机械设计与制图要点(共6篇)
1.机械设计与制图要点 篇一
在机械设计,机械制图时,常要用到各种各样的密封技术.
1基础知识——密封概述
1.1泄露
泄露是机械设备常产生的故障之一,造成泄露的原因主要有两方面:一是由于机械加工的结果,机械产品的表面必然存在各种缺陷和形状及尺寸偏差,因此,在机械零件联接处不
可避免地会产生间隙;二是密封两侧存在压力差,工作介质就会通过间隙而泄露。
减小或消除间隙是阻止泄露的主要途径。密封的作用就是将接合面间的间隙封住,隔离或切断泄露通道,增加泄露通道中的阻力,或者在通道中加设小型做功元件,对泄露物造成
压力,与引起泄露的压差部分抵消或完全平衡,以阻止泄露。
对于真空系统的密封,除上述密封介质直接通过密封面泄露外,还要考虑下面两种泄露形式:
渗漏。即在压力差作用下,被密封的介质通过密封件材料的毛细管的泄露称为渗漏;
扩散。即在浓度差作用下,被密封的介质通过密封间隙或密封材料的毛细管产生的物质传递成为扩散。
1.2 密封的分类
密封可分为相对静止接合面间的静密封和相对运动接合面间的动密封两大类。静密封主要有点密封,胶密封和接触密封三大类。根据工作压力,静密封由可分为中低压静密封和高
压静密封。中低压静密封常用材质较软,垫片较宽的垫密封,高压静密封则用材料较硬,接触宽度很窄的金属垫片。动密封可以分为旋转密封和往复密封两种基本类型。按密封件
与其作用相对运动的零部件是否接触,可以分为接触式密封和非接触式密封。一般说来,接触式密封的密封性好,但受摩擦磨损限制,适用于密封面线速度较低的场合。非接触式
密封的密封性较差,适用于较高速度的场合。
1.3 密封的选型
对密封的基本要求是密封性好,安全可靠,寿命长,并应力求结构紧凑,系统简单,制造维修方便,成本低廉。大多数密封件是易损件,应保证互换性,实现标准化,系列化。
1.4 密封材料
1.4.1 密封材料的种类及用途
密封材料应满足密封功能的要求。由于被密封的介质不同,以及设备的工作条件不同,要求密封材料的具有不同的适应性。对密封材料的要求一般是:
1) 材料致密性好,不易泄露介质;
2) 有适当的机械强度和硬度;
3) 压缩性和回弹性好,永久变形小;
4) 高温下不软化,不分解,低温下不硬化,不脆裂;
5) 抗腐蚀性能好,在酸,碱,油等介质中能长期工作,其体积和硬度变化小,且不粘附在金属表面上;
6) 摩擦系数小,耐磨性好;
7) 具有与密封面结合的柔软性;
8) 耐老化性好,经久耐用;
9) 加工制造方便,价格便宜,取材容易。
橡胶是最常用的密封材料。除橡胶外,适合于做密封材料的还有石墨等,聚四氟乙烯以及各种密封胶等。
1.4.2 通用的橡胶密封制品材料
通用的橡胶密封制品在国防,化工,煤炭,石油,冶金,交通运输和机械制造工业等方面的应用越来越广泛,已成为各种行业中的基础件和配件。
橡胶密封制品常用材料如下。
1.4.2.1 丁腈橡胶
丁腈橡胶具有优良的耐燃料油及芳香溶剂等性能,但不耐酮,酯和氯化氢等介质,因此耐油密封制品以及采用丁腈橡胶为主。
1.4.2.2氯丁橡胶
氯丁橡胶具有良好的耐油和耐溶
在机械设计,机械制图时,常要用到各种各样的密封技术.
