变频器典型故障分析(精选9篇)
1.变频器典型故障分析 篇一
高压开关柜典型故障分析
电力系统广泛使用10kV(含6kV)—35kV开关柜,担负着发电厂用电、变电站和用户供电的任务,且用量大,分布广。由于1OkV-35kV开关柜的设计、制造、安装和运行维护等方面均存在不同程度的问题,因而开关柜事故率比较高,危及人身、电网和设备安全,影响供电可靠性。
一、下面列举几种类型的开关柜事故(故障)案例:
(一)开关柜防爆性能不足或防误性能不完善,危及人身安全; 由于开关柜防爆性能不足或防误性能不完善,近几年省内外发生多起人身伤害事件,以下列举四起事故:
1.2006年2月 24日,某 220kV变电站 10kV高压开关柜(GGX2型)由于馈线故障,开关发生拒动,运行人员在处理开关拒动过程中,当拉开开关,确认开关位置指示处于分闸位置后,操作拉开隔离刀闸时,发生弧光短路,造成 2人重伤 1人轻伤。事故后现场检查发现:该开关操作机构 A、B相拐臂与绝缘拉杆连接处松脱,造成 A、B相主触头未分开,在操作拉开隔离刀闸时发生弧光短路。由于906柜压力释放通道设计不合理,下柜前门强度不足,弧光短路时被电弧气浪冲开,造成现场人员被电弧灼伤。开关柜的上述问题是人员被电弧灼伤的直接原因。
2.7月 1日,某单位发生一起因变电运行人员擅自打开10千伏开关柜柜门,误碰带电部位造成的人身触电死亡事故。设备缺陷是事故发生的又一间接原因。由于 6522A相刀闸动触头绝缘护套老化,松动后偏移,刀闸断开时护套卡入动触头与刀闸接地侧的静触头之间,造成刀闸合闸时卡涩合不上。且该 GG-1A型高压开关柜系 60年代设计的老旧产品,96年生产,97年投运;原安装有机械程序防误锁,于 2002年改造为微机防误装置,由于此型号的高压开关柜原设计不完善,不能实现线路有电强制闭锁。
3.2009年9月30日,某220kV变电站发生一起10kV开关柜内部三相短路,电弧产生高温高压气浪冲开柜门,造成2名在开关柜外进行现场检查的运行值班员被电弧灼伤,其中1人于10月1日死亡。
4.2010年8月19日,8月19日,某单位在更换某220kV变电站10kV I段母线PT过程中,工作班成员触碰到带电的母线避雷器上部接线桩头,造成2人死亡、1人严重烧伤。
初步分析,事故主要原因为厂家设备一次接线错误。根据国家电网公司典设和设备订货技术协议书,10千伏母线电压互感器和避雷器均装设在10千伏母线设备间隔中,上述设备的一次接线应接在母线设备间隔小车之后(见附图1)。而开关柜厂家在实际接线中,仅将10千伏母线电压互感器接在母线设备间隔小车之后,将10千伏避雷器直接连接在10千伏母线上,导致拉开10千伏母线电压互感器9511小车后,10千伏避雷器仍然带电(见附图2)。
变电站运行人员按照工作票要求,拉出10千伏Ⅰ段母线设备间隔9511小车至检修位臵,断开电压互感器二次空开,在Ⅰ段母线电压互感器柜悬挂“在此工作”标示牌,在左右相邻柜门前后各挂红布幔和“止步,高压危险”警示牌后,向调度汇报。变电站运行人员与工作负责人一同到现场对10千伏Ⅰ段电压互感器进行验电,由于电压互感器位臵在9511柜后,必须由施工人员卸下柜后档板才能进行验电,在验明电压互感器确无电压之后,运行人员许可施工人员工作。由于电压互感器与避雷器共同安装在10千伏Ⅰ段母线设备柜内(见附图3),施工人员在工作过程中,触碰到带电的避雷器上部接线桩头,造成人员触电伤亡。
图1:
附图2
附图3:
(二)开关内设备接(触)头过热性故障
封闭式开关柜在运行中不能打开,因此难以测量运行中柜内接(触)头的实际温度,如不及时发现并处理接(触)头过热性缺陷,严重威胁电力安全生产。固定式开关柜每个进出线间隔共有负荷电流流过的33或39个接(触头),小车移动式开关柜每个进出线间隔共有负荷电流流过的24个(或更多)接(触头)。这些接(触)头直接流过负荷电流,当负荷较大时存在隐患的接(触)头就会严重发热。由于发热点在密封柜内,运行中的柜门禁止打开,值班人员无法通过正常的监视手段发现发热缺陷。一旦触头发热严重必然造成事故发生,影响系统安全运行。下边四起故障分析。
1.2007年2月3日23时59分,某变电站10kV电容器组III644开关跳闸,保护装置显示“过流I段动作”。现场检查发现,10kV配电室有浓烟,10kV电容器组III开关柜下部有着火现象。第二天检查情况:10kV电容器组III 644开关柜内B相CT和铝排连接处松动引起发热导致该处烧断和热缩材料燃烧,A、C相也有放电痕迹。
2.2009年8月16日晚,某变电站发生10kV开关柜故障,烧损多面开关柜。
10kV农专Ⅰ线柜(开关、CT、静触头及套管、母排及相接铜排、母排套管、保护测控装置、屏顶小母线、电度表、二次控缆烧损;出线电缆头轻微灼伤);
A相 B相 C相
开关 电缆头及CT 母线
10kV下白货柜(母排、母排套管、静触头及套管、保护测控装置、屏顶小母线、电度表、二次控缆烧损;相接铜排、开关、CT、出线电缆头轻微灼伤);
母排 保护及二次控缆
10kV医院Ⅰ柜(母排、母排套管、静触头及套管、保护测控装置、屏顶小母线、电度表、二次控缆烧损;相接铜排、开关、CT、出线电缆头轻微灼伤);
保护及二次控缆 母排
故障原因分析:10kV农专Ⅰ线开关柜由于隔离插头接触不良,开关长期在满负荷运行,触头发热引起梅花触头的弹簧退火变形,失去弹性,造成该隔离插头接触电阻变大,运行中发热烧熔,烧损触头周围的绝缘件,最终绝缘击穿,造成触头相间短路故障。
2.2010年8月12日某变电站#1主变低压侧631开关因发热造成开关柜内部三相短路烧毁。
初步分析是:1#主变 10kV侧 631手车开关柜内断路器 A相母线侧梅花插头(上侧)与静触头间接触不良发热,最终发展成梅花插头对静触头电弧放电,导致真空断路器铜触指严重烧损,散热件熔化,穿墙套管烧毁并产生大量的含有金属离子、碳合物的烟气,造成母线三相对地短路(见附图)。
1#变母排开关开关柜接线图
断路器A相触指被电弧烧损。
3.2006年3月8日,某单位在处理某变电站#1主变10kV侧61A3刀闸缺陷时发现:⑴、61A3刀闸断不开,外观检查静触指存在局部过热痕迹。⑵、#1主变10kV侧61A1刀闸下断口A相丢掉两只静触指,静触头夹紧弹簧有过热的痕迹,C相静触头夹紧弹簧有过热的痕迹(有三只弹簧熔在一起),C相支柱绝缘子上有被热气薰的痕迹。⑶、10kV分段回路6001刀闸下断口C相丢掉一只静触指,静触头夹紧弹簧有过热的痕迹(有一只弹簧熔在一起),上断口也存在类似的问题。
该变电站该段母线的开关柜型号为GGX2,61A1、61A3刀闸和10kV分段回路6001刀闸均为户内高压旋转式隔离开关,型号均为GN30-10,4S热稳定电流均为40kA,额定电流:3150A(61A1、61A3刀闸)、2000A(6001刀闸)。
动静触头过热的原因分析:这种刀闸合闸时,静触指与静触座间有间隙,接触的点、面少,在通过大电流时,固定静触指与夹紧弹簧的螺栓和夹紧弹簧参与分流、导电,造成有些螺栓烧断(静触指丢落的原因)和夹紧弹簧过热退火,也造成动、静触头接触不是很好,造成动静触头局部过热、熔焊。
图
161A1刀闸C相触头的过热情况
图2 61A1刀闸A相触头的过热情况
图3 10kV分段回路6001刀闸的过热情况
图4 丢落的静触指和烧断的固定静触指、夹紧弹簧的螺栓
(三)小动物进入开关柜引起短路故障
2006年9月14日,某单位某变电站#1主变后备保护动作,跳三侧开关。检查发现,10kV开关室烟雾弥漫,10kVI、II段母线联络柜内6001刀闸与10kV母联600开关之间连接线发生相间短路,10kVI、II段母线联络柜下柜门被冲开,下柜门上的观察窗与、断路器前柜门上电磁锁被高温熔化,后柜门下方被电弧烧个洞。10kVI、II段母线联络柜底部有只毛烧光的死老鼠,隔壁柜(备用柜)底部电缆孔洞未封堵(该开关柜原为运行间隔,配网调整间隔,该柜内电缆调到其它开关柜,电缆抽走后孔洞未封堵),10kVI、II段母线联络柜与隔壁柜间的接地铜排穿孔未封堵。
故障原因分析:老鼠从隔壁柜电缆孔进入,再经10kVI、II段母线联络柜与隔壁柜间的接地铜排穿孔爬到10kVI、II段母线联络柜,老鼠活动时引起短路。
(四)开关柜内组件绝缘爬距或绝缘距离不足引起开关柜故障 早期投运的开关柜支持瓷瓶及电流互感器等的外绝缘爬距较小,当运行中绝缘表面出现凝露或有污秽时,系统中出现不高的过电压或运行电压下发生绝缘件沿面闪络。还存在对地和相间距离不够,在系统单相接地谐振或雷电等过电压情况下,直接造成对地或相间击穿。
《福建省电力有限公司户内交流金属封闭高压开关柜订货技术规范》(闽电生产〔2008〕480号)高压开关柜中各组件及其支持绝缘件的外绝缘爬电比距(即高压电器组件外绝缘的爬电距离与额定电压之比)相应值的应用范围应不小于 18mm/kV。单纯以空气作为绝缘介质的开关柜,柜内各相导体的相间与对地距离、手车开关隔离触头与静触头绝缘护罩的净空气距离、相间隔板与绝缘隔板的净空气距离:12kV为125mm,40.5kV为300mm。
《户内交流高压开关柜订货技术条件》(DL 404-1997)规定:在金属封闭式高压开关柜中,凡采用非金属制成的隔板来加强相间或相对地间绝缘时,7.2~12kV高压带电裸导体与该绝缘板间还应保持不小于30mm的空气间隙;40.5kV,保持不小于60mm的空气间隙,且为阻燃材料制成。
2008年9月6日,某变电站#1主变差动速断动作跳闸。从现场检查分析认为:#1主变中压侧33A开关柜过压保护器的A、B相跳线(从固定铝排引至过压保护器的连接铜线)过长,跳线弯曲弧度较大,A、B相跳线同时侧向绝缘隔板,其跳线与绝缘隔板的电气距离(最小处)仅5cm左右。A、B相跳线之间的绝缘仅通过绝缘隔板隔离,长时间运行中造成A、B相跳线对绝缘隔板放电,绝缘档板被碳化后,绝缘破坏并击穿,引起A、B相短路。
A相
B相
(五)开关柜组件质量(如过电压保护器、传感器等)劣引起开关柜故障
1.9月30日8时31分,某变电站10kV中亭I线633开关因过流Ⅰ段保护动作跳闸。现场检查10kV中亭I线633开关柜内过电压保护器A、B相爆炸,该开关柜前柜门下柜门被冲开,前柜门中柜门(断路器前门)轻微变形,柜内其他设备未损伤。
2.2004年11月10日,某110kV变电站因10kV开关短路引发10kV母线故障,造成该变电站全停及10kV部分设备严重损坏。
现场检查情况:最严重的母联刀闸柜的带电显示器传感器(福州高新高压电器有限公司产品)烧损情况:发现A、B相已烧成灰,C相略好;结合刀闸触头烧损情况:C相触头基本完好、A相略有烧损、B相最为严重。推测故障是从B相带电显示器引发,导致电弧相间短路。
