热能与动力工程复习题(共12篇)
1.热能与动力工程复习题 篇一
热能与动力工程
业务培养目标
本专业培养具备热能工程、传热学、流体力学、动力机械、动力工程等方面基础知识,能在国民经济和部门,从事动力机械(如热力发动机、流体机械、水力机械)的动力工程(如热电厂工程、水电动力工程、制冷及低温工程、空调工程)的设计、制造、运行、管理、实验研究和安装、开发、营销等方面的高级工程技术人才。考虑学生在宽厚基础上的专业发展,将热能与动力工程专业分成以下四个专业方向:
(1)以热能转换与利用系统为主的热能动力工程及控制方向(含能源环境工程方向);
(2)以内燃机及其驱动系统为主的热力发动机及汽车工程方向;
(3)以电能转换为机械功为主的流体机械与制冷低温工程方向;
(4)以机械功转换为电能为主的水利水电动力工程方向。
业务培养要求
本专业学生主要学习动力工程及工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术,受到现代动力工程师的基本训练;具有进行动力机械与热工设备设计、运行、实验研究的基本能力。
毕业生应获得以下几方面的知识和能力:
1.具有较扎实的自然科学基础,较好的人文、艺术和社会科学基础及正确运用本国语言、文字的表达能力;
2.较系统地掌握本专业领域宽广的技术理论基础知识,主要包括工程力学、机械学、工程热物理、流体力学、电工与电子学、控制理论、市场经济及企业管理等基础知识;
3.获得本专业领域的工程实践训练,具有较强的计算机和外语应用能力;
4.具有本专业领域内某个专业方向所必要的专业知识,了解其科学前沿及发展趋势;
5.具有较强的自学能力、创新意识和较高的综合素质。
培养目标
本专业主要培养能源转换与利用和热力环境保护领域具有扎实的理论基础,较强的实践、适应和创新能力,较高的道德素质和文化素质的高级人才,以满足社会对该能源动力学科领域的科研、设计、教学、工程技术、经营管理等各方面的人才需求。学生应具备宽广的自然科学、人文和社会科学知识,热学、力学、电学、机械、自动控制、系统工程等宽厚理论基础、热能动力工程专业知识和实践能力,掌握计算机应用与自动控制技术方面的知识。毕业生能从事能源与动力工程及相关方面的研究、教学、开发、制造、安装、检修、策划、管理和营销等工作。也可在本专业或其它相关专业继续深造,攻读硕士、博士学位。
主干学科
动力工程与工程热物理、机械工程
主要课程
工程力学、机械设计基础、机械制图、电工与电子技术、工程热力学、流体力学、传热学、控制理论、测试技术等
主要实践性教学环节:包括军训、金工、电工、电子实习、认识实习、生产实习、社会实践、课程设计、毕业设计(论文)等,一般应安排40周以上。
主要专业实验
传热学实验、工程热力学实验、动力工程测试技术实验等
知识结构要求
工具性知识
比较系统地掌握一门外语,掌握外文科技写作知识。掌握计算机软、硬件技术的基本知识,具有在本专业与相关领域的计算机应用与开发能力;掌握通过网络获取信息的知识、方法与工具。能够进行中外文文献检索。自然科学知识
掌握高等数学、大学物理、工程化学、生命科学、环境科学等方面的知识。
学科技术基础知识
掌握工程制图、工程数学、理论力学、材料力学、机械设计基础、金属工艺学、电工学、电子技术基础、工程流体力学、工程热力学、传热学、计算机原理与应用、自动控制原理等方面的知识(对水利水电动力工程方向,工程热力学、传热学知识要求可适当降低)。
专业知识
根据本专业人才培养目标和培养规格,因专业方向的不同而有所差别。
(1)热能动力及控制工程方向(含能源环境工程方向)
主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。
(2)热力发动机及汽车工程方向
掌握内燃机(或透平机)原理、结构,设计,测试,燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。
(3)制冷低温工程与流体机械方向
掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。
(4)水利水电动力工程方向
掌握水轮机、水轮机安装检修与运行、水力机组辅助设备、水轮机调节、现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂现代测试技术方面的知识。
也就是说,本专业学生应具有如下知识和能力,并根据培养规格的不同而有所侧重:
(1)具有较扎实的自然科学基础,熟练掌握高等数学、工程数学、大学物理、工程化学等基础性课程的基本理论和应用方法;具有较好的人文、艺术和社会科学基础及正确应用本国语言、文字的表达能力。
(2)掌握一门外国语,具有较好的听、说、读、写能力,能较顺利地阅读本专业的外文书籍和资料。若外语为英语应达到国家四级以上水平(含四级)。
(3)系统地掌握本专业必需的技术基础理论,主要包括力学理论(理论力学、材料力学、流体力学),热学理论(热力学、传热学等),机械设计基本理论,电工与电子基本理论,自动控制理论,能源动力工程基础理论等。
(4)熟悉本专业领域内1~2个专业方向或有关方面的专业知识,了解其学科前沿和发展趋势。
(5)具有本专业必需的制图、计算、测试、调研、查阅文献和基本工艺、操作、运行等基本技能。
(6)具有一定计算机相关知识和较强的计算机应用能力,较熟练使用计算机工具,解决工程中的有关问题。
(7)具有较强的自学能力、分析能力和创新意识。
就业方向
毕业生可在大型企业、相关公司以及相关的研究所、设计院、高等院校和管理部门从事热能工程方面的研究与设计、产品开发、制造、试验、管理、教学等工作
修业年限四年
2.热能与动力工程复习题 篇二
1 热能与动力工程简介
热能与动力工程, 即水利水电动力工程, 该专业是有水电站动力装置专业发展而来的, 在20世纪50年代出现在我国高校中。由于新中国刚刚成立, 建立了部分专门培养该专业人才的院校, 为水患治理和经济发展培养了一批专业技术人才。随着改革开放的全面深化, 水利水电工程与热能动力专业相结合, 确切地说, 水利水电工程专业并入后者之中, 由此分成了热力发动机、热能与动力机械、制冷与低温技术和水利水电动力等不同的专业。从专业角度来看, 热能与动力工程内容庞大, 涉及电子、电力和计算机等多学科, 自动化水平高。因此, 该专业的课程设置, 应与社会发展相适应, 可满足生产的需要。
2 热能与动力发展现状
目前, 中国已成为世界最大煤炭生产国、消费国, 众所周知, 中国的能源结构以煤炭为主。现阶段, 由于工业发展的影响, 中国环境问题非常严重, 随着人们的环保意识提高, 热能与动力专业面临较大的经济、社会发展压力, 因为煤炭污染的开发和利用是环境问题的主要原因。随着经济发展的转型升级, 对能源资源, 特别是电能的需求上升, 在新形势下, 如不提高煤炭能源利用率, 环境问题将会变得更为严重, 可能成为经济社会发展的巨大障碍。同时, 中国作为世界第二大石油进口国, 对国外石油依赖性逐年上升, 所有这些均使得中国能源安全面临巨大考验。长期以来, 中国实行粗放型经济发展, 技术水平低, 能源利用率与发达国家相比, 低30~40个百分点, 差距比较大, 导致在经济发展过程中, 环境污染问题无法有效避免。因此, 在能源利用中, 推广先进节煤技术、可再生能源与新能源, 提高资源利用率, 任务繁重。中国政府虽大力倡导发展新能源技术, 投入了大量的支持资金, 但由于新能源技术研发的见效慢, 因此短时期内还无法改变现行的能源结构, 生态环境面临的压力依然比较大。通过分析可知, 中国热能与动力工业发展形势严峻, 在发展中面临巨大挑战。同时也意味着, 在未来发展中, 中国需要大量热能与动力工程专业人才, 人才的发挥空间大。
热能与动力工程的改进方向为:
1) 重热现象的有效运用。所谓的重热现象, 即多级汽轮中小部分属于上一级的损失, 但能够在后续环节通过一定的技术加以利用, 其中的重热系数值指的是理想状态下, 汽轮的焓降, 即各级理想焓降之和。众所周知, 重热现象的影响面是比较广的, 但利用不合理, 出现了较大的浪费, 同样无法提高经济效益。在利用重热现象时, 注意事项为:一般而言, 在效率较低的条件下, 重热现象才可以被利用, 因为只能回收其中小部分损耗。除此之外, 重热系统须严格控制在合理的范围之内, 并不是越大越好, 但是也不可以无限缩小。
2) 提高节流调节有效性。系统正常运行的第一级内, 通过节流调节可完成所有的进气任务。在设备工况不变的条件下, 可通过降低温度, 提高系统的实用性。不过, 由于节流损失严重, 系统的经济性通常较差。因此, 在热电厂正常运行中, 根据伏流格尔原理, 参照伏流格尔公式适用条件, 对相同流量下的各级比焓降、压力差等, 均应严格分析、推算, 进而确定各个零部件的受力情况、功率效率, 分析和判断汽轮机是否正常。在流量已知的条件下, 观察流动面积的大小变化趋势。
3 热能与动力对经济环境的影响
3.1 对环境的影响
现阶段, 中国的能源结构以石油和煤炭为主, 在相当长的一段时间内, 能源结构将维持现状, 不会有较大的改变。我们知道, 煤炭等资源直接用于火力发电, 会产生有危害的气体, 比如硫氧化物、氮氧化物等, 对环境造成影响, 造成大气污染、水污染和热污染等问题。在火力发电中, 还会产生的大量的固体废弃物, 对人们的正常生活同样会造成影响。火力发电中烟尘, 占全社会烟尘排放量的35%, 比例较大, 烟尘中微粒子是影响大气环境的重要因素之一。由于工业的发展对环境的损害, 北方近两年出现了严重的雾霾天气, 特别是北京、天津等地区, 持续时间长, 给人们的身体健康和出行造成较大危害。因此, 目前中国的环境问题已相当严重。在热能动力技术研究中, 首要关注的问题便是环境问题, 通过提高热能与动力工程技术水平, 从根本上改善环境。但如技术水平在短时间内无法提高, 则其它讨论均属空谈。
3.2 对经济发展影响
热能与动力在国民经济发展中, 发挥着举足轻重的作用, 在电力工业、钢铁、化学工业和石油工业, 交通运输行业、农业生产等领域, 大有可用。在水力发电、潮汐能发电等领域也可应用。非但如此, 热能与动力工程是经济发展与国防建设中的基础产业、支柱产业, 特别是新能源利用技术的发展, 对经济社会发展的转型升级发挥着重要的作用。
4 热能与动力工程的未来发展
从实际情况看, 热能与动力工程专业就业前景被看好, 工业的发展使其就要前景乐观, 从近年就业市场上能够看出, 该专业学生处于供不应求的局面, 占据主动。目前, 中国就业形势严峻, 高校毕业生就业压力不被看好, 一些理科学生选择热能与动力工程专业, 这就足以说明该专业就业前景好。由于热能与动力工程的专业性强, 从近年的就业市场来看, 市场上大量缺乏技术型人才, 技术人才待遇较好, 在工资、福利等方面均比其他专业高, 由于该专业在能源、环保和航空航天等领域应用普遍, 因此就业不成问题, 收入也十分可观。
相关部门的统计数据表明, 热能与动力工程专业高校毕业生, 在国内知名汽车生产厂家, 比如通用汽车、会众汽车和东风集团等, 占有较大比例, 进入知名发动机生产厂家的毕业生也较多, 主要包括潍柴动力、上海内燃机研究所与广州能源研究所等。
在新形势下, 要求高等院校适当扩招, 合理设置该专业课程, 培养和提高学生的专业技术操作能力, 为学生的就业提供坚实保障。
5 结语
现阶段, 经济增速下行压力大, 随着经济增速的回落, 高校毕业生就业压力增大。从高校毕业生实际就业情况看, 热能与动力工程专业的毕业生就业状况很客观, 出现供不应求的良好局面。在本文中, 笔者结合自身的工作实际, 从热能与动力工程专业概况, 以及其对经济社会发展的影响、发展前景等方面做了系统的分析。
摘要:热能与动力工程属于高新技术产业的范畴, 在国民经济发展中发挥着重要作用, 地位独特。随着经济社会发展的转型升级, 中国对外开放程度的加深, 经济社会发展需要大量热能与动力工程专业人才。在文本中, 笔者结合自身的工作实际, 探讨热能与动力工程专业发展这一命题。
关键词:热能,动力工程,专业发展
参考文献
[1]赵雨萌, 张伟龙.浅谈热能与动力工程专业发展[J].科技资讯, 2012.
