中国高性能计算机论文

2024-12-27

中国高性能计算机论文(精选8篇)

1.中国高性能计算机论文 篇一

附件1

“高性能计算”重点专项2016

项目申报指南

依据《国家中长期科学和技术发展规划纲要(2006—2020年)》,科技部会同有关部门组织开展了《高性能计算重点专项实施方案》编制工作,在此基础上启动“高性能计算”重点专项2016项目,并发布本指南。

本专项总体目标是:在E级计算机的体系结构,新型处理器结构、高速互连网络、整机基础架构、软件环境、面向应用的协同设计、大规模系统管控与容错等核心技术方面取得突破,依托自主可控技术,研制适应应用需求的E级(百亿亿次左右)高性能计算机系统,使我国高性能计算机的性能在“十三五”末期保持世界领先水平。研发一批重大关键领域/行业的高性能计算应用软件,建立适应不同行业的2—3个高性能计算应用软件中心,构建可持续发展的高性能计算应用生态环境。配合E级计算机和应

用软件研发,探索新型高性能计算服务的可持续发展机制,创新组织管理与运营模式,建立具有世界一流资源能力和服务水平的国家高性能计算环境,在我国科学研究和经济与社会发展中发挥重要作用,并通过国家高性能计算环境所取得的经验,促进我国计算服务业的产生和成长。

本专项围绕E级高性能计算机系统研制、高性能计算应用软件研发、高性能计算环境研发等三个创新链(技术方向)部署20个重点研究任务,专项实施周期为5年,即2016年—2020年。

按照分步实施、重点突出原则,2016年启动项目的主要研究内容包括:E级计算机总体技术及评测技术与系统,高性能应用软件研发与推广应用机制,重大行业高性能数值装置和应用软件,E级高性能应用软件编程框架及应用示范,国家高性能计算环境服务化机制与支撑体系,基于国家高性能计算环境的服务系统等重大共性关键技术与应用示范研究,以及新型高性能互连网络、适应于百亿亿次级计算的可计算物理建模与新型计算方法等基础 — 2 —

前沿研究。2016年在三个技术方向启动10个任务。

针对任务中的研究内容,以项目为单位进行申报。项目设1名项目负责人,项目下设课题数原则上不超过5个,每个课题设1名课题负责人,每个课题承担单位原则上不超过5个。

1.E级高性能计算机系统研制

1.1 总体技术及评测技术与系统研究(重大共性关键技术类)研究内容:研究提出我国高性能计算机系统发展技术路线图和总体技术方案。研究我国高性能计算技术标准体系和核心标准,推动高性能计算机、高性能计算应用和高性能计算环境的协调均衡发展。研究E级高性能计算机评测方法与技术,发展体现应用特点的基准测试程序集,对E级高性能计算机系统进行全面评测,以评测促进研究工作。

考核指标:完成高性能计算机系统技术路线图和总体技术方案;完成我国高性能计算技术标准体系,制定3个核心标准;提出适应E级高性能计算机评测需求的评测方法,研制基准测试程

序集和评测系统,建立可持续发展的评测环境,完成对E级高性能计算机系统的评测。

支持年限:不超过5年 拟支持项目数:1项

1.2 新型高性能互连网络(基础前沿类)

研究内容:面向百万节点、数千万处理器核规模,开展按需弹性网络设计方法和光互连网络的研究,实现互连网络结构(拓扑和路由)与应用通信特征的最优匹配。主要研究内容包括:

与计算和存储协同的融合网络理论、架构与协议、相应的编程模型和通信模型,网络与国产处理器的融合架构与设计,融合多协议的新型网络设备体系结构。

高性能高密度的光互连网络架构、基于光交换的动态光路可重构网络和路由算法、低功耗设计及光电高密度集成。

应用通信行为分析和建模、面向应用通信特征的高性能互连网络结构设计方法、高阶路由器设计方法、无死锁和可容错路由 — 4 —

算法等。

考核指标:提供原型芯片及原型系统,证明技术有效性。形成网络与应用、计算和存储相互协同的设计新方法,建立和发展新型大规模计算机互连网络理论,为我国在高性能计算领域保持领先优势提供关键保障。

实施年限:不超过3年 拟支持项目数:1—2项

1.3E级计算机关键技术验证系统(重大共性关键技术)研究内容:提出突破制约E级计算系统功耗、性能、可扩展性等技术瓶颈的新思路,基于自主可控核心器件,探索先进的体系结构及关键技术,构建规模性验证系统,验证E级计算机系统的可实现性,为国产E级计算机的研制奠定坚实的技术基础。

研究可实现E级计算机的体系结构、高性能高可扩展的互连通信、能耗管控和高效冷却、高效计算节点、自感知操作系统、编程模型和编译系统、多层次存储、综合容错技术等E级系统关

键技术,采用国产超高性能处理器以及相关系统技术,实现规模性验证系统,并运行基础软件和典型应用,验证E级计算机的可实现性。

考核指标:完成E级系统关键技术验证系统,系统的规模为512个节点,单节点每秒5T—10TFlops双精度浮点计算性能,节点能效每瓦10—20Gflops,互连网络的点对点单向带宽大于200Gbps,MPI延迟小于1.5us,并证明其可实现10万节点以上规模。验证系统配备包括节点操作系统、系统并行操作系统、运行时系统、并行编译系统等在内的系统软件。在系统上部署3个以上能验证系统效能的大规模典型应用。

验证系统的Linpack效率大于60%,HPCG测试、Graph500测试、深度学习类测试的性能达到世界先进水平。基于对所研制的验证系统的测试与模拟,提出E级系统的方案,证明其能效比可以达到30GFlops/W以上,互连、存储系统的性能可以与计算系统匹配。验证系统与E级系统方案将为最终E级机研制团队的 — 6 —