为了进一步验证造成本次事故的原因,对开关柜内未损坏的带电显示器传感器,抽两只传感器进行解剖,发现内部芯棒填充剂软化,存在绝缘薄弱点。由于10kV系统出现失地引起过电压,使传感器内部局部放电,逐步发展为贯穿性击穿,造成相间短路。
此外,开关柜故障的原因还有检修预试时在开关柜遗留工具或短接线接地线、误操作等。开关柜故障往往会出现“火烧连营”事故,多面开关柜被电弧烧毁,“惨”不忍睹。造成事故扩大的原因主要有三点:首先,由于开关柜母线室是连通的,当一个间隔故障时,电弧侵犯邻柜造成“火烧连营”;其次,继电保护整定配合不尽合理,保护动作时间过长或保护有缺陷不动作靠上一级保护动作隔离故障,故障时间长造成电弧损害加重;最后一个原因则是高压电弧故障时引起保护损坏或直流电源故障,造成保护失灵,短路长时间不消失,整个高压室几乎所有的开关柜均烧毁,最后连主变lOkV低压架空母线都被弧光烧断,直至越级跳闸,往往连主变也被长时间短路所损坏。
二、防范措施:
(一)加快老旧开关柜(如GG1A、GGX2、XGN型等)改造或完善化大修。各单位要按《关于印发2008-2010年县供电企业电气设备技改、大修指导性意见的通知》(生变〔2007〕145号)加大老旧开关柜技改力度,运行时间短、达不到技改的条件的开关柜要按省公司完善化方案开展完善化大修。
开关柜内绝缘可靠性低的酚醛环氧类绝缘子和爬距不足的绝缘子安排更换为符合要求的瓷绝缘子。母线加阻燃热缩绝缘套,绝缘套本身应耐受20 U,的交流耐压,目的是防止小动物爬人柜内造成短路,也可防止因烟气、游离气体进人时空气间隙绝缘降低造成的弧光短路。
(二)做好开关柜订货、出厂前验收、安装与验收管理工作 根据国际、电力行业标准和《预防交流高压开关事故措施》(国家电网公司生〔2004〕641号)、《预防12kV-40.5kV交流高压开关柜事故补充措施》(国家电网生〔2010〕811号)、《福建省电力有限公司户内交流金属封闭高压开关柜订货技术规范》(闽电生产〔2008〕480号)等文件,做好开关柜招标文件、订货技术协议的审查工作,开关柜出厂前赴厂验收,开关柜安装调试过程安排专业人员开展技术监督工作,组织做好开关柜投产前的验收工作。
把好10kV开关柜的选型及采购关。选型要注意开关设备有关参数是否满足现场运行条件。对开关柜所配的元件应严格把关,尽量选用运行情况良好的产品;并要求验收时,开关设备配置要有各元件试验报告,特别是带电显示器的传感器的局放试验报告,杜绝不良设备入网。
(三)加强巡视运行管理
1.加强巡视中的安全管理,巡视或操作时应严格按照安规和标准作业文本(含标准巡视卡)或 PDA以及操作票的要求进行,巡视或操作时着装应规范,并注意站位。
2.开关柜操作前应确认柜内断路器和隔离开关的实际状态,进行倒闸操作时,应严格监视设备的动作情况,如发现机构卡涩、动触头不能插入静触头、合闸不到位等,应停止操作,待缺陷按规定程序消除后再行操作。3.对防误、防爆等功能不符合规范要求的开关柜,应逐一列出清单,做好危险点分析和预控措施,纳入红线设备管理,并根据红线设备要求在开关柜面板上张贴标识,有计划地安排改造。
4.巡视中应注意开关柜的门和面板是否锁紧,对螺栓丢失、损坏的,应及时上报缺陷处理。
5.严格按照《福建省电力有限公司高压带电显示装置管理规定》的要求,做好开关柜带电显示装置的巡视和维护工作,确保带电显示装置工作正常。
6.对重负荷的开关柜,应重点巡查。无法开展柜内测温的开关柜,可检查柜体温度是否异常。
7.加强保护定值及压板投退管理,避免由于定值或压板投退错误造成事故扩大。
8.在开关柜配电室配置通风、防潮设备和湿度计,并在梅雨、多雨季节或运行需要时启动。
(四)加强检修维护管理
1.开关柜检修重点对触头接触情况(有无过热变色的痕迹)、柜内电气主回路连接螺栓紧固、传动部件轴销的固定情况、机构辅助开关接触、操作机构手车轨道及闭锁装置部件是否有机械变形或损坏等情况等进行检查。对于变电站电容器组等操作频繁的高压开关柜要适当缩短巡视检查和维护周期。
2.已运行的开关柜结合停电检查,开关柜底部以及柜与柜间孔洞是否封堵,有无小动物进入的可能。3.检修试验结束后,应重点检查开关柜有无遗留工具、物件以及试验用的短接线、接地线。
4.由于GGX2、XGN等型号开关柜选用运行中易造成发热的旋转隔离开关(如GN30-12型隔离开关),应结合停电检查隔离开关触头(含弹簧)有无过热或烧损,重点为大电流开关柜(如主变进线柜、分段开关柜等)。
5.对重负荷且无法开展测温的开关柜尽快安排停电检查,可选一、二座变电站尝试安装开关柜在线测温装置。
6.结合停电检查开关柜各相带电体之间、相对地之间空气距离是否符合规范要求(如35kV开关柜的为300mm,10kV开关柜的为125mm)。
7.结合停电检查开关柜的机械联锁,是否满足“五防”要求。检查开关柜内手车活门打开、关闭是否灵活正常。
(五)10、35kV出线多的变电站安排10、35kV系统电容电流测量,10kV电缆线路电容电流达30A和35kV系统电容电流达10A需安排安装消弧线圈。10—35kV母线PT安装消谐装置。
2.变频器典型故障分析 篇二
关键词:西门子变频器,故障,处理措施
0引言
大功率变频器是西气东输电驱站场的关键电气设备,其是否正常工作直接决定了站内压缩机组能否正常运行。以西门子SIMOVERT S型变频器为例,分析其在西一线玉门站应用中出现的四个典型故障,并给出了处理方法。
1工作原理
西门子SIMOVERT S型变频器采用交直交变频方式,先将交流电通过整流器变成直流电,再经过逆变器将直流电变成频率可控的交流电,由于中间直流环节采用大电感,因此称之为电流源型变频器。电流源型变频器具有拓扑结构简单、输出波形好及短路保护可靠等特点,适用于大功率同步电机的驱动,因此在西气东输工程中得到了广泛的应用。
2典型故障分析
2.1 F065故障
2.1.1故障现象
西一线玉门站在机组试运时,发现机组无法正常启动,变频器OP17面板显示“F065 Circuit-breaker filter circuit not ready”,即滤波器断路器未准备就绪。
2.1.2排查过程
滤波柜在就地手动和远程自动状态下均能可靠投入,且现场保护装置CPR04和C7-613均无报警跳闸信号,进一步排查滤波柜内继电器,发现K206继电器线圈没有正常得电,检查K206的线圈电源正常,进一步检查发现K206继电器损坏。
2.1.3原因分析
正常信号流程为:滤波系统就绪后,由滤波柜上C7-613模块的D100控制器的X12端子排的Q1.0输出24V电源,使得K206继电器的线圈A1、A2得电,K206的辅助触点11和14闭合;同时,断路器就绪返回信号指示继电器K110得电,其辅助触点13和14闭合,变频器就收到了滤波系统ready信号。而现场K206继电器损坏,导致K206的辅助触点11和14没有闭合,继电器K110无法得电,变频器无法收到滤波系统ready信号,因此变频器OP17面板报F065,即滤波器断路器未准备就绪。
2.1.4处理方法
更换损坏的K206继电器后,故障排除。
2.2滤波装置无法投入运行
2.2.1故障现象
西一线玉门站在启机过程中,发现滤波装置不能投入运行。
2.2.2排查过程
在机组停机后,检查滤波装置,无任何报警。查看电压监视器,发现外部电网电压偏高,接近10.5k V(额定电压为10k V)。
2.2.3原因分析
滤波装置在变频器投电前3s左右投入,投入瞬间是空载,由于高压电容的作用,滤波装置10k V母线电压会瞬间升高,大概升高0.1~0.2k V,在变频器投入运行带负载后,电压又会降下来。滤波装置的过电压保护设定值为10.56k V,当外部电网电压接近10.5k V时,滤波装置投入瞬间电压升高0.1~0.2k V左右,从而超过过电压保护设定值10.56k V,引起过电压保护动作停机。
2.2.4处理方法
通过改变站内110k V主变的有载调压开关档位,将10.5k V电压调到10.3k V及以下,重新启机,滤波装置正常投入运行。
2.3 F145故障
2.3.1故障现象
西一线玉门站在机组试运时出现滤波装置断路器合闸失败,变频器OP17面板故障代码为F145Extemal fault 1(外部故障1),即滤波装置或10k V开关柜故障。
2.3.2排查过程
现场对10k V开关柜和滤波装置柜的一次设备、二次回路等进行检查,没发现问题。检查各柜的电容保护继电器(CPR04),其取样电压、电流均正常,但滤波柜的电容保护继电器指示灯不正确,检查该继电器,发现其电路板中一个压敏电阻和电容烧毁。
2.3.3原因分析
电路板存在虚焊,且压敏电阻阻值选型较小,电网波动较大时,其二次电流增大导致烧毁。
2.3.4处理方法
更换烧毁的压敏电阻和电容后,故障排除。
2.4 F146故障
2.4.1故障现象
西一线玉门站在机组启机时,变频器发出跳机命令,变频器OP17面板显示“F146 Extemal fault 2”,即外部故障2(顶升油泵故障)。
2.4.2排查过程
对顶升油泵子系统进行单体排查,首先检查4个压力开关,发现无异常。其次排查顶升油泵的启动回路,发现顶升油泵启动命令发出后,MCC_S柜内的KH2继电器常开辅助触点11和14未闭合,进一步排查,发现KH2继电器损坏。
2.4.3原因分析
(1)顶升油泵启动逻辑:变频器在启动过程中通过接口盘PLC中M01+ET-1A5模块的Q0.4输出24V电源,使得19K2继电器线圈得电,进而其辅助触点11和14闭合,发出顶升油泵ON信号后,MCC_S柜内的KH2继电器线圈得电,KH2的常开辅助触点11和14闭合,进而使得K1和K2继电器线圈得电,K1和K2继电器的常开辅助触点(1-2、3-4、5-6)闭合,2台顶升油泵将会启动。
(2)外部故障2逻辑:顶升油泵启动后,顶升油泵的4个压力开关(驱动端DE和非驱动端NDE各2个)的反馈信号(干接点)将会反馈给接口盘PLC中M01+ET-1A4模块的I1.3、I1.4、I1.5、I1.6端子;变频器PLC接收到反馈信号后,判断顶升油泵油压是否正常,若油压异常,M01+ET-1A5模块的Q0.7将输出24V电源,使得26K1继电器线圈得电,26K1的常开触点11和14闭合,这样变频器控制柜内的A400控制器会将油压异常信号发送给变频器A200控制器,这时变频器OP17面板将报F146故障。
通过以上分析,可以发现油压异常会导致变频器报F146故障,而油压异常只有两种可能:一是压力开关反馈有误;二是顶升油泵未启动。现场检查压力开关无异常,模拟反馈信号也正常。检查顶升油泵的启动逻辑,发现MCC_S柜内的KH2继电器损坏,导致KH2的常开辅助触点11和14未闭合,进而使得K1和K2继电器线圈未得电,K1和K2继电器的常开辅助触点(1-2、3-4、5-6)未闭合,2台顶升油泵没有启动。顶升油泵管线无压力,故4个压力开关反馈油压低,进而导致变频器发出F146故障报警。