3.热能与动力工程科技创新探析 篇三
关键词:热能与动力工程;科技创新
中图分类号:TK11 文献标识码:A 文章编号:1006-8937(2016)21-0167-02
1 热能与动力工程
从实际情况来看,热能与动力工程直接关系到电力企业的经济效益,而且在对于解决能源利用的问题有重要贡献。这一工程涉及到的学科非常广泛,而且学科相互之间的联系非常复杂和系统,因此,要科学地发展热能与动力工程,通过能量转化产生经济效益,促进经济发展。
从专业构成的角度来看,可以将热能与动力工程的相关内容划分为几个专业模块,进行合理的分析、开发和研究。这些模块分别为:以热能转换和利用为基础的热能动力及其控制工程;以内燃机及其驱动系统为基础的热力发电机和汽车工程;以电能转化为机械能为基础的流体机械和制冷低温工程;以机械功转化为电能为基础的火力火电和水利水电动力工程。
2 热能与动力工程的应用
2.1 热电厂中的应用
2.1.1 喷管调节
随着调节阀数量的不同,可以通过调节阀的最大流量是变化的。在满足负荷适应性的基础上,各种不同的汽轮机的调节和变化可以通过喷管调节,从而达到平衡,进而使汽轮机的工作效率得到提高。
在控制各类调节的数值中,单机运行和多级运行存在差异:前者能把负载控制在有限值以内,并使增加机组的速度达到合理范围;后者在保证电网频率的前提下,重组和分配负载,是新的一轮调频过程。
2.1.2 节流调节
在工作状况发生变化时,节流调节会产生一些负面影响,进而造成经济损失。负载荷度在温度变化不大时,适应性相对较高。相对而言,热能动力工程在小一些的企业生产中,这一情况较明显,因此多被用于小容量的机组。
2.2 锅炉中的应用
科学技术的进步和信息技术的应用,使得热能与动力工程可以被用在锅炉中。在使用过程中,燃烧使锅炉产生极大的热能,作为保护锅炉安全的重要措施之一,炉底的控制器可以随时监控锅炉的运行情况。
实际运行中,锅炉自身会形成一个自我保护系统,将一定的机械热能转化为其他能量,以保护自身。然而,因为一些意外,这部分转化的能量往往会烧坏锅炉。因此,对锅炉运行的管理和控制方法需要提高。
3 热能与动力工程在当前应用的问题
3.1 需要解决的能源方面的问题
我国是能源消耗的大国,每年要消费大量的石油和煤炭,而煤炭主要用于火力发电。目前,全国发电量的80%以上都是火力发电,其中又有96%是依靠燃煤。这一过程中,循环水和水汽带走了大量的余压和热能,它们被直接排放到大气中,能源因此就被浪费了。当前,我国火电厂的能源利用率大约有35%,利用率较低。因此,我国工业领域节能工作的重点,就是实现火电的节能降耗。
3.2 需要解决的环境污染方面的问题
燃煤电厂会排放二氧化硫、粉尘、氮氧化物等污染物,因此被称为“环境杀手”。燃煤电厂的数量随着电力工业的发展而增多,而且有排污量大、污染物单一、排污集中等特点,电力工业对环境的负面影响越来越大,严重干扰了附近居民的生活、工作和身体健康。因此,电力工业面临着愈发严峻的环境保护问题。
3.3 需要解决的安全方面的问题
在电站,锅炉中风机是为了压缩和运输气体,也就是实现机械能到动能的转化,在实际运行中,将气体运输到特定设备。随着机组的容量增大,转速和效率也越来越高,因此,对风机的安全可靠性的要求也越来越高。
然而在实际情况中,风机往往要运行很长时间,而且没有专业人员对其进行定期养护,因此,锅炉风机常常发生发生烧坏电机、轴承损坏、窜轴、叶轮飞车等事故,不但影响了设备的正常运行,还给电厂造成巨大的经济损失,甚至对人身安全造成威胁。
4 热能与动力工程的科技创新
4.1 在热电厂方面的发展
4.1.1 科学合理利用重热现象
在多级汽轮机内,上一级损失的一部分热量,在之后的各级中可以得到利用,这一现象就被称为重热现象。在热电厂运行过程中,重热现象是不可避免的。利用重热现象可以使整个设备的效率大于各级的平均效率,在一定的数值范围内,重热现象可以减少一部分能量的损失,即可以提高能源的利用率,在这一范围内,数值自然越大越好。然而,重热现象是以降低各级的效率为前提的,所以数值并不是越大越好,也就是不能超过一定范围。
因此,必须根据热电厂的实际运行情况来确定重热系数(即重热数值),既保证各级的效率,又尽可能地减少能量损耗,通过科学的计算,合理利用重热现象,使重热现象的效果达到最大。
4.1.2 一次调频和二次调频
作为一种被动的调频措施,一次调频调节的是发动机的转速,只能大体控制外界数值的变化,而不能比较精确地调节。但是,将电网频率保持在一定范围的数值上,就能通过智能调节,预先对设定二次调频的方程式,对机组进行重新分配和组合。它比一次调频更为精确和可靠,能够有效地控制数据。
4.1.3 降低湿气损失
在热电厂的实际运行过程中,不可避免地会产生湿气,当湿气过多,会给热电厂的运行过程造成许多潜在的威胁。例如,随着温度的变化, 湿气会凝结成小水珠,这些水珠可能影响汽流的流速,造成不必要的动能损耗。
此外,若蒸汽的温度过低,湿气同样会加重。针对这种现象,有关人员可以安装祛湿装置,以便减少湿气,进而降低湿气所带来的损失及其对整体机组的影响力。要注意的是,一定要定期检查和更换祛湿装置,保证这一过程的效果,也避免一些意外情况。不过,会增加成本支出,因此有关人员可以在此过程中增加热循环,以此提高热电厂在运行过程中的经济适用性。
4.2 在锅炉方面的发展
4.2.1 锅炉燃烧控制技术
设备运行时,要对燃烧进行控制,这中间的关键就是调节能量。以前,我国的大多数锅炉是通过人工来添加燃料,从而提供热能。尽管这种方式有利于设备的稳定运行,却需要大量的人力资源,也难以控制锅炉在燃烧过程中的热量。科技的进步带来了自动化、智能化模式的全面普及,它们被应用于工业生产。
主要的燃烧方式有两种。
第一种是持续控制体系,它的组成是燃烧的控制器及各种气体的分析装置等,数值设定的依据是热电偶的检测,之后,计算机会算出偏差。这一数值比较精确,在设备的燃烧方面可以实现合理的控制。但与此同时,多次的实践也证明,在运行初期,它的结构在对温度进行控制时还存在一定的偏差,因此,有关人员还需对其做进一步的研究,以提高数值的准确性。
第二种是交叉式燃烧控制系统。锅炉的构成元件是燃烧的控制器、流量阀、烧嘴、热电偶等,在它进行温度的转换时,必须通过计算,观察结果是否符合设定,从而控制燃烧。与上一种方法相比,它更具优势,不仅节省设备,在温度的控制上也比较精确,因此在工业生产中,这一方法已经得到了广泛的应用。
4.2.2 仿真锅炉风机翼型叶片
锅炉内部的风机结构复杂且需要较精密的运行,因此,想要对它进行测量是一项比较困难的工作。到目前为止,还没有一套完整且科学的体系,可以实现锅炉叶轮相关制造和运作发展的完善。想要获取一些准确数值,一个有效的方法是模拟实验,以便有效地评估机械内部的气体流动。实验主要是模拟不同方式的空气吹入风机时的流动分离,再用电脑网络来模拟设定相应的数值。这项实验是为了便于分析不同速度得到的矢量图,对多组数据进行比较后,就可以确定出锅炉风机的翼型边界层攻角和分离之间的关系,进而施行下一步的研究。
上述的几种方法和应用的前提是科学技术的发展。因为科学的发展,技术的可靠性、安全性和精确性才能不断地得到改进和提高,有了更多优良的设计,可以取代传统的和缺陷较多的设备。
5 热能与动力工程中科技创新的影响
对热能与动力工程进行合适的科技创新,不单单符合经济发展的要求,也对人们的生活质量和生活品质有着重要的影响。
5.1 热能与动力工程科技创新对经济的影响
对经济发展来说,热能与动力工程的科技创新极大的使能源的利用率得以提高,并在解决我国乃至全球各个国家和地区对于能源日益增长的需求方面有不可替代的作用,为经济的发展奠定了能源基础。
同时,科技创新提高了设备的安全性、可靠性,减少了意外的发生,也就避免了相当一部分的经济损失。
5.2 热能与动力工程科技创新对生活的影响
如今,环境保护已经成为了人们的共识,经济的发展必须将其列入考虑范围。而热能与动力工程的科技创新就很好的结合了绿色生产的理念。能源利用率的提高和排放污染物的减少是相关的,当企业排放的污染物减少,大气和水资源的质量也相应得到了改善,有助于提高人们的生活质量与品质。
同时,它也使人们不知不觉地接受了“绿色生产、绿色生活”的理念。
6 结 语
热能与动力工程在工业生产中有着极为重要的应用,科技创新促进了这一工程的应用,并大大改善了传统方法和设备的不良影响,提高了这一工程的价值。
然而,仅仅局限于现有的成果也是不合适的,随着科技的进步,会有更多先进的技术、方法来改进现有的设备,不断提高热能和动力工程对经济、环境的积极作用。
参考文献:
4.热能与动力工程简介 篇四