遴选提供依据。鼓励优势单位强强合作,提升核心技术原创水平。所研制的验证系统要落实用户或在国家高性能计算环境安装部署,得到实际使用并得到用户配套资金。

实施年限:不超过2年

支持项目数:拟支持不同技术路线和架构的1~3台系统 2.高性能计算应用软件研发

2.1 适应于百亿亿次级计算的可计算物理建模与新型计算方法(基础前沿类)

研究内容:针对典型应用领域中不适应于E级计算的、我国重大行业应用普遍采用的四类左右的物理模型和计算方法,开展创新的可计算物理建模与计算方法研究,提出适应于E级计算的可计算物理建模和新型计算方法理论,并进行数值模拟典型验证。

考核指标:梳理并凝练形成依赖于E级计算的若干共性基础研究问题,发现制约E级计算的四类左右的物理建模和计算方法瓶颈并提出相应的解决方案,探索建立适应于E级计算的可计算

物理建模和新型计算方法理论。利用所提出的可计算物理建模和新型计算方法,借助于E级计算开展数值模拟研究,获得国际领先的基础研究成果,培养高水平基础研究人才。

实施年限:不超过5年 拟支持项目数:1—2项

2.2 重大行业应用高性能数值装置原型系统研制及应用示范(重大共性关键技术与应用示范类)

研究内容:围绕飞行器设计与优化、全球气候变化等应用领域,基于现有研究基础和自主研发的高性能应用软件,突破其中的多物理、多尺度耦合技术瓶颈,构建高性能数值装置原型系统并进行典型验证,通过十亿亿次量级的高性能数值模拟,获得一批匹配于物理装置的重要的虚拟装置数值模拟成果。

(1)飞行器数值装置原型系统—数值飞行器。研制自主知识产权的空气动力学、结构强度力学分析两套应用软件,研制考虑结构弹性的气动力载荷分析、气动弹性分析以及它们之间的多 — 8 —

物理、多尺度的流—固耦合和多学科精细化综合优化软件系统。研究飞行器气动力学以及飞行器空气动力、飞行力学与结构动力学之间包括载荷传递的流固耦合计算、工程实用多体分离特种计算、飞机升阻力精确计算等高精度高效率计算方法,研究精确的跨音速气动弹性计算方法和十万量级设计变量的流固耦合综合优化算法,研究百万处理器核量级的并行计算技术。通过十亿亿次量级的高性能数值模拟,原型系统可以相对准确地开展大型飞行器总体结构强度分析,模拟气动力学以及气体与飞行器结构固体之间的流固耦合现象,获得一批匹配于飞行器物理装置的重要的虚拟装置数值模拟成果。

(2)全球气候预测与地球环境数值装置原型系统—数值地球系统。研制自主知识产权的大气模式应用软件、海洋模式应用软件、陆面模式应用软件、海冰模式应用软件和多类不同物理化学过程及其相互非线性耦合的大型应用软件系统;研究多个模式的高分辨率数值计算方法、多个模式之间的高精度多物理耦合算

法和百万CPU核量级的并行计算技术。通过十亿亿次量级的高性能数值模拟,原型系统可以相对准确地模拟全球气候变化中典型气候现象和地球环境中典型气候事件的发生,获得一批匹配于地球气候环境变化的重要的虚拟装置数值模拟成果。

考核指标:

(1)数值飞行器原型系统的全机流场数值模拟可实现60万核规模以上并行计算,复杂部件局部流场的高精度高分辨率数值模拟可实现百万核规模以上并行计算,以万核级为基准的并行效率达到30%以上,升力预测精度3%、阻力预测精度5%以内。可进行非线性结构振动与非线性流动耦合模拟,网格规模达到百亿量级,并行规模达到60万核以上,以万核级为基准的并行效率不低于30%,形成非线性气动弹性研究的完整体系,大展弦比飞机变形后升力特性预测精度5%以内,颤振速度预测精度10%以内,达到国际先进水平。多体分离系统模拟网格规模达到数十亿量级,可实现百万规模处理器核并行,以万核级为基准的并行效率不低 — 10 —

于30%,模拟结果与试验趋势一致。气动力和结构载荷分析考虑结构变形影响,实现反向耦合,载荷计算精度在5%。可进行十万设计变量的气动力、气动弹性、载荷和结构等多学科精细模拟优化,以万核级为基准的60万核效率达到30%以上。

(2)数值地球原型系统实现对热带气候系统(包括对赤道辐合带、厄尔尼诺等)较准确的模拟,以解决目前国内外耦合模式中普遍存在的虚假赤道双辐合带以及厄尔尼诺强度及周期失准的问题,提供更为准确的台风数目年际变化预估。实现在统一热力学和动力学理论框架下,以碳、氮、磷循环为重点的生物地球化学过程模型,为陆地生态系统温室气体排放、水体富营养化、气候变化对陆地生态系统的反馈机制等提供量化模拟结果。全球大气模式的网格分辨率小于1/4°,全球海洋模式的水平网格分辨率小于1/12°。性能可扩展至100万核以上,并行效率达到30%,整体模拟速度达到5模拟年/天。有效完成全球超高分辨率100年以上的数值模拟,提供更加合理的东亚地区气候模拟结果并发布。

实施年限:不超过5年

拟支持项目数:1—2项,数值飞行器项目要求产学研结合申报 有关说明:其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于1:1。

2.3 重大行业高性能应用软件系统研制及应用示范(共性关键技术与应用示范类)

研究内容:围绕复杂电磁环境、大型流体机械节能优化设计、复杂工程与重大装备设计、海洋环境数值模拟、能源勘探等重大行业应用,研制适应于E级计算的行业共享的应用软件系统并通过典型应用进行示范验证,获得一批具有重要显示度的数值模拟成果。选择以下一种重大行业应用软件系统进行研发。

(1)复杂电磁环境高性能应用软件系统。围绕复杂电磁环境领域重大行业应用在高性能计算电磁学及多物理等方面对E级计算的迫切需求,建立涵盖器件(至纳米尺度)、平台(至数万波长)和区域(至数千平方公里)三个层次的高性能电磁数值模拟 — 12 —