2.4.4处理方法
更换损坏的KH2继电器后,故障消除。
3结语
3.变频器的常见故障分析 篇三
【摘 要】变频器的可控性和节能性使其在现在企业中得到了广泛的应用,为了使变频器得到可到可靠地运行,有效缩短停机故障的时间,提高企业的生产率,了解变频器的常见故障及排除已经成为社会的研究热点。
【关 键 词】变频器 故障维修
【中图分类号】 TN773【文献标识码】A【文章编号】1672-5158(2013)07-0247-01
1.引言
随着电力电子技术的不断发展完善,交流变频调速技术日益显现出优异的控制能,变频器由于其更宽的允许电压波动范围、更小的体积、更强的通讯能力,更优良的调速能力,在工矿企业中得到了广泛的应用。变频器由于原理、结构复杂,周围环境条件等因素,各种故障报警现象也很多,其故障的排除有一定程度的复杂性。为了大大缩短对变频器故障处理的时间,排除故障恢复生产,将损失降到最小,本文探讨下6se70变频器有代表性的故障诊断和处理技术。
2. 变频器的常见故障及处理
2.1变频器的过压和欠压故障
过压和欠压是变频器的常见故障,这既有主电源因素引起的故障报警,也有因检测电路损坏而引起报警的可能性。(1)过压现象出现停机时,主要原因是减速时间太短,电机转速大于同步转速,转子电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联的二极管流回直流环节,使直流母线电压升高所致,调整时间参数后故障消除。(2)变频器停机欠压跳闸这种现象也很普通。如变频器保护停机后,故障显示为直流母线电压过低,但此时外界电压正常。经分析是因为变频器供电电源瞬间失电又恢复过程中工作人员未发现,但变频器保护及时动作,此时按P键复位即可。(3)西门子6SE70系列变频器的PMU面板液晶显示屏上显示字母“E”,出现这种情况时,变频器不能工作,按P键及重新停送电均无效,查操作手册又无相关的介绍,那检查外接DC24V电源看电压是否较低,解决后,变频器工作正常。
2.2变频器的过流故障
这是较常见的故障。(1) 重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:输出负载发生短路,其输出侧接触器电缆头部分锈蚀、松动,从而导致电机起动时发生弧光短路,引起保护动作;逆变模块损坏; 电源电压缺相,电源缺相或变频器输出缺相都导致电动机转矩减小而过流等现象引起。
(2) 重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(V/F)设定较高。
(3)恒速时报过流: 可能有以下原因,负荷突然增加,电机故障,.变频器损坏, 另外电机电缆绝缘降低或损坏。还有以下几种可能: 1.变频器的设定电流设低了。2.电机或电缆绝缘有问题。 3.冷却风机是否工作。
(4) 上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。电流互感器损坏引起,现象为变频器主回路送电,当变频器未启动时,有电流显示且电流在变化,这样可判断互感器已损坏;检测电路的损坏也会导致变频器显示过流报警,如过热保护装置受温度,湿度环境因素的影响,也导致过流报警。
2.3 整流桥的损坏
(1)器件本身质量不好。(2) 输入缺相,使整流桥负担加重而损坏。(3)后级电路、逆变功率开关器件损坏,导致整流桥流过短路电流而损坏。(4)变频器与电网的电源变压器太近,中间的线路阻抗很小,变频器没有安装直流电抗器和输入侧交流电抗器,使整流桥处于电容滤波的高幅度尖脉冲电流的冲击状态下,致使整流桥过早损坏。(5)电网电压太高,电网遇雷击和过电压浪涌。电网内阻小,过电压保护的压敏电阻已经烧毁不起作用,导致全部过压加到整流桥上。用万用表电阻挡即可判断,对并联的整流桥要松开连接件,找到坏的那一个。
2.4 dp通讯远程控制故障排除
西门子6se70系列dp通讯远程控制的频率主给定连接参数为p443,当变频器在远程控制方式下无法启动或调节频率时,可通过下述方法查找和排除故障:
(1)查看r447参数判断频率给定通道(p443)是否加入频率给定值,如果没有检查相应的控制程序是否正常。
(2)通过r550、r551参数来查看变频器控制字1和控制字2相应位的高低电平状态,来判断控制程序中控制变频器运行的对应的每一位的状态。
其中r550参数用于在柜门面板上显示控制字1对应的每一位的高低电平状态,某一位为高电平状态时,该位上的发光二极管被点亮。r551参数用于查看控制字2相应位的状态。当对变频器发出运行命令后变频器没有正常启动时,可从柜门面板监视控制字每一位的高低电平状态,检查程序后从而迅速判断出故障原因。
2.5西门子6SE70变频器报o008故障排除
1、西门子6SE70变频器上电面板就显示o008代码,按面板上的P键也复不了位,故障依旧可看看参数r550的Bit0位查看ON/OFF1启动信号是否为高电平,若在停机状态下有此信号,则会产生启动禁止信号,从而显示o008。此时只要将ON/OFF1信号取消PMU显示也会变为o009。
2、若r550的Bit0位为低电平,则需要检查控制字r550的Bit1、Bit2,其应都为高电平,此时对应参数P555~P560均应该为1(要么参数值为1要么其连接器内实际值为1)才可以。
3、当BICO参数组切换的源P590=0时BICO参数组1生效 ,所有P***. B参数的下标1有效;当P590=1时BICO参数组2生效,所有P***.B参数的下标2有效。为了防止BICO参数组的切换后,新生效的参数下标中的值不满足上述条件而导致的o008状态,暂时令P590=0,仅使BICO参数组1生效,然后按照上述方法排查完毕后可改回原值。
3.结束语
随着现代工业及科学技术的迅速发展,生产设备日趋大型化、高速化、自动化、设备的故障诊断技术越来越受到人们的重视,随着电力电子技术和微电子技术的迅猛发展,作为交流电动机的主要调速方式的变频技术取得了惊人的进步,变频器的诊断技术也成为国际热点研究的方向之一,对技术人员尤为重要。只能从实践中不断的总结、探索出一套快速有效处理变频器故障的办法。
参考文献
[1] 中国变频器网
4.鱼刺图 典型外部故障分析及措施 篇四
CA系列 一.机床噪声大
问题分析:主要原因是齿轮、床头箱、花键轴零件质量问题及装配质量问题,见因果图。
对主要原因采取的措施:
人的因素:
1、装配前将对齿轮、花键轴的飞边、毛刺、磕碰、划伤等现象进行修饰。
2、对装配工人进行应知应会系列培训教育。
3、对主轴轴承的预紧力调整控制,调整预紧力适中。机械的因素:
1、加强对齿轮、花键轴等外协件的严格控制。
2、对床头箱各孔径、孔距等精度加大比例检查。
3、检查相关部位及齿轮啮合程度,是否符合标准要求,齿面是否有磕碰现象。
4、对相关轴、套进行严格控制,加大抽检比例,对不合格的零部件拒绝验收入库。
5、要求供应商对三角带截面、长度进行成组选配入厂。材料的因素料:
1、原材料入厂前进行取样,每批次做材质化验。
2、对齿轮、花键轴进行硬度检测。
3、床头箱毛坯铸件做内应力变形试验。方法的因素:
1、投入装配的齿轮、花键轴为防止在运输过程中容易产生磕碰,要求相关责任部门采取防护措施。
2、装配车间要严格执行工艺规程进行装配。
3、指导培训用户按照使用说明书进行正确操作。环境的因素:
1、建议用户适当调整作业空间。
2、机床安装要按照机床装配工艺规程及装配作业指导书进行装配。
二.机床起车慢
原因分析:主要原因是由于磨擦片调整过松和摩损过快引起的,见因果图。
对主要原因采取的措施:
人的因素:
1、对装配钳工在调整摩擦片时要符合工艺规程要求,并对其进行技术培训。
2、针对用户要求不正确使用机床的习惯不同,要求起车时间短的问题,服务人员应该对其进行指导。机械的因素:
1、应对进场的摩擦片进行平面度、硬度等项目检测是否符合图纸技术要求。
2、检查员要重点对摩擦片的调整程度进行检测。材料的因素: 加工零件直径过大,主轴转动时产生的转动惯量大,刹车时间比加工中小件长,服务员可根据实际情况对用户解释。方法的因素:
1、加强机床出厂前的检测
2、针对用户对机床保养情况服务人员要进行指导。环境的因素:
服务人员要对用户操作者进行指导按机床使用说明书进行操作。
三.机床振动
原因分析:此问题主要是由于机床存在不平衡旋转零件引起的,见因果图。
对主要原因采取的措施:
人的因素:
1、装配工人进行平衡块调整技术培训。
2、检查员加强对相关部位进行专项重点检测。机械的因素:
1、部装检查员加强对主轴动平衡旋转是否符合工艺要求的检测及控制。
2、检查主电机转子及轴是否产生不平衡的问题。材料的因素:
1、机床所加工零件材质是否存在基体硬度不均及加工零件偏重产生的振动波纹。建议用户对零件材质进行检测及对零件偏重采取配重方法解决。方法的因素:
1、用户应对加工零件进行配重随时检测是否有松动的部位并及时进行调整。
2、用户应对所使用机床按照机床使用说明书要求对设备进行维护和保养。环境的因素:
1、检测机床周围环境是否有振源产生共振及机床地角是否牢固可靠。
四.加工波纹
原因分析:此问题是因为床鞍移动时由于干涉产生瞬时停止引起的,见因果图。
人的因素:
加强对调整工人技术培训,提高调整刮研技术水平。机械因素:
1、重点检测装配质量,床鞍、压板刮研质量是否符合工艺要求及压板是否调整过紧。
2、加强床身导轨面粗超度及床身下滑面平行度控制。材料因素:
1、建议用户对加工的零件材质进行检测,是否硬度过高及硬度不均。方法因素:
1、出厂前精车试验要增加试件振纹检验。
2、建议用户及时检查调整机床松动部位,不定期检测系统油路是否通畅。环境因素:
服务员应检测机床周围是否有较大振源及床身地角安装是否牢固。
CAK系列 一.主轴轴承研伤
原因分析:此问题主要是由于轴承预紧力不合适及轴承质量问题引起的,见因果图。
对主要问题采取的措施: 人的因素:
1、装配前检查主轴及套件是否清洁。
2、检查员重点检测主轴的预紧力调整适中位置。机械的因素:
1、装箱前检测箱体内部及零部件(润滑脂)的清洁度是否存在铁屑及杂质。
2、对轴承外观质量进行检测是否有磕碰、划伤、锈蚀,转动检查轴承内、外环间隙是否适中。
3、重点检测床头箱主轴孔孔径是否符合图纸技术要求。
4、检测润滑脂及试车是否清洁系统油路是否通畅。材料的因素:
1、对床头箱孔径出现材质疏松、砂眼等质量问题加强控制并及时向相关责任厂家反馈并索赔。
