轨道交通通信信号系统(精选12篇)
1.轨道交通通信信号系统 篇一
1概述
随着我国经济的迅速发展,基础设施建设尤其是道路交通的建设蓬勃发展。铁路运营里程的大幅度增长、高速铁路的大规模兴建以及列车运行速度的不断提升,轨道交通的发展催生了新的行业需求,轨道交通信号与通信技术作为自动控制领域和可靠性工程领域的一项技术得到了广泛的应用,对相应人才的需求与日俱增。[1]通过学习该专业课程,学生可以对城市轨道交通系统中信号与通信技术的作用、原理、结构等有清晰的理解,并能够在实际应用中具备较高的.实践水平,从而促进轨道交通领域高技术人才队伍的培养建设。
2.轨道交通通信信号系统 篇二
1 城市轨道发展现状透视
世界经济一体化的到来使整个世界经济都息息相关。中国作为世界上首屈一指的经济实体, 近几年的经济发展也十分惊人。与此同时带来的城市交通问题也是尤为突出的。为了缓解这一问题, 发展城市城际交通必然是当务之急。发展交通不仅是注重数量上的增长还应该把重心放在质量上的提升。以城市立交桥为代表的城市便捷交通设施已经不能够完全满足当前城市人口流动的需求, 而是应该将更多的精力放在城市综合交通体系的建立上。比如说, 为了城市经济的繁荣和人们出行的便利, 地铁、高铁和城市城际轻轨已经成为发达国家和发展中国家争相青睐的项目。尤其是高铁技术的引进和开发不仅为当地的经济发展注入了强大的生命活力, 更是一个地区乃至一个国家科学技术力量的集中体现。以磁悬浮技术为例, 抛开这一高新技术引进带来的科技辐射作用不说, 在方便人们出行的前提下更是带动了当地材料学、建筑业以及劳动保障部门的发展。所以, 不难看出, 发展以信息科技技术为支撑的前沿交通技术是一项一举多得措施。
具体来说, 引进和发展城市交通通信和信号系统是该项举措的重点之处。交通信号就像交通系统的眼睛, 是交通系统监督城市交通流量的重要保证。信号系统的建立和监管是保证城市交通流畅度的保证, 表现在城市车辆、轻轨和地铁的安全行驶和高效率的同行能力。自上世纪中叶以来, 高新技术的发展给社会各行各业都带来了不同程度上的福利。尤其是在城市交通方面, 更是一场根本性的革命。以信息监管和计算机管理为技术支持的城市轨道交通信号系统 (ATC) 在新的城市化进程中发挥着不可替代的作用。这一技术的发展和晚上不仅保证了城市车辆的通过率大幅度提升, 还为城市轻轨和城际列车自动化驾驶提供了强大的导航作用。
2 城市轨道交通与通信信号系统现状的具体分析
城市轨道交通与通信信号系统主要是由装备各式信号装置的电路岔口装置和附属的公共设施组成的。这些公共设施基本上都是隶属于原城市基础设施, 比如城市轻轨轨道、路口交通信号灯以及公共停车管理系统。通信信号系统的组建和发展就是依赖这样的基本设施壮大起来的。并在此基础上不断巩固和升级, 依赖于电子数控的技术支持组建出一套完整的指挥系统。其中, 起着关键心作用的是城市城际联动锁定装置和自动控制装置。这两种装置是城市轨道交通和信号通信系统 (ATC) 的关键所在。细化来看ATC又可以分为自动监控系统ATS、列车自动防护系统ATP和列车自动运行系统ATO。举例来说, 城市轨道交通和通信信号系统是基于地面 (轨道实时监测数据) 来反馈城市轻轨和城际高铁上列车运行的实时状态, 对运行列车状态最最初整体预估, 评判列车的车速、阻力、制动能力的可控程度;同时通过数字化和自动化技术远程调控列车的制动刹车系统, 一方面保证列车的运行速度在合理范围之内, 另一方面可以及时的应对突发情况, 在保证列车安全的前提下杜绝轨道上的意外状况。智能化系统的引进和深化让城市轨道交通与通信信号系统可以随时接受远程控制, 既保证了列车操控人员的安全性也保证了列车的可调度性, 这样一来列车的运输能力和通过能力得到了实质上的提高, 城市物资配送、公共资源的安排也得到了合理化和高效率的配合。
城市轨道交通与信号通信系统给城市交通带来大便利的同时也有自身固有的缺点, 而这些缺点也在很大程度上制约了城市轨道与信号通信系统的深度发展。这些缺点主要体现在以下几个方面:
首先是当前我国的城市轻轨和交通信号系统的造价居高不下。以上海市的地铁造价为例, 每一公里的资金成本投入高达六亿人民币, 这一成本预期要在三十年内收回。造成这一因素的主要原因还是核心技术依靠进口, 成套的系统装备也依赖进口。国外承包商争先瓜分中国市场和国内企业竞争力不足是客观原因。加之大部分的交通信号系统是分期完成, 一旦选定承包商信号系统无法进行修改, 这就造成后期信号维修和管理对外的高度依赖性, 这样的情况不仅会造成当前系统定价由外国承包商决定的局面还会国家安全埋下隐患。
再者就是国内信号的不兼容问题。在我国首先引进该系统的大多是发达城市, 而后逐渐向大中型城市进行推广。这样的模式虽然能有效的降低引进成本但是带来的是区域与区域之间信号系统的不兼容问题。这样的局面会直接造成区域内部列车运营的沟通困难, 尤其是在地域之间由于信号不兼容会造成列车速度和行驶安全上的隐患。虽然在地域内部能达到效率的最高值但是在地域之间的配合就显得非常乏力。另一方面也使系统的维护和保修工作效率低下, 不能实现区域之间的合理统筹管理。
最后在信号材料和核心技术开发方面。我国企业的发展步伐缓慢, 竞争能力低下不能够与国外厂商在同一个平台上进行正面的较量。这不仅使得我国城市轨道与信号通信技术被国外承包商所垄断也大大不利于我国民族厂商的进步和创新。没有一个好的平台和实战战场, 使我国厂商生产出来的产品与实际运用频频脱节, 这对我国在该领域的高新技术研发是致命性的打击。如果我国企业不能积极向国外技术层次靠近不进行深度产品开发和实战演练, 那么带来的后果将是灾难性的。
3 对于我国城市轨道交通和通信信号系统的展望
我国ATC行业的发展前景是十分明朗的, 并且国家在这方面的需求是十分旺盛的。为了弥补业内的需求, 我国民族企业应当正视当前的情况, 迎难而上正确处理好需求和技术之间的问题, 积极找出解决方案。
首先要放低姿态, 以积极地锐意创新的态度吸取国外先进技术的优点, 加快国内硬件加工技术的步伐, 配合当前ATC行业的发展态势, 开发属于自己的核心技术, 推动国产城市轨道交通行业的进步。
其次要通过对引进的技术进行消化吸收, 掌握系统功能单元间接口协议和技术标准。让国内有条件的企业优先系统性学习, 争取在短时间内突破ATC在我国区域之间不兼容的瓶颈, 开创出一套适合我国大部分城市的接口协议。加大研发力度, 在政策和资金上都采取倾斜性的辅助态度, 使该项技术尽早实现国产化, 打破国外垄断, 实现行业内水准化生产, 保证国家公共交通设施安全。
再者就是以缓解城市交通压力为前提, 进行多元化的系统开发。ATC是基于信号的列车控制系统, 我国也可以积极参与基于通信的列车控制系统。这种控制系统一方面可以打破通信信号系统一家独大的局面另一方面也可以充分发挥我国的本土优势和固有的通信设施优势, 实现对城市交通的可控管理。
总的来说, 随着经济社会的发展和城市交通压力的日益增大, 发展城市轨道交通和信号通信系统是目前最为可行的方法。但是我们仍要积极克服当前的难点, 为营造一个完善便捷的城市交通网而努力。
参考文献
[1]张立国, 丁静波.城市轨道交通轨道与供电杂散电流接口设计研究[J].铁道标准设计, 2005.