应用软件系统,实现对工程应用中复杂电磁多物理现象的E级数值模拟,相对准确地预测大型舰船及编队、飞行器编队以及新一代无线通信系统中的复杂电磁环境效应,支撑信息化平台及综合电子信息系统的电磁及多物理设计、预测与评估,显著提升它们在复杂电磁环境中的适应能力。

(2)大型流体机械节能优化设计能力型高性能计算应用软件系统。针对压缩机、鼓风机、泵及水轮机、风力机等大型流体机械的设计优化问题,研究多重旋转坐标系下流体机械非定常流动的高效高精度基础并行算法、新型十亿亿次及百亿亿次计算系统上流体并行软件的可扩展性方法、大型流体机械多参数并行优化设计技术等;研制适合于轴流、离心及混流式多级流体机械非定常流动的能力型高性能并行应用软件;通过十亿亿次量级的高性能数值模拟,完成10级以上大型流体机械非定常流动并行计算,设计工况下的流量、压比、效率预测精度在1%以内,调节工况下的预测精度在2%以内,为大型流体机械优化设计与安全

可靠控制提供可靠的计算数据,为开发流体机械大规模、高精度、大规模工程仿真提供有效计算工具。

(3)复杂工程与装备设计工程力学高性能应用软件系统。围绕大型装备制造、大型土木工程、大型水利工程等复杂工程系统的高分辨率数值模拟对E级工程力学计算的迫切需求,研制涵盖静力学分析、模态分析、冲击分析、材料损伤与破坏分析、非连续性分析等的高性能工程力学数值模拟应用软件系统,通过十亿亿次量级的高性能数值模拟,实现国家重大科技专项中复杂工程装备系统的典型力学响应行为分析,实现我国典型大型土木工程和大型水利工程抗重大自然灾害和全生命周期中抗疲劳损伤的力学综合性能评估,获得与实验一致的模拟结果。数值模拟的分辨率和计算规模与国际同类系统相当。

(4)海洋环境高性能数值模拟应用软件。发展我国的浪流耦合理论、区域及近海海洋模式和预报保障服务,研制西太平洋、北印度洋和南海高分辨率、多运动形态耦合的数值预报模式应用 — 14 —

软件,具备日变化和海洋内波分辨能力,远海达到5公里分辨率,近海海域达到1公里分辨能力。研制近海海陆一体(干湿网格)的浪—潮—流—内波—风暴潮耦合的高分辨率数值模式和应用软件,近海达到公里分辨率,近岸达到百米分辨率。

考核指标:选择上述某个重大行业应用,研制成功高性能应用软件系统并进行典型应用示范验证。软件系统部署于国家高性能计算环境的超级计算机,通过高效率的十亿亿次量级及以上规模的数值模拟,获得一批重要的有显示度的数值模拟成果,充分展示高性能计算对国家重要行业自主创新的支撑能力。以万核为基准的并行效率在60万处理器核规模达到30%,数值模拟的分标率和精度达到国际同类软件水平。

实施年限:不超过5年

拟支持项目数:1—3项,要求产学研结合申报

有关说明:其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于1:1。

2.4 科学研究高性能应用软件系统研制及应用示范(重大共性关键技术与应用示范类)

研究内容:围绕材料科学、生物医药、科学发现等重大科学研究领域,梳理科学研究对E级高性能计算的典型需求,研制适应于E级计算的科学研究典型应用软件系统并进行应用示范验证,获得一批重要的数值模拟和科学发现成果。选择以下一种应用软件系统进行研发。

(1)材料科学应用软件系统:围绕我国材料科学领域对高通量E级计算的需求,研发自主知识产权的涵盖第一性原理、微观分子动力学和宏观动力学演化的应用软件系统,实现对能源、信息、制造等领域新型材料的创新设计和物性研究的E级数值模拟,获得具有显示度的数值模拟成果。

(2)生物医药应用软件系统:围绕我国个性化医疗发展所需的医药设计和药物筛选等对E级计算的迫切需求,研发涵盖分子动力学和药物筛选数据处理的应用软件系统,实现对个性化药 — 16 —

物设计与筛选全过程的典型E级数值模拟,获得具有显示度的数值模拟成果。

(3)科学发现高性能应用软件系统:围绕我国科学家开展的重大前沿基础研究对E级计算的迫切需求,研发高性能数值模拟应用软件系统,涵盖约4个左右学科方向的基础科学问题,实现对相应典型复杂物理现象的E级数值模拟,获得具有显示度的数值模拟成果。

考核指标:从上述材料科学、生物医药、科学发现等重大基础研究领域中,选择并研制成功1个高性能应用软件系统并进行典型应用示范验证,部署于国家高性能计算环境的超级计算机,通过高效率的十亿亿次量级及以上规模的典型示范数值模拟,获得一批重要的具有显示度的E级数值模拟和科学发现成果,充分展示E级计算对基础研究的支撑能力。以万核为基准的并行效率在60万处理器核规模达到30%,数值模拟的分标率和精度达到国际同类软件水平。通过数值模拟获得的基础研究成果在国际上

形成影响力,达到国际先进水平。

实施年限:不超过5年 拟支持项目数:1—2项

有关说明:其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于1:1。

2.5 E级高性能应用软件编程框架研制及应用示范(重大共性关键技术类)

研究内容:围绕重大行业应用和基础科学研究,凝练E级应用软件快速研发对高性能计算的共性需求,在现有研究基础之上,研制应用软件编程框架体系,必须同时涵盖下面五个编程框架:

(1)结构网格编程框架研制及应用示范:围绕我国重大行业结构网格应用软件快速研发的高性能计算共性需求,在现有研究基础之上,研制结构网格应用软件编程框架,用于在E级高性能计算机系统上支持至少20个高效使用百万量级CPU核的应用软件系统的快速研发以及大规模数值模拟。