热能与动力工程培养具备热能工程、传热学、流体力学、动力机械、动力工程等方面基础知识,能在国民经济和部门,从事动力机械(如热力发动机、流体机械、水力机械)的动力工程(如热电厂工程、水电动力工程、制冷及低温工程、空调工程)的设计、制造、运行、管理、实验研究和安装、开发、营销等方面的高级工程技术人才。
目录
业务培养目标
业务培养要求
主干学科
主要课程
主要专业实验
知识结构要求
就业方向
修业年限
开设院校
业务培养目标
业务培养要求
主干学科
主要课程
主要专业实验
知识结构要求
就业方向
修业年限
开设院校
展开
编辑本段业务培养目标
考虑学生在宽厚基础上的专业发展,将热能与动力工程专业分成以下四个专业方向:
(1)以热能转换与利用系统为主的热能动力工程及控制方向(含能源环境工程、新能源开发和研究方向);
(2)以内燃机及其驱动系统为主的热力发动机及汽车工程方向;
(3)以电能转换为机械功为主的流体机械与制冷低温工程方向;
(4)以机械功转换为电能为主的火力火电和水利水电动力工程方向。
即工程热物理过程及其自动控制、动力机械及其自动化、流体机械及其自动控制、电厂热能工程及其自动化四个二级学科。
编辑本段业务培养要求
本专业学生主要学习动力工程及工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术,受到现代动力工程师的基本训练;具有进行动力机械与热工设备设计、运行、实验研究的基本能力。
毕业生应获得以下几方面的知识和能力:1.具有较扎实的自然科学基础,较好的人文、艺术和社会科学基础及正确运用本国语言、文字的表达能力;
2.较系统地掌握本专业领域宽广的技术理论基础知识,主要包括工程力学、机械学、工程热物理、流体力学、电工与电子学、控制理论、市场经济及企业管理等基础知识;3.获得本专业领域的工程实践训练,具有较强的计算机和外语应用能力;
4.具有本专业领域内某个专业方向所必要的专业知识,了解其科学前沿及发展趋势;5.具有较强的自学能力、创新意识和较高的综合素质。培养目标
本专业主要培养能源转换与利用和热力环境保护领域具有扎实的理论基础,较强的实践、适应和创新能力,较高的道德素质和文化素质的高级人才,以满足社会对该能源动力学科领域的科研、设计、教学、工程技术、经营管理等各方面的人才需求。学生应具备宽广的自然科学、人文和社会科学知识,热学、力学、电学、机械、自动控制、系统工程等宽厚理论基础、热能动力工程专业知识和实践能力,掌握计算机应用与自动控制技术方面的知识。毕业生能从事能源与动力工程及相关方面的研究、教学、开发、制造、安装、检修、策划、管理和营销等工作。也可在本专业或其它相关专业继续深造,攻读硕士、博士学位。
编辑本段主干学科
动力工程与工程热物理、机械工程
编辑本段主要课程
工程力学、机械设计基础、机械制图、电工与电子技术、工程热力学、流体力学、传热学、控制理论、测试技术等
主要实践性教学环节:包括军训、金工、电工、电子实习、认识实习、生产实习、社会实践、课程设计、毕业设计(论文)等,一般应安排40周以上。授予学位:工学学士 硕士
编辑本段主要专业实验
传热学实验、工程热力学实验、动力工程测试技术实验等
编辑本段知识结构要求
工具性知识
比较系统地掌握一门外语,掌握外文科技写作知识。掌握计算机软、硬件技术的基本知识,具有在本专业与相关领域的计算机应用与开发能力;掌握通过网络获取信息的知识、方法与工具。能够进行中外文文献检索。自然科学知识
掌握高等数学、大学物理、工程化学、生命科学、环境科学等方面的知识。学科技术基础知识
掌握工程制图、工程数学、理论力学、材料力学、机械设计基础、金属工艺学、电工学、电子技术基础、工程流体力学、工程热力学、传热学、计算机原理与应用、自动控制原理等方面的知识(对水利水电动力工程方向,工程热力学、传热学知识要求可适当降低)。专业知识
根据本专业人才培养目标和培养规格,因专业方向的不同而有所差别。(1)热能动力及控制工程方向(含能源环境工程方向)
主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。(2)热力发动机及汽车工程方向
掌握内燃机(或透平机)原理、结构、设计、测试、燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。
(3)制冷低温工程与流体机械方向掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。(4)水利水电动力工程方向掌握水轮机、水轮机安装检修与运行、水力机组辅助设备、水轮机调节、现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂现代测试技术方面的知识。
也就是说,本专业学生应具有如下知识和能力,并根据培养规格的不同而有所侧重:(1)具有较扎实的自然科学基础,熟练掌握高等数学、工程数学、大学物理、工程化学等基础性课程的基本理论和应用方法;具有较好的人文、艺术和社会科学基础及正确应用本国语言、文字的表达能力。
(2)掌握一门外国语,具有较好的听、说、读、写能力,能较顺利地阅读本专业的外文书籍和资料。若外语为英语应达到国家四级以上水平(含四级)。
(3)系统地掌握本专业必需的技术基础理论,主要包括力学理论(理论力学、材料力学、流体力学),热学理论(热力学、传热学等),机械设计基本理论,电工与电子基本理论,自动控制理论,能源动力工程基础理论等。
(4)熟悉本专业领域内1~2个专业方向或有关方面的专业知识,了解其学科前沿和发展趋势。
(5)具有本专业必需的制图、计算、测试、调研、查阅文献和基本工艺、操作、运行等基本技能。
(6)具有一定计算机相关知识和较强的计算机应用能力,较熟练使用计算机工具,解决工程中的有关问题。
(7)具有较强的自学能力、分析能力和创新意识。
编辑本段就业方向
毕业生可在大型企业、相关公司以及相关的研究所、设计院、高等院校和管理部门从事热能工程方面的研究与设计、产品开发、制造、试验、管理、教学等工作。主要就业方向为发电厂、内燃机厂、汽车制造厂、物流调控、锅炉厂、大型机械厂、造船厂等等
编辑本段修业年限
四年
编辑本段开设院校
青岛科技大学 西北大学 湖南大学 天津大学
大连海事大学 北京交通大学 郑州大学
哈尔滨工业大学 河北工业大学 合肥工业大学 同济大学 天津商业大学 西南财经大学 南昌大学 南京师范大学
长安大学 武汉大学 河北科技大学 德州学院 新疆大学
天津城市建设学院 中山大学 东南大学 河海大学
北京航空航天大学 西南交通大学
中国科学技术大学 安徽工业大学 南京航空航天大学 天津理工大学 广西大学 华南理工大学 中国矿业大学 苏州大学 中南大学 华中科技大学 大连理工大学 南京工程学院 江苏大学 重庆理工大学 沈阳理工大学 西华大学 中北大学 上海海事大学 陕西理工学院
四川大学 西北工业大学 南京理工大学 重庆大学 哈尔滨工程大学 武汉理工大学 太原理工大学 常州大学 南京工业大学 辽宁科技大学 中国计量学院 太原科技大学
中国石油大学(华
吉林大学
东)上海交通大学 华东理工大学 北京理工大学 江苏科技大学 扬州大学
山东大学 东北大学 北京科技大学 南京林业大学 景德镇陶瓷学院 沈阳化工大学 中国民航大学 广东海洋大学 西安交通大学 西藏大学 南华大学
沈阳航空航天大学 大连海洋大学
山西大学 广东工业大学
辽宁石油化工大学 沈阳农业大学
广东石油化工学院 上海理工大学 西北农林科技大学 昆明理工大学
湘潭大学
上海工程技术大学 上海海洋大学 西安理工大学 长沙理工大学
上海应用技术学院 上海电力学院
东北电力大学 长江大学 郑州轻工业学院 兰州交通大学 内蒙古工业大学 山东科技大学 中国农业大学
长春工程学院 武汉工程大学 河南科技大学 青岛大学 青岛理工大学 山东理工大学 中国政法大学
吉林建筑工程学院 吉林化工学院 佳木斯大学 河南农业大学 中原工学院 内蒙古科技大学 山东建筑大学 山东农业大学 北京石油化工学院
哈尔滨理工大学 河南理工大学 兰州理工大学 北京工业大学 山东交通学院 烟台大学 华北电力大学(保定)河北工程大学
湖北汽车工业学院 哈尔滨商业大学
中南林业科技大学 邵阳学院
华北水利水电学院 集美大学
河北联合大学(原
河北理工大学,华河北农业大学 北煤炭医学院)
河北建筑工程学院 辽宁工程技术大学 南昌工程学院 贵州大学 重庆科技学院
江西蓝天学院 仲恺农业工程学院 重庆交通大学
燕山大学
华北电力大学(北中国石油大学(北京)京)平顶山学院
运城学院
中国矿业大学(北
武汉科技大学