3.轨道交通通信信号系统 篇三
【关键词】轨道交通;信号系统;设计
城市轨道交通的信号系统是整个城市交通运营中最为重要的任务。如其主要任务是控制列车运行,同时也能对列车的实际运行进行相应的指挥等。可以说,它影响着整个城轨交通的实际运营情况,能影响到它的安全,能关乎它的效益,这是一个至关重要的关键点。而城市快速轨道交通现代化也是社会发展的必然结果,它的最为直接的标志我们可以进行把握,应该是信号系统的实际水平。而设计者的责任也就凸显出来了,其设计的优秀系统方案能利于行车的安全,有效提升道路的整体运输能力。更为直接的是能对行车进行迅速上的控制,能进行相应的准确及时的调度。总之,就是最大化的提高其服务质量。同时,还能有效降低工程投资以及降低工程造价等。
1、系统构成方案
城市轨道交通从本质上来说就是个运输体系,而这个体系具有技术先进的特点,同时还具备一定的自动化水平。信号控制系统的构成要依据整个交通运输情况。
《城市快速轨道交通工程项目建设标准—试行本》对信号系统划分为三个层次:第一层次,主要是设备在运量不大的线路,也或是在行车密度不高的线路上;第二层次,同第一层次恰好相对,其设备在运量相对较大的线路上,在行车密度较高的线路上,一般都可配置列车自动监控,也就是ATS系统,也可配置列车自动防护系统;第三层次,同第二层次较为相似,其设备在运量相对较大线路上等,很多时候都可配置列车自动监控系统或是配置列车自动防护系统,也可配置ATO系统。
在上述内容中,从水平等级来看,第一层次系统配置属最低水平等级。一般其适用线路较为固定,一般只适于行车间隔不小于3 min 的线路。话句话说,如果行车密度相对来说还是较高的。可以依据实际情况,对线路实施的整个系统进行相应的改造或是完善,但是这样就的话其实也是合适的。因为在改造的过程中就必须投入自己,而这样的造成了一定的浪费,进而也会出现一些烂尾工程等;另一方面,机车信号信息量有限。其自动停车装置也不能容纳更多的信息。这也造成了列车运行过程的安全性较不稳定,保障程度不高。更多时候依赖于司机的驾驶,依靠其经验实现。其国产化率水平和工程造价水平也都是呈现两极分化,一个最高,一个最低。此外,还有第二层次的信号系统配置,更为适于行车间隔在2min以上。而其行车安全主要是通过列车自动防护系统提供保障;第三层次的系统配置,它的现代化技术水平相对较高。主要适于行车间隔小于2min的线路运用,由列车自动防护系统来保证行车安全。
2、主要技术方案
2.1设计行车间隔
如今的城市轨道交通的乘客运量相对都较大,其行车密度也很高,这样相应的城市轨道交通工程就应该抓住这一特点,采取有效的办法,如多采取缩短行车间隔方法,进而减少旅客候车时间,相应地也能提高其服务质量。同时,还能减少列车编组辆数,进而最大限度的节省工程投资。然而受到信号ATP系统技术等诸多因素的影响,其正常的行车间隔的缩短也是有限度和范围的。
我们可以参照发达国家城市轨道交通的运营的成功经验,利用信号ATP系统。可以说,客流量如果在某个特殊时段内,增加到了预测高峰值的130%时,这样ATP系统还是可以满足运营采取的临时措施。如,临时增加运营列车等措施。表1以某一条线路运营方案为例予以说明。
而在对这两种方案进行分析后,我们知道,这两种方案都能满足其运量的要求。但是,方案A和方案B的单向运输能力与高峰小时单向最大断面客流量比分别为1.00和1.08,也就是说这个数值还是存在差异的。整体上,从信号系统设计角度分析出方案B应该是更为优化的,也是更为科学的,相对来说方案A还存在一定的缺陷和不足。
当然,在实际的工程运用中应结合线路近、远期运量,同时也要考虑到工程实施方案,结合ATS调控能力等,这些综合因素都需要注意。在此基础上,才能设计行车间隔,才能保证其能满足运营要求,同时还能最大化节省工程投资。
2.2ATP信息传输方式
一般来说,我们更为关注的是列车运行安全。而提供为其提供最为有效的保障的应该有很多环节或是关键设备。而ATP系统相对来说又是其最为关键、也是最为重要的设备。一般都是由轨旁设备,当然也必须包括车载设备等,由他们共同组成了ATP系统。在列车的运行中,其信息的接收途径相对单一,一般都主要通过地面ATP设备来实现。
而连续式的ATP设备主要是接收地面信息,基本都是利用轨道电路,也有的是利用连续敷设的电缆来实现的。其特点也比较明显,信息传递实时性相对高,同时其技术也相对复杂,进而造成了其造价也相对昂贵一些。点式ATP设备主要是通过地面应答器,也有的是通过点式环线等,实现列车的地面信息接收。但是,其具备实时性相对较差的特点,相对来说其技术较为简单,当然造价也相对低廉一些。
我国的现有地铁交通情况还不够理想,也可以说其实际情况还存在较大的不足。其特殊性也较为明显,在个别时期的运量非常之大,其行车密度也相对较高。还有就是在地铁隧道内的驾驶条件还不容乐观,这些实际问题很是明显。而这些特点也都是需要我们关注的。而依据这些特点就可采用连续发码方式的ATP系统,这也最为有效的,也是最为适宜的。
如今,点式ATP技术不断发展,其具体应用也越来越多,越来越合理。如在城市轨道交通工程中就能有效采用点式ATP设备。目前,较有代表性的西门子公司ZUB120点式ATP系统的主要技术指标如下:
·传输制式移频键控(FSK),串行
·传输速率50k-1
·传输间距130~210mm
·电码可靠性循环码多次判断,海明距为4
·电码长度可编程有用比特96位
·機车设备平均故障间隔时间2×104h
·地面应答器平均故障间隔时间9×105h
点式系统控制实时较差的缺点不容忽视,其还缺乏紧急停车功能等。而这些问题都应该想法解决,一般通过接近连续式发码方式就能进行一定程度上的弥补。如,上海莘闵轻轨交通线是我国第一条城市轻轨线路,在这一系统中就按点式ATP系统来实现其特有设计。而,最新的点式ATP系统打破了90s行车间隔限制,更为重要的是这一系统实现了自动驾驶的目标,具备独特的功能。
3、小结
总之,系统构成以及技术方案相继确定,那么信号系统也就随之构成,或是说基本上就定型了。然而这还不是一个良好的系统,在设计的过程中还需要注重很多的细节问题。因为这些细枝末节会影响到这个系统,正所谓牵一发而动全身。此外,在设计过程中,更应该关注城市轨道交通信号系统的特殊技术指标。这是其设计情况的最为直接的体现。
作者简介
4.轨道交通通信信号系统 篇四
在全国高铁网、城轨建设步入高峰的背景下,由HNZ MEDIA鸿与智商业媒体旗下的信息通信产业网、IT《新兴信息技术》杂志发起,邀请中国通信工业协会、中国电子商会等行业协/学会和政府主管机构及国际知名行业组织共同参与举办的「2014轨道交通信息及通信技术展」,将于2014年5月7号—9号隆重召开,本次展览致力于致力于促进信息技术及轨道交通技术交流与合作的商务贸易平台,立志成为信息技术及通讯行业的亚洲第一会展品牌。
「2014轨道交通信息及通信技术展」是「IT WORLD世界信息技术产业博览会」旗下品牌之一,将于2014年5月7日--9日在中国国际展览中心(新馆)隆重举办,集中展示通信设备、铁路通信整机、铁路通信配件、电子设备、通信信号、铁路交通运营管理系统、电力监控(SCADA)、自动售检票(AFC)、环控与防灾报警、车辆信息化(PIS)等设备,「2014轨道交通信息及通信技术展」是行业内不可错过的专业展会,期待您的加入!