(2)非结构网格编程框架研制及应用示范:围绕我国重大行业非结构网格应用软件快速研发的高性能计算共性需求,在现有研究基础之上,研制非结构网格应用软件编程框架,用于在E级高性能计算机系统上支持至少10个高效使用百万量级CPU核的应用软件系统的快速研发以及大规模数值模拟。

(3)无结构组合几何计算编程框架研制及应用示范:围绕我国重大行业无网格组合几何计算应用软件快速研发的高性能计算共性需求,在现有研究基础之上,研制无网格组合几何计算应用软件编程框架,用于在E级高性能计算机系统上支持至少4个高效使用百万量级CPU核的应用软件系统的快速研发以及大规模数值模拟。

(4)有限元计算编程框架研制及应用示范:围绕我国重大行业有限元计算应用软件快速研发的高性能计算共性需求,在现有研究基础之上,研制有限元计算应用软件编程框架,用于在E级高性能计算机系统上支持至少4个高效使用百万量级CPU核的

应用软件系统的快速研发以及大规模数值模拟。

(5)非数值图计算编程框架研制及应用示范:围绕我国重大行业大数据处理等应用软件快速研发的高性能计算共性需求,在现有研究基础之上,研制非数值图计算应用软件编程框架,用于在E级高性能计算机系统上支持至少2个高效使用百万量级CPU核的应用软件系统的快速研发以及大规模非数值应用。

考核指标:凝练我国重大行业应用E级应用软件快速研发对高性能计算的共性需求,研制形成跨结构网格、非结构网格、无网格组合几何计算、有限元、非数值图计算的应用软件编程框架体系,在E级高性能计算机系统上支持至少40个高效使用百万量级CPU核的应用软件系统的快速研发以及大规模模拟,网格规模达千亿、粒子数规模达到万亿、自由度规模达数万亿,200万处理器核并行效率达到30%以上,使我国的高性能计算应用编程框架的研发和实际应用达到国际领先水平。

系统2018年完成在E级计算机验证系统和两台国产100PF — 20 —

机上的部署,并对专项支持的应用软件开发团队开放源码。

实施年限:不超过5年 拟支持项目数:1—2项

有关说明:其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于1:1。

3.高性能计算环境研发

3.1 国家高性能计算环境服务化机制与支撑体系研究(一期)(重大共性关键技术类)

研究内容:研究国家高性能计算环境计算服务化的新机制和支撑技术体系,支持环境服务化模式运行,构建具有基础设施形态、服务化模式运行的国家高性能计算环境。研究内容包括:

(1)资源准入和分级标准

量化网络服务水平和集群计算服务水平,定义资源评价综合指标及综合指标的计算方法、资源服务质量级别和分级标准,作为资源定价收费的基本依据。发展与标准相适应、支持服务水平

量化的软件系统,支持和引导用户合理使用资源,形成全局统筹的资源布局。

(2)环境资源提升

在量化服务的基础上,整合环境各结点的计算、存储与软件资源,实现资源的服务化封装,提升环境资源能力与服务水平。

(3)基于应用的全局资源优化调度

根据应用程序特性和历史运维数据,从理论和实际两个角度分析和确定适合应用程序的集群、队列以及计算规模,结合传统的基于计算规模和运行时间的作业调度方法,形成第三种基于应用特性的全局资源优化调度。结合应用软件本身的特征,分析主流应用软件在不同体系结构、不同能力的资源中的性能特征,作为作业调度的依据。定义队列综合指数,综合排队时间、运行时间、应用类型、计算规模等众多参数,发展系统优化调度的核心算法。

(4)支持多种模式运营的国家高性能计算环境运行管理支 — 22 —

撑平台

研发支持服务化运营的资源管理、用户管理、安全管理、计费管理等管理功能,形成支持环境运行的管理支撑平台,研发支持服务与资源一体的环境监控系统、环境资源优化配置系统等。

(5)具有基础设施形态的国家高性能计算环境构建 建立具有基础设施形态的国家高性能计算环境,节点数14个以上,初步建立服务化运行模式;实现可满足不同客户需求的使用环境;建立国家高性能计算环境安全体系,支持各类高性能计算应用。

(6)超级计算中心运行评价体系

超级计算中心的稳定运行,是提供计算服务的前提和保障。针对提供公共计算服务的超级计算中心,根据用户数量、机时使用情况、用户培训以及超级计算应用效果等指标,建立科学合理的超级计算中心和环境的综合评价体系。

考核指标:完成能初步支持服务化运营的国家高性能计算环

境运行管理支撑平台,建立具有基础设施形态的国家高性能计算环境(一期),节点数14个以上,初步实现以服务化模式运行。完成环境的资源升级,聚合的计算资源200PF以上,存储资源200PB以上,部署500个以上的应用软件和工具软件,用户数达到5000以上。完成超级计算应用综合评价体系,定期发布评价结果。

实施年限:不超过2年 拟支持项目数:1项

有关说明:其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于1:1。

3.2 基于国家高性能计算环境的服务系统研发(重大共性关键技术与应用示范类)

研究内容:依托国家高性能计算环境,建立行业集成业务平台、领域应用服务社区和高性能计算教育实践平台。促进环境的应用,取得应用实效。研究内容包括:

(1)行业集成业务平台

根据以下重要行业的应用需求和应用基础,建立2个左右行业集成业务平台,例如,石油地震勘探行业应用平台、基于高性能计算的集成电路电子设计自动化(EDA)平台、复杂产品优化设计平台、工程力学设计优化平台等,以灵活的业务流程技术、高性能计算技术和可视化技术,支持相关行业新型业务的发展。