2、为防止轴颈变形加大比例对主轴进行淬火后硬度检测,使其能够符合标准技术要求。方法的因素:
1、工艺部门研究做预紧力测试方法。
2、为避免主轴轴承研伤建议用户在加工过程中不要采取超负荷切削或间断切削加工。环境的因素:
1、床头箱润滑脂型号要符合设计要求。
2、指导用户定期更换润滑油。二.X轴轴承损坏
原因分析:此问题是由于轴承预紧力不合适及轴承质量问题引起的,见因果图。对主要问题采取的措施: 人的因素:
1、研究预紧力测试,并检查轴承是否清洁。机械因素:
1、加强装配质量控制,要求轴承预紧力调整适中。
2、装配保证轴承及零部件的清洁度。村料因素:
1、选用正确型号的润滑脂。
2、抽检轴承内、外环硬度是否符合标准要求。方法因素:
1、研究预紧力测试。
2、建议用户不要超负荷切削和间断切削。环境因素:定期对机床进行维护保养。
三.刀架损坏失灵 原因分析:见因果图
对主要问题采取的措施:
此问题已列入2011年质量保证部“攻关计划”,我们已把收集的问题反馈给刀架事业部进行整改,第一批6台刀架已装配成整机发往用户,改进效果在验证中。CW系列
一.横向进给失灵,横向结合子窜动
原因分析:此问题主要是由于横向进给凸轮轴向窜动引起的,见因果图。
对主要问题采取的措施: 人的因素:
1.现场抽查顶丝窝配钻深度及顶丝的紧固程度,达到技术要求。机械因素:
1.零件入库前检螺钉及凸轮、轴的相关尺寸要求。材料因素:
1.检验螺纹胶的粘合力,胶的型号符合工艺要求。方法因素:
1.督促装配工人均匀涂抹螺纹胶。二.快速按扭故障
原因分析:此问题主要是由于压线螺钉松动、电线破皮及按扭质量问题引起的,见因果图。
对主要问题采取的措施: 人的因素:
1.抽查压线螺钉紧固程度。
2.督促装配工人装配过程中不得损坏电线绝缘层。机械因素:
工艺制定快速按扭线露出长度,工人按工艺要求装配。材料因素:
按设计指定厂家采购快速按扭。方法因素:
1.电工用工艺指定螺丝刀紧固螺钉。
2.出线过短时,禁止强行抽拉电线,避免损坏电线绝缘层。三.轴6077与套6078锈蚀
原因分析:此问题主要是由于轴与套之间润滑脂未涂或涂抹不均匀引起的,见因果图。
对主要问题采取的措施: 人的因素:
督促装配钳工按工艺要求涂抹润滑脂。材料因素:
使用合格的润滑脂,保证润滑脂不含有铁屑灰尘等杂质。方法因素:
抽查润滑脂涂抹质,保证润滑脂充分涂抹在套6078孔内。环境因素:
5.DE34基站典型跳频故障分析 篇五
随着网络容量的不断扩大,基站运行的载频数目不断增加,使得基站开通跳频功能就显得很有必要。洛阳移动通信公司近来对跳频有问题的基站(NOKIA设备)进行了排查,重点解决基站不能开跳频、有跳频告警、开通跳频后质量下降等问题,以期发挥跳频的优势,提高网络运行质量。在处理过程中,发现造成基站跳频故障的原因主要有以下四方面: 一. 载频(TRX)跳频质量不好
故障现象:加跳频后,个别载频出现7515或7516告警
故障浅析:在小区没有开通跳频时,基站正常工作。开通跳频后,个别载频会出现7515(Failure In Connection To Frequency Hopping)或7516(Data Transfer Failure In Frequency Hopping Detected By TRX)的二星级告警。我们知道在没有开跳频的小区中,每个载频的基带部分与射频部分可理解为直通,每个载频有固定的频率,手机在通话过程中,占用固定的频率(不考虑切换的条件下),此时的F-BUS即跳频总线不起作用。但是在基带跳频中,载频中的基带部分和射频部分在逻辑上相对独立,F-BUS在基带部分和射频部分之间起交叉连接的作用,依据不同的跳频序列,同一个载频基带部分的信号送往不同载频的射频部分。实现基带跳频时,载频中的DSP与F-BUS间要能正确的收发数据。当载频与F-BUS间不能正确的收发数据时,就会出现7515或7516告警。载频的这种潜在的质量问题,只有在开跳频功能时,我们才得以觉察到。
解决方案:由以上分析可知,只要更换有问题的载频即可。需要指出的是,如果有一个以上的载频有告警时,应该尝试依次更换其中的一个载频,以查出到底是那一块载频质量不好。因为在实践过程中,发现过这样的情况:一块载频不好,能导致其余的载频出现误告。二. BCFA板故障
故障现象:整个小区所有载频出现7516告警
故障浅析:对跳频总线的控制,既FHBC(Frequency Hopping Bus Controller)功能是BCFA(Base Control Function Unit)板的重要作用之一。位于BCFA中的FHDSP(Frequency Hopping Processor)主要负责对跳频的控制,FHDSP通过从主处理器装载相关软件和参数,计算各个载频从F-BUS线读取数据的时间来实现对跳频的控制。如果FHBC这一功能模块出现问题,则基站就无法实现其跳频功能。九龙台1、2扇区,滚石城1、2扇区未开跳频时一切正常,因为FHDSP处于空闲模式;当开跳频时,BCFA所控制小区的所有载频尽管工作状态处于WO状态,但是所有的载频均出现7516告警。解决方案:这种障碍比较易解决,现象也比较特殊,更换BCFA即可。三.F-BUS线不好
故障现象:整个扇区不能工作,载频处于BL-SYS或BL-TRX状态,伴随7515或7516告警
故障浅析:由第一种分析可知,F-BUS线在跳频的实现中也处于重要的地位,起到类似交叉连接的功能,它是8比特的并行总线,传输速率为4Mb/S,在FHDSP的控制下负责数据的接收和传送,并对数据进行校验。F-BUS线从BCFA板复连至各个载频,在不开跳频时,不被FHDSP和TRX所使用,其质量好坏是无从得知的。
解决方案:由于物理上F-BUS包含于D-BUS中,所以更换好的D-BUS线即可。这种情况所占的比例不大,但是定位到底是哪一根D-BUS线故障时,需要尝试,比较麻烦。四. 连接线接触不好或错位
故障现象:开通跳频后,小区的DL或UL质量下降
故障分析:在正常开通跳频后,基站没有告警,所有载频工作正常,但小区的DL(下行链路)或UL(上行链路)质量下降,主要表现为小区的DL或UL的6和7级加在一起达10%以上甚至更高。出现质量下降的原因有两种情况:个别载频本身质量不好,在没有开跳频时,质量不好的载频的占用时长远比好的载频短的多。开跳频时,情况就不一样了,质量不好的载频被强制性的占用,导致整个小区的质量明显下降;另外一种原因是载频上的连线不良,如载频上的TX、RX、DIVRX等连线松动,也会导致所连的载频工作质量下降,从而影响整个小区的工作质量,第二种情况比较常见。必要时,也要检查天馈部分的连接情况。解决方案:仔细检查,确保连接正确、牢靠。
以上只是基站跳频问题常见的原因。实践中,常有一些跳频故障是混合型的,即不是单纯的一种原因,而是多种原因混杂在一起。这就更需要我们在查障碍的过程中,以十足的信心和耐心来面对它,相信问题总是会圆满解决的。附表:典型跳频故障举例
站名 告警内容 故障原因 处理后情况 解放路1 7515 TRX质量不好 正常 伊川电信局1 7516 TRX质量不好 正常 九龙台1、2 所有载频7516 BCFA问题 正常 滚石城1、2 所有载频7516 BCFA红叶3 跳频开不起来 F-BUS道北东3 跳频开不起来 F-BUS西工1 UL6+7=70 RX解放路3 UL6+7=44DL6+7=48
河南移动通信有限责任公司洛阳分公司问题 正常 问题 正常 问题 正常
6.变频器32个典型应用行业 篇六
20世纪90年代开始,交流变频调速装置在我国的应用有了突飞猛进的发展。由于变频调速在频率范围、动态相应、调速精度、低频转矩、转差补偿、通讯功能、智能控制、功率因数、工作效率、使用方便等方面是以往的交流调速方式无法比拟的,它以体积小、重量轻、通用性强、拖动领域宽、保护功能完善、可靠性高、操作简便等优点,深受钢铁、冶金、矿山、石油、石化、化工、医药、纺织、机械、电力、轻工、建材、造纸、印刷、卷烟、自来水等行业的欢迎,社会效益非常显著。在变频领域,我公司起步较早,销量较大,应用负载较多。可以说,伴随着我国变频技术成长。下面,变频器应用的一些场合应用及效益
1、空调写字楼、商场和一些超市、厂房都有中央空调,在夏季的用电高峰,空调的用电量很大。在炎热天气,北京、上海、深圳空调的用电量均占峰电40%以上。因而用变频装置,拖动空调系统的冷冻泵、冷水泵、风机是一项非常好的节电技术。目前,全国出现不少专做空调节电的公司,其中主要技术是变频器节电。
2、破碎机类冶金矿山、建材应用不少破碎机、球磨机,该类负载采用变频后效果显著。
3、大型窑炉煅烧炉类冶金、建材、烧碱等大型工业转窑(转炉)以前大部分采用直流、整流子电机、滑差电机、串级调速或中频机组调速。由于这些调速方式或有滑环或效率低,近年来,不少单位采用变频控制,效果极好。
4、压缩机类压缩机也属于应用广泛类负载。低压的压缩机在各工业部门都普遍应用,高压大容量压缩机在钢铁(如制氧机)、矿山、化肥、乙烯都有较多应用。采用变频调速,均带来启动电流小、节电、优化设备使用寿命等优点。
5、轧机类在冶金行业,过去大型轧机多用交-交变频器,近年来采用交-直-交变频器,轧机交流化已是一种趋势,尤其在轻负载轧机,如宁夏民族铝制品厂的多机架铝轧机组采用通用变频器,满足低频带载启动,机架间同步运行,恒张力控制,操作简单可靠。
6、卷扬机类卷扬机类负载采用变频调速,稳定、可靠。铁厂的高炉卷扬设备是主要的炼铁原料输送设备。它要求启、制动平稳,加减速均匀,可靠性高。原多采用串级、直流或转子串电阻调速方式,效率低、可靠性差。用交流变频器替代上述调速方式,可以取得理想的效果。
7、转炉类转炉类负载,用交流变频替代直流机组简单可靠,运行稳定。
8、辊道类辊道类负载,多在钢铁冶金行业,采用交流电机变频控制,可提高设备可靠性和稳定性。
9、泵类泵类负载,量大面广,包括水泵、油泵、化工泵、泥浆泵、砂泵等,有低压中小容量泵,也有高压大容量泵。许多自来水公司的水泵、化工和化肥行业的化工泵、往复泵、有色金属等行业的泥浆泵等采用变频调速,均产生非常好的效果。
10、吊车、翻斗车类吊车、翻斗车等负载转矩大且要求平稳,正反频繁且要求可靠。变频装置控制吊车、翻斗车可满足这些要求。
11、拉丝机类生产钢丝的拉丝机,要求高速、连续化生产。钢丝强度为200Kg/mm2,调速系统要求精度高、稳定度高且要求同步。
12、运送车类煤矿的原煤装运车或钢厂的钢水运送车等采用变频技术效果很好。起停快速,过载能力强,正反转灵活,达到煤面平整、重量正确(不多装或少装),基本上不需要人工操作,提高了原煤生产效率,节约了电能。