京)沈阳工程学院
辽宁科技学院
华中科技大学文华中国矿业大学徐海河南理工大学万方
山西大学工程学院
学院 学院 科技。..南京林业大学南方南京师范大学泰州哈尔滨工业大学
江苏大学京江学院
学院 学院(威海)河南城建学院
河北科技大学理工华北电力大学科技河北联合大学轻工
学院 学院 学院
太原理工大学现代
科技学院
河北工业大学城市河北工程大学科信
宁夏理工学院
学院 学院
辽宁石油化工大学兰州理工大学技术北京理工大学珠海长沙理工大学城南顺华。..工程。..学院 学院 仲恺农业工程学院
东莞理工学院城市南京工业大学浦江西安交通大学城市
5.热能与动力工程专业简历 篇五
张xx
两年以上工作经验|男|28岁(1988年2月16日)
居住地:沈阳
电 话:183********(手机)
E-mail:zhangshen@51job.com
最近工作 [1年7个月]
公 司:XX有限公司
行 业:石油/化工/矿产/地质
职 位:热工设计工程师
最高学历
学 历:本科
专 业:热能与动力工程
学 校:沈阳化工大学
自我评价
本人善良、自信、自律、上进心强,有较强的组织、管理能力。工作认真负责,勇于承担任务与责任,能够快速接受新知识和快速适应新环境,具有良好的团队合作精神以较好的个人亲和力。良好的综合素质,具备复合型人才的条件。
求职意向
到岗时间:一个月之内
工作性质:全职
希望行业:石油/化工/矿产/地质
目标地点:沈阳
期望月薪:面议/月
目标职能:热工设计工程师
工作经验
/5 ― /12:XX有限公司[1年7个月]
所属行业:石油/化工/矿产/地质
工艺室 热工设计工程师
1. 柴油机零部件的返工返修工艺编写与现场技术指导;
2. 柴油机三大件数控加工程序编制;
3. 全面管理、主持机加工工艺组的日常工作开展。
/7 ― 2013/2:XX有限公司[7个月]
所属行业:机械/设备/重工
冷加工厂 产品工艺/制程工程师
1. 完成了YC6M、YC6L气缸体、气缸盖,6J缸盖从新品试制到批量生产调试工作过程;
2. 刀具方案选型、优化;
3. 新材料、新技术的工艺应用;
4. 生产线效率提升、生产成本的控制。
教育经历
/9― 2012/6 沈阳化工大学 热能与动力工程 本科
证 书
/12 大学英语四级
语言能力
英 语(良好) 听说(良好),读写(良好)
6.热能与动力工程个人简历 篇六
出生年月 1987年7月 身 高 172cm
籍 贯 淄博市 居住地 淄博市淄川
民 族 汉 政治面貌 团员
毕业院校 山东省电力学校 专 业 热能与动力工程
求职类型 应届毕业生
联系方式 移动电话:
家庭电话:
E_Mail:
QQ/MSN:
教育经历
1994.6―.6 就读于淄川翟家崖小学
1999.6―.6 就读于淄川区张庄中学
2003.6―.6 就读于淄博市第四中学
2006.6―.6 就读于山东剩电力学校
实践经历 利用寒暑假期时间打工,积累了丰富的社会经验,
热能与动力工程个人简历
,
技能水平熟练掌握电厂设备的运行
熟练运用计算机
熟练进行英语对话
熟练掌握钳工技能
熟练掌握金工技能
自我评价 本人吃苦耐劳,脚踏实地,诚实守信,时间观念强,有较强的分析判断能力
7.热能与动力工程复习题 篇七
一、热能与动力工程在锅炉中应用情况概述
热能与动力工程主要是研究热能与动能两种能量关系进行转化的问题,对该学科的研究能够更好的实现动能和热能的转化,满足我国经济发展和社会进步所需的基本能源需求,缓解当前的能源紧张问题。而锅炉则是一种能量转换设备,在工业生产、日常生活等众多领域都有着广泛的应用,其设计和生产过程中都不可避免的需要运用热能与动力工程的相关理论知识。近年来,随着科学技术的发展,热能与动力工程在锅炉燃烧领域广泛应用,让锅炉在能量转换过程中能够发挥更大的作用,大大降低了在转换过程中造成的能量浪费,提高了热能的利用率,为我国生产力的稳步增长奠定了良好的基础。
二、热能与动力工程在锅炉应用中存在的问题
热能与动力工程在锅炉行业的广泛应用,的确为锅炉行业的发展奠定了良好的基础,大大提高了能源的利用率,锅炉行业也已经具备了较完整的发展体系,对于国家经济发展、社会进步起到了重要的作用。但需要注意的是,其应用过程中仍然存在着一些问题,严重制约着锅炉行业的发展。
锅炉风机在锅炉生产过程中扮演着至关重要的角色,风机运转能力直接影响着电能和动能转化效果,能够保证气体顺利的运输到锅炉内容,从而进行接下来的能量转换过程。但是,随着经济发展对能源的需求水平不断提高,许多锅炉生产企业为了扩大能源生产率,从而获取更大的经济利润,往往会让锅炉超负荷运作,这对于风机的正常使用造成了巨大的影响,许多风机由于长时间的运转而出现不同程度的损坏,这就导致气体无法正常进入到锅炉内部,能量转换效率大大降低,造成了大量的能源浪费,严重时,甚至会直接导致锅炉烧毁、无法运作的情况。因此,在使用锅炉进行能量转换时,必须要确保风机处于正常的工作状态,让热能与动力工程的相关理论知识能够与锅炉生产充分适用,实现锅炉设计的进步。尤其是因为锅炉内部叶轮机械的复杂结构,导致我国目前还没有掌握有效措施来准确测量锅炉温度,许多不确定因素依然困扰着工作人员,而根据热能与动力工程设计出来的相关软件却能够多角度的测定流入风机叶片的燃料速度,以此创建数值模拟的二位模型,从而完成有效模拟。
三、热能与动力工程在锅炉中的应用创新
(一)锅炉燃烧控制技术方面的创新
控制锅炉燃烧主要是通过调节能量转换来实现的。我国传统的锅炉填充燃料主要是依靠人力实现,虽然这种填充方式的效率比较低,但却能够保证锅炉燃烧的正常运行,对燃烧控制技术的要求也相对较低。但随着生产力的发展,这种传统的人力填充方式已经无法满足更高的能量转换要求,因此,大多数的企业已经逐步实现了自动化填充,而连续控制系统则成为锅炉主要的燃烧方式。连续控制系统主要是由两部分构成,一部分是对气体的分析器,另一部分就是燃烧控制器,该系统能够较为精准的计算出输出数据,同时,还能够对锅炉燃烧的具体情况进行有效控制,保证锅炉能够在正常状态下稳定运转。
在锅炉燃烧方式方面,近年来也出现了多种新的发展。第一,层燃炉燃烧能够确保燃烧层的热量供给,确保燃烧的稳定。第二,室燃炉燃烧能够将燃料和气体一起运输到锅炉内进行燃烧、流动。第三,旋风炉燃烧是介于前两种燃烧方式的一种燃烧,它与室燃炉不同的是,它具有一层运动着的燃料层,只不过这层燃料层极为轻薄,与层燃炉厚重的燃料层不同,同时,旋风炉燃烧往往主要在炉内进行。第四,沸腾炉燃烧能够确保燃料与气体的充分接触,燃料能够较长时间停留在沸腾层,从而保证燃烧质量,比较适合燃烧一些质量较差的燃料。这四种锅炉燃烧方式都是目前应用较为广泛的燃烧方式,但是由于沸腾炉燃烧是一种相对更具有发展前景的新技术,因此,目前各国锅炉生产行业往往更关注沸腾炉的研究和改进工作。
(二)锅炉风机叶片的创新
正如第二部分提到的,风机对于锅炉的运转具有重要作用,因此,风机的发展创新能够有效推动锅炉的发展,确保锅炉的正常运转,提高能量的利用率,降低能源的消耗水平。但是锅炉风机的结构较为复杂,有着严密的运转体系,因此,在实际测量过程中,难免会出现一些问题影响测量结果的准确性,这对于实际测量工作造成了巨大的影响。面对这种情况,要想提高风机测量的准确性,就必须通过模拟实验的方式对气体出入风机的多重可能情况进行分析,充分预估各种可能情况,从而实现对风机的测量评估。在得出有效数据之后,还需要对这些数据进行计算机处理,将测量的不同数据进行综合分析、细致比较,从而最终确定锅炉风机翼型边界层分离及攻角之间的关系。
四、结语
总而言之,随着社会经济的发展和人民生活水平的提高,热能与动力工程的研究热度将会持续升高,而作为与生产、生活有着密切联系的锅炉行业,热能与动力工程的应用更有着至关重要的影响,我们必须深入热能与动力工程的技术应用之中,对于锅炉燃烧控制方式、燃烧方式以及风机测量等问题进行综合研究,确保能够不断提升应用技术,实现热能与动力工程在锅炉应用中的发展,从而推动我国锅炉行业的进步,为我国进一步的发展奠定良好的能源基础。
摘要:热能与动力工程是一项专业性较强、操作复杂的学科工程,在许多领域都有着较为普遍的应用,尤其是在锅炉燃烧方面,热能与动力工程的应用更是起到了重要的影响。但近来年,热能与动力工程在为锅炉燃烧行业提高效率、降低能耗的同时,也出现了一些应用问题,严重影响了锅炉燃烧行业的发展。因此,本文将针对热能与动力工程在锅炉燃烧方面的应用问题进行具体分析,并提出有效的改进意见。
关键词:热能与动力工程,锅炉,应用分析
参考文献
[1]刘兆明.刍议热能与动力工程在锅炉中应用问题的创新[J].科技创新导报,2015(30).