展品范围及类别:
信息通信综合展区:行业知名展商信息通信服务和应用;信息通信交换、传输技术与设备;通信终端设备及配套产品;宽带电信业务与电信增值服务;宽带无线接入;智能终端;下一代网络(NGN)、下一代互联网(NGI)、网络电视、网络游戏、IPTV、手机视频、互动娱乐产品及服务;行业信息化应用和解决方案;二维码技术;数码、音频、视频、存储技术及产品;计算机硬件设备与软件产品;数据通信与网络技术、安全及相关产品;电信管理系统;光通信、光纤光缆;RFID;物流信息化技术与设备;通信电源、仪器仪表、通信机房用品、办公自动化设备;信息家电、家庭网络、数字化家庭;通信电子元器件;通信终端配件;其它信息通信配套产品等。
5.轨道交通机车头监控系统解决方案 篇五
铁路轨道交通(火车、高铁,轻轨)由于其污染小、运量大,对于缓解人口密集型大铁路的交通压力起着不可替代的作用。但是,铁路轨道交通系统作为流动的、人员高度集中的公共场所,尤其是高峰时期,大量拥挤人群的环境,与及列车油箱的管理存在诸多的不安全因素,使犯罪分子有可乘之机,要提高列车管理质量和安全程度,仅仅依靠人力是不够的,在列车内外部推行机车视频监控系统,将能极大的解决上述矛盾。通过此系统能够实现多角度的实时记录列车运营过程中的音视频资料。能对乘客的容貌,物品进行记录,保证了发生刑式案件之后追查和划分责任提供强有力的证据。因而设置铁路轨道交通的安全视频监控系统十分必要,现我公司根据成都铁路局提供的一系列安全防范隐患,作出的以下机车视频监控方案系统,由于此方案已经在成都铁路局运行一年多的时间,充分见证了产品的稳定性与方案的可行性,并且得到了上级领导的认可与高度重视,对于安全,富士隆责无旁贷,在后续,我们会努力创新,根据用户需求研发出更专业,高智能化的机车视频监控产品,做一个专业立足于铁路,专业服务于铁路一体化的专业公司。
2:机车视频监控的基本构成
采集图像的摄像机或成像装置(摄像头)音视频信号的记录存储(机车监控主机)图像的处理与显示设备(终端显示单元)
系统主要对轨道交通客车火车头进行监控,在每节火车头备四个监控摄像机,监控摄像机采集各现场视频信息,每四个监控点配备一台四路高清车载硬盘录像机,驾驶室两路与火车头侧面两路分别负责把摄像机的模拟视频信号转变成数字信号,同时进行压缩录像。通过视频信号传送到列车驾驶室的显示器主机上。
FOL-CR402H是整个车载监控系统的核心,直接决定了监控系统的性能好坏。由于列车不同于银行、楼宇、小区等固定监控场所,它处于室外颠簸移动的状态,而且温度、湿度变化很大,灰尘很多,工作环境恶劣,因此对车载视频监控主机的要求更高。车载FOL-CR402H已广泛应用于地铁、轻轨,火车,等各种移动监控场所,产品可靠性得到实际考验,机车视频监控系统具有以下作用:
1、减少漏洞,提高服务质量.2、提高旅途安全,减少案件与事故发生.3、全方位控制列车情况,实现一对一的服务.4、沿路站台实现无线动态监控,方便指挥调度和管理 系统运行要求:
1、稳定性高、适应温度变化。
2、抗磁抗震性强,不会因此产生死机现象。
3、操作方便,在显示屏上可直接观看现场情况
5、先进的音视频处理方式,储存量大、可扩展性强。
6、可直流供电,机车上多数使用的是直流供电,要求车载主机能够在直流供电情况下进行工作。
7、扩展性强,随着技术的成熟,终端设备在不需要完全更换的情况下功能得到扩展。
系统配置 录像存储设备: 型号:FOL-CR402H(四路高清录像主机)CR402H车载硬盘录像机采用高集成度H.264 ASIC,图像画质优秀,除采用硬盘作为录像存储介质外还可使用SD卡作为录像存储介质,提高录像数据的稳定性。通过内置的USB接口能够快速进行录像备份。经过市场验证的电源确保系统的稳定性,密封机壳设计非常适合于车载环境使用。系统评价
6.轨道交通通信信号系统 篇六
专业论文
试述轨道交通综合监控系统调度管理的应用
试述轨道交通综合监控系统调度管理的应用
摘要:随着经济的快速深入发展,轨道交通的应用逐渐增加,轨道交通综合监控系统通过统一的平台将各子系统有机地结合,实现数据的共享和统一管理。本文通过对不同集成方式的分析,结合某城市轨道交通实例,阐述了综合监控系统调度管理的应用。
关键词:轨道交通;综合监控系统;调度管理
中图分类号:C913文献标识码: A
前言:进入21世纪,轨道交通的发展日益深入,轨道交通综合监控系统(ISCS)将轨道交通各自动化子系统有机结合,采用采用统一的运行平台和综合监控体制,实现了各种数据的共享和统一管理,为轨道交通运营调度人员的监控操作和系统维护提供方便,增强了系统之间的业务关联与联动处理的效率,提高了自动化管理程度和对事件的反应能力和处理速度。
1综合监控系统集成与互联
1.1集成与互联的概念
综合监控系统对各子系统的无缝接入产生了两种方式:集成和互联。
集成指的是综合监控系统将被集成子系统完全融入到本系统之中,被集成子系统成为综合监控系统不可分割的一部分,被集成子系统的全部功能都由综合监控系统来实现,除了管理意义之外,被集成子系统构成综合监控系统主体。
互联,互联子系统独立运行实现自己的功能,被互联的子系统是独立的运行,自身具有完整结构,综合监控系统通过外部接口与互联子系统进行必要的信息交互以支持信息共享平台的构建。也向综合监控系统提供交互数据,支持综合监控系统互联功能的实现。
1.2集成方式分析与比较
目前,轨道交通综合监控系统有两种集成方式:一种是以行车调度指挥为核心,同时提供环境监控、电力监控和乘客服务等功能的集
最新【精品】范文 参考文献
专业论文
成监控系统;另一种主要采用以环调、电调为核心兼顾部分与行调有关子系统的集成互联模式。
1)以行车调度为核心的集成方式
集成信号系统的列车自动监控子系统,同时还集成视频监视系统(CCTV)、广播系统(PA)、乘客信息显示系统、变电站自动化系统(PSCADA)、火灾自动报警系统(FAS)、环境与设备监控系统(BAS)。互联的系统有自动售检票系统(AFC)、时钟系统(CLK)等。
优点:实现对轨道交通中环境、供电、设备、乘客、列车的全面监控。真正做到为运营指挥部门服务,提高轨道交通运营指挥的自动化水平。
缺点: ATS集成后,综合监控系统要求系统的功能和可靠性更高,需要整合ATS和ISCS的软件开发平台。需要调整现行的运营管理体制,牵涉面比较广。国内还没有集成ATS的先例,存在一定的风险。
2)以环调、电调为核心的集成方式
集成的系统包括FAS、BAS、PSCADA、PSD、FG等。互联的系统包括PA、CCTV、PIS、AFC、ATC和CLK等。
优点:行车调度系统独立运行,不会因为集成平台出现问题而受影响,降低综合监控系统实施风险。ATS与ISCS分开,便于ISCS的工程实施。对提高运营管理水平、救灾效率有较大帮助。
缺点:集成度还不够高,只能对列车位置及状态等进行监视,不具备对运行计划、进路设置等的监控,不能真正做到以行车调度指挥为核心。
2综合监控系统调度管理
2.1调度管理模式
城市轨道交通综合监控系统的运营调度和监控采用两级管理,即中央级和车站级。中央级负责对全线的设备、乘客、环境等重要信息进行监控和处理,对全线发布指挥调度命令;车站级负责管辖范围的设备、乘客、环境等信息的监控管理,接受中央级的指挥,向管辖区发布调度命令。中央级ISCS位于控制中心,主要服务对象是控制中心的各种专业调度人员,分为行车调度、环控调度、电力调度、值班
最新【精品】范文 参考文献
专业论文
调度长和设修调度;车站级ISCS位于各车站、车辆段,主要服务对象是车站、车辆段的值班员和行车值班员。
2.2中央级调度管理
指挥中心设置的调度工作站包括电调、环调、设调和值班调度长。行车调度台由信号系统设置,综合监控系统为行调设置辅助调度工作站。
1)行车调度
设置两个行调辅助工作站。两个工作站拥有相同的、可相互切换的监控权限,可以互相替代。
a主要工作:监视全线牵引供电状态、全线隧道风机状态、车站火灾报警信息、屏蔽门状态、CCTV设备信息等;向PIS提供紧急运营信息;控制并监听全线PA广播;历史数据查阅;报表查阅打印;屏幕拷贝等。
b监控和操作范围,如表l所示。
2)电力调度
中心电力调度设两个席位,两个席位的调度员工作站拥有相同、可相互切换的监控权限,可以互相替代。
a.主要工作:全线变电所供电设备工作状态监视、设备事故报警监视,报警确认及操作实施;日常电力设备控制操作,包括早间送电、晚间停电、倒闸等;全线变电所各种保护单元的整定值查阅及远程定值组切换;全线变电所各种保护设备故障和事故报告查阅。
b.监控和操作范围,如表2所示。
3)环控调度
中心环控调度设1个席位,通过环调工作站完成对全线环控和消防设备的监控和日常调度管理工作,火灾时成为全线防灾调度指挥中心。
a.主要工作:全线车站的机电设备状态监视、事故报警、报警确认及实施操作;隧道风机模式控制;紧急情况,允许远程操作车站的机电设备;修改并下装执行时间表;历史数据查阅;报表查阅打印;
最新【精品】范文 参考文献
专业论文
屏幕拷贝;操作权限授予或收回;设置或解除设备操作闭锁;强制设备工作状态;停止设备数据扫描和状态更新等。
b.监控和操作范围,如表3所示。
4)设修调度
中心设修调度设1个席位,通过设修调度工作站监视各相关机电设备的状态及告警信息,实现调度管理,允许监视全线接人ISCS的所有设备状态,但不允许对设备操作。
a.主要工作:监视全线所有ISCS管辖范围内的设备工作状态,判断设备工作状态;监视全线所有ISCS管辖范围内的设备发出的事故报警;历史数据查阅打印;屏幕拷贝等。
b.监控和操作范围,如表4所示。
5)值班调度长
中心值班调度长设1个席位,通过值班调度长工作站监管全局,实现总体协调指挥。
a.主要工作:全线车站的供电、机电和通信设备工作状态监视;全线车站供电、机电和通信设备事故报警监视,但无须确认报警;紧急状态时,临时获得所有设备的操作权利;历史数据查阅打印;屏幕拷贝;指挥系统间的联动等。
b.监控和操作范围,如表5所示。
2.3车站级调度管理
车站、车辆段的值班员负责车站级的监控管理,通过值班员工作站完成BAS、FAS、CCTV、PA、PIS的车站级监控功能。
1)车站监控管理
在车站控制室配置监控工作站两台,互为主备。
a.主要工作:监视本车站供电设备状态;监视本车站的机电设备状态、发出的事故报警及报警确认;车站机电设备控制操作和运行模式切换;CCTV图像切换,摄像机的动作控制;历史数据查阅打印;屏幕拷贝等。
最新【精品】范文 参考文献
专业论文
b.监控和操作范围,如表6所示。
2)车辆段监控管理
在车辆段控制室各配置监控工作站两台,互为主备。监视车辆段管辖范围内的环境、灾害、供电及主要设备的运行情况。
主要工作:车辆段供电系统设备工作状态监视;本车站机电设备工作状态监视、事故报警确认;机电设备控制操作和运行模式切换;CCTV图像切换,摄像机动作控制;历史数据查阅打印;屏幕拷贝等。
监控和操作范围,如表7所示。
3结束语
综合监控系统是工业自动化系统在城市轨道交通的发展与应用,标志着城市轨道交通已经进入数字化、信息化的新时期。随着计算机、自动控制和通信网络等技术的发展,以及我国轨道交通管理水平的不断提升,以行车调度为核心的集成方式会逐步成为主流,实现对轨道交通中环境、供电、设备、乘客、列车的全面监控,真正做到为运营指挥部门服务,是综合监控系统的发展方向。
参考文献
[1]徐余明.城市轨道交通综合监控系统技术路线及实现功能的探讨[J]RT轨道交通,2012(4):66—70.