13、电梯高架游览车类由于电梯是载人工具,要求拖动系统高度可靠,又要频繁的加减速和正反转,电梯动态特性和可靠性的提高,边增加了电梯乘坐的安全感、舒适感和效率。过去电梯调速直流居多,近几年逐渐转为交流电机变频调速,无论日本还是德国。我国不少电梯厂都争先恐后的用变频调速来装备电梯。如上海三菱、广州日立、青岛富士、天津奥的斯等均采用交流变频调速。不少原来生产的电梯也进行了变频改造。
14、给料机类冶金、电力、煤炭、化工等行业,给料机众多,无论圆盘给料机还是振动给料机,采用变频调速效果均非常显著。吉化公司染料厂硫酸生产线的圆盘给料机,原为滑差调速,低频转矩小,故障多,经常卡转。采用变频调速后,由于是异步机,可靠性高、节电,更重要的是和温度变送器闭环保证了输送物料的准确,不至于使氧化剂输送过量超温而造成事故,保证了生产的有序性。
15、堆取料机类堆取料机是煤场、码头、矿山物料堆取的主要设备,主要功能是堆料和取料。实现自动堆料和半自动取料,提高了设备可靠性,设备运行平稳,无冲击和摇动现象,取料过程按 1/cosφ规律回转调速,提高了斗轮回转取料效率和皮带运煤的均匀度,很受工人欢迎。
16、风机类风机类负载,是量大面广设备,钢厂、电厂、有色、矿山、化工、纺织、化纤、水泥、造纸等行业应用较多。多数采用调节挡板开度开调节风量,浪费大量电能,采用变频调速,即可节电又减少机械磨损,延长设备寿命。
17、搅拌机类化工、医药行业搅拌机非常之多,采用变频调速取代其它调速方式,好处特多。
18、纺丝机类纺丝的工艺复杂,工位多,要求张力控制,有的要求位置控制。采用变频调速效果良好。
19、特种电源类许多电源,如实验电源、飞机拖动电源(400Hz)都可用变频装置来完成,好处是投资少、见效快、体积小、操作简单。20、造纸机类我国造纸工业的纸机,要求精度高的多采用SCR直流调速方式,有的用滑差电机、整流子电机。由于存在滑环和炭刷造成可靠性和精度不高。导致造纸机械落后,一般车速只有200m/min左右,难同国外2000m/min相比。因而造纸机械的变频化已是大势所趋。
21、洗熨设备类较大宾馆的洗衣机和熨衣设备以往多采用机械调速或者变极调速,只能提供一种速度或几种速度,对需要多次反复洗熨的织物不甚理想。采用变频调速,大大提高洗衣机的效率。
22、音乐喷泉类非常招揽游人的音乐喷泉,其水的高低和量的大小是靠变频控制的。
23、磨床等机械类磨床主轴惦记转速很高,需要电源的频率也高,有200Hz、400Hz甚至800Hz。以前主轴电机的电源多由中频发电机组拖动。中频机组体积大、效率低、噪声多、精度差。
24、卷烟机类卷烟行业过去进口的卷烟机,不论莫林8还是莫林0,均不是无级调速。因而在卷烟行业主要是解决无级调速和可靠性问题,技术简单,变频器用法简单,收效极大。
25、减振和降低噪音型不少负载,如大型空压机、中频机组等噪声大、振动大。采用变频技术,可以减振降噪,达到标准以内。
26、印染机类大部分印染机械都是多单元联合工作的设备。工艺上要求各单元以相同的线速度同步运行并保持张力恒定,否则会断布、缠布、色度不均、色彩度不够、缩水率过大等质量问题。以往的印染机械无论是共电源方式或分电源方式都是采用直流调速系统。因为直流惦记固有的缺点,印染行业逐步采用交流变频技术。圆网印花机由进布单元、印花单元、烘房导带单元及落布单元组成,属于印染调速系统中复杂的一种。采用变频调速形成速度链控制。同步性能好,精度高,可靠性高。
27、注塑机类注塑机是塑料加工成型的关键设备,数量多,耗电大。过去的节电方式多为通过△型(三角型)转换成Y型(星型)来节电的,效果一般。采用变频器不改变注塑机原来的结构,控制油泵几个过程的压力或流量(如锁模、合模、射胶、保压、脱模、退模等),可节电 20%~52%,较好的取代了过去的比例阀节流调速方式,大幅度降低能耗,珠江三角洲的不少注塑厂都进行了变频改造。改造注塑机时,要注意合模加速,否则产量降低,注意输入端和输出端的谐波干扰。
28、污水处理等环保类环境保护越来越重视,它关系到人类赖以生存的环境。于是乎清洁能源、绿色城市均出现了。变频调速可用在三个方面的环保类负载。一是工业污水处理,二是垃圾电厂,三是工业排烟、排气、除尘的控制。
29、玻璃、陶瓷、制药、饮料、食品、包装等生产线负载玻璃、陶瓷、制药、饮料、食品、包装等生产线采用变频调速,均取得很好的效果。30、海上采油平台类石油钻井采用交流电机变频调速要比直流调速好得多,尤其是在风沙、灰尘大的地方,因为交流电机可靠。海洋石油钻井平台,需要变频调速装置。
31、潜油电泵类潜油电泵采油是油田采油的一种方式。潜油电泵多在1800m以下的油井内工作,多数采用工频全压启动、恒速运行,有下述弊病:Ø 启动电流过大,会损坏电机绝缘Ø 产生冲击扭矩,损坏机泵结构;Ø 泵突然产生较大吸力,容易吸入沙子,造成卡泵。且无稳压系统和井下液面波动较大,造成电压、电流不稳定,使潜油电机过励磁和欠励磁,引起故障。
7.变频器故障现象及分析 篇七
本文将结合富拉尔基发电厂送引风机变频器常见的故障现象和原因从实践的角度进行分析, 以便于发电厂运行人员进行参考, 举一反三, 以保证设备的安全稳定、经济运行。
1 过流是变频器报警最为频繁的现象
1.1
电动机相间短路或对地短路
1.2
模块损坏, 一上电就跳
1.3
加速时间太短, 延长加速时间
1.4
由于运行人员操作不当, 变频器输出没有降下来, 就将变频器进线断路器断开, 造成变频器输入过电流
2 过电压报警
一般是出现在停机的时候, 其主要原因是减速时间太短或制动电阻损坏。若电机驱动惯性较大的负载时, 减速时间设定的较小, 减速过程中输出频率下降的速度较快, 而负载的惯性较大, 靠自身阻力减速较慢, 使负载拖动机转速比变频器输出频率对应的转速要高, 电动机处于发电状态, 变频器没有能量处理单元或者作用有限, 导致变频器中间直流回路电压升高超出保护值, 从而出现过电压报警。
3 变频器主要常见故障
3.1 变频器过热
其主要原因有:风道阻塞、风机堵转、周围环境温度过高、风扇散热能力差或损坏不转、温度检测器件异常或温度传感器性能不良、变压器刷边绕组存在匝间短路或绝缘受损等。现场处理时应首先判断变频器确实存在温度过高现象, 若温度过高可先按上述原因进行排除;若变频器温度在正常情况出现变频器过热报警, 故障原因则为温度检测电路故障。如果模块内部分电路故障也会出现变频器过热报警, 另一方面当温度检测运算电路异常时也会出现同样故障现象。
3.2 变频器输出不平衡
输出不平衡一般表现为电机抖动, 转速不稳, 主要原因:模块坏, 驱动电路坏, 电抗器坏等。
3.3 变频器过载
当我们看到有过载现象时, 其实首先应该分析是电机过载还是变频器自身过载, 一般来说电机具有较强的过载能力, 只要变频器参数表的电机参数设置合理, 则就不会出现电机过载。变频器本身过载能力较差, 则很容易出现过载报警, 可以检测变频器的输出电压。
3.4
变频器开关电源损坏一般是由于变频器开关电源负载发生短路造成的
4 其它常见故障
变频器控制电源掉电, 模块通讯故障, 模块故障造成模块旁通, 功率模块柜柜门关不严发报警等。
变频器报警时, 报警器闪, 报警指示灯亮, 运行人员根据液晶触摸屏显示报警信息排除故障。
变频器故障时, 报警器闪, 报警指示灯亮, 变频系统自动联跳变频器进线断路器, 如果发现变频器进线断路器没有跳闸, 则手动按下变频器控制柜“急停按钮”使变频器进线断路器跳闸, 运行人员根据液晶触摸屏显示报警信息排除故障。
另外, 变频器运行期间, 巡视检查和操作也尤为重要, 只有加强对设备的巡视检查力度和熟悉变频器操作注意事项, 才能在一定程度上提前发现并有效避免由于各种原因引起的变频器故障。
结合本厂实际情况, 对生产现场运行维护中遇到的实际问题进行了归纳总结, 一边参考。主要的检查维护内容有以下几个方面:
1) 变压器的三相温度是否正确显示, 温度是否偏高 (三相的温度小于50度视为正常) 。
2) 其温控仪是否有报警与故障指示 (故障指示灯亮视为存在故障) 。
3) 风扇旋转是否流畅, 进风口是否有灰尘或堵塞物。
4) 变压器是否有过热现象。
5) 变压器内是否有异常响声。
6) 变频器巡查项目:
变频器面板电流是否偏大或变化幅度是否偏大;
触摸屏频率显示是否正常;
触摸屏是否有报警信息;
变频器内是否有异声。
7) 空调制冷是否正常。
8) 检查开关柜或刀闸柜面板指示灯指示是否正常。
其他需要注意的问题:
1) 正常使用时触摸屏信息只看, 不要按动, 以免将变频的远程控改为本地控制。
2) 变频器控制柜上的去电按钮、上电按钮、急停按钮不允许随意动。
3) 触摸屏上的停止按钮不允许随意按动。
4) “本地/远程”按钮禁止操作。
5) 停机时需用变频停机, 尽量不用断路器直接断电停机, 在电流大的时候易造成变频器功率器件过流损坏。
6) 变频器的报警信号一直保持的, 如需撤除需要消除报警原因并在触摸屏上复位报警信号。故障信号是一直保持的, 如需撤除, 需要消除故障原因并在触摸屏上复位主板。
7) 变频故障后, 如需打开设备前门查看器件情况, 需在高压断电后等待5~10分钟确认模块电容放电后, 模块电源指示灯熄灭后操作。
8) 变压器柜风扇电源取自6k V变压器副边, 6k V断电后变压器风扇会停止运行, 此时如再投变频器之前, 变压器风扇会自动启动, 如果不能自动启动需要操作变压器上的温控仪面板按钮手动起动。
9) 当6k V电压在时, 门锁上的带电显示器的指示灯将亮。
10) 刀闸柜开关的节点为机械节点, 其只参与逻辑, 不参与保护动作。
11) 每个刀闸柜上有电磁锁3把, 包括刀闸手柄2把, 门上1把。刀闸柜上电磁锁不能长时间带电, 电磁锁按钮操作后必须弹出, 如电磁锁按钮不自动弹出, 则手动使其弹出, 电磁锁按钮长时间不弹出易导致电磁锁损坏, 扳动刀闸时要适当的活动刀闸来拔除电磁锁锁杆, 切勿强拉。
12) 变频器运行时, 为保证机组正常运行, 建议引风机入口挡板开度最高为80%;为保护电机, 避免电机电流超过额定值, 任何情况下DCS监控#1、#2引风机变频器输出电流禁止超过电机的额定电流144A。
13) 刀闸柜辅助节点状态输出给DCS和变频器, 表示刀闸的状态, 如辅助节点输出状态不准确, 则变频器不能启动。如变频器或DCS显示刀闸状态不准确, 需检查辅助节点行程开关。
5 结束语
在锅炉引风机上应用变频器技术可以避免传统采用进口档板进行风量调节存在严重的节流损失以及引起炉膛负压波动幅度大造成的安全隐患。采用变频器技术后, 引风机可以低速启动, 无级变速调节, 对安全、节能、延长设备寿命都有着重要的意义。
参考文献
[1]富拉尔基发电厂#5炉引风机变频器改造资料[S].