1基础知识——密封概述
1.1泄露
泄露是机械设备常产生的故障之一。造成泄露的原因主要有两方面:一是由于机械加工的结果,机械产品的表面必然存在各种缺陷和形状及尺寸偏差,因此,在机械零件联接处不
可避免地会产生间隙;二是密封两侧存在压力差,工作介质就会通过间隙而泄露。
减小或消除间隙是阻止泄露的主要途径。密封的作用就是将接合面间的间隙封住,隔离或切断泄露通道,增加泄露通道中的阻力,或者在通道中加设小型做功元件,对泄露物造成
压力,与引起泄露的压差部分抵消或完全平衡,以阻止泄露。
对于真空系统的密封,除上述密封介质直接通过密封面泄露外,还要考虑下面两种泄露形式:
渗漏。即在压力差作用下,被密封的介质通过密封件材料的毛细管的泄露称为渗漏;
扩散。即在浓度差作用下,被密封的介质通过密封间隙或密封材料的毛细管产生的物质传递成为扩散。
1.2 密封的分类
密封可分为相对静止接合面间的静密封和相对运动接合面间的动密封两大类。静密封主要有点密封,胶密封和接触密封三大类。根据工作压力,静密封由可分为中低压静密封和高
压静密封。中低压静密封常用材质较软,垫片较宽的垫密封,高压静密封则用材料较硬,接触宽度很窄的金属垫片。动密封可以分为旋转密封和往复密封两种基本类型。按密封件
与其作用相对运动的零部件是否接触,可以分为接触式密封和非接触式密封。一般说来,接触式密封的密封性好,但受摩擦磨损限制,适用于密封面线速度较低的场合。非接触式
密封的密封性较差,适用于较高速度的场合。
1.3 密封的选型
对密封的基本要求是密封性好,安全可靠,寿命长,并应力求结构紧凑,系统简单,制造维修方便,成本低廉。大多数密封件是易损件,应保证互换性,实现标准化,系列化。
1.4 密封材料
1.4.1 密封材料的种类及用途
密封材料应满足密封功能的要求。由于被密封的介质不同,以及设备的工作条件不同,要求密封材料的具有不同的适应性。对密封材料的要求一般是:
1) 材料致密性好,不易泄露介质;
2) 有适当的机械强度和硬度;
3) 压缩性和回弹性好,永久变形小;
4) 高温下不软化,不分解,低温下不硬化,不脆裂;
5) 抗腐蚀性能好,在酸,碱,油等介质中能长期工作,其体积和硬度变化小,且不粘附在金属表面上;
6) 摩擦系数小,耐磨性好;
7) 具有与密封面结合的柔软性;
8) 耐老化性好,经久耐用;
9) 加工制造方便,价格便宜,取材容易。
橡胶是最常用的密封材料。除橡胶外,适合于做密封材料的还有石墨等,聚四氟乙烯以及各种密封胶等。
1.4.2 通用的橡胶密封制品材料
通用的橡胶密封制品在国防,化工,煤炭,石油,冶金,交通运输和机械制造工业等方面的应用越来越广泛,已成为各种行业中的基础件和配件。
橡胶密封制品常用材料如下。
1.4.2.1 丁腈橡胶
丁腈橡胶具有优良的耐燃料油及芳香溶剂等性能,但不耐酮,酯和氯化氢等介质,因此耐油密封制品以及采用丁腈橡胶为主。
1.4.2.2氯丁橡胶
氯丁橡胶具有良好的耐油和耐溶
剂性能。它有较好的耐齿轮油和变压器油性能,但不耐芳香族油。氯丁橡胶还具有优良的耐天候老化和臭氧老化性能。氯丁橡胶的交联断裂温度在
200℃以上,通常用氯丁橡胶制作门窗密封条。氯丁橡胶对于无机酸也具有良好的耐腐蚀性。此外,由于氯丁橡胶还具有良好的挠曲性和不透气性,可制成膜片和真空用的密封制品
。
1.4.2.3 天然橡胶
天然橡胶与多数合成橡胶相比,具有良好的综合力学性能,耐寒性,较高的回弹性及耐磨性。天然橡胶不耐矿物油,但在植物油和醇类中较稳定。在以正丁醇与精制蓖麻油混合液
体组成的制动液的液压制动系统中作为密封件的胶碗,胶圈均用天然橡胶制造,一般密封胶也常用天然橡胶制造。
1.4.2.4 氟橡胶
氟橡胶具有突出的耐热(200~250℃),耐油性能,可用于制造气缸套密封圈,胶碗和旋转唇形密封圈,能显著地提高使用时间。
1.4.2.5 硅橡胶
硅橡胶具有突出的耐高低温,耐臭氧及耐天候老化性能,在-70~260℃的工作温度范围内能保持其特有的使用弹性及耐臭氧,耐天候等优点,适宜制作热机构中所需的密封垫,如
强光源灯罩密封衬圈,阀垫等。由于硅橡胶不耐油,机械强度低,价格昂贵,因此不宜制作耐油密封制品。
1.4.2.6 三元乙丙橡胶