[2]魏晓东.城市轨道交通自动化系统与技术[M].北京:电子工业出版社,2004.
[3]刘晓娟,林海香,司徒国强.城市轨道交通综合监控系统[M].四川:西南交通大学出版社,2011.
7.轨道交通通信信号系统 篇七
目前, 无论是国产轨道交通信号系统还是国外设备国产化的推广应用, 所遇到的共同问题是缺乏权威机构的安全认证, 而国际通行方法都要求有安全认证这一步。如此, 国内开发的信号系统就难以参加相关项目的招投标。南京恩瑞克就是典型, 因为没有通过国际安全认证, 其开发的信号系统无法在国内的轨道交通中应用。为此, 按照国际安全标准, 结合江苏轨道交通发展的实际情况, 领衔全国建立轨道交通信号系统的安全评估和认证体系势在必行。
1. 相关国际标准
世界发达国家的城市轨道交通系统已经有了百余年的发展历史, 并已经形成一整套科学的安全评估、认证、管理体系, 制定了一系列切实可行的技术标准。
IEC61508是国际电子电工委员会 (IEC) 制定的《电气/电子/可编程电子安全相关系统的功能安全》国际标准, 是进行轨道交通安全评估和论证的重要参考标准。它规范了电气/电子/可编程电子安全相关系统软硬件生存周期的各个阶段的任务和目标, 提供了制定安全需求规范的方法。
欧洲国家在宣传和介绍IEC61508国际标准的同时, 以IEC61508国际标准为基础, 吸收其精髓, 制订了行业标准。例如欧洲电气化标准委员会 (CENELEC) 下属SC9XA委员会制定的以计算机控制的信号系统作为对象的铁道信号标准 (见图1) 。
2. 国外的安全评估体系
欧美国家较早开展轨道交通信号系统的安全研究, 目前已形成了比较完善的安全评估体系, 如英国CASS安全评估框架, 德国TUV评估体系等。它们主要以EN铁路标准为基准, 依托第三方评估机构, 对已有线路和在建项目的信号系统进行安全性论证。以英国CASS安全评估框架为例进行详细说明。
(1) 英国CASS安全评估框架。
CASS是英国工商部 (Department of Trade&Industry) 和健康安全部门 (Health&Safety Executive) 制定的一个安全评估认证框架项目, 为此还成立了CASS策划公司, 它的任务和目标是为基于IEC61508标准的安全相关系统开发标准的认证框架。
在CASS框架中 (见图2) , 评估员由权威部门考核和认证, 并要求独立于运营商和系统制造商;评估员对认证机构负责, 认证机构对客户负责。政府相关监督部门由具有安全认证经验的专家组成。CASS也有自己的技术委员会, 确保满足技术发展的需要。CASS相关的标准和规范会根据IEC61508的修订进行修改。在英国UKAS是唯一授权安全论证的机构, 进行CASS框架认证的机构都要向UKAS申请授权, 系统制造商再向这些UKAS承认认证机构申请评估。CASS公司会对评估员进行考核, 监督评估过程。
(2) 安全评估原则和方法。
目前英国在铁路安全管理中普遍应用ALARP原则 (As Low As Reasonable Practicable) , 将安全相关系统风险分成三类: (1) 足够大的风险, 不能接收; (2) 足够小的风险, 可以忽略; (3) 介于以上两种风险之间的风险, 必须采取适当的、可行的、合理成本下的方法将其降到可以接收的最低程度。
(3) 安全评估过程
在Railtrack铁路咨询公司出版的工程安全管理黄页中把安全评估过程分为两部分:安全审核和安全认证。
安全审核是要检查工程的安全管理是否完善, 能否和安全计划保持一致。评估员应检查安全计划里说明的标准和步骤是否被正确执行, 看工程行为和安全计划是否具有继承性。安全审核最后要有一个安全审核报告, 包括:对项目和安全计划一致性的评价、认为安全计划可行的评价和计划相符或是有所改进的建议。
安全认证是一个判断和系统相关风险扩大或者减小到一定等级的过程。系统的安全要求是安全认证的核心。评估员应根据产品制造商提供的安全事例 (Safety Case) 回顾安全需求规范以评价它对控制系统风险是否已经足够, 以及系统是否满足安全需求规范。进行安全认证的目的就是收集足够的信息来证明系统的风险是可以接受的。
3. 建立轨道交通信号系统安全评估
与认证体系框架设想
借鉴国外先进方法建立自主轨道交通信号系统安全评估与认证体系意义重大, 可以迅速缩小和国际先进水平的差距, 同时轨道交通信号系统的研制开发和应用也可以逐步走向规范化、系统化, 切实保障运行安全。
参照CASS框架, 本文提出轨道交通安全评估与认证体系框架设计, 由轨道交通主管部门牵头, 组织专家组制定安全认证标准和方法, 相关单位可以据此申请成为第三方认证机构, 聘请评估员对于安全相关系统进行安全认证, 包括安全认证机构、标准、认证方法以及相关各方 (政府、设备生产企业、运营单位、认证机构) 之间的制约关系、权利和义务等 (见图3) 。
框架可以概括为以下4个层次。
第一层次:在体系建立初期, 政府主管单位集中安全、质量、科技、生产等管理部门成立轨道交通信号系统安全评估体系领导小组。
第二层次:安全评估体系领导小组组织权威专家和相关技术人员成立权威机构, 进行安全评估相应标准和规范的制订工作。
第三层次:进行安全评估者的资格论证, 考核独立个人或机构的安全评估资格 (应独立于研制开发、生产、销售等业务) ;可以批准多个评估机构, 但每年必须对这些评估机构或个人进行资格审查或评估。
第四层次:对参与信号系统设计、生产、维护、测试的主要人员进行安全设计、管理、测试和生产方面的培训和评估, 保证整个体系中的安全意识。
4. 安全认证机构
轨道交通安全认证机构由政府部门审核批准, 负责安全相关系统的安全认证与评估。
对于每一个轨道交通信号系统的安全认证项目都应设置项目经理, 负责协调安全认证机构与被认证单位、管理认证项目并形成安全认证报告。安全认证机构下属QA&QC (质量评估认证) 、开发过程评估和技术评估部门, 主要负责安全标准的解释、执行, 功能质量认证以及文件存档;开发过程评估部门和技术评估部门分别对被认证项目的开发过程和最终产品进行评估。
参考文献
[1]张瑜.城市轨道交通安全体系研究[J].山西科技, 2005 (6) .
[2]崔艳萍, 唐祯敏, 李毅雄.城市轨道交通现代安全管理体系构建初探[J].中国安全科学学报, 2005 (3) .
[3]唐涛, 燕飞, 郜春海.轨道交通信号系统安全评估与认证体系研究[J].都市快轨交通, 2004 (1) .
[4]燕飞, 唐涛.轨道交通信号系统安全技术的发展和研究现状[J].中国安全科学学报, 2005 (6) .