8.变频器故障诊断技术分析与探究 篇八
【关键词】变频器自动化 技术故障 诊断技术
随着逆变技术的不断发展,变频器已被广泛应用于多个工业控制领域。由于技术原因,普通工人往往很难检测到许多驱动器故障和判断,由于比较困难招聘专业人士,只有等待一个新的逆变器制造商来取代,导致耗时太长,极大影响生产效率,为了处理好替代周期长的问题,企业经常使用买一些备用变频器被替换,因此无形中增加了企业生产成本。如果解决故障诊断和维修问题,通过研究和发展自己,应用合适的措施,在比较短的时间内,维修好变频器,而不用整个换掉,可以最大限度地减少损失。所以,处理好诊断与维修问题对于减轻工业生产非常有意义。本文对变频器故障及其诊断技术进行了探讨。
2变频器故障
2.1变频器的故障多种多样,通常分类如下。
(1)时间性故障
①设备老化失灵,在变频器设工作到后期经常出现,其主要原因是元器件老化失效、磨损产生的影响;②突发故障,经常突然失去某些性能;③不间断性故障,时有时无的特性。
(2)故障产生的规律
①恒久性故障,例如主电路功能的晶闸管被损坏的故障现象,该故障造成的损失将永远存在;②突发发性故障,如元器件脱焊、接触不良号和抗干扰信号异常所致,这些现象属于间歇性故障。
(3)故障产生的位置
①断电意味着由变频器造成的电网电压平衡,如过电压、欠电压、少相等;②内部故障,说的是硬件的问题,比如整流滤波电容器发生短接、过电压等故障
2.2变频器故障分析
(1)主电路故障。
①整流器损伤,整流器坏掉是变频器的主要电路的常见故障之一。一般变频器整流设备为三相全波整流器,变频器承担所有的整流器,输入功率过高,极易产生击穿损坏,一般的变频器无法输送电时,会发生保险丝熔断等迹象,三相输入端或者输出端为低电阻(电阻最小达到正常兆欧)或短路。更换整流器时,需在散热片表皮层接均匀涂摸有一层极好的导电性能的硅材料,再拧紧螺钉。
②输入电能电阻坏掉。产生的因素:核心电路接触器闭合差引起的流通时间太长和烧伤;充电电流过大而烧性;重新启动时,主电路上电和工作信号电路同时充电 ,很容易烧伤。其损伤特征烧毁,熏黑的外壳表现一般,爆裂和其它损害的迹象。
③变频器模块烧毁。逆变器模块损坏的原因是多方面的,如输出负载短路、过载、大电流连续运行;负载波动较大,造成过电流过大;散热设备散热不好,致使模块温度过高,从而导致模块的性能不佳、参数发生变化等问题,使逆变器输出异常。
(2)辅助控制电路发生故障。
①驱动电路故障。使用于驱动变频器的驱动电路,但也很容易被损坏。通常有明显的损坏的迹象,如设备(电容,电阻,晶体管和印刷板等)的爆发,颜色,断裂,驱动电路损坏呈现出来最常见的现象是少相或三相电压不等、不平衡等特征。
②开关电源损毁。开关电源损坏的一显著特征是变频器的功率没有显示。最常见的是开关出现问题,脉冲变压器坏掉,以及整流二极管,滤波电容器长期使用,导致电容自我调节能力下降。
3变频器故障诊断技术
3.1基于神经网络的变频器故障诊断
神经网络控制器没有数据模型的对象,所以可以对神经网络的故障进行预测和诊断,这种方法是科学的、合理的,当故障类型和故障信号之间的关系特别不能说明它的方法是比较合理的。逆变装置系统具有很强的随机性和模糊性,传统的故障检测方法已经无法应用,再应用神经网络可以解决这个问题。基于神经网络的故障诊断有很多优点,但也存在一些问题,这些问题主要存在于:获取样本比较困难;难以理解网络权值的表达形式;不重视专家的经验和知识。
3.2基于DSP的故障诊断方法
整流电压波形整流电路的方法是指正常运行和故障运行时的分析和分类,对“区域”的定义和故障模型的建立,对故障诊断的频谱分析措施进行升级,根据特征值判断查找;其次、归纳实验与数字信号处理算法和系统的实现,证明其该方法的可操作性。
3.3基于信号处理的变频器故障诊断
通过傅里叶分析法对三相全控电流故障诊断的基本思路是,通过对一些关键点的分析,对时域的频域信息进行分析,根据蝙蝠的具体特点进行故障诊断,并确定故障类型,然后利用相位特性进行故障诊断,并确定故障位置,利用沃尔什分析法对三相全控流进行故障诊断,在波形的基础上形成一个周期的时域波形的时域波形,在频率域的特定功能的故障,然后逆变器故障检测和测定。基于数学模型的故障诊断的信号处理方法不需要,因为对象具有许多优点,如:诊断速度快,灵敏度高,操作简单,也可以进行各种在线故障诊断。
4结语
本文着重阐述了近几年来国内外最新科研成就,在变换器故障诊断、故障诊断技术的发展趋势等方面借用数字信号处理器芯片完成报警系统的组成和诊断,具有很大的发展空间。
【参考文献】
[1]张志刚,崔兴旺.变频器使用中应注意的问题[J].科技信息(科学教研),2012,15(11):47-48.
[2]贾振虹,吉强.变频器频繁故障的原因分析[J].甘肃科技,2012,21(07):69-70.
[3]郑勇.浅谈变频器的选用和维护[J].科技广场,2013, 15(01):
9.变频器常见故障及解决方案 篇九
变频器故障判断及处理
1.1
逆变功率模块的损坏
1.1.1
判断
逆变功率模块主要有IGBT、IPM
等,检查外观是否已炸开,端子与相连印制板是否有烧蚀痕迹。用万用表查C-E、G-C、G-E
是否已通,或用万用表测P
对U、V、W
和N
对U、V、W
电阻是否有不一致,以及各驱动功率器件控制极对U、V、W、P、N的电阻是否有不一致,以此判断是哪一功率器件损坏。
1.1.2
损坏的原因查找
(1)器件本身质量不好。
(2)外部负载有严重过电流、不平衡,电动机某相绕阻对地短路,有一相绕阻内部短路,负载机械卡住,相间击穿,输出电线有短路或对地短路。
(3)负载上接了电容,或因布线不当对地电容太大,使功率管有冲击电流。
(4)用户电网电压太高,或有较强的瞬间过电压,造成过电压损坏。
(5)机内功率开关管的过电压吸收电路有损坏,造成不能有效吸收过电压而使IGBT损坏,如图1所示。
(6)滤波电容因日久老化,容量减少或内部电感变大,对母线的过压吸收能力下降,造成母线上过电压太高而损坏IGBT。正常运行时母线上的过电压是逆变开关器件脉冲关断时,母线回路的电感储能转变而来的。
(7)IGBT或IPM功率器件的前级光电隔离器件因击穿导致功率器件也击穿,或因在印制板隔离器件部位有尘埃、潮湿造成打火击穿,导致IGBT、IPM损坏。
(8)不适当的操作,或产品设计软件中有缺陷,在干扰和开机、关机等不稳定情况下引起上下两功率开关器件瞬间同时导通。
(9)雷击、房屋漏水入侵,异物进入、检查人员误碰等意外。
(10)经维修更换了滤波电容器,因该电容质量不好,或接到电容的线比原来长了,使电感量增加,造成母线过电压幅度明显升高。
(11)前级整流桥损坏,由于主电源前级进入了交流电,造成IGBT、IPM损坏。
(12)修理更换功率模块,因没有静电防护措施,在焊接操作时损坏了IGBT。或因修理中散热、紧固、绝缘等处理不好,导致短时使用而损坏。
(13)并联使用IGBT,在更换时没有考虑型号、批号的一致性,导致各并联元件电流不均而损坏。
(14)变频器内部保护电路(过电压、过电流保护)的某元件损坏,失去保护功能。
(15)变频器内部某组电源,特别是IGBT驱动级+、-电源损坏,改变了输出值或两组电源间绝缘被击穿。
1.1.3
更换
只有查到损坏的根本原因,并首先消除再次损坏的可能,才能更换逆变模块,否则换上去的新模块会再损坏。
(1)IGBT
同绝缘栅场效应管一样要避免静电损坏。在装配焊接中防止损坏的根本措施是,把要修理的机器、IGBT
模块、电烙铁、人、操作工作台垫板等全部用导线连接起来,使得在同一电场电位下进行操作,全部连接的公共点如能接地就更好。特别是电烙铁头上不能带有市电高电位,示波器电源要用隔离良好的变压器隔离。IGBT模块在未使用前要保持控制极G
与发射极E
接通,不得随意去掉该器件出厂前的防静电保护G-E
连通措施。
(2)功率模块与散热器之间涂导热硅脂,保证涂层厚度0.1耀0.25
mm,接触面80%以上,紧固力矩按紧固螺钉大小施加(M4
kg·cm,M5
kg·cm,M6
kg·cm),以确保模块散热良好。
(3)机器拆开时,要对被拆件、线头、零件做好笔记。再装配时处理好原装配上的各类技术措施,不得简化、省略。例如,输入的双绞线、各电极连接的电阻阻值、绝缘件、吸收板或吸收电容都要维持原样;要对作了修焊的驱动印制板进行清洁和防止爬电的涂漆处理,以及保证绝缘可靠,更不要少装和错装零部件。
(4)并联模块要求型号、编号一致,在编号无法一致时,要确保被并联的全部模块性能相同。
(5)对因炸机造成铜件的缺损,要把毛刺修圆砂光,避免因过电压发生尖端放电而再次损坏。
1.1.4
更换模块后的通电
经常会更换模块后,一通电又烧毁了。为防止此类事故,一般在变频器的直流主回路里串入一电阻,电阻阻值为1耀2
k赘,功率50
W以上,由于电阻的限流作用,即使故障开机也不会损坏模块。空载时流过电阻的电流小,压降也小,可做空载检查。
一般只要空载运行正常,去掉电阻大都会正常。
1.2
整流桥的损坏
1.2.1
判断
用万用表电阻挡即可判断,对并联的整流桥要松开连接件,找到坏的那一个。
1.2.2
损坏原因查找
(1)器件本身质量不好。
(2)后级电路、逆变功率开关器件损坏,导致整流桥流过短路电流而损坏。
(3)电网电压太高,电网遇雷击和过电压浪涌。电网内阻小,过电压保护的压敏电阻已经烧毁不起作用,导致全部过压加到整流桥上。
(4)变频器与电网的电源变压器太近,中间的线路阻抗很小,变频器没有安装直流电抗器和输入侧交流电抗器,使整流桥处于电容滤波的高幅度尖脉冲电流的冲击状态下,致使整流桥过早损坏。
(5)输入缺相,使整流桥负担加重而损坏。
1.2.3
更换
(1)找到引起整流桥损坏的根本原因,并消除,防止换上新整流桥又发生损坏。
(2)更换新整流桥,对焊接的整流桥需确保焊接可靠。确保与周边元件的电气安全间距,用螺钉联接的要拧紧,防止接触电阻大而发热。与散热器有传导导热的,要求涂好硅脂降低热阻。
(3)对并联整流桥要用同一型号、同一厂家的产品以避免电流不均匀而损坏。
1.3
滤波电解电容器损坏
1.3.1
判断
出现外观炸开、铝壳鼓包、塑料外套管裂开,流出了电解液、保险阀开启或被压出,小型电容器顶部分瓣开裂,接线柱严重锈蚀,盖板变形、脱落,说明电解电容器已损坏。用万用表测量开路或短路,容量明显减小,漏电严重(用万用表测最终稳定后的阻值较小)。
1.3.2
找出电容损坏原因
(1)器件本身质量不好(漏电流大、损耗大、耐压不足、含有氯离子等杂质、结构不好、寿命短)。
(2)滤波前的整流桥损坏,有交流电直接进入了电容。
(3)分压电阻损坏,分压不均造成某电容首先击穿,随后发生相关其他电容也击穿。
(4)电容安装不良,如外包绝缘损坏,外壳连到了不应有的电位上,电气连接处和焊接处不良,造成接触不良发热而损坏。
(5)散热环境不好,使电容温升太高,日久而损坏。
1.3.3
电容的更换
(1)更换滤波电解电容器最好选择与原来相同的型号,在一时不能获得相同的型号时,必须注意以下几点:耐压、漏电流、容量、外形尺寸、极性、安装方式应相同,并选用能承受较大纹波电流,长寿命的品种。