(2)领域应用服务社区

在“十二五”863重大项目应用社区研发基础上,进一步深化应用社区的研发,建立2个有广泛应用需求和较大用户群的应用服务社区,例如,创新工业产品优化设计、新药研发与个性化医疗、计算化学与生物信息、数字媒体、面向中小企业的数值模拟与计算环境等,提供计算服务和解决方案,为计算服务业的建立积累经验。

(3)高性能计算教育实践平台(一期)

面向大学生和研究生教育,建立高性能计算实践平台,为大

学生和研究生教育提供免费机时,形成高性能计算实践环境,培养学生的计算技能,促进高水平人才培养,为高性能计算应用的普及与提高奠定人才基础。

考核指标:研发成功2个行业业务集成平台、2个应用服务社区和1个高性能计算教育实践平台(一期)。每个行业业务集成平台集成50个以上应用软件,服务于200个以上用户;每个应用服务社区提供50种以上应用服务,服务于500个以上用户;教育实践平台服务推广到1000个以上大学生或研究生用户,每年提供2000万CPU核小时免费机时。

实施年限:行业集成业务平台和领域应用服务社区不超过5年,高性能计算教育实践平台不超过2年

拟支持项目数:1—2项行业集成业务平台,1—2项领域应用服务社区,1—2项高性能计算教育实践平台。行业集成业务平台项目要求产学研结合申报

有关说明:行业集成业务平台和应用服务社区项目要求其他 — 26 —

经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于1:1。

2.中国高性能计算机论文 篇二

曙光“星云”是在国家“863”计划重大专项支持下, 由曙光信息产业 (北京) 有限公司、中国科学院计算技术研究所、国家超级计算深圳中心共同研制, 由曙光集团天津产业基地制造的一款拥有自主知识产权的超千万亿次超级计算机;是亚洲和中国第一台、世界第三台实测性能超千万亿次的超级计算机, 其每秒系统峰值达3 000万亿次, 实测每秒执行1 271万亿条指令。

曙光研发中心总经理邵宗有介绍, 曙光“星云”具有高效能、高可靠、高密度、低功耗、低成本等特点, 采用了自主设计的HPP体系结构、高效异构协同计算技术, 每瓦能耗实测性能超过4.98亿次, 成为目前国内最绿色的超级计算机。

曙光“星云”还是中国第一台面向未来“云计算”环境设计的超级计算机系统, 强调系统的均衡设计和资源动态调度能力, 将成为我国新一代超级云计算中心建设的主力机种。

据悉, 曙光“星云”高性能计算机系统预计2010年底安装在国家超级计算深圳中心, 为我国华南、港澳乃至全国用户提供计算服务和信息服务。

5月公布的联合国《全球生物多样性展望》报告第三版说, 截至目前, 全球未能实现此前承诺的到2010年实现在全球范围内显著减少生物多样性丧失的目标。对此, 联合国环境署首席发言人尼克·纳托尔在接受新华社记者采访时说, 全球各国需要重新反思对于保护生物多样性的态度, 国际社会应该拓宽保护生物多样性的视野, 并在有关领域付出更多努力, 实现自己的承诺。

2002年, 世界各国领导人在南非约翰内斯堡可持续发展世界首脑会议上共同承诺, 到2010年, 实现在全球范围内显著减少生物多样性丧失的目标。然而, 根据全球110个国家提交的生物多样性调查报告, 44%的陆地生态区域和82%的海洋生态区域没有达到预期的保护目标。

纳托尔说, 现在全球范围内依旧有很多国家还未意识到人类共有的自然和自然资产对于社会发展和生命存在的真正价值, 还未意识到“保持物种多样性以及生态环境健康具有重要的经济意义”。他援引联合国环境署报告数据指出, 每年仅因毁林和森林退化就会导致2万亿到4.5万亿美元的损失;另一方面, 如果每年对自然保护区投资450亿美元用于改善生态系统, 由此带来的收益可高达5万亿美元。

纳托尔强调, 生物多样性已经和污染、粮食安全、淡水及珊瑚礁保护、碳回收等密切联系, “我们对此应一如既往地给予投入, 以期创造更多具有改革性和可持续性的生物多样性保护措施, 而这一过程中发达国家应和发展中国家携手应对”。

根据联合国决议, 2010年是“国际生物多样性年”, 环境署希望全人类迅速行动起来, “组成保护地球生命的全球同盟”。

据国外媒体6月16日报道, 英国氢燃料无污染汽车问世, 每加仑燃料可行驶300英里 (482公里) , 排出的是水而不是烟。这款无污染的两座汽车用氢发电驱动电发动机, 最高时速为50英里 (80公里) , 一箱液体氢可行驶240英里 (386公里) 。

2012年, 30辆这种型号的汽车将进行实地试验。如果试验成功, 开发该技术的Riversimple公司希望这款汽车批量生产, 年产量为5 000辆。但是, 作为城市绿色交通工具计划的一部分, Riversimple公司将在试验活动中出租汽车而不是出售。人们每月只需支付200英镑, 外加每英里15便士的使用费即可。迄今为止, Riversimple公司已投资300万英镑开发这一技术, 并计划增加投资达2 000万英镑以全面投入生产。这款两座都市型汽车可在5.5秒内加速到每小时30英里 (48公里) 。如果试验成功, 该公司将考虑在莱斯特建厂, 雇佣250名员工。

3.中国高性能计算往何处去 篇三

“顶天”更要“立地”

很多高性能计算机的从业者已经淡化了对“运算速度”的追求。曙光4000A速度超过每秒10万亿次时,尽管外界给予了众多的掌声,但该产品的主要研发者孙凝晖心情非常平静。他说,应用才是更大的挑战。采访中,他说中科院计算所系统结构研究所未来的重点是做“普及大众的计算机”,怎样把高性能计算机的成本降下来、稳定性提高、功耗降低、管理更方便,这是比提高运算速度更难的事。