8.轨道交通通信信号系统 篇八
关键词:通信系统;外场设备;支吊架;制作;安装;经验
中图分类号:TN912.3文献标识码:A文章编号:1000-8136(2010)05-0151-03
城市轨道交通通信工程施工,需安装大量摄像机、监视器、显示屏、无线天线、子钟等外场设备,通过支吊架固定在顶板、立柱或过梁上。支吊架是外场设备安装的一个重要组成部分,起着承受荷载、限制位移和控制摆动、振动或冲击等作用,不仅要求选型得当、布置合理,而且要求美观、安全。支吊架一旦失效,将使设备坠落、损坏,对现场人员的生命安全构成巨大威胁,甚至发生恶性事故,影响安全。
支吊架制作长期以来一直是困扰城市轨道交通通信工程安装的难题之一。设备厂商提供的外场设备支吊架,由于受建筑结构、空间高度、装修方式或其他专业桥架、管线、设备等影响,在大多情况下,其荷载、长度、强度、固定方式和稳固性等无法满足现场需要。实际施工时,需因地制宜,设计、制作和安装合适的设备支吊架,以使所安装设备达到可靠使用的目的。基于此,我方通过重庆、上海、广州等城市轨道交通通信项目施工,不断改进、总结,在支吊架制作方面摸索出一定经验。制作的支吊架牢固、美观、实用,施工快捷、安全、灵活、简便,操作人员易于掌握,现场使用效果理想。
1 外场设备支吊架要求
1.1 满足不同结构及装修风格要求
城市轨道交通车站结构、装修风格各异,有地下站、高架站、地面站等形式,站台层有工字钢结构、拱形结构、网状结构等装修型式,站厅层有网格、铝塑板、铝扣板、挂片等装修型式,墙面有石材、铝塑板等型式,即使为同一区域,装修高度及型式也可能不同;而且受桥架、管线及其他专业设备影响,很多情况下,支吊架处于密如蛛网的管系中,不仅受力复杂、工作条件多变,且往往受到位置的限制,以致结构、形状多样,给制作安装带来不便。现场需针对不同建筑结构、装修方案,采用不同的支吊架型式,既满足技术规范、功能及防护等级要求,又与站台、站厅层结构、装修风格相适应。
1.2 满足安全性、稳固性、可靠性要求
监视器、时钟、显示屏等外场设备重量重,需考虑承重要求,摄像机等设备对图像稳定性、观测角度要求极其严格,考虑风力、车辆振动、人为及施工碰撞,会造成支吊架晃动引起图像抖动,影响观察。以下情况,造成支吊架制作安装较为困难:为保持外场设备距地高度及便于观察维护,有的支吊架杆很长,但需保持支吊架与地面垂直,否则影响站台美观;有的外场设备支吊架与钢架结构连接体部位型式不一、粗细不一,有的与地面呈一定斜角,制作根法兰时需注意角度,见图1;装修专业结构钢架、龙骨等为避免变形,不允许进行电,焊、打眼作业,需采取夹板式、包柱式等型式进行固定安装。因此,支吊架可靠性、安全性和稳定性必须满足需要。
1.3 满足调整、拆装等安装维修要求
由于装修前很多外场设备安装位置、高度,地面标高不能明确,支吊架安装位置、长度有可能随时变化,一旦具备条件,制作安装往往只需很短时间,处理不好会对现有装修产生很大影响;部分装修为整体装修,支吊架伸出装修层时开孔困难,需准确合适,过大会造成封堵困难,过小支吊架无法穿过;现场施工中其他专业吊装、搬运等都可能对支吊架造成破坏及影响等。所以支吊架必须可以快速拆装,以应对各种紧急情况,便于对外场设备进行维修。
1.4 满足走线功能要求
设备电源线、控制线、信号线等从管槽引出后进入设备,如线缆外露较多会显得凌乱,且易积尘,擦拭清洗困难。如考虑在支吊架内走线,走线隐蔽、封堵容易且能起到屏蔽作用。
2 工艺创新和改进
本方吸取以往支吊架制作的经验教训,对支吊架制作进行了以下创新和改进。
2.1 利用计算机制作模型效果图
本方根据现场测试数据及安装设备图像资料,利用计算机计算相关曲线参数,制作不同的三维模型示意图,见图2。通过分析优化,确定支吊架型式,保证支吊架与钢架结构、装修风格适应配套,以保证支吊架配套美观、法兰连接坚固、安装误差最小、下料准确方便、材料损耗最少、确保安装更准确、快捷。
2.2 制作软件进行汇料统计
支吊架按规范、现场及设备情况选用强度和刚度相适应的型式与规格,种类数量繁杂,材料统计难度大。本方利用计算机制作相应软件进行材料统计汇总工作,统计现场需加工制作的支吊架数量、位置、类型、尺寸等具体数据,根据输入的支吊架型号,自动拆分材料,自动输出材料料单和支吊架汇总料单,解决了以上问题,提高了效率。
2.3 采用线切割工艺精确加工
每组支吊架都根据具体情况而设计,考虑风力及其他原因会引起设备晃动,支吊架根法兰必须与站台结构连接体紧贴并箍紧,其圆弧应均匀,且与所抱钢架直径配套,与地面垂直。但每个钢架结构连接体的情况不一致,为保证连接紧密,本方测量并计算出弧形钢架相关曲线参数,采用线切割工艺精确加工根法兰,确保支吊架满足要求。
2.4 组合式加工确保安装调整
支吊架如在使用现场加工,需配备电焊机、切割机、砂轮机等加工机具,搬运、存放困难,还需解决加工用电;另外,现场材料多、作业场地有限、人员杂、通风及光线差、安全隐患多、效率低。由于地面标高等影响,支吊架长度不能一次到位,有可能随时变化。为便于施工、维修和高度调整,本方采用组合式支吊架,将支吊架分成根法兰、吊杆、设备法兰等3部分,根据需要进行组合选用,固定部分每间隔1 cm打孔用于伸缩调节,另一端焊接根法兰用于生根;活动部分一端套丝扣或装设备法兰连接设备,一端每隔1 cm打孔用于伸缩调节,每套支吊架根据情况均有10 mm~600 mm的调整量。所有支吊架均可实现快速拆装,预先制作出支吊架的半成品,现场工程师根据现场情况,及时组织加工人员进行配合,根据需要对半成品支吊架进行调整,减少现场加工量,提高效率。
2.5 合理利用原有支吊架保证使用效果
摄像机、监视器等供货商提供的支吊架与设备配套,部分有调节俯仰角度、左右方位等功能,本方制作时在征得设备供货商同意的情况下,针对原有支吊架合理改造,根据需要适当取舍,采用套丝、焊接、法兰连接等方法进行调整等改造,吊杆外径、型式和颜色尽量保持一致,充分利用原吊架功能,保证使用效果。
3 外场设备支吊架制作安装要点
3.1 支吊架制作安装基本流程
审核图纸→图纸定位→现场定位→测量→型式确定→下料加工→防腐处理→安装→调整→设备安装。
3.2 外场设备定位、测量
外场设备定位、支吊架测量是设备安装工作中重要的一个环节,应派出具有丰富施工经验的技术人员参加,根据初步确定设备布置,现场核实方案可行性,综合考虑各种因素,精心测量,优化比选方案,确定支吊架型式、材质,最终达到方案切实可行。
3.2.1 外场设备定位
施工现场综合管线复杂,空间分割密集度高,如果盲目施工可能造成返工,为保证支吊架在有限空间规范安装,统一支吊架位置、标高、间距、限界等非常重要。需及时与设计单位、运营单位沟通,了解设计思路、了解使用维护要求,现场核对风水电、FAS/BAS、低压配电、信号等相关专业管线设备,并认真查看车站结构、空间尺寸、孔洞预留,核对现场实际与设计文件之间有无差异;积极与土建、装修、供配电、信号、通风、给排水、AFC、FAS/BAS、屏蔽门等相关专业保持联系,依据施工设计和综合管线设计,会同其他承包商一起协商核定方案,并报监理及设计等审批;工程实施中互通信息,积极协调施工程序,减少干扰,共同协商创造互利的施工环境。
联系设备供货商,详细了解外场设备尺寸、重量等详细数据,了解固定方式、安装要求、安装附件型式、设备性能及环境要求,以保证安装效果最佳。
定位原则:既要考虑承重美观,又要满足设备维修、调整要求;安装位置符合设计图纸,安装高度满足防范要求,要求到接缝边缘距离应能满足螺栓受力要求;考虑安装点装修高度、颜色、材质等,灯光、顺光逆光、干扰等;考虑司机、值班员、车长、乘客等观察角度、习惯,甚至视角误差;为保证观察监视效果,考虑其他专业的终端设施,如广告牌、导向牌、灯具、风口及立柱等相互遮挡,协调避让等。
通信外场设备避让原则:为保证安装稳定牢靠,对显示屏、时钟等对位置要求不严格的外场设备,通过业主、设计等现场确认,可适当合理调整到有梁、柱及易于生根位置,可为其他设备避让;监视器、摄像机等对位置要求极严格的设备必须协调其他专业设备避让。
3.2.2 支吊架测量
现场测量是支吊架制作的重点,根据设计文件、技术规范对设备安装高度和位置进行核对,并参考设备(含附件)尺寸,确定支吊架型式和长度,按照前期测量和计算的安装件至地面及站台边沿的实际距离,分别利用吊线锤、钢尺等确定位置,同时在固定点上作出相应标记,以保证后期安装的准确性。
根法兰等部分非标件设计和生产需要测量后的数据进行,且其测量结果直接影响生产,特别是非标件的生产是影响总体工期的关键因素。需由经验丰富的技术人员对每处安装部位进行精确测绘,认真计算相关曲线,对安装位置反复核准。测量所选择的基准面和测点应有足够的代表性,测点数应保证安装的最小误差,确定正确位置,“位置”就是指平面的纵、横向位置和标高。