(2)更换拆装过程中注意电气连接(螺钉联接和焊接)牢固可靠,正、负极不得接错,固定用卡箍要能牢固固定,并不得损坏电容器外绝缘包皮,分压电阻照原样接好,并测量一下电阻值,应使分压均匀。
(3)已放置一年以上的电解电容器,应测量漏电流值,不得太大,装上前先行加直流电老化,直流电先加低一些,当漏电流减小时,再升高电压,最后在额定电压时,漏电流值不得超过标准值。
(4)因电容器的尺寸不合适,而修理替换的电容器只能装在其他位置时,必须注意从逆变模块到电容的母线不能比原来的母线长,两根+、-母线包围的面积必须尽量小,最好用双绞线方式。这是因为电容连接母线延长或+、-母线包围面积大会造成母线电感增加,引起功率模块上的脉冲过电压上升,造成损坏功率模块或过电压吸收器件损坏。在不得已的情况下,另将高频高压的浪涌吸收电容器用短线加装到逆变模块上,帮助吸收母线的过电压,弥补因电容器连接母线延长带来的危害。
1.4
风机的损坏
1.4.1
风机的损坏判断
(1)测量风机电源电压是否正常,如风机电源不正常,首先要修好风机电源。
(2)确认风机电源正常后风机如不转或慢转,则风机已损坏,需更换。
1.4.2
损坏原因查找
(1)风机本身质量不好,线包烧毁、局部短路,直至风机的电子线路损坏,或风机引线断路、机械卡死、含油轴承干涸、塑料老化变形卡死。
(2)环境不良,有水汽、结露、腐蚀性气体、脏物堵塞、温度太高使塑料变形。
1.4.3
风机的更换
(1)更换新风机最好选择原型号或比原型号性能优越的风机,同样尺寸的风机包含很多种风量和风压品种。
(2)风机的拆卸有很多情况要牵动变频器内部机芯,在拆卸时要做好记录和标识,防止装回原样时发生错误。有的设计已充分考虑到更换方便性,此时要看清楚,不要盲目大拆、大动。
(3)风机在安装螺钉时,力矩要合适,不要因过紧而使塑料件变形和断裂,也不能太松而因振动松脱。风机的风叶不得碰风罩,更不得装反风机。
(4)选用风机时注意风机轴承是滚珠轴承的为好,含油轴承的机械寿命短。就单纯轴承寿命而言,使用滚珠轴承时风机寿命会高5耀10
倍。
(5)风机装在出风口承受高温气流,其风叶应用金属或耐温塑料制成,不得使用劣质塑料,以免变形。
(6)电源连接要正确良好,转子风叶不得与导线相摩擦,装好后要通电试一下。
(7)清理风道和散热片的堵塞物很重要,不少变频器因风道堵塞而发生过热保护或损坏。
1.5
开关电源的损坏
1.5.1
开关电源损坏的判断
(1)有输入电压,而无开关电源输出电压,或输出电压明显不对。
(2)开关电源的开关管、变压器印制板周边元件,特别是过电压吸收元件有外观上可见的烧黄、烧焦,用万用表测开关管等元件已损坏。
(3)开关变压器漆包线长期在高温下使用,出现发黄、焦臭、变压器绕阻间有击穿、变压器绕阻特别是高压线包有断线、骨架有变形和跳弧痕迹。
1.5.2
查找开关电源损坏原因
(1)开关电源变压器本身漏感太大。运行时一次绕阻的漏感造成大能量的过电压,该能量被吸收的元件(阻容元件、稳压管、瞬时电压抑制二极管)吸收时发生严重过载,时间一长吸收的元件就损坏了。
以上原因又会使开关电源效率下降、开关管和开关变压器发热严重,而且开关管上出现高的反峰电压,促使开关管损坏及变压器损坏,特别在密闭机箱里的变压器、开关管、吸收用电阻、稳压管或瞬时电压抑制二极管的温度会很高。
(2)变压器导线因氧化、助焊剂腐蚀而断裂。
(3)元器件本身寿命问题,特别是开关管和或开关集成电路因电流电压负担大,更易损坏。
(4)环境恶劣,由灰尘、水汽等造成绝缘损坏。
1.5.3
开关电源的修理
(1)开关电源因局部高温已使印制板深度发黄碳化或印制线损坏时,印制板的绝缘和覆铜箔、导线已不能使用时,只能整体更换该印制板。
(2)查出损坏的元件后更换新元件,元件型号应与原型号一致,在不能一致时,要确认元件的功率、开关频率、耐压以及尺寸上能否安装,并要与周边元件保持绝缘间距。
(3)认为已修好后,应通电检查。通电时不应使整个变频器通电而只对有开关变压器的那一部分,即在开关变压器的电源侧通电,检查工作是否正常、二次电压是否正确,改变电源侧的电压在+15%耀-20豫变动范围内,输出电压应基本不变。
1.6
接触器的损坏
1.6.1
接触器损坏判断
(1)对于发生逆变桥模块炸毁、滤波电解电容器发生爆炸等变频器后级发生严重过电流短路的,都要检查是否影响了接触器。常见的损坏有触头烧蚀、烧结,以及接触器塑料件烧变形。
(2)少数接触器会发生控制线包断线和完全不动作。
·
1.6.2
损坏原因
(1)后级有短路,过电流故障造成触头烧蚀。
(2)线包质量不好,发生线包烧毁、烧断线而不能吸合。
(3)对有电子线路的接触器,会因电子线路损坏而不能动作,因此最好不用此类接触器。
(4)因炸机火焰损坏。
1.6.3
更换
(1)选同型号、同尺寸、线包电压相同的产品更换,如型号不同,则性能、尺寸、电压应相同。
(2)如果有旧的接触器,可以更换内部零件而修好,但必须严格按原有内部装配正确装配好。
(3)对烧蚀不严重的触头,可以用细砂布仔细砂光继续使用。
(4)因触头要流过大电流,对螺钉联接的铜条和导线必须切切实实拧紧以减少发热。
1.7
印制电路板的损坏
1.7.1
印制电路板的损坏判断
(1)排除了主回路器件的故障后,如还不能使变频器正常工作,最为简单有效的判断是拆下印制板看一下正、反面有无明显的元件变色、印制线变色、局部烧毁。
(2)一般变频器上的印制板主要有驱动板、主控板、显示板,根据变频器故障表现特征,使用换板方式判断哪块板有毛病。对其他印制板,如吸收板、GE
板、风机电源板等,因电路简单可用万用表迅速查出故障。
(3)印制板在有电路图时按图检查各电源电压,用示波器检查各点波形,先从后级,逐渐往前级检查;在没有电路图时,采用比较法,对有几路相同的部分进行比较,将故障板与好板对照查出不同点,再作分析即可找到损坏的器件。
1.7.2
印制板损坏原因
(1)元器件本身质量和寿命造成损坏,特别是功率较大的器件,损坏的概率更大。
(2)元器件因过热或过电压损坏,变压器断线,电解电容器干枯、漏电,电阻长期高温而变值。
(3)因环境温度、湿度、水露、灰尘引起印制板腐蚀击穿绝缘漏电等损坏。
(4)因模块损坏导致驱动印制板上的元件和印制线损坏。
(5)因接插件接触不良、单片机、存储器受干扰晶振失效。
(6)原有程序因用户自行调乱,不能工作。
1.7.3
印制板的维修
(1)对印制板维修需有电路图、电源、万用表、示波器、全套焊接拆装工具,以及日积月累的经验,才会比较迅速地找到损坏之处。
(2)印制板表面有防护漆等涂层,检测时要仔细用针状测笔接触到被测金属,防止误判。由于元件过热和过电压容易造成元件损坏,所以对于下列部位要求高度注意,首先检查;
开关电源的开关管、开关变压器、过电压吸收元件、功率器件、脉冲变压器、高压隔离用的光耦合器、过电压吸收或缓冲吸收板及所属元件、充电电阻、场效应管或IGBT管、稳压管或稳压集成电路。
(3)印制板的更换会因版本不同而带来麻烦,因此若确定要换板,就要看版号标识是否一致,如不一致而发生了障碍,就要向制造商了解清楚。
(4)单片机编号不一样内部的程序就不一样,在使用中某些项目可能会表现不一样,因此,使用中如确认程序有问题,就应向制造商询问。
(5)由于干扰会导致变频器工作不正常或发生保护。此时,应采取抗干扰措施,除了变频器整体上考虑抗干扰外(如加装输入/输出交流电抗器、无线电干扰抑制电抗器,输出线加磁环等),还可以在印制板的电源端加装由磁环和同相串绕的几匝导线构成的所谓共模抑制电抗器,对印制板上下位置作静电隔离屏蔽,以及对外部控制线用屏蔽线或用双绞线等措施。
(6)印制板维修后要通电检查,此时不要直接给变频器的主回路通电,而要使用辅助电源对印制板加电,并用万用表检查各电压,用示波器观察波形,确认完全无误后才可接到主回路一起调试。
1.8
变频器内部打火或燃烧
1.8.1
过电压吸收不良造成打火
变频器的逆变器在快速切换电流时,发现某主器件被损坏,一般是由于切换电路上往往有电感存在,电感上储存的磁场能量将迅速转变为电场能量,即
特别当被切换电流i
大,而电路分布电容C小的时刻,在电流切换器的端子上将出现极高的过电压u,这个电压有时高到几百伏、几千伏、甚至几万伏。
因此,在变频器的功率开关器件(如IGBT)的C、E端、开关电源管的D端、电源进线端等部位都设置了过电压吸收电路或器件来作保护。但这些保护器件失效,或具有相同作用的其他器件性能变坏(如承担部分过电压吸收的滤波电容干枯)时,都有可能出现过电压,发生打火、击穿或被保护的开关器件自身损坏。
常见过电压吸收电路如图2
所示。电源进线端的过电压吸收电路如图3
所示。
当这些吸收元件损坏及安装它的印制板损坏时,就会产生过电压、跳火、烧蚀及主器件立即损坏。
更换这些元件时要求意识到型号的重要性,如二极管一定要用快恢复或超快恢复二极管,连接的接线要简短,以减少分布电感量的危害。
1.8.2
主器件损坏造成打火
有些变频器损坏的现象使人感到纳闷,母线间的某个间距并不小,但有尖端放电可能的区域,出现打火电蚀的痕迹。仔细检查发现有某主器件被损坏,究竟是不是间距不够造成的后果呢?不是的,这是因主回路有一定的电感,当主器件因故障的短路大电流突然烧毁时,就会造成母线间过电压(见图4)。逆变桥开关器件IGBT短路会造成正负母线间打火;整流桥短路或逆变IGBT
短路有可能造成进线处打火或进线保护用压敏电阻损坏,因进线也有电感,也会造成过电压。
逆变桥开关器件IGBT
或整流桥烧毁造成自身炸裂,严重时殃及周围器件,如烧毁驱动电路板。
·
1.8.3
压敏电阻问题
压敏电阻本来是用于进线侧吸收进线过电压的保护器件,但当进线侧电压持续较高,压敏电阻性能有变化时,有可能使压敏电阻爆炸烧毁,同样有可能殃及周围器件和导线绝缘。
1.8.4
电解电容器漏液、爆炸、燃烧
电解电容质量不好的表现有:漏液、漏电流大、损耗大、发热、鼓包、炸裂、由炸裂引起燃烧、容量下降,内阻及电感增加。对于滤波用电解电容器因电压高、容量大,所储存的能量大,容易造成漏液、爆炸、燃烧。电解液是可燃物,可造成燃烧事故。因此要用质量好的电解电容器,并在到达寿命前更换新的。
1.9
常见运行中的故障
1.9.1
过电流跳闸
起动时,一升速就跳闸,说明过电流十分严重,应查看有否负载短路、接地、工作机械卡堵、传动损坏、电动机起动转矩过小、以及根本起不动、变频器逆变桥已损坏。
运行中跳闸引起的原因有升速设定时间过短、降速时间设定过短、转矩补偿(V/f
比)设定太大,造成低速过电流、热继电器调整不当,动作电流设定太小也可引起过电流动作。
1.9.2
过电压和欠电压跳闸
(1)过电压:电源电压过高、降速时间设定过短、降速过程中制动单元没有工作或制动单元放电太慢,即制动电阻太大。变频器内部过电压保护电路有故障会引起过电压。
(2)欠电压:电源电压过低、电源缺相、整流桥有一相故障,变频器内部欠电压保护电路故障也会引起欠电压。
1.9.3
电动机不转
