点.
三种位置关系的符号表示:aαa∩α=Aa‖α
(9)平面与平面之间的位置关系:平行――没有公共点;α‖β
4.高二数学知识点总结 篇四
(2)不等式的性质(略)
(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)
2.不等式的证明方法
(1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法.
用比较法证明不等式的步骤是:作差——变形——判断符号.
(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.
(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.
5.高二数学必修五知识点总结 篇五
( 数列 的前n项的和为 ).
等差、等比数列公式对比
等差数列等比数列
定义式
( )
通项公式及推广公式
中项公式若 成等差,则
若 成等比,则
运算性质若 ,则
若 ,则
前 项和公式
一个性质 成等差数列
成等比数列
解不等式
(1)、含有绝对值的不等式
当a > 0时,有 . [小于取中间]
或 .[大于取两边]
(2)、解一元二次不等式 的步骤:
①求判别式
②求一元二次方程的解: 两相异实根 一个实根 没有实根
③画二次函数 的图象
④结合图象写出解集
解集 R
解集
注: 解集为R 对 恒成立
(3)高次不等式:数轴标根法(奇穿偶回,大于取上,小于取下)
(4)分式不等式:先移项通分,化一边为0,再将除变乘,化为整式不等式,求解。
如解分式不等式 :先移项 通分
再除变乘 ,解出。
线性规划:
(1)一条直线将平面分为三部分(如图):
(2)不等式 表示直线
某一侧的平面区域,验证方法:取原点(0,0)代入不
等式,若不等式成立,则平面区域在原点所在的一侧。假如
直线恰好经过原点,则取其它点来验证,例如取点(1,0)。
6.高二数学知识点总结选修2 篇六
第一章 常用逻辑用语
1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.
真命题:判断为真的语句.
假命题:判断为假的语句.
2、“若 ,则 ”形式的命题中的 称为命题的条件, 称为命题的结论.
3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.
若原命题为“若 ,则 ”,它的逆命题为“若 ,则 ”.
4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.
若原命题为“若 ,则 ”,则它的否命题为“若 ,则 ”.
5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.
若原命题为“若 ,则 ”,则它的否命题为“若 ,则 ”.
6、四种命题的真假性:
原命题
逆命题
否命题
逆否命题
种命题的真假性之间的关系:
两个命题互为逆否命题,它们有相同的真假性;
两个命题为互逆命题或互否命题,它们的真假性没有关系.
7、若 ,则 是 的充分条件, 是 的必要条件.
若 ,则 是 的充要条件(充分必要条件).
8、用联结词“且”把命题 和命题 联结起来,得到一个新命题,记作 .
当 、都是真命题时, 是真命题;当 、两个命题中有一个命题是假命题时, 是假命题.
用联结词“或”把命题 和命题 联结起来,得到一个新命题,记作 .
当 、两个命题中有一个命题是真命题时, 是真命题;当 、两个命题都是假命题时, 是假命题.
对一个命题 全盘否定,得到一个新命题,记作 .
若 是真命题,则 必是假命题;若 是假命题,则 必是真命题.
9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“ ”表示.
含有全称量词的命题称为全称命题.
全称命题“对 中任意一个 ,有 成立”,记作“ , ”.
短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“ ”表示.
含有存在量词的命题称为特称命题.
特称命题“存在 中的一个 ,使 成立”,记作“ , ”.
7.高二数学必修五知识点精选总结 篇七
(1)化成标准式:;(2)求出对应的一元二次方程的根;
(3)画出对应的二次函数的图象;(4)根据不等号方向取出相应的解集。
线性规划问题:
1.了解线性约束条件、目标函数、可行域、可行解、解
2.线性规划问题:求线性目标函数在线性约束条件下的值或最小值问题.
3.解线性规划实际问题的步骤:
(1)将数据列成表格;(2)列出约束条件与目标函数;(3)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;(4)验证。
两类主要的目标函数的几何意义:
①-----直线的截距;②-----两点的距离或圆的半径;
均值定理:若,,则,即.;
称为正数、的算术平均数,称为正数、的几何平均数.
均值定理的应用:设、都为正数,则有
⑴若(和为定值),则当时,积取得值.
⑵若(积为定值),则当时,和取得最小值.