支吊架根据设备大小、重量和现场情况可设计成“I”型、“L”型、门型、三角型等型式,门型吊架主要为位置确定受其他管槽影响时采用,三角型支吊架主要对超长支吊架增加稳固性时使用。支吊架要布置在靠近荷载的地方,以减少偏心荷载和弯曲应力,特殊情况可考虑和其他专业外场设备共用支吊架。可调支吊架的拉伸或压缩量应按要求进行计算,针对不同的装修风格,尽量将调整部分推延到隐蔽处调整解决,以保证美观。
固定方式可采用预埋、包柱式、螺栓固定、射钉固定和焊接固定等。必须具备生根条件的支吊架应尽可能利用建筑物、构筑物的梁柱作为生根点,生根点的构造满足生根件的要求。安装位置及类型尽量减少作用力对被生根部件的不良影响,当设备较重时,有关支吊架对于梁、板、柱、钢架等结构强度的影响,需经结构专业设计人员验算,特殊点应做荷载试验(使用承重物悬挂于支吊架上,荷载为设备及支吊架自重及工作荷载总合的2倍,悬挂时间为12 h。试验结果安装牢固,支吊架、构架未变形为合格)。
3.3 支吊架材料选用
根据现场测量结果,计算支吊架承载能力,确定其结构型式、材质,根据承重要求选用管材厚度,使其满足承载要求,并节省材料、方便施工。材料本着经济、合理的原则选用,通常选用钢管、不锈钢管,吊顶内较隐蔽可适当采用角钢、槽钢或通丝,根法兰根据固定型式可选用扁钢、钢板、槽钢、卡箍等,最好套用规格化的型材和标准元件,并使其既满足工况要求,又能与所支撑材料匹配。
3.4 支吊架加工制作
支吊架型式和加工尺寸符合现场要求,制作支吊架的钢材应平直,无明显扭曲,切口无卷边和毛刺;下料误差应小于5 mm,使支吊架的拼接平直,尺寸准确,外形规矩;钻眼应采用机械加工,不得采用气(电)割,以免影响美观及支吊架的刚度、强度;焊接采用手工电弧焊,由持证焊工施焊,点焊高度为焊脚的2/3,焊点长度视距离施工件及焊缝位置而定,宜均匀,并填满弧坑,焊点无漏焊、欠焊或焊接裂纹等缺陷;缆线进出孔孔径大于线缆外径,位置合理。
加工完毕后用角磨机打磨平滑,非不锈钢件要进行防锈和喷塑处理,如用于露天或潮湿环境应进行热镀锌处理。清除支吊架表面的灰尘、污垢、锈斑、焊渣等杂物后,采用空压机对钢材喷漆进行防腐,喷漆厚度均匀,不得出现脱皮、起泡、起皱、针孔、流淌和漏喷现象。外漆颜色为金属色或与设备颜色一致,并考虑与安装处装修色配套。所有加工好的支吊架均标明编号,方便使用。
3.5 支吊架安装防护
设备支吊架安装采取首件样板制,第一套设备支吊架制作安装完成后,经业主、监理工程师检查,确认合格并统一工艺后,作为样板全线推广。
支吊架安装必须根据现场的施工条件和材料的进场情况,结合土建、装修、水暖等工程进展情况,采取条件成熟一处、安装一处、调整一处的方式,统一协调,合理组织人员和机具,采取灵活机动的施工方法,确保安装的顺利进行。
安装人员必须有一定的工艺知识,把设备精度与安装允差结合起来考虑,使偏差向有利方面积累,以最终确保设备的使用性能。
支吊架牢固地固定在梁、墙、立柱或其他结构物上,安装要做到横向水平,线性良好,视觉、外观效果良好,如有抗震要求时,应考虑加固措施。装修层开孔需联系专业人员采用专用工具进行,我方安排专人配合,严禁私自开孔。如设备周围为难于拆装的整体装修板材,应协调装修单位预留好检修孔,为以后运营维护和检修提供方便。
安装钻孔时选用规定规格的钻头或专用钻头,严格按规定孔深和角度进行钻孔,确保孔位不发生偏斜。每个区域的支吊架安装完成后,采用水准仪和经纬仪对支吊架的吊杆进行调正、调平,按照安装需求调整到需要的标高。
支吊架安装完成后设置或粘贴明显的标识信息,为防止其他专业进行喷涂等作业污染支吊架,采用废报纸或塑料带将支吊架包裹进行保护,并派专人定期巡查,发现有丢失、损坏情况时,及时处理。
4 结论
我方成功完成了上海、重庆等城市轨道交通通信系统外场设备支吊架的配套加工,经验收测试,其强度、稳定性均达到要求,效果良好,满足设备安装及使用维护要求。
支吊架安装只是外场设备安装的一道工序,施工中,需严格作好每道工序的施工,只有真正做到“作好本道工序,服务下道工序”,才能创造一个良好的施工环境,保障整体工程的质量。
Urban Rail Transportation Communication Systematic Outfield Equipment Prop up Hanger Make Experience of Installing
Wu Junhong,Bai Mingtao
Abstract: The article summarizes the communication construction experience of the urban rail transportation,have analysed that does not prop up the hanger with the condition that makes installation and requires,propose the craft innovate, improves the measure and makes the scheme concretly,propose a set of manufacture methods fast,safely,reliably .
9.轨道交通通信信号系统 篇九
摘要:分析列车正点率对城市轨交通的影响,针对微机联锁系统故障时的站间电话联系法的行车组织程序进行实例分解,分析站间电话联系法对行车组织的影响,提出取消路票和RM模式下提高运行速度的建议,并进行仿真测算。同时对列车运行间隔提出“压点”、“抽线”和“小交路”等调整方法。关键词:轨道交通;微机联锁;故障;行车组织 列车正点率对城市轨道交通的影响
在日益激烈的运输市场竞争中,城市轨道交通要不断发展,必须全面提高服务质量,列车正点率作公共运输工作中的一个重要指标,对轨道交通服务质量有非常重要的影响。
(1)列车正点率关系轨道交通运企业的信誉和形象。近年来,轨道交通能得社会的认可并得到快速发展,一方面是由于轨道交通使城市交通拥挤的状况得到缓解;另一方面是轨道交通拥有高度自动化的列车自动控制(ATC)系统,具有较高的安全正点率。因此,安全正点既是轨道交通的优势所在,也是关系企业声誉和形象的重要标志。
(2)列车正点率是轨道交通良好运行秩序的保证。2004 年以来,广州地铁两条运营线路经过6次大的运行图调整,单线上线列车已从7列增加到17列,列车运行密度越来越大,列车间隔越来越小,目前行车密度达到高峰期 4 min 的行车间隔。如果某个联锁区段发生系统故障,则运行于该联锁区段的列车运行速度将会降低,造成列车晚点,也必然会影响其他列车,打乱全线的正常运行秩序。
(3)列车正点率事关行车和乘客的人身安全。正常的站车秩序是建立在 ATC 功能良好,列车正点运行基础之上的,如果某个联锁区段发生系统故障,就会使部分列车晚点,列车自动监控系统(ATS)上固定的运行线路被打乱,并易发生以下问题。
① 联锁故障区段的列车需要靠人工驾驶运行,除限制运行速度外的列车运行安全仅靠驾驶员的目视保证。
② 由于列车晚点会造成列车运力不足或集中到达,使车站客流组织难度加大,客运力量薄弱的车站,易发生客流拥挤甚至旅客受伤的情况。
③ 由于晚点列车需要临时调整其停站时间或发车时间,给中央行车调度的指挥带来难度,易发生行车问题。
微机联锁系统(SICAS)发生故障,一般持续时间长,影响范围广,给行车组织和客运服务都带来很大的压力,严重影响乘客的出行,影响城市轨道交通的信誉和形象。处理好微机联锁系统故障情况下的行车组织,在不降低列车运行安全系数的前提下,实现列车群对客流的均衡吸纳,并最大程度地提高列车运能利用率,减小对乘客的影响,是城市轨道交通应积极解决并不断提高处理效率的关键问题。2站间电话联系法的行车组织 2.1站间电话联系法
当正线某联锁区SICAS故障时,由中央调度控制中心的值班主任决定在该区段采用站间电话联系法组织行车。电话联系法组织行车的一般程序如下。
(1)列车在故障范围内的各区间凭路票运行,用限速的人工驾驶模式(RM)驾驶,每一站间区间及前方站的线路内只允许有一列列车占用。
(2)有关站值班站长接到行调命令后,分别在每个站台监控亭派值班员负责接发列车,并通知邻站采用站间电话联系法组织行车。
(3)进路准备。故障联锁站正线上的道岔均要开通正线,并使用钩锁器锁定。
(4)接发列车。接车站值班员确认站内线路及区间空闲后,电话通知发车站同意接车;发车站接到接车站同意接车的通知后,由站台值班员向司机派发填写好的路票并向司机显示发车指示信号,司机确认发车指示信号显示正确后动车出站。
(5)故障车站分别向行车调度及前、后方车站报列车的到、开点。
2.2 SICAS 故障时的实例分解
广州地铁二号线赤岗联锁区SICAS的故障演练以某次列车从赤岗站运行到中大站为例,车站线路布置见图1,其各段作业时间如下。
(1)由于SICAS故障影响,列车从赤岗站晚到客村站时间为1min。
(2)SICAS故障时起,发令采用站间电话联系法行车,在客村站增加停站时间4 min。
(3)鹭江站下线路钩锁道岔影响时间为11 min。