孙凝晖说,高性能计算机的发展可分为三个阶段: 第一阶段是打破“玻璃房子”,国外不再对中国实行禁运;第二是高性能机要产业化,走下神坛;第三阶段是“普及化”,希望一些科研和设计人员的桌面上能装一个高性能计算机。

中国经济的体制结构正在发生转变,粗放型的经济增长模式正在萎缩,取而代之的,是越来越多地依靠科技研发和原创设计商业机会,这意味着普通的商业用户对高性能计算机的需求会增多。

在曙光公司的规划里,2008年将研制出运算速度达到每秒百万亿次的高性能计算机。但曙光总裁历军坦率地对记者说,让他更高兴的是,到今年10月份为止,曙光高性能机器已经卖了290多套。“‘卫星’(指运算速度在世界水平的高性能计算机)要放,因为那样可以提高品牌的认可度,但最为重要的是,产品卖得好,企业能活下去,能赚钱。”

“运算速度进入T0P 500的那些机器,如同高性能计算机的‘塔尖’,没有广泛应用的‘塔身’和‘塔基’,这个塔是摇摇欲坠的。”王恩东说,我国高性能计算机一定要重视应用。

“顶天立地”是我国高性能计算机发展的指导思想,是指企业在技术上要“顶天”,以技术发展为先导,立足技术领先;应用上要“立地”,将技术融入实际应用的解决方案中。

相对“顶天”,国产高性能计算机的“立地”更难。

“国外品牌进入银行、电信等领域比较早,经验很丰富,而且很多软件就是IBM、HP等公司与其他软件公司联合开发的,所以国产高性能服务器要进入银行等金融市场非常难。”联想集团首席科学家祝明发分析说,这种状况形成了“蛋生鸡和鸡生蛋”的怪圈,因为国产品牌在实际上运用少,发展比较缓慢;发展得慢,用户信任度低,国内品牌在实际使用中就越少。

当然,国产品牌在商业领域的应用也并非毫无优势。河南漯河市公安局经过比较,2004年开始采用了天梭TS20000系统,2005年10月多个关键应用正式在浪潮天梭TS20000系统中运行。漯河市公安局通讯科张居辉科长在接受采访时说,在综合比较国外品牌和国内品牌的高性能服务器之后,发现国外品牌的造价太高,远超过了原先的预算,而且机器系统复杂,该局现有的技术人员恐怕维护起来有一点吃力,如果请国外公司来维护,费用又是一大笔钱。浪潮的天梭在这两方面比较有优势。而且从业务应用上看,也够用了。

依靠价格“立地”是中国很多IT产品跟国外品牌抢市场的法宝之一,但最后能制胜,还得靠质量和提供符合客户需求的应用。高性能计算机也不例外。

模式要创新

由于受到资金、应用水平等因素的限制,中国高性能计算曾经长期盘踞在以政府主导比较集中的能源、气象、政府等领域。让更多的普通用户应用高性能计算,让高性能计算平民化,一直以来是业内专家学者和用户多方所提倡的。

但用户之间的经济实力、应用需求是千差万别的,让他们都通过自行购买高性能计算产品来用上高性能计算是不切实际的。即使都来购买,目前也存在着资源分散、应用效率不高的弊病。而将高性能计算作为一种公共服务,立足高性能计算应用需求集中的某一地域,面向地区性用户提供这种公共服务的机构平台的出现,为高性能计算的平民化开创了一种新的模式。作为上海信息港主体工程之一,由上海市政府投资建设,坐落于浦东张江高科技开发园区内的上海超级计算中心,已经成为了这种模式应用探索的一面旗帜。

上海超级计算中心(SSC)成立于2000年12月,是中国第一个面向社会开放、资源共享的高性能计算公共服务平台。上海超级计算中心自投入运行以来,本着随需应变、合作共赢的理念,为上海各行业提供了大量的高性能计算应用服务,在气象预报、药物设计、生命科学、汽车、新材料、土木工程、物理、化学、航空、航天、船舶等10个应用领域取得了一批重大成果,充分发挥了公共服务平台的重要作用。2004年上海超级计算中心引进了峰值速度超过10万亿次/秒的“曙光4000A”高性能计算机,更是实现了中心高性能计算研发与应用双跨越。

上海超级计算中心副主任袁俊告诉记者,“上海超级计算中心目前配置了相对比较丰富的高性能计算应用软件,并且组建了一支高素质的人才队伍。上海超级计算中心的发展目标,就是立足上海、辐射华东、服务全国,努力成为世界一流的高性能计算公共资源服务中心、高性能计算技术支持中心、高性能计算增值服务中心。

值得一提的是,曙光4000A是曙光公司和上海超级计算中心联合开发的。曙光公司总裁历军认为,用户和制造商联合开发高性能计算机是未来的一种有效的合作方式,用户更了解需求,双方合作的产品将更加符合市场的需求。

人才培养不容忽视

“对于一个企业而言,它的目标就是利润。目前中国企业规模小,很多难以承担类似高性能计算这样投入大、回报时间长的产品,企业进入或者退出高性能计算领域都是可以理解的。高性能计算属于基础产业,必须由政府牵头去进行研究推进。”一位老院士接受采访时说。在这次采访中,相关的从业人员呼吁政府加大推进高性能计算机发展的声音不止一次听到。

浪潮集团高级副总裁王恩东甚至建议,国家相关机构在采购高性能机时,应优先采购国产品牌。但目前这点完全没有体现出来。

国家和相关高校要推进高性能人才的培养也成为焦点。 目前中国专门从事高性能计算研究的人才积累不如国外,跨学科高性能计算应用人才缺乏,持续加强高性能计算人才的培养刻不容缓。

作为人才培养摇篮的教育机构,对于担负起高性能计算人才的培养责无旁贷。目前有一些高等院校已经搭建起高性能计算系统,高性能计算在高校的普及已经逐渐拉开。充分利用目前设备,立足自身需求,培养更多的复合型高性能计算人才,应该是下一阶段高等院校高性能计算应用的一个重点。