8.高二数学推理知识点大总结 篇八
一、选择题
1.下面叙述正确的是()
①归纳推理是由部分到整体的推理②归纳推理是由一般到一般的推理③演绎推理是由一般到特殊的推理④类比推理是由特殊到一般的推理⑤类比推理是由特殊到特殊的推理
A.①②③B.②③④C.②④⑤D.①③⑤
2.由①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形,根据“三段论”推理出一个结论,则这个结论是()
A.正方形的对角线相等B.矩形的对角线相等C.正方形是矩形D.以上均不正确
3.下列平面图形中与空间的平行六面体作为类比对象较合适的是()
A.三角形B.梯形C.平行四边形D.矩形
4.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b∥平面α,直线a平面α,则直线b∥直线a”,结论显然是错误的,这是因为()
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误
二、填空题
4.(1)在演绎推理中,只要___________________是正确的,结论必定是正确的.(2)用演绎法证明y=x2是增函数时的大前提是_________________________.(3)由“等腰三角形的两腰相等”可以类比推出正棱锥的类似属性是____________________
x5.已知:f(x)=,设f1(x)=f(x),fn(x)f(fn1(x))(n>1且n∈N*),则f3(x)的表达式1-x
为____________,猜想fn(x)(n∈N*)的表达式为________.x/(1-3x)
16.若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=r(a+b+c),2根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V=________.1/3r(S1+S2+S3+S4)
7、若数列an是等差数列,对于bn1(a1a2an),则数列bn也是等差数列。类n
比上述性质,若数列cn是各项都为正数的等比数列,对于dn0,则dn=时,数列dn也是等比数列。
8.在平面几何里,有勾股定理“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A—BCD的三个侧面ABC、ACD、ADB两两互相垂直,则________________.”
9.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么
这个数列叫做等和数列,这个常数叫做该数列的公和.
已知数列{an}是等和数列,且a12,公和为5,那么a18的值为______________,这个数列的前n项和Sn的计算公式为_________ 3,10.设f(x),利用课本推导等差数列前n项和的公式的方法,可求得f(-5)+f(-4)+„+f(0)+„+f(5)+f(6)的值为_______3√
2bn-am11.已知命题:若数列{an}为等差数列,且am=a,an=b(m≠n,m、n∈N*),则am+n=;n-m
现已知等比数列{bn}(bn>0,n∈N*),bm=a,bn=b(m≠n,m、n∈N*),若类比上述结论,则
n-mb可得到bm+n=________.a三.解答题
12.数列an满足Sn2nannN*。
(1)计算a1,a2,a3,a4;(2)猜想数列an的通项公式;
3313.已知:sin230°+sin290°+sin2150°=,sin25°+sin265°+sin2125°.2
2通过观察上述两等式的规律,请你写出一般性的命题,并给出证明.
(2)设直线y=-2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.14.已知函数f(x)=x3-3ax,(1)求函数f(x)的单调区间;
(2)当a=1时,求证:直线4x+y+m=0不可能是函数f(x)图象的切线.
15.已知函数f(x)
(II)若f(x)a2(I)若a1,证明f(x)没有零点; xlnx,21恒成立,求a的取值范围。2
16.设点C为曲线y2(x>0)上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于x
9.高二数学推理知识点大总结 篇九
11、计算=()
i
(A)i(B)- i(C)1(D)-
12、“所有金属都能导电,铁是金属,所以铁能导电”属于().(A)演绎推理(B)类比推理(C)合情推理(D)归纳推理
33、用演绎法证明函数y = x是增函数时的小前提是()
A、增函数的定义B、函数y = x3满足增函数的定义C、若x1<x2,则f(x1)< f(x2)D、若x1>x2,则f(x1)> f(x2)
4、黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:
则第n个图案中有白色地面砖有()
(A)4n-2块(B)4n+2块(C)3n+3块(D)3n-3块
5、用反证法证明命题:“三角形的内角中至少有一个不大于60”时,反设正确的是()(A)假设三内角都不大于60(B)假设三内角都大于60(C)假设三内角至多有一个大于60(D)假设三内角至多有两个大于60 6.如果复数(m2i)(1mi)是实数,则实数m()
A.1B.1C
D
.
7、已知i是虚数单位,则
3i1i1
2=()
A.1-2iB.2-iC.2+iD.1+2i8.设n是自然数,f(n)=1
f(2)=
1352
……
1n,经计算可得,72,f(4)2,f(8),f(16)3.f(32).观察上述结果,可得出的一般结论
是()A.f(2n)
2n12
2B.f(n)
n22
n
C.f(2)
n22
D.以上都不对
9、下列几种推理中是类比推理的序号为()A、由2022,23,2242猜想
22n
1(n1)(nN)
B、半径为r的圆的面积sr,单位圆的面积s
C、猜想数列
112、123、13
4的通项为an
1n(n1)
2(nN)
2D、由平面直角坐标系中,圆的方程为(x
a)(yb)r推测空间直角坐标系中球
2的方程为(xa)2(yb)2(zc)2r210、分析法又称为执果索因法,若用分析法证明:“设abc,且abc0,求证:bac23a” 索的因应是()
A.ab0B.(ab)(ac)0
C.ac0D.(ab)(ac)0
二.填空题:(共24分)
11、在复平面中,复数z=2+i(i为虚数单位)所对应的点位于象限
12、复数6+5i与-3+4i对应的向量分别是OA与OB,O为原点,则向量BA对应的复数为 13.i是虚数单位,(1i
1i)等于
214、复数z(2m23m2)(m2m2)i,mR,若z是纯虚数,则m为1=
115.观察右边等式2+3+4=9
3+4+5+6+7=2
54+5+6+7+8+9+10=49
„„
照此规律,第6个等式为。
16.设等差数列{an}的前n项和为Sn,则S4,S8S4,S12S8,S16S12成等差数列.类比以上结论有:设等比数列{bn}的前n项积为Tn,则T4,比数列.