(4)客村站与行调确认区间是否空闲占用时间为 2 min。(5)客村站与鹭江站办理发车请求及填写路票时间为3 min。
(6)安排站台值班员发车、司机确认信号后关门动车占用时间为2 min 10 s。
(7)客村—鹭江的行车时间为3 min 20 s(平均速度22.4 km/h)。(8)鹭江站与中大站办理发车,列车发车时间为1 min 30 s。
(9)鹭江—中大的行车时间为4 min 40 s(平均速度21.7 km/h)。
(10)司机在中大站接行调恢复正常行车的命令,关门动车时间为2 min 30 s。
整个过程共用时 35 min 10 s,列车比正常运营时刻表中大站晚发31min,即SICAS故障造成晚点31 min。
分析以上数据,车站间及与行调的电话联系和办理闭塞与进路的时间无法减少,降低晚点影响的关键是能否取消路票填写、交接和确认这些环节,以及提高列车在故障区段的运行速度。
2.3 路票作为电话联系法行车凭证的弊端
路票是由车站行车值班员按规定填写完整的固定格式的书面记录。行车值班员通过电话联系,确认区间空闲、邻站同意后即可填写,待列车到站后交给司机。此作业环节的安全关键是车站行车值班员要确保区间空闲。一般城市轨道交通的区间长度在1 000 m~1 500m,以行车速度25 km/h计,出清区间也只需 2 min 24 s~3 min 36 s,而利用路票作为行车凭证后的列车在站停留时间平均为4 min 15 s,超过了列车在区间的运行时间,成为制约列车运行间隔时间的关键。虽然路票具有凭证明确的优点,但这种路票交接方式对安全并没有关键性的意义,而且降低了作业效率,对于以“秒”为单位计算的具有“方便、快捷”特点的城市轨道交通,取消路票作为行车凭证是可行的。经实测,从填写路票到将路票送交站台值班员一般需时 2min 30 s,取消路票后,可有效缩短列车在站停留时间。2.4 RM模式下提高运行速度的建议
目前在国内城市轨道交通列车运行的RM模式下,列车的驾驶速度一般都规定为限速25 km/h,当速度达到24 km/h时,列车发出报警,当速度达到25 km/h时,列车即产生紧急制动。经测试,广州地铁A型车各主要速度下的紧急(快速)制动距离如表 1 所示。
列车在20~25 km/h的低速下运行,司机通过前后推拉主控手柄对列车“牵引”或“制动”以保证列车速度,这种力度很难准确把握,为了不造成超速而出现紧急制动,给列车晚点运行带来更大的影响,司机一般将驾驶速度限定在20~22 km/h之间,比规定的限速低5km/h左右。
由表1可知,当列车运行速度达到30 km/h时,列车可在 48 m的“快速制动”或“紧急制动”下停车,加上人为反应的0.74 s(实验数据)内地铁列车运行6 m,司机在开始意识制动后的 54 m内制停地铁列车。A型车车钩防冲撞速度为 25km/h,即在最不利的情况下,54 m约两节车厢的距离,在地铁列车运行中司机可以在车钩允许接受冲撞速度范围内将列车制停。
目前,国内城市轨道交通系统正线使用 9#道岔,最小曲线半径是300 m;而车厂一般使用 7#道岔,最小曲线半径是 150 m,将RM模式的最高限速由25 km/h提高到30km/h,地铁列车是能安全通过道岔和最小曲线半径路段的。
为此,建议将目前RM模式下的设计列车限速25 km/h提高至30 km/h。
2.5 仿真测算
运用上述行车组织方法,对广州地铁二号线赤岗站联锁区间就取消路票填写并提高RM模式下列车运行速度至 30 km/h的有关数据分别进行了实操演练和仿真测算,部分数据如表2所示。3 列车运行间隔的调整方法
为了实现列车群对客流较为均衡的吸纳,针对不同的区段采取不同的列车间隔调整方法是必需的。3.1 “压点”法
在ATC系统功能良好区段的列车,适当缩短两列车间的正常追踪间隔,实现晚点危害的“分散化”,由所有列车共同承担晚点。
基于列车间隔的意义,需要制定相应措施,在前车出站晚点发生的过程中,采用增加在站停留时间等方法,适当推迟后行列车到达下一站的时刻(应避免第一后行列车与第二后行列车之间追踪间隔的过大),这样既能保证充分的列车间隔,实现平均吸纳客流,又可以避免出现后车的站外停车。3.2 “抽线”法
由于故障区段列车运行速度低、办理作业时间长,而ATC正常区段列车运行速度高及行车作业时间短,势必造成列车堵塞的情况。通过减少线上列车数量(即抽线)的方法实现均衡运输,这样既便于调度指挥,又方便客流组织。
3.3 小交路折返法
如果联锁故障持续时间较长,保持客流吸纳均衡和较大限度地利用运能之间的矛盾就会非常突出,有可能造成线路的堵塞。此时仅靠“压点”和“抽线”的方法不能完全解决问题,在 ATC 功能良好区段运行的列车可采取分段小交路运行。
3.4 行车调度工作建议
10.轨道交通通信信号系统 篇十
客运专线通信信号系统工程的供应链整合
从工程建设供应链理论的研究现状出发,分析了我国客运专线建设的实际需要,构建了客专通号工程供应链整合的`概念架构,并在项目管理的体系下,根据通号工程中产品与服务的技术特性,侧重从横向整合的角度,对该类供应链的一体化进行了具体分析.
作 者:张逸 Zhang Yi 作者单位:上海海事大学 刊 名:铁路采购与物流 英文刊名:RAILWAY PURCHASE AND LOGISTICS 年,卷(期): 4(7) 分类号:U2 关键词:客运专线 通信信号 供应链整合 项目管理11.轨道交通通信信号系统 篇十一
【关键词】轨道交通;信号设备布置;改建
1、背景
苏州轨道交通二号线分为主线与延伸线两部分,主线全长26.455公里,设车站22座(地下站17座,高架站5座);延伸线全长15.64公里(东延线13.811公里,北延线1.829公里),共设地下车站13座(东延线11座,北延线2座)。
主线部分已于2009年12月25日开工建设,将于2014年6月开通试运营。延伸线部分已获发改委批复,即将开工建设。迎春南路站为2号线主线的末端站,车站中心里程为DK26+385.400,车站末端里程为DK26+454.600。
2、目前现状
2.1 目前迎春南站现状
苏州轨道交通二号线因主线比延伸线早开工,故主线将比延伸线早开通试运营。目前在迎春南站站设站前拆返单渡线一条,站后区间设19米的安全线。具体设备配置如图1:
2.2 开通试运营存在的问题
目前设计方案中,迎春南路站后区间只有19米的安全线路。19米的线路的不能满足行车安全的需要,也不能满足存放备用车或故障车的需要。
3、改建方案
因迎春南路站的土建施工已完成,该站主体不具备大规模变更条件,从“信号系统方案应该保证足够的安全性和可靠性,并考虑成本”和满足“运营时需在站后停放备用车或故障车需要”的角度出发,在区间中部实施盾构吊出井,将该站的站台实施东延线的340米長双线区间方案,并就信号系统设置提出以下两个改建方案。
3.1 改建方案一
在迎春南路站站后区间左线增加1架信号机(X1)、相应的LEU以及对应的可变应答器和固定应答器、1套计轴设备;在右线不增设相关的信号设备。具体设备配置如图2:
3.1 改建方案二
在迎春南路站左右线均增加1架信号机(X1、X2)、相应的LEU以及对应的可变应答器和固定应答器、2套计轴设备;具体设备配置如图3:
4、结论
以上两种方案,站后左线做为存放备用车辆的线路,列车进出停车线均由信号系统保证安全,司机根据信号机显示行车,且备用列车需投入运营时,只要通过信号机X1后即可完成模式转换,升级至CTC模式投入运营。
因迎春南站站站前仅只有单渡线作为折返线,站后右线若做为备用车的停放线也不法满足正常使用,故站后右线仅做为故障车辆的存车线。从压缩成本的角度考虑,站后右线无需再设置相关的信号设备。
第一种方案既能保证行车的安全、满足了开通运营的需要,又节约了成本。故推荐第一种方案。
参考文献
[1]地铁设计规划GB50157-2003,北京:中国计划出版设,2003
12.轨道交通通信信号系统 篇十二
固定闭塞信号控制,采用阶梯式速度控制方式,对应每个闭塞分区只能传送一个该分区所规定的最大速度命令码。其特点是线路被划分为固定位置、某一长度的闭塞分区、一个分区只能被一列车占用;闭塞分区的长度按最长列车、满负载、最高速度、最不利制动率等不利条件设计;列车间隔为若干闭塞分区,而与列车在分区内的实际位置无关;制动的起点和终点总是某一分区的边界;要求运行间隔越短,闭塞分区(设备)数也越多,列车最小运行间隔≥120 s;采用模拟轨道电路、轮轴传感器、加点式或环线传输,信息量少。固定闭塞式ATC(列车自动控制系统)虽然能满足基本的运营要求,但该类系统存在传输信息量较少,对列车运行的控制精度不高,列车安全保护距离较长,功能扩展相对困难,不利于ATP(列车自动防护系统)/ATO(列车自动驾驶系统)的发展以及技术相对落后等缺陷,对于运量较大的城市轨道交通线路的信号系统进行设计时,一般考虑采用准移动闭塞信号系统或移动闭塞信号系统方案。