当然,高性能计算本身就是一个新生事物,复合人才培养也非易事,一切都需要不断地从摸索中总结经验。上海大学利用本校的高性能计算中心,面向全校各个学科开设高性能计算基础课程,已经取得了良好的效果。上海大学先进计算和应用中心常务副主任徐炜民向记者透露,“面向计算机专业的学生,我们开设了计算机系统结构与并行处理课程; 面向非计算专业的学生,我们还有另外一门高性能计算课程。授课可以通过校内自强3000高性能计算平台,也可以通过互联网进行。尤其是第二门课程,是面向全校开放,同学们选择这门课程的热情相当高,每次选课的时候都超过课程名额。”

4.发动机性能的耦合优化计算 篇四

发动机性能的耦合优化计算

本文根据发动机整机试车结果,在测量数据较少且缺乏发动机部件特性的情况下,通过耦合建模技术和最优化技术,推测出涡扇发动机主要部件(风扇、高压压气机、高低压涡轮)的特性,建立较准确的.发动机稳态工作数学模型.

作 者:王逊 张世铮 蔡睿贤 杜鹤龄 郭昕  作者单位:王逊,张世铮,蔡睿贤(中国科学工程热物理研究所)

杜鹤龄,郭昕(中国航空燃气涡轮研究所)

刊 名:航空动力学报  ISTIC EI PKU英文刊名:JOURNAL OF AEROSPACE POWER 年,卷(期): 14(2) 分类号:V235.131 关键词:耦合   优化   航空发动机   性能  

5.中国高性能计算机论文 篇五

进行了微波电热推力器(MET)钝头体方案的性能计算,对微波作了谐振模式TM011和波导模式TM01两种选择.将计入电磁场作用的轴对称钝头体粘性流动方程,结合TM011或TM01模式,与等离子体区耦合求解,获得了MET比冲和推力等性能,结果与文献的实验及计算结果趋向一致.

作 者:孙再庸 何洪庆 SUN Zai-yong HE Hong-qing  作者单位:西北工业大学,航天工程学院,陕西,西安,710072 刊 名:推进技术  ISTIC EI PKU英文刊名:JOURNAL OF PROPULSION TECHNOLOGY 年,卷(期):2000 21(3) 分类号:V439.4 关键词:微波能   等离子体推进   推力器   钝头体  

★ 激光教学反思

★ 喷水器作文

★ 激光手术有什么危险吗

★ 知识拷贝器作文

★ 笑 的 武 器

★ 大国重器观后感精选

★ 绿色冶金机械设计的关键技术

★ 吊瓜种植的关键技术

★ 单频网的关键技术的论文

6.中国各高校计算机专业简介 篇六

如今在中国考研之风渐热,而计算机恐怕是最热门的专业了,对于考生来说,选一个心仪的学校,不仅仅是能够学到真实的本领,更为以后的就业奠定了基础。作为一个刚 刚经历了考研的人,我愿意把我所知道的和大家说说,希望能够有所帮助。

对中国拥有计算机专业的600所高校进行排名是一件非常困难的事情,尽管我们经常看到某某机构的排名,也只是从某个侧面进行的估量。对于考生来说,他们选择学校的因素往往是多方面的,比如地理位置,学校名气等。我主要从学术地位的角度对一些名校的情况和优势方向进行介绍。

2001年以前(1988年评定)拥有国家重点学科的学校有五个,他们是: 计算机软件与理论:吉林大学 南京大学

计算机应用技术:哈尔滨工业大学

计算机系统结构:国防科技大学 清华大学

(注:国家重点学科是对计算机专业博士点的评估,并不完全代表该专业的整体实力)

吉林大学:十几年前,计算机系的创始人王湘浩院士和他的得力助手们还在的时候,吉林大学在软件方面的优势是相当大的。但近几年来吉大人丁不旺,过去的人亡的亡,走的走,客观的讲,与80年代的辉煌相比,吉大计算机确实是在走下坡路。不过瘦死的骆驼比马大,吉大计算机整体实力仍然是很强的。软件自动化、软件重用技术、人工智能、专家系统、计算机代数、定理证明与自动推理、分布式推理、分布式系统等方面居国内领先水平。

南京大学:如果说 20 世纪 80 年代的软件专业是并蒂莲花的话,那么现在的南大完全可以说是一枝独秀,由孙钟秀院士领导的软件学科甚至已经涉及到大型操作系统的设计。优势领域包括软件自动化与形式化方法、分布计算与并行处理、系统软件及其信息安全、多媒体技术、人工智能与知识工程、数据库技术、语言信息处理等。拥有软件新技术国家重点实验室。

哈尔滨工业大学:深处寒冷北方的哈工大能保持几十年的超强实力可以说是个奇迹,作为当年唯一的计算机应用重点学科,哈工大培养出了大量的人才。现在他们与许多学校和研究机构搞学科并建,吸纳了很多外来人才,增强了哈工大的整体实力。目前哈工大承担的项目经费已超亿元。他们的优势领域包括:智能机器人、CIMS 与系统集成、智能化中文信息处理机器翻译技术、计算机网络及系统安全防护技术等。

国防科技大学:这是一所不太为人所了解的学校,就像一个淡泊名利的世外高人,我们在感叹她的高大的同时,也会有一种难以接近的感觉。由 3 位院士领导的系统结构方向曾经研制出了让中国人骄傲的银河系列大型计算机。国防科技大学的优势领域大多和硬件相关。设有网络技术与信息安全研究所及并行与分布处理国家重点实验室。

清华大学:在拥有多位院士的清华大学差不多在所有方向都有相应的强人撑着,相比之下,应用和系统结构更强些,某些方向已经处于世界领先水平.优势领域包括多媒体、网络技术等。同时拥有模式识别与智能控制国家重点学科。

2001年新增加的重点学科有(可能不全,欢迎各位网友补充):