三.解答题:(共36分)
17、若1+i是方程x2+mx+n=0的一个根,求实数m,n的值
1111,,,,Sn为其前n项和。
18、已知数列 122334n(n1)
(1)求S1,S2,S3;(2)猜测Sn的公式
19、已知函数f(x)x 求证:(1)f(3)、f(5)、f(7)不可能成等差数列;
(2)f(a2)f(a2)2f(a)其中(a2)
20.(附加题)已知函数f(x)x2xx.(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)若对于任意x(0,),f(x)ax恒成立,求实数a的取值范围.
32┄
┄┄
┄
┄
位┄座┄
┄
┄
┄
┄
题
┄
┄
┄
答
┄┄
┄
要
┄
学┄ ┄
不
┄
┄
┄
内
┄
┄
┄
线
┄
姓┄
┄
订
┄
┄
┄
装
┄
┄
┄
封
┄┄
级┄班密┄
┄
学┄
┄
中┄┄
┄
┄
┄
┄
⊙
温州四中2012学年第二学期3月月考答题纸 高二文科数学
一、选择题:(共40分)
二、填空题:(共24分)11.____________12.____________13.___________14.______________ 15 ______________________________________16.,三、解答题: 17.(10分)18.(12分)
19.(14分)
10.高二数学必修四知识点总结 篇十
对于形如cos(α-β)cos(β)-sin(α-β)sin(β)这样的形式,运用逆向思维,化解为:
cos(α-β)cos(β)-sin(α-β)sin(β)=cos[(α-β)+β]=cos(α)
2.正切公式的逆向思维。
比如,由tαn(α+β)=[tαn(α)+tαn(β)] / [1-tαn(α)tαn(β)]
可得:
tαn(α)+tαn(β)=tαn(α+β)[1-tαn(α)tαn(β)]
[1-tαn(α)tαn(β)]=[tαn(α)+tαn(β)]/ tαn(α+β)
tαn(α)tαn(β)tαn(α+β)=tαn(α+β)-tαn(α)-tαn(β)
3.二倍角公式的灵活转化
比如:1+sin2α=sin2(α)+cos2(α)+2sin(α)cos(α)
=[sin(α)+cos(α)]2
cos(2α)=2cos2(α)-1=1-2sin2(α)=cos2(α)-sin2(α)=[cos(α)+sin(α)][cos(α)-sin(α)]
cos2(α)=[1+cos(2α)]/2
sin2(α)=[1-cos(2α)]/2
1+cos(α)=2cos2(α/2)
1-cos(α)=2sin2(α/2)
sin(2α)/2sin(α)=2sin(α)cos(α)/2sin(α)=cos(α)
sin(2α)/2cos(α)=2sin(α)cos(α)/2cos(α)=sin(α)
4.两角和差正弦、余弦公式的相加减、相比。
比如:
sin(α+β)=sin(α)cos(β)+cos(α)sin(β)……1
sin(α-β)=sin(α)cos(β)-cos(α)sin(β)……2
1式+2式,得到
sin(α+β)+sin(α-β)=2sin(α)cos(β)
1式-2式,得到
sin(α+β)-sin(α-β)=2cos(α)sin(β)
1式比2式,得到
sin(α+β)/sin(α-β)=[sin(α)cos(β)+cos(α)sin(β)]/ [sin(α)cos(β)-cos(α)sin(β)]
=[tαn(α)+tαn(β)] / [tαn(α)-tαn(β)]
我们来看两道例题,增加印象。
1.已知cos(α)=1/7,cos(α-β)=13/14,且0<β<α<π/2,求β
本题中,α-β∈(0,π/2)
sin(α)=4√3/7 sin(α-β)=3√3/14
cos(β)=cos[α-(α-β)]=cos(α)cos(α-β)+sin(α)sin(α-β)
=1/2
β=π/3
2.已知3sin2(α)+2sin2(β)=1,3sin(2α)-2sin(2β)=0,且α,β都是锐角。求α+2β
由3sin2(α)+2sin2(β)=1得到:
1-2sin2(β)=cos(2β)=3sin2(α)
由3sin(2α)-2sin(2β)=0得到:
sin(2β)=3sin(2α)/2
cos(α+2β)=cos(α)cos(2β)-sin(α)sin(2β)
=cos(α)3sin2(α)-sin(α)3sin(2α)/2
=3sin2(α)cos(α)-3cos(α)sin2(α)
=0
加之0<α+2β<270o
【高二数学推理知识点大总结】推荐阅读:
高二数学1-2推理与证明测试题10-15
高二数学必修五知识点总结09-25
高二数学重点知识点梳理06-16
高二数学教案总结09-13
高二理科数学教师工作总结07-05
高二课件数学08-21
怎样学好高二数学08-06
高二数学集体备课08-19
高二数学寒假课程09-02
高二数学文科试题11-04