与固定闭塞不同的是准移动闭塞信号系统采用一次模式曲线控制方式,并且可以根据地面信号设备提供的目标速度、目标距离、线路状态(曲线半径、坡道等数据)等信息,车载设备计算出适合于本列车运行的模式速度曲线。制动的起点可以延伸,但终点总是某一分区的边界;要求运行间隔越短,闭塞分区(设备)数也越多,列车最小运行间隔≥100 s;采用报文式数字轨道电路,辅之环线或应答器,信息量较大。该模式在城轨信号系统中有一定的运用,例如北京地铁、上海地铁、广州地铁、天津地铁等。
2 无线CBTC移动闭塞系统
CBTC(基于通信的列车控制系统)不是通过轨道电路来确定列车的位置,向车载设备传递信息,而是利用通信技术,通过车载设备、现场的通信设备与车站或列车控制中心实现信息交换完成速度控制。随着技术的发展和需求的牵引,人们开始采用基于无线通信的列车控制系统,也就是采用在列车和轨旁设置无线电台实现列车与地面控制系统之间连续的双向通信,做到真正的双向“车-地通信”,从而实现CBTC,其技术体制属于移动闭塞系统。移动闭塞的原理见图1。
CBTC的基本原理是:ATP地面设备周期性地接受本控制范围内所有列车传来的列车识别号、位置、方向和速度信息。相应地,ATP地面设备根据接收到的列车信息,确定各列车的移动授权,并向本控制范围内的每列列车周期性地传送移动授权(ATP防护点)的信息。移动授权由前行列车的位置来确定,移动授权将随着前行列车的移动而逐渐前移。ATP车载设备根据接收到的移动授权信息以及列车速度、线路参数、司机反应时间等,计算出列车的紧急制动触发曲线和紧急制动曲线,以确保列车不超越现有的移动授权。因此在移动闭塞系统中,ATP防护点不是在轨道区段的分界点,而是在前行列车车尾后方加上安全距离的位置,它随着列车的移动而移动。武汉轨道交通1号线
一期,广州地铁3号线,上海地铁6号线等项目相继采用了移动闭塞系统。
3 无线CBTC移动闭塞系统与传统信号对比分析
3.1 无线CBTC移动闭塞系统的优势
移动闭塞系统摆脱了用轨道电路判别列车对闭塞分区占用与否,突破了固定或准移动闭塞的局限性,具有更大的优越性和特点。
3.1.1 运行间隔缩短
运行间隔是指在线路上某一点前后运行的两列车之间的间隔。在无线CBTC移动闭塞系统中,一个列车车载设备探测轨道上的应答器决定列车的位置,在服务器的数据库中查找他们的位置,并测量自前一个探测到的应答器起已走的距离。列车车载设备通过双向无线通信向轨旁CBTC设备报告本列车的位置。
基于轨道电路的信号系统,移动授权权限是以轨道电路区段的分辨率来给出的,其分辨率是一个闭塞分区,分辨率越小列车运行间隔时间越短。无线CBTC移动闭塞系统能够以更精细的分辨率来连续地监测列车位置。其分辨率是厘米级,并且系统运行间隔≤90 s。
3.1.2 可减少轨旁设备,便于安装维修
传统的基于轨道电路的信号系统由于需在轨道沿线安装很多探测及传输设备,同时大部分设备与钢轨均有直接实体联系,从而导致直接施工成本相对提高,施工阶段互相干扰的情形相当多,所需工期难以压缩,而且在以后维修保养作业上也会互有影响。
而无线CBTC移动闭塞系统中轨旁的设备只有轨旁无线单元、应答器、接近盘。同时,列车占用检测系统(计轴)也可以集成到系统中,以保护工程车和非通信列车。更少的轨旁设备就意味更简单的维护过程和更低的生命周期成本。系统扩展性能好,无线通信网络具有扩展和改造灵活的特点,这使得在系统最初配置后的维护和更改工作中省去很多麻烦。
3.1.3 实现列车与轨旁设备实时双向通信
传统的信号系统中采用的“车-地通信”是一种通过轨道电路实现地面控制系统向列车传输信息的单向传输系统。而无线CBTC移动闭塞系统不依靠轨道电路检测列车位置和向车载设备传递信息,它是利用无线通信技术,通过轨旁与车载ATP/ATO之间的直接信急交换,完成对列车的控制。无线CBTC移动闭塞系统可提供双向高速大容量实时数据通信,信息传输独立于轨道电路,受外界各种物理因素干扰小,运行可靠。CBTC确立“信号通过通信”的新理念,使列车与地面(轨旁)紧密结合、整体处理,改变以往车-地相互隔离、以车为主的状态。这意味着只要“车-地通信”采用统一标准协议后,就易于实现不同线路间不同类型列车的联通联运。
3.1.4 系统的灵活性和平稳性
无线CBTC移动闭塞系统克服了传统的基于轨道电路的信号系统的不足,能够有效地处理各种类型、各种车速的列车,由于移动闭塞系统基本克服了准移动闭塞和固定闭塞系统对车信息跳变的缺点,从而提高了列车运行的平稳性,增加了乘客的舒适度。
另外,无线CBTC移动闭塞系统还便于缩短列车编组、高密度运行,可以缩短站台长度和端站尾轨长度,提高服务质量,降低土建工程投资;实现线路列车双向运行而不增加地面设备,有利于线路故障或特殊需要时的反向运行控制。可以实现节能控制、优化列车运行统计处理、缩短运行时分等多目标控制。移动闭塞系统,尤其是采用高速数据传输方式的系统,将带来信息利用的增值和功能的扩展,有利于现代化水平的提高。
3.2 无线CBTC移动闭塞系统存在的问题
无疑,移动闭塞CBTC是发展方向,相信若干年以后,逐渐会成为城市轨道交通信号控制系统的主流模式,国际上有一些城市正在探索采用该系统。但是,由于中国城市轨道交通建设的规模是空前的,尚等不到移动闭塞CBTC技术成熟,国内的城市已纷纷争先恐后,相互攀比,竞相采用尚待完善的移动闭塞CBTC系统,有些常被人们忽视的特点,在这里不妨一谈。
3.2.1 技术成熟度
一个成熟的信号系统应该是以最简洁的系统来实现全部功能,但移动闭塞CBTC系统由于尚处于发展初期,地铁轻轨公司为保险起见,在选用移动闭塞CBTC系统的同时,增加后备模式,以确保移动闭塞一旦故障或未及时开通时先以后备模式保证列车能以站间闭塞的方式运行。后备模式的选用,可谓保险但不经济,且技术风险(特别是自由无线传输)骤增。
3.2.2 运行效率
选用移动闭塞CBTC最大的论据是提高运行效率,可缩短列车追踪运行间隔,但是,如文中所述,固定闭塞和准移动闭塞,及移动闭塞的区间最小运行间隔分别为120 s、100 s和90 s,而运行间隔的瓶颈是端站的折返时间。一般端站的折返时间长达几分钟,缩短折返时间的方法是改变折返方式或追加折返线路等,故即使达到小于90 s的区间运行间隔,但折返效率即“一夫当关”,前功尽弃。
实际运行线路很少达到90 s的间隔运行,如北京13号线开通运营数年以后,才在早晚高峰时间达到3.5 min的运行间隔。有些线路,信号设备的生命周期完结,在更新改造时也刚达到3 min间隔。选用移动闭塞CBTC有时犹如“大炮打蚊子”。
3.2.3 维护应用
移动闭塞CBTC的特点是减少了轨旁设备,但列车与轨旁传输方式中如采用波导、漏缆或环线,这些设备不便于安装,不便于工务部门对钢轨的日常维修,且有些传输方式造成车-地通信效率较低等缺点。且移动闭塞CBTC由于采用了新的IT及软件技术,给用户维护带来相应困难,备品备件在开通后相当长的时间依赖受制于国外供货商,软件的更新升级同样取决于外方。
3.2.4 工程造价
移动闭塞CBTC的特点是缩短列车编组,高密度运行可以缩短站台长度和端站尾轨长度,但是我国城市轨道建设的建设体制是先挖洞后配系统,因此,缩短站台长度往往成为理论上的可行性探讨,达不到缩短站台和端站长度以降低工程造价的目的。相反,后备模式的配备又使造价递升,而国产的准移动闭塞的造价已降至进口的60%左右,固定闭塞的性价比优势更为显著。
4 结束语
相对于传统的信号系统,无线CBTC移动闭塞系统以更短的行车间隔,更少的硬件数量,更为简单的施工维修,更为优越的传输方式,更高的灵活性和舒适性等优势将在城市轨道交通中可以发挥更大的作用,代表了城市轨道交通信号系统的发展方向。一方面,中国的城市轨道交通建设规模空前,方兴未艾;另一方面,机电系统如车辆、牵引及信号控制等依赖国外供货的局面仍制约着中国城市轨道交通建设的开展。车辆牵引系统的国产化已取得阶段性成果,而地铁轻轨的信号控制系统的国产化还处于举步维艰的阶段。信号系统已成为中国城市轨道交通建设的关键瓶颈,政府部门在思索良策,地铁轻轨业主呼吁国内有社会责任感的公司提供自主知识产权的信号系统,以打破垄断、改变目前受制于人的窘境。呼吁城市轨道交通建设当局选用列控制式时采取稳妥的方式,以梯队结构选取合适的系统,使中国的城市轨道交通建设沿着正确的轨道前行。
参考文献
[1]何宗华,汪松滋,何其光.城市轨道交通通信信号系统运行与维修[M].北京:中国建筑工业出版社,2007.
[2]刘剑.城市轨道交通移动闭塞系统后备模式的研究[D].北京:铁道科学研究院,2005.
[3]吴汶麒.城市轨道交通信号与通信系统[M].北京:中国铁道出版社,1998.
【轨道交通通信信号系统】推荐阅读:
城市轨道交通信号概述09-03
轨道交通调度管理系统07-18
第4章 城市轨道交通运营安全系统分析09-08
试述轨道交通综合监控系统调度管理的应用08-07
城市轨道交通简介11-06
轨道交通管理办法06-12
轨道交通建设标准06-24
中国轨道交通发展历程07-16
城市轨道交通客运试卷09-27
轨道交通运营安全案例09-28