计算机软件与理论:上海交通大学 北京大学

计算机应用技术:浙江大学 东南大学 清华大学 北京大学 东北大学

计算机系统结构:华中科技大学

上海交通大学:上海交通大学近年来在走上坡路(借助地理优势还是领袖效应^o^),软件方向的发展很快,模式识别与智能控制也是国家重点学科。优势领域包括系统软件、网络信息获取与处理、并行与分布理论、数据库等。

北京大学:在软件方面尤其在中文视觉听觉信息处理方面有优势,由王选和杨芙清两位院士曾领导的方正和青鸟证实了北大在中国当前软件界的实力。硬件方面有一位院士王阳元。

浙江大学:前任校长潘云鹤是浙大计算机系唯一一位院士(现为中国工程院副院长),他所领衔创建的计算机图形学、智能 CAD 在国内无其右者,而且浙大开放式的校风,吸纳贤才的远见,使其越来越受到人们的认可。浙大建有计算机辅助设计与图形学国家重点实验室。优势领域还有 CAD/CIMS、虚拟现实、网络与多媒体、产品创新设计、智能信息与人机交互技术等。

东南大学:中国工程院院士 顾冠群教授为首。计算机网络、数据库及信息系统软件技术与人工智能 CIMS 技术是东南大学的优势领域。建有国家 863/CIMS 网络和数据库实验

室、教育部网络和信息集成技术实验室、中国教育和科研计算机网华东(北)地区网络中心。

东北大学:建有软件工程国家级工程研究中心,它的软件方向大多与数据库有关,东软集团的发展证实了东大软件的实力。张嗣瀛教授是中科院院士。优势领域:智能控制与智能机器人系统、诊断与容错控制、CIMS 中生产计划与存储管理的建模、宽带计算机网络、分布式多媒体信息处理技术、数据库及其应用技术、嵌入式系统技术等。

华中科技大学:华科近年来在系统结构方面取得了很大的进步,张江陵、裴先登教授领导的该专业在信息存储系统与技术,存储网络与附网存储技术,采用新原理的超高密度 超高速存储技术,集群系统与并行I/O,网络安全体系结构理论与技术方面有优势。建有外存储系统国家专业实验室,信息存储系统教育部重点实验室。

另外一些计算机专业比较好的学校还有:

北京航天航空大学:是发展势头最猛的学校之一,在人工智能、软件工程和体系结构、虚拟现实与多媒体技术方向有优势。建有由李未院士领导的软件开发环境国家重点实验室,教育部虚拟现实新技术重点实验室、教育部软件网上联合研发中心。[FS:PAGE]

武汉大学:软件,尤其是在多媒体软件方面取得了不俗的成绩。国家多媒体软件工程技术研究中心从事多媒体软件方法和技术研究,研制、开发了大量的多媒体软件。

西北工业大学:由沈绪榜院士领导的计算机体系结构,计算机网络,VLSI系统设计方

向很强。优势领域还包括网络与分布计算,并行计算与群机系统,人工智能与多媒体,语音图象信号学科组等。建有计算机辅助设计与制造国家专业实验室。

有一些学校的计算机专业是在基础学科如数学、电子(通信)的基础上发展起来的,也就是随着计算机发展的狂热而转型来的。数学带动软件发展,电子通信则对硬件的发展奠定了良好的基础。

以数学专业发展软件专业的学校有:复旦大学、南开大学、中国科技大学等。

7.中国高性能计算机论文 篇七

本刊讯中电标协高性能计算机标准工作委员会第六次工作会议于2010年2月6日在厦门召开。会上,高标委与国际知名服务器标准组织SSI (服务器系统架构组织)签署合作备忘录,就共同推进高性能计算机刀片式服务器标准化进程达成协议和共识。

SSI是专门致力于开发服务器基础架构标准的服务器行业组织,高标委通过与SSI联合开发,借鉴和吸引先进技术,将推动服务器领域未来主流刀片服务器在中国的应用及其健康产业链的形成,获得技术发展的先机。

目前高标委会员单位已发展到32家,2009年制定了刀片服务器管理模块技术规范等三项标准草案,已上报工信部审批。2010年高标委将继续完善刀片式服务器系列标准,起草和申报在系统架构、计算刀片、交换模块和存储模块等方面的技术规范,同时以高性能计算机行业应用标准为重点,陆续推出高性能计算机在电信、石油、气象、国防等行业领域里的应用标准。

8.中国高性能计算机论文 篇八

HPC 曾经一度是政府和学术机构的专利,用于解决包括基因组测序和气候研究等在内的最复杂的计算问题。如今,HPC正在借助大数据分析等全新工作负载,为越来越多的行业带来颠覆性的变化。包括医疗和金融服务等在内的传统领域也开始诉求超级计算的能力,以便能够从不断增加且日趋复杂的数据中获得实时洞察。英特尔致力于通过持续创新,不断扩展HPC功能并降低应用门槛,推动HPC成为市场主流。

“我们正在步入一个全新时代,一个将HPC从用于解决特定问题的工具,转变为一款适用于广泛领域的通用工具的时代”,英特尔公司副总裁兼HPC平台事业部总经理Charlie Wuischpard表示:“英特尔系统级的创新包括处理器、内存、软件和互联技术,使得整体系统功能可围绕多种用途进行设计和优化—-覆盖从传统HPC到新兴的大数据分析以及这二者之间的所有用途。我们坚信英特尔SSF将为设计和构建下一代高性能计算系统铺平道路,迎接‘HPC无处不在’时代的到来。”

英特尔SSF是一种高级架构和互联技术,用于支持可扩展性更强、更灵活和更均衡的HPC系统。英特尔SSF将帮助简化HPC系统的采购、部署和管理,使HPC能够应用于包括数据驱动的分析、可视化和机器学习等在内的更多行业和更广泛的工作负载。

上一篇:冬天的雪800字作文下一篇:描写小狗外貌的拟人句