电动机、导线、变频器有损坏,线未接好,功能设置,如上限频率、下限频率、最高频率设定时没有注意,相互矛盾着。使用外控给定时,没有选项预置,以及其他不合理设置。
1.9.4
发生失速
变频器在减速或停止过程中,由于设置的减速时间过短或制动能力不够,导致变频器内部母线电压升高发生保护(也称过电压失速),造成变频器失去对电动机的速度控制。此时,应设置较长的减速时间,保持变压器内母线电压不至于升得太高,实现正常减速控制。
变频器在增速过程中,设置的加速时间过短或负载太重,电网电压太低,导致变频器过电流而发生保护(也称过电流失速),变频器失去对电动机的速度控制。此时,应设置较长的增速时间,维持不会过电流,实现正常增速控制。
1.9.5
变频器主器件自保护(FL保护)
该保护是变频器主器件工作不正常而发生的自我保护,很多原因都会导致FL保护。FL发生时,很多是变频器逆变器部分已经流过了不适当的大电流。这一电流在很短的时间内被检测出来,并在没有使功率器件损坏前发出保护控制信号,停止功率器件继续被驱动板激励而继续发生大电流,从而保护了功率器件。也有功率器件已坏,不适当地通过了大电流,被检测后就停止了驱动板对功率器件的激励。也有因过热使热敏元件动作,发生FL保护。
FL发生的现象一般有:一通电就FL保护、运行一段时间发生FL保护、不定期出现EL保护。
FL发生时要检查以下是否已损坏及作出处理。
(1)模块(开关功率器件)已损坏。
(2)驱动集成电路(驱动片)、驱动光耦合器已损坏。
(3)由功率开关器件IGBT集电极到驱动光耦合器的传递电压信号的高速二极管损坏。
(4)因逆变模块过热造成热断电器动作。这类故障一般冷却后可复位,即FL在冷却时不发生,可再运行。对此要改善冷却通风,找到加热根源。
(5)外部干扰和内部干扰造成变频器控制部位、芯片发生误动作。对此要采取内部抗干扰措施,如加磁环、屏蔽线,更改外部布线、对干扰源隔离、加电抗器等。
1.10
康沃变频器常见故障及处理方法
1.10.1
故障P.OFF
康沃变频器上电显示P.OFF,延时1耀2
s后显示0,表示变频器处于待机状态。在应用中若出现变频器上电后一直显示P.OFF
而不跳0
现象,主要原因有输入电压过低、输入电源缺相及变频器电压检测电路故障。处理时应先测量电源三相输入电压,R、S、T端子正常电压为三相380
V,如果输入电压低于320
V或输入电源缺少,则应排除外部电源故障。如果输入电源正常可判断为变频器内部电压检测电路或缺相保护故障。对于康沃G1/P1
系列90
kW及以上机型变频器,故障原因主要为内部缺相检测电路异常。缺相检测电路由两个单相380
V/18.5
V变压器及整流电路构成,故障原因大多为检测变压器故障,处理时可测量变压器的输出电压是否正常。
1.10.2
故障ER08
康沃变频器出现ER08
故障代码表示变频器处于欠电压故障状态。主要原因有输入电源过低或缺相、变频器内部电压检测电路异常、变频器主电路异常。通用变频器电压输入范围在320~460
V。
在实际应用中变频器满载运行时,当输入电压低于340
V时可能会出现欠电压保护,这时应提高电网输入电压或变频器降额使用;若输入电压正常,变频器在运行中出现ER08
故障,则可判断为变频器内部故障。若变频器主回路正常,出现ER08
报警的原因大多为电压检测电路故障。一般变频器的电压检测电路为开关电源的一组输出,经过取样、比较电路后给CPU
处理器,当超过设定值时,CPU根据比较信号输出故障封锁信号,封锁IGBT,同时显示故障代码。
1.10.3
故障ER02/ER05
故障代码ER02/ER05
表示变频器在减速中出现过电流或过电压故障,主要原因为减速时间过短、负载回馈能量过大未能及时被释放。若电动机驱动惯性较大的负载时,当变频器频率(即电动机的同步转速)下降时,电动机的实际转速可能大于同步转速,这时电动机处于发电状态,此部分能量将通过变频器的逆变电路返回到直流回路,从而使变频器出现过压或过流保护。现场处理时在不影响生产工艺的情况下可延长变频器的减速时间,若负载惯性较大,又要求在一定时间内停机时,则要加装外部制动电阻和制动单元,康沃G2/P2
系列变频器22
kW
以下的机型均内置制动单元,只需加外部制动电阻即可,电阻选配可根据产品说明中标准选用;对于功率22
kW以上的机型则要求外加制动单元和制动电阻。
ER02/ER05故障一般只在变频器减速停机过程中才会出现,如果变频器在其他运行状态下出现该故障,则可能是变频器内部的开关电源部分,如电压检测电路或电流检测电路异常而引起的。
1.10.4
故障ER17
代码ER17
表示电流检测故障。通用变频器电流检测一般采用电流传感器,如图5
所示,通过检测变频器两相输出电流来实现变频器运行电流的检测、显示及保护功能。输出电流经电流传感器(图中的H1、H2)输出线性电压信号,经放大比较电路输送给CPU
处理器,CPU
处理器根据不同信号判断变频器是否处于过电流状态,如果输出电流超过保护值,则故障封锁保护电路动作,封锁IGBT脉冲信号,实现保护功能。
康沃变频器出现ER17
故障的主要原因为电流传感器故障或电流检测放大比较电路异常,前者可通过更换传感器解决,后者大多为相关电流检测IC
电路或IC
芯片工作电源异常,可通过更换相关IC或维修相关电源解决。
1.10.5
故障ER15
代码ER15
表示逆变模块IPM、IGBT故障,主要原因为输出对地短路、变频器至电动机的电缆线过长(超过50
m)、逆变模块或其保护电路故障。现场处理时先拆去电动机接线,测量变频器逆变模块,观察输出是否存在短路,同时检查电动机是否对地短路及电动机接线是否超过允许范围,如上述均正常,则可能为变频器内部IGBT
模块驱动或保护电路异常。一般IGBT过电流保护是通过检测IGBT导通时的管压降动作的,如图6所示。
当IGBT正常导通时其饱和压降很低,当IGBT过电流时管压降VCE会随着短路电流的增加而增大,增大到一定值时,检测二极管VDB将反向导通,此时反向电流信号经IGBT驱动保护电路送给CPU
处理器,CPU
封锁IGBT
输出,以达到保护作用。如果检测二极管VDB损坏,则康沃变频器会出现ER15
故障,现场处理时可更换检测二极管以排除故障。
1.10.6
故障ER11
康沃变频器出现ER11
故障表示变频器过热,可能的原因主要有:风道阻塞、环境温度过高、散热风扇损坏不转及温度检测电路异常。现场处理时先判断变频器是否确实存在温度过高情况,如果温度过高可先按以上原因排除故障;若变频器温度正常情况下出现ER11
报警,则故障原因为温度检测电路故障。康沃22
kW以下机型采用的七单元逆变模块,内部集成有温度元件,如果模块内此部分电路也会出现ER11
报警,另处当温度检测运算电路异常时也会出现同样故障现象。
2 变频器驱动电路常见问题及解决方案
近10
多年来,随着电力电子技术、微电子技术及现代控制理论向交流电气传动领域的渗入,变频交流调速已逐渐取代了过去的转差率调速、变极调速、直流调速等调速技术。几乎可以说,有交流电动机的地方就有变频器的使用。其最主要的特点是具有高效率的驱动性能及良好的控制特性。
现在通用型的变频器一般包括以下几个部分:整流桥、逆变桥、中间直流电路、预充电电路、控制电路、驱动电路等。一台变频器的好坏,驱动电路起着至关重要的作用,现就来谈谈驱动电路常见的问题以及解决的办法。
随着技术的不断发展,驱动电路本身也经历了从插脚式元件的驱动电路到光耦驱动电路,再到厚膜驱动电路,以及比较新的集成驱动电路。目前后三种驱动电路在维修中还是经常能遇到的。
下面介绍几种驱动电路的维修方法。
2.1
驱动电路损坏的原因及检查
造成驱动损坏的原因是各种各样的,一般来说,出现的问题也无非是U、V、W三相无输出或输出不平衡,或输出平衡但是在低频时抖动,还有启动报警等。当一台变频器大电容后的快速熔断器断开,或者是IGBT
逆变模块损坏的情况下,驱动电路基本都不可能完好无损,切不可换上好的快速熔断器或IGBT逆变模块,这样很容易造成刚换上的新器件再次损坏。这时应该着重检查驱动电路上是否有打火的印记。可以先将IGBT逆变模块的驱动脚连线拔掉,用万用表电阻挡测量六路驱动是否阻值都相同(但是极个别的变频器驱动电路不是六路阻值都相同的,如三菱、富士等变频器)。如果六路阻值都基本相同也不能完全证明驱动电路是完好的,接着需要使用电子示波器测量六路驱动电路上电压是否相同,当给定一个起动信号时六路驱动电路的波形是否一致。如果没有电子示波器,也可以尝试使用数字式电子万用表来测量驱动电路六路的直流电压。一般来说,未起动时的每路驱动电路上的直流电压约为10
V,起动后的直流电压为2耀3
V,如果测量结果一切正常的话,基本可以判断此变频器的驱动电路是好的。接着就将IGBT逆变模块连接到驱动电路上,但是记住在没有100%把握的情况下,最稳妥的方法还是将IGBT逆变模块的P从直流母线上断开,中间串联一组灯泡或一个功率大一点的电阻,这样能在电路出现大电流的情况下,保护IGBT逆变模块不被大电容的放电电流烧坏。下面介绍几个在维修变频器时和驱动电路有关的实例。
2.2
安川616G5,3.7
kW的变频器
安川616G5,3.7
kW的变频器,故障现象为三相输出正常,但在低速时电动机抖动,无法进行正常运行。首先估计多数为变频器驱动电路损坏,正确的解决办法应该是确定故障现象后将变频器打开,将IGBT
逆变模块从印制电路上卸下,使用电子示波器观察六路驱动电路打开时的波形是否一致,找出不一致的那一路驱动电路,更换该驱动电路上的光耦合器,一般为PC923
或PC怨圆怨。若变频器使用年数超过3
年,推荐将驱动电路的电解电容器全部更换,然后再用示波器观察,待六路波形一致后,装上IGBT逆变模块,进行负载实验,抖动现象消除。
2.3
富士G9变频器
富士G9变频器,故障现象为上电无显示。估计可能是变频器开关电源损坏,打开变频器检查开关电源线路,但是经检查,开关电源器件线路都无损坏,直流电压也无显示,这时要估计到可能是驱动问题。将驱动电路的所有电容拆下,发现有个别电容漏液,更换新的电解电容器,再次上电后正常工作。
2.4
台达变频器
台达变频器,故障现象是变频器输出端打火,拆开检查后发现IGBT逆变模块击穿,驱动电路印制电路板严重损坏。正确的解决办法是先将损坏IGBT逆变模块拆下,拆的时候主要应尽量保护好印制电路板不受人为二次损坏,将驱动电路上损坏的电子元器件逐一更换,将印制电路板上开路的线路用导线连起来(这里要注意要将烧毁的部分刮干净,以防再次打火)。在六路驱动电路阻值相同、电压相同的情况下使用示波器测量波形,但变频器一开就报OCC
故障(台达变频器无IGBT逆变模块,开机会报警)使用灯泡将模块的P1
【变频器典型故障分析】推荐阅读:
变频器的故障分析论文09-06
变频器常见故障处理和维修方法经典教案08-28
分析变频技术在化工中的性论文07-31
变频器恒压供水方案08-25
三菱变频器面板说明书09-28
三菱PLC与变频器连接问题07-14
LS变频器八大安全注意事项07-14
变频器制动时过电压的处理方法08-02
水泵变频调速节能技术07-02
变频调速应用技术教案07-20