三元乙丙橡胶的主链是不含双键的完全饱和的直链型结构,其侧链上有二烯泾,这样就可用硫磺硫化。三元乙丙橡胶具有优良的耐老化性,耐臭氧性,耐候性,耐热性(可在120℃
环境中长期使用),耐化学性(如醇,酸,强碱,氧化剂),但不耐脂肪族和芳香族类溶剂侵蚀。三元乙丙橡胶在橡胶中密度是最低的有高填充的特性,但缺乏自粘性和互粘性。
此外,三元乙丙橡胶有突出的耐蒸汽性能,可制作耐蒸汽膜片等密封制品。三元乙丙橡胶已广泛用于洗衣机,电视机中的配件和门窗密封制品,或多种复合体剖面的胶条生产中。
1.4.2.7 聚氨脂橡胶
聚氨脂橡胶具有优异的乃磨性和良好的不透气性,使用温度范围一般为-20~80℃。此外,还具有中等耐油,耐氧及耐臭氧老化特性,但不耐酸碱、水、蒸汽和酮类等。适于制造各
种橡胶密封制品,如油封、O形圈和隔膜等。
1.4.2.8 氯醚橡胶
氯醚橡胶兼有丁腈橡胶,氯丁橡胶,丙烯酸酯橡胶的优点,其耐油、耐热、耐臭氧、耐燃、耐碱、耐水及耐有机溶剂性能都很好,并有良好的工艺性能,其耐寒性较差。在使用温
度不太低的情况下,氯醚橡胶仍是制造油封,各种密封圈,垫片,隔膜和防尘罩等密封制品的良好材料。
1.4.2.9 丙烯酸酯橡胶
丙烯酸酯橡胶具有耐热油(矿物油,润滑油和燃料油),特别是在高温下的耐油稳定性能,一般可达175℃,间隙使用或短时间可耐温200℃。它的缺点是耐寒性差。因此在非寒冷
地区适合制作耐高温油的油封,但不适合作高温下受拉伸或压缩应力的密封制品。
2.基础知识——垫密封
垫密封广泛应用于管道,压力容器以及各种壳体的结合面的静密封中。垫密封有非金属密封垫,非金属与金属组合密封垫和金属密封垫三大类。其常用材料有橡胶,皮革,石棉,
软木,聚四氟乙烯,钢,铁,铜和不锈钢等。
垫密封的泄露有三种形式:界面泄露,渗透泄露和破坏性泄露
。其中以前二者为主要形式。
3.基础知识——胶密封
3.1 概述
密封材料的功能是填充构形复杂且不利施工的间隙,以起密封作用。密封材料主要有三种类型:
1) 硫化型的橡胶垫片或密封圈;
2) 非硫化型的密封胶带;
3) 无固定形状的膏状或腻子状的液体密封胶。
3.2 密封胶的分类
密封胶的品种及类型很多。为了满足同一使用要求,可以使用几种不同基料的密封胶;而同一种基料又能制造出不同性能和不同的用途的密封胶。从密封胶的制造者和使用者两方
面考虑,密封胶有多种分类方法。一般可按下述四种方法进行分类。
3.2.1 按密封胶基料分类
3.2.1.1 橡胶型
此类密封胶以橡胶为基料。常用橡胶有聚硫橡胶,硅橡胶,聚氨酯橡胶,氯丁橡胶和丁基橡胶等。
3.2.1.2 树脂型
此类密封胶以树脂为基料。常用树脂有环氧树脂、不饱和聚酯树脂、酚醛树脂、聚丙烯酸树脂、聚氯乙烯树脂等。
3.2.1.3 油基型
此类密封胶以油料为基料。常用的油类有各种植物油如亚麻油,蓖麻油和桐油,以及动物油(如鱼油)等。
3.2.2 按密封胶硫化方法分类
此类密封胶系列利用空气中的水分进行硫化。它主要包括单组分的聚氨酯、硅橡胶和聚硫橡胶等。其聚合物基料中含有活性基因,能同空气中的水发生反应,形成交联键,使密封
胶硫化成网状结构。大气中的湿气作为硫化反应中的催化剂。
3.2.2.2 化学硫化型密封胶
双组分的聚氨酯、硅橡胶、聚硫橡胶、氯丁橡胶和环氧树脂密封胶都属于这一类,一般在室温条件下完成硫化。某些单组分的氯磺化聚乙烯和氯丁橡胶密封胶以及聚氯乙烯溶胶糊
状密封胶(如汽车用点焊胶),则须在加条件下经化学反应完成硫化。
3.2.2.3 热转变型密封胶
用增塑剂分散的聚氯乙烯树脂和含有沥青的橡胶并用的密封胶是两个不同类型的热转变体系 。乙烯基树脂增塑体在室温下是液态悬浮体,通过加热转化为固体而硬化;而橡胶——
沥青并用密封胶则为热熔性的。
3.2.2.4 氧化硬化型密封胶
表面干燥的嵌缝或安装玻璃用密封胶属这种类型,主要以干性和半干性植物油为基材。着中类油料可以是精制聚合的、吹制的或化学改性的。用环烷酸钴作催干剂加速表面干燥而
内部不硬化;环烷酸铅可使表面和内部都硬化;而环烷酸锰使内部硬化更有效。
3.2.2.5 溶剂挥发凝固型密封胶
这是以溶剂挥发后无粘性高聚物为基料的密封胶。这一类密封胶主要有丁基相交、高分子量聚异丁烯、一定聚合程度的丙烯酸酯、氯磺化聚乙烯以及氯丁橡胶等密封胶。
3.2.2.6 不干性能够永久塑性密封