[2]庄廷勇,张春雨.热能与动力工程在锅炉应用中的问题分析[J].科技创新与应用,2016(08).
8.热能与动力工程复习题 篇八
关键词:热能与动力工程;热电厂;应用
引言
热电厂使用的汽轮机组在运转过程中会产生巨大的热能与动力,如果对其进行有效利用会产生很高价值。这些热能与动力可以作为动力能源,在一定程度上能够有效的节约热电厂的成本投入。当然这对热电厂来说既是机遇也是挑战,热电厂需要利用“热电联产”、“热动联产”、“动电联产”等相关技术,此类技术在不久的将来会广泛的应用于我国各大热电企业,这将为我国的热电企业带来一次重要的技术和设备变革,对我国未来的技术革新产生巨大的影响。
1降低热能损耗的方法
在目前的大多数热电厂中,热能损耗是一个极其重要的损耗形式。在热电厂进行发电的过程中,热电设备会产生大量的热能,如果能够采取措施将这些热能加以回收利用,就能够在很大程度上降低热电厂的生产成本,还可以提高经济效益,一举两得。目前,国内的热电厂通常情况下会拥有多级汽轮机,每一级汽轮机都会在运转过程中损失大量的热功,这些损失的热功可以加以回收利用,转换成热能并重新被下一级汽轮机吸收,以此来提高汽轮机进汽焓值,这样能够使各级汽轮机理想状态的焓降值之和大于总压降范围内的焓降数值总和,这种现象被称为重热现象。这里涉及到一个名词:重热系数,重热系数是指在热电厂机器在每次运行过程中,产生的热能的总量,除以热电厂整体运行过程中产生的热量所得到的数值。众所周知,单次热能利用的效率要比各级热能的利用效率低得多,这就是节能降耗的关键。根据上述理论,重热系数值与回收率是正比的关系。不过在一般情况下,是不必过高的追求重热系数的,只要能使部分的热量得到重复利用就可以,重热系数可以控制在4%~8%的范围内。热电厂可以结合实际情况确定自己的重热系数值,在能够保证正常发电的基础上,可以更加科学合理地利用热能动力能,实现效益的最大化。要想降低热能的损耗,提高能源的利用效率,就需要重复利用热能以提高单次运行的利用率。这也就是说,需要合理的控制重热系数,以此来提高热能的利用效率,并增强操作人员对机组的熟悉程度。
2科学确定调配
在热电厂并网运行的过程中,如果热电厂的汽轮机组的电网频率发生变化,就需要依据电器设备的状态调整负荷,保持电网周波的过程就被称之为“调频”。调频有一个显著的特点就是需要比较快的频率。在文章中,筆者根据具体的实例进行分析调配与工况的作用。在许多热电厂中背压式汽轮机的应用比较广泛,但是为了提高机器的效率,必须做出相应的技术改造。安装低压凝汽式汽轮机之后,背压式汽轮机在运行时排出的气体便供低压凝气汽轮机使用,两者相互结合,便可以实现双重发电的功能。汽轮机组在日常运行的过程中,值班人员可以通过对机组频率的适当调整,来对机组进行控制。
3降低调压调节的损失
调压调节的优点与缺点并存,优点是在热电厂发电机组的运行过程中增加其可靠性以及负荷的适应性,一方面增加汽轮机组的经济效益,另一方面,创造了有利的条件来运用动力工程及热能;缺点就是,经济性不够明显,尤其是在高负荷区域内的滑压调节显得尤为突出。热电厂中都会具有调压调节的损失,这说明,热能和动力工程在运行过程中所产生的的损失并非只系统故障或人为操作的原因,很大程度上还是汽轮机组在运行机理方面存在的问题。大机组蒸汽在动叶栅内做完功之后,机械能会进行功力转换,同时也会产生鼓风损失、蒸汽余速损耗、斥气损失等。为降低热能和动力工程方面的损失,需要积极开展在热电厂生产过程中可调压调节损失方面相关技术的研究,通过改进调压调节的工艺技术,降低此类损失,使用更加先进的新产品和新技术,更加明显的提高使热电厂热能与动力工程的使用效率。
4降低湿气损失的方法
在热电厂的生产过程中,湿气的损失也是很重要一方面,如何采取措施降低湿气的损失,对于提高热电厂热能和动力工程的应用水平有着非常重要的现实意义,因此也成为了现在业内研究的热点问题之一。众所周知,动叶进气变化受湿气的危害比较大,尤其是叶顶背弧位置受湿气的冲蚀严重。经验告诉我们,热电厂产生湿气主要有两个原因:第一,湿蒸汽在热电厂生产过程中,发生膨胀,遇冷便会凝结成水珠,造成湿气的损失;第二,蒸汽在流动过程中会受到凝结水珠的牵制,消耗了大量的湿气。如果蒸汽的温度不够高,那么就会造成蒸汽动能的大量流失。在热电厂实际生产的过程中,轴流式汽轮机是提高热能和动力工程利用效率的绝佳选择,其原理是:从汽轮机组的一端导入高压蒸汽,再从汽轮机组另一端排出。在高压蒸汽的导入与排除的过程中会在汽轮机中产生足够的指向力,大大降低了热电厂的能耗,同时也可以大幅度提高热能和动力工程的利用效率。
5节流调节效果
热电厂在生产过程中通常在第一级就能够完成全周的进汽工作,所以说它在调节过程中是没有级别限制的。若工况出现变化,一般各级的温度都会有所降低,并且在负荷适应性上表现十分突出。节流调节比较适合基本负荷较大或发电机组容量较小的情况,但是由于节流方面的损失而缺乏经济性。在温度变化上各级的差距基本上不会有太大的差距,对负荷具有不错的适应性。发电厂在实际的应用中,通常会用弗留格尔公式并结合实际情况对各级压差及焓降值的变化进行推算,生产中热能和动力工程利用率会有显著的提高,同时技术人员也能够准确确定电力机组零部件的使用情况,从而能够实时监控汽轮机组流通状况。该公式在热电厂汽轮机组中的应用非常广泛,这不仅在汽轮机组内实现气流的有效调节有着重要作用,同时也提供了热电厂应用热能与动力工程等方面的相关技术的有利条件。
6热电厂机器的调频方式
(一)当两组机组在电网中同时作业是,由于外界环境的影响,其工况很容易发生变化,造成电频的波动,但是机器自身的的速冻控制装置可以根据实际情况进行相应调整,确保了机器能够安全稳定的运行。这就是单次调频的工作过程,这一过程的主要特征就是响应速度比较快,虽然两个机组拥有不同的响应尺度,但是在实际运行过程中产生的影响可以忽略不计。
(二)电网在实际工作过程中,往往会因为负荷而产生比较强的波动,如果单次调频不能将其恢复到常规的装填,就需要进行二次调频来进行控制,也就是所谓的“两次调频”。两次调频有多种方式可供选择,但在实际操作过程中主要有手动调频和自动调频两种方式。手动调频是指,在热電厂运行过程中,技术人员需要根据生产装置的变化即时对机器的运行状态进行相应调整,保证机器稳定性,此法往往由于机器本身存在的缺陷,响应速度通常很慢,而且,如果工作量太大,根本无法实现调频的目的,从另外一个方面来讲,对于大于24h维护时间的超长维护,技术人员很难达到预期的目的。因此,手动调频有很大的弊端,使用之前必须对调频工作的时间进行预测,判断是否可以采用此种方式。
另一种调频方式是自动调频方式,自动调频方式是指通过自动控制技术来实现调频,可以采取在电气设备与控制系统中安装自动调节设备的方式,来解决运行过程中的存在频率波动问题,有效的缩小复读控制的范围,从而提高整体的运行效率。
7结束语
我国已经进入到技术转型升级的关键时期,经济的发展日新月异,热电厂的管理不断升级,技术革新的周期也持续的缩短。在世界发展的浪潮中,能源危机日益加剧,人们对于热能与动力工程在热电厂的应用也在投入更多的研究。热电厂采用热能与动力工程方面的技术,不仅能够提高资源的利用效率,同时也能够节约成本,提高利润,在不久的将来,此类技术必将广泛的应用于各个方面中。新的技术一定会对工程的应用产生巨大的影响,具有十分重要的实践意义,必将促进我国发电企业技术的变革。
参考文献:
[1]于光佐,论热电厂中热能与动力工程的有效运用[J],科技创新导报,2012(10):210.
[2]王琮璞,背压机组热电厂建设项目水资源论证取用水合理性分析[J],科技创新导报,2010(6):124.
9.热能与动力工程认识实习报告 篇九
实习目的:初步认识、了解热能与动力工程专业,为以后的专业学习打好基础。实习内容:从8月22号,我们开始了为期两周的认识实习。实习中主要参观了热力公司、锅炉制造、换热站、热电厂。在参观认识实习中。我们主要了解锅炉的构造,各部件的作用,以及运行方式;换热站的工作原理;热电厂系统工作流程,工作特点等。
专业认识
一、锅炉
锅炉设备是重要的能量转换设备之一。它用以生产热水或蒸汽的热能主要来自燃料的化学能。随着新能源的开发,取自原子核能、地热能、太阳能以及工矿企业的各种余热的锅炉也正在日益增多。
1、锅炉可由锅炉本体和辅助设备两大类。
锅炉本体是锅炉的主体,主要包括锅筒汽锅、炉子、蒸汽过热器、省煤器、空气预热器和炉墙构架等。辅助设备是为了维持锅炉的正常运行而设置的,辅助设备包括通风设备、运煤、除灰渣设备、制粉设备(煤粉燃烧锅炉)、给水设备、水处理设备,以及烟气除尘、脱硫和脱硝设备以及仪表和控制等设备等,它们分别由相应的管路或机械、电子装置与锅炉本体相连接,构成各自的工作系统。
2、锅炉主要部件及作用
(1)炉膛:其作用是保证燃料燃尽,并使出口烟气温度达到对流受热面能安全工作的温度。
(2)汽锅:它由布置在炉膛四周的水冷壁、横置的上下锅筒以及连接其间的对流管束构成,起着热交换器的作用。通过汽锅受热面,锅内的水被高温烟气加热,进而沸腾汽化而产生具有一定压力和温度的蒸汽。
(3)炉子:由炉膛、炉排和炉排下的风室组成。燃料在其中燃烧放热,并生成高温烟气。
(4)燃烧其它设备:将燃料和燃烧所需空气送入炉膛,并使燃料着火稳定、燃烧良好。
(5)水冷壁:这是锅炉的主要辐射受热面,吸收炉膛辐射热加热工质,并用以保护炉墙。后水冷壁管的拉稀部分称为凝渣管用以防止过热器结渣。
(6)过热器:将饱和蒸汽加热到额定过热蒸汽温度。生产饱和蒸汽的蒸汽锅炉和热水锅炉无过热器。
(7)省煤器:它实际上是一个给水预热器。利用锅炉尾部烟气的热量加热给水,以降低排烟温度,节约燃料。
(8)空气预热器:加热燃烧所用的空气,以加强着火和燃烧;吸收烟气余热,降低排烟温度,提高锅炉效率;为煤粉锅炉制粉系统提供干燥剂。
(9)炉墙:这是锅炉的保护外壳,起密封和保温作用。小型锅炉中的重型炉墙也可起支承锅炉部件的作用。
(10)构架:支承和固定锅炉各部件,并保持其相对位置。
省煤器和空气预热器也是锅炉的辅助受热面,因设置于尾部烟道里,故又名尾部受热面。可见,在锅炉本体中,除了汽锅和炉子这两个主要的组成部分外,其他辅助受热面都可根据实际需要而选择增设。如工业锅炉一般较少设置蒸汽过热器,而省煤器已是一一种能够作为节能装置被普遍装设的尾部受热面。
3、锅炉的辅助设备及其作用
(1)燃料供应设备:用于贮存和运输燃料。
(2)磨煤及制粉设备:对于煤粉锅炉,需要将煤磨制成煤粉,并输入燃用煤粉的锅炉燃烧设备中进行燃烧。
(3)送风设备:由鼓风机送空气送入空气预热器,加热后输往炉膛及磨煤机。
(4)引风设备:由引风机和烟囱将锅炉排出的烟气送往大气。
(5)给水设备:水处理设备是用以除去水中杂质,保证给水品质而设置的。经处理的锅炉给水,借助给水泵提高压力后流经省煤器送入锅筒。
(6)除灰、除渣设备:在烟道尾部装除尘器或烟气脱硫装置,将灰渣并运走从锅炉和烟气中除去。改善环境和减少烟尘污染。
(7)汽、水管道:为了供应锅炉给水、输配蒸汽和排放污水,敷设由各种汽水、管道,如给水管、主蒸汽管和排污管等。
(8)自动控制设备:自动检测、程序控制、自动保护和自动调节,科学地监控锅炉运行。
二、换热站
热力站按供热形式分直供站和间供站,前者是电厂直接供用户,温度高,控制难,浪费热能,是最初电厂余热供热的产物。后来开始收费,才有了热力公司。随着商品经济发展,热力公司为提高供热质量,才有了换热站,这属于集中供热。还有锅炉供热,省掉电厂环节,但是效率低,污染大。集中供热是发展方向,换热站为主。
1、主要设备
换热器,循环水泵,一二次线除污器,补水泵,集水箱,计量表,控制阀门等。
(1)换热器:是将热流体的部分热量传递给冷流体的设备,又称热交换器。使用较广泛的是板式换热器,其主体结构由换热板片以及板间的胶条组成。板与板之间形成了网行流道,热水和冷水分别流入各自流道,形成逆流,并通过每个板片进行热量交换。
(2)循环水泵:为凝汽器提供循环冷却水的水泵。其作用是向汽轮机或凝汽器供给冷却水,用以冷却凝汽轮机排气。其驱动方式分为直流和交流。
(3)补水泵:由于管网的“跑冒滴漏”损失水量,所以使用补水泵向水箱补水。它还起到定压的作用。
2、换热站运行原理
(1)换热站内的供水为箭头背向加压泵,回水箭头为面向加压泵。
(2)温度就是代表的管道内水的温度。
(3)二次供水属于换热后的供水,温度代表现在小区内暖气供水出口温度。
(4)用户家的暖气一次水是供水,二次水是回水,供水通过暖气片回流小区暖气主系统。
(5)回水最能说明住户家的暖气温度。
(6)换热站设备的不同,小区需求压力的不同,压力要求也不同。地势高的小区要用加压泵;而地势低的小区用稳或减压阀门。
(7)应该从以下几个方面着手检查:排放气体因为暖气如果有气就会造成循环不畅;清洗过滤网通常每个小区(单元、楼、住户)的进户管都有过滤网需要采暖期到来之前清洗;检查阀门是否开到最大(串联暖气)如果是并联系统需要把特别烫手的那组暖气阀门关闭一些把不热的暖气阀门开放一些。
三、热电厂
热电厂是利用煤,石油,天然气等燃料的化学能产出电能及供热等的工厂即:燃料的化学能——蒸汽的热势能——机械能——电能。
火力发电厂的生产过程实质上以上是四个能量形态的转换过程。首先化石燃料的化学能经过燃烧转变为热能,这个过程在蒸汽锅炉或燃汽机的燃烧室内完成;再是热能转变为机械能,这个过程在蒸汽机或燃汽轮机完成;最后通过发电机将机械能转变成电能。
火力发电厂的原料就是原煤。原煤一般用火车运送到发电厂的储煤场,再用输煤皮带输送到煤斗。原煤从煤斗落下由给煤机送入磨煤机磨成煤粉,并同时送入热空气来干燥和输送煤粉。形成的煤粉空气混合物经分离器分离后,合格的煤粉经过排粉机送入输粉管,通过燃烧器喷入锅炉的炉膛中燃烧。燃料燃烧所需要的热空气由鼓风机送入锅炉的空气预热器中加热,预热后的热空气,经过风道一部分送入磨煤机作干燥以及送粉之外,另一部分直接引至燃烧器进入炉膛。燃烧生成的高温烟气,在引风机的作用下先沿着锅炉的倒“U”形烟道依次流过炉膛、水冷壁管、过热器、省煤器、空气预热器,同时逐步将烟气的热能传给水以及空气,自身变成低温烟气。经除尘器净化后的烟气由引风机抽出,经烟囱排入大气。如电厂燃用高硫煤,则烟气经脱硫装置的净化后在排入大气。
锅炉给水先进入省煤器预热到接近饱和温度,后经蒸发器受热面加热为饱和蒸汽,再经过热器被加热为过热蒸汽,此蒸汽又称为主蒸汽。经过以上流程,就完了燃料的输送和燃烧、蒸汽的生成燃物(灰、渣、烟气)的处理及排出。由锅炉过热气出来的主蒸汽经过主蒸汽管道进入汽轮机膨胀作功,冲转汽轮机,从而带动发电机发电。从汽轮机排出的乏汽排入凝汽器,在此被凝结冷却成水,此凝结水称为主凝结水。主凝结水通过凝结水泵送入低压加热器,有汽轮机抽出部分蒸汽后再进入除氧器,在其中通过继续加热除去溶于水中的各种气体(主要是氧气)。经化学车间处理后的补给水(软化水)与主凝结水汇于除氧器的水箱,成为锅炉的给水。再经过给水泵升压后送往高压加热器,偶汽轮机高压部分抽出一定的蒸汽加热,然后送入锅炉,从而使水完成一个热力循环。循环水泵将冷却水(又称循环水)送往凝结器,吸收乏气热量后返回江河。
经过以上流程,就完成了蒸汽的热能转换为机械能,电能,以及锅炉给水供应的过程。因此火力发电厂是由炉,机,电三大部分和各自相应的辅助设备及系统组成的复杂的能源转换的动力厂。
1、发电厂的主要系统组成(1)燃料制备系统(制粉系统):完成燃料输送、储存、制备的系统。其流程:原煤仓——给煤机——磨煤机——粗粉分离器——细粉分离器——排粉风机——给粉机——燃烧器——炉膛。
(2)燃烧系统:完成燃料燃烧过程,使燃料化学能转化为蒸汽热能的系统。主要有燃烧器、炉膛、送风机、引风机、除尘器、除灰设备等。
(3)汽水系统:完成蒸汽热能转化为机械能的系统。主要有锅炉的汽水部分、汽轮机及其辅助设备,如凝汽器、除氧器、高、低压加热器、给水泵、循环水泵、冷却设备等。
(4)锅炉水处理:防止锅炉给水系统腐蚀,结垢,必须对锅水进行处理。水处理的方法有:软化,化学除盐,蒸发除盐三种。补给水处理系统程:生水泵——阳离子交换器——排气器——水箱——软化水泵——阴离子交换器——混合交换器——贮水箱——补给水泵
(5)电气系统:完成机械能转化为电能及电力输送的系统。主要有发电机、主变压器、断路器、隔离开关、母线等。
(6)控制系统:完成生产过程中的参数测量及自动化监控操作的系统。在上述系统的所有设备中,最主要的设备是锅炉、汽轮机和发电机,它们安装在发电厂的主厂房内。主变压器和配电设备一般是安装在独立的建筑物内和户外;其他辅助设备如给水系统、供水设备、水处理设备、除尘设备、燃料储运设备等,有的安装在主厂房内,有的则是安装在辅助建筑中或在露天场地。
10.热能与动力工程复习题 篇十
[中图分类号]TM621[文献标识码]A
1热能与动力工程
热能已被广泛应用于我国许多行业,并在国民经济中占有核心地位。最广泛使用的是电力工业,在使用核电、火电及其他设备、热能动力工程及相关技术,是其工作的基础。钢铁行业,尤其是在高炉炼铁、炼钢和轧制过程中,也得到了广泛的应用机械工业及相关工业建筑,包括物质生产、物质生产、锻造、焊接、铸造技术、热能利用率;农业生产和水产养殖,也有广泛的应用,同时,在广大人民的日常生活中,热量也有着许多的用处,如北方冬季供暖等。基于上述分析,我们可以看到,热能与动力工程,在人们的生活和生产中起着非常重要的作用,是最重要的能源之一,我们将根据热能的特性,来研究更深入的热能的状态,在日常使用中发挥更大的作用。热能与动力工程是以工程热物理为主要理论基础,以内燃机和开发其他新型动力机械和系统为研究对象,采用物理知识和工程力学、机械工程、自动控制、计算机科学、环境科学、微电子技术等知识,研究如何将燃料的化学能和液体的高、低(或无)污染转化为动力的基本规律和过程,在过程中的自动控制技术。随着常规能源的日益短缺,人们的环保意识不断增强,节能,高效,减少或消除污染排放,开发新能源等可再生能源已成为能源、交通、汽车、造船、电力、航空航天等许多领域的重要课题,在国民经济中发挥着越来越重要的作用。
11.热能与动力工程复习题 篇十一
关键词:热能;动力工程;改进方向
中图分类号:TM621 文献标识码:A 文章编号:1006-8937(2016)27-0174-02
热电厂中主要是通过汽轮机组的运行产生热能和动能,从而达到利用资源的效果,热电厂产生的能源如果能够被有效的利用起来,就会造成很大的社会效益和经济效益。但是就目前我国热电厂的生产技术而言,还不能完全的对这些能源进行有效利用。“热电联产”、“动电联产”、“热动联产”等技术的结合能够有效的解决这些问题,这些技术在未来热电厂的发展中进行应用,必将为我国的热电企业带来新的挑战的机遇。
1 热能动力工程的工作原理和研究方向
热能和动力工程的工作原理相对比较简单。就是采用专门的动力装置,对能源进行转换,将原来的热能转换为动能,经过转换后的动能会作用在发电机组的装置中,推动发电机组的运行,从而将一部分动能转换为电能,另一部分的动能会以其他能量形式浪费掉,这也就是热电厂生产效率低下的根本原因。据不完全统计在热能与动力工程的实际使用过程中只有30%左右的能量会被利用,剩余70%左右的能量都以热能及其他形式的能量散失掉。因此在热电厂中要注意能源的转换效率,从而保证整个电厂的能源利用率,达到节约能源和保护环境的目的。
热能和动力工程主要依据的是工程物理学科的相关理论原理为基础,以内燃机和其他正在进行研究的新型的动力系统和机械系统为研究对象,综合工程力学、自动控制、机械工程学、环境学、电力电子技术、计算机等学科的知识和重点的内容联系在一起,研究各种燃料在进行燃烧过程中产生的化学能和动能的安全和污染问题,以及在进行动能与电能转换工程中的转换原理和转换效率的问题,并针对这些问题研究能够自动实现能量转换控制的自动化设备。
2 热电厂中热能与动力工程的发展现状
热能与动力工程是最近几年才逐渐发展起来的一门新兴的学科,该学科能够有效的解决我国的能源紧张问题,因此对热能和动力工程进行研究具有十分重要的意义,研究热能和动力工程使我国可持续发展战略的重要组成部分,能够建设环境友好型的社会,但是由于热能与动力工程在我国的研究与发展还处于初级阶段,在发展与应用的过程中还存在一些问题。
2.1 重热现象
热电厂在正常的运行过程中为了保证对能量进行合理的利用和在前后的转换之间具有一定的通道压差,往往与上一环节相比,在下一个环节中具有较低的焓值,这就是我们平常所说的“重热现象”。假如说在整个热电厂的运行过程中出现“重热现象”会产生一系列的危害,同时还会影响到在能量转换过程中的能量利用效率。具体来讲,“重热现象”的危害一般包括以下几方面:
首先“重热现象”会导致热电厂中电能在进行储存和释放的过程中会产生电量的不稳定,从而导致用户在用电过程中的电压不稳定。其次“重热现象”会影响热电厂的物质在进行燃烧过程中的稳定性,会对燃烧过程中产生的蒸汽量产生变化,导致数值的波动,从而影响到整个电厂的发电性能。最后“重热现象”还会对发电过程中的气压产生影响,气压也会在一定的范围内产生波动,导致电能在频率上的不稳定,从而降低了热电厂产生电能的质量。在实际的生产中对重热现象的利用率还不到3%。
2.2 节流调节
在热电厂的正常运行过程中节流调节的应用最为广泛。当热电厂中的发电设备机组在工作中发生变化时,会增加整个发电系统中的能源消耗,从而影响着整个发电系统的经济效益。节流调节一般都应用在容量较小的发电机组中,当机组的额定负载最大值中有一级达到,就会增加系统的级数,级数的增加会减少设备机组的数量,从而将供电临界电压值降低。在实际的应用中只有当设备机组的级数在三级以上时,才会用到节流调节。因此节流调节主要是用在设备机组的数量发生变化时,起到维持系统正常运行的作用。
2.3 湿气损失
湿汽损失产生的原因并不是单一不变的,而是由多种因素的影响共同决定的。主要能够产生湿气损失的原因主要是:
首先,蒸汽在进行膨胀的过程中会有部分的水蒸气液化形成一些小水滴,这些小水滴混在水蒸气会影响到水蒸气的质量,这样就会造成湿气损失。其次,水滴与水蒸气混在一起进行移动,但是两者的移动速度不同,水滴的速度会比较慢,水蒸气的移动速度较快,这样在水滴移动速度的影响下,会拖累水蒸气的移动速度,从而造成湿气损失。最后,水滴还会对喷管中的主流的正常运动产生影响,导致主流的能量发生变化,能量降低,会导致多余的机组设备运行。
3 热电厂中热能与动力工程的改进方向
针对以上分析的热电厂中热能与动力工程的现状,提出能够有效提高热电厂中能源利用效率的改进方向与改进措施。
3.1 合理利用重热现象
重热现象是指从上一环节到下一环节过程中损失的能量,因此在实际的状况中可以对重热现象进行合理的利用。产生重热现象的因素有很多种,但是如果能够在多级的环节中对损失的能量加以利用,可以有效的提高能量的利用效率,但是重热现象并不是任何状况下都能够实现对能源的再利用,只有在利用率低的情况下可以利用。而且即使再利用也不可能对所用的能量进行利用,只能够利用一部分。
另外,系统对重热现象中损失的能量利用并不是越大越好,利用系数保持在一定的范围内,才能够对系统最佳,经过大量的实验研究,一般对重热利用的效率保持在4%~8%之间。因此在热电厂中要根据电厂的实际情况去选取合适的利用系数,从而保证在整个发电系统中能够正常运行的前提下,最大程度的利用热能和动力工程。
3.2 调配选择与工况变动
假调频就是指发电机组在进行并网的过程中会对电网中的频率产生影响,造成电网频率波动范围在10 Hz以上,这样电网的控制系统就会对自身的频率变化动态进行检测,并调整自身的频率以保持在稳定的状态,电网就会自动的增减整个系统的负荷,从而保证电网的频率稳定。但是在进行增减负荷的过程中系统中的运行机组数量就会发生变化,这样会增加在控制过程中的难度,从而增加电网工作人员的工作负荷。因此当电网中的负荷发生大的变化时,只是通过一次的调频并不能够完全稳定整个系统的运行频率。此时可以通过二次调频的方式对频率再次进行调整,将电网的频率稳定在0.2 Hz的变化范围内。
一般对电网进行二次调频的方式主要有:手动调频和自动调频两种。鉴于操作的难易程度和操作的时间特点,一般在热电厂中采用自动调频的方式对电网进行调整。因此在进行热能与动力工程的改进过程中需要对调整的方式进行合理的选择,尽量选取能够有效提高经济效益的措施。
除此之外,还需要对汽轮机的运行工况变化进行调节。运行工况与焓值有一定的关系,假如说在汽轮机的第一阀当运行工况中流量增加,就会增加系统中的压力,这样就需要降低焓值的等级,反之则要增加焓值的等级。当第一阀值全开,第二阀值关闭的状况下,焓值需要在最大中间值的位置,这样整个系统的运行工况就会发生变化,但是中间级的压力和焓值的大小并不会发生变化,因此在进行调节的过程中需要根据实际的状况和各阀门的状态进行运行工况的选择,从而保证能够很好的利用热能和动力工程。
比如说在背压式汽轮机的改进工程中可以在背压式汽轮机上装一个后置的低压凝汽汽轮机,这样在进行发电的过程中低压凝汽汽轮机会利用背压式汽轮机中产生的热气进行再次发电,形成双重发电,经过这样的改造就可以有效的提高背压式汽轮机的发电效率。在原来的被压式汽轮机的工作中需要补充70%的水分,这样将70%的水分从15 ℃加温到锅炉温度就需要再次消耗20%~30%的能量,在进行改进之后就会节约12%左右的电量。
3.3 提高节流调节效率
在热电厂中进行节流调节的过程中不存在对调节级的调节,而且在第一级的调节过程中往往可以完成全周进汽,在运行工况发生变化时,各级之间的温度会随着发生变化,温度变化,就会更加符合负荷的存在。这种形式的调节虽然能够起到节流调节的作用,但是从整体而言,不能够有效的提高经济效益。因此该种调节方式主要应用在小容量的机组设备中。
但是随着社会的发展,对电能的使用也越来越多,要求热电厂能够在现有的基础上进一步的提高发电效率和热能与动力工程的利用效率,因此在进行热能与动力工程的改进过程中可以采用弗留格尔公式应用到节流调节过程中。弗留格尔公式能够根据热电厂中的实际数据进行快速的计算,推算出各级的焓值大小和压力差的大小,根据推算的数值,电网工作人员就能够准确的对机组设备中的零部件的运行状况和使用效率进行判断,对其异常之处进行判断和处理,从而保证机组设备能够高效的运行,这样就能够有效地保证机组内节流调节的高效性。
3.4 降低湿气损失
湿气损失在工程各行中大约占68%左右,由此可见湿气损失严重。根据湿气损失对热电厂的影响分析可以发现在热能与动力工程的改进过程中降低湿气损失十分有必要。一般减少湿气的措施主要有:使用去湿装置、使用中间再循环系统对湿气进行再利用、增加整个系统中机组的抗冲蚀能力等措施。但是在实际的运行中,进行这些措施的操作过程还会产生机械损失。比如说轴承之间的摩擦力等。因此在进行降湿的过程可以采用轴流式汽轮机。
在轴流式汽轮机的工作过程中的湿气损失为60%,在进行改进的过程中主要是将汽轮机内部的高压蒸汽从汽轮机的而一侧输入,然后从另一侧输出低压的蒸汽,这样就会在汽轮机内形成一股由高压指向低压的指向力,这样就可以在降低能源消耗的基础上,有效的提高热能和动力工程的利用效率,将效率提高到75%以上,因此在热电厂中采用轴流式汽轮机在热能和动力工程的改进中十分重要。
4 结 语
本文主要是针对在热电厂中热能和动力工程的能源利用效率低下的问题进行研究,通过对热电厂热能和动力工程的原理和未来的研究方向进行阐述,分析在实际中热电厂运行的现状,找到能够有效提高热能和动力工程利用效率的措施,并从合理利用重热现象、调配选择与工况变动、提高节流调节效率、降低湿气损失四个方面进行热能和动力工程的改进策略。
参考文献:
[1] 陈俊磊.新形式下对热电厂中热能动力工程的重要分析[J].科技研究, 2014,(5).
12.热能与动力工程复习题 篇十二
1降低热能损耗的措施及手段
对于在热电转换过程时出现的某些现象、技术或方法、为什么会热能损耗及降耗的技巧等概括如下。
重热现象:也就是说重复利用热能, 在汽轮机中前一次损耗的热能, 能够被下一次运行所应用, 这就是所谓的重热。在每次运行中所产生的焓降累加后超过总体运行是所产生的焓降再除以整体运行所产生的焓降所得到的结果称之为重热系数。虽然各级热能的利用效率都高于单次的利用效率, 然而这是以节能降耗为基础的, 这能说部分热量得到了利用, 并不追求高重热系数。通常在4%至8%之间。正因为如此, 重复利用热能可提高每次运行的能量利用率真, 降低能量的损耗。合理的利用热能, 控制好恰当的系数, 既有利于能量利用率, 也能增强操作人员对机组的熟悉程度。
1.1导致变工况的因素及特点
当机器启动后, 产生变工况的原因也有很多, 但主要有以下各种因素:第一、电能的不方便存储, 况且由于其他方面所引起的电功率不稳定;第二、锅炉运行的情况也非一直不变的, 从而导致汽轮机的运行情况产生无规律变化;第三、凝汽装置的工况也不稳定, 使得其中的气压时时改变。第四、另外还有诸多原因:如用电的频率、通气设备的老化等。当机器运行情况有很大变化时, 就要考虑以上各个因素了, 具体情况具体分析, 最终维护机器的稳定运行。
1.2进一步学习机器频率控制的相关知识, 这有助于实践中各种具体操作。有两组电网同时作业的机组, 尽管外界条件不断改变导致电频波动。但机器的速度控制装置能依据自身状况, 进行快速调整, 维护整个装置的运行, 这一系列操作叫做单次调频。这个过程的主要特征在于响应快, 但响应尺度各个机组不尽相同, 产生的影响较小, 人工操作较强。
1.3两次调频:对于电网运行时, 其系统中负载产生大的波动, 单次调频难以满足平息波动的需要。而再次进行频率控制。其方式有两种:手动操作与自动操作。
1.4手动调频:电能产生的过程中, 技术维护工依据装置的改变来调整机器的状态, 维持其频率稳定, 但其据点显得易见, 响应迟缓, 面对大的调频情况时, 通常难以实现。再者, 24小时超长时间维护对维护人员来说操作时间长, 强度高。
1.5汽轮机运行状况的改变, 每次运行中焓降也随之改变, 调节过程中不关闭阀门的工作情况, 其随着流量变大, 压力比变大, 而焓降变小。与些相反的情况。流量变少, 焓降则变大。中间级状态时, 当阀门处于一开一闭的情况, 焓降增到最大, 此时, 即使工作状态发生改变, 其压力也保持稳定, 此时, 焓降也保持稳定。最后一级, 流量变大, 压力变小, 但此时焓降变大。清楚各级各个参数的变化对维护系统运行有很大的作用。
1.6喷管的作用特征与应用场所:第一, 每个阀门的流量峰值并非完全一样;第二, 在调节级时, e小于1, 但t根据阀门运行的个数产生改变;第三, 负载只加载一部分时, 有些装置运行效率较好。
2减少调压调节的损失
调压调节能够增加机组负荷运行的可靠性及适应性, 提高机组在部分负荷下的运行, 促进了热能与动力工程的有效运行。但是, 由于调压调节自身存在着很大的不足, 如高负荷区域的滑压调节会浪费大量的热能, 经济效益不高;动叶栅内的大机组在蒸汽做功以后, 在机械能转化过程中, 可能会导致蒸汽余热的大量损失;斥气损失或鼓风损失等情况。针对调压调节造成的热能损失情况, 可以得知在火电厂运行中, 应采取合理的措施, 尽可能减少调压调节的损失。从调压调节的工作原理来看, 这部分损失一般是由汽轮机机组的运行机理造成的, 不能简单归结于人为失误和系统故障。因此, 为了减少调压调节的损失, 应不断完善汽轮机运行机制, 充分利用先进的科学技术, 研发出更先进、更科学的产品, 减少能量损失的限制, 促进热能与动力工程的运行。
3热能与动力工程在电厂中的合理运用
为了更好地说明工况变化及调配选择所产生的作用, 可以通过实例来进行说明。比如, 为了提高背压式汽轮机的利用率, 可以对该汽轮机进行改造更新, 在该汽轮机上安装一个后置式低压凝汽式的汽轮机, 就可以将背压式汽轮机作为气源, 以实现双重发电的目的, 这样也能够组建成一个完整的凝汽式汽轮发电系统。在汽轮机运行过程中, 如果外界负荷发生变动, 并行机组能够通过自身差异动态的特性, 自动启动增减符合的动作, 维持电网的运行周波, 这样就形成的一个完整的运行过程, 可以称之为跳频。这样的优点在于:频率的调速较快。但是由于发电机组的调整数量存在差异, 加之调整量非常有限, 为值班调度员的工作增加了难度。在通常情况下, 由于二次调频是由自动调频和手动调频两分钟方式组成的, 且自动调频由于可靠陛高、易操作性好而被广泛采用。在火电厂运行过程中, 应选择设施的调配方式, 提高火电厂运行效率及水平。再者, 由于焓降变化对汽轮机运行工况有非常大的影响, 在第一阀全开时, 工况流量会相应地增加, 压力也会不断增大。对于焓降变化情况, 应减小调节级;反之, 则应增大调节级。在第二阀关闭, 第一阀门全开时, 应调节级位于最大中间级。与此同时, 如果工况发生变动, 焓降与中间级压力均应保持不变。根据以上原理, 在工况调节时应结合焓降变化情况, 以适当调节工况变化, 更好地发挥热能与热力工程的利用效率。
结束语
热电厂在改革的过程中, 应该将重点放在热力设备和热力系统的节能减排改造上。在本文中, 笔者只是粗略的列举了几种节能减排措施, 真正行之有效的具体节能措施还有很多, 例如, 锅炉采用液态排渣、低氮燃烧、飞灰复燃等先进技术, 加上除尘效率99%以上的静电除尘器等, 这些均需要我们在生产实际中投入精力去研究去解决。
参考文献
[1]姜嫒媛, 周少祥, 徐鸿等.基于 (火用) 分析的发电厂改造方法研究[J].热能动力工程, 2011, 26 (3) :310-3l4.
【热能与动力工程复习题】推荐阅读:
热能与动力工程英语09-27
热能与动力工程职业规划07-25
热能与动力工程专业职业规划书10-07
大学热能与动力工程专业的自荐信08-06
我对热能与动力工程专业的认识范文11-27
热能与动力工程专业毕业生的自荐书07-19
内燃机及热能动力专业中文简历06-15
华东理工大学热能工程07-08
化学能与热能同步训练07-24
化学能与热能教学反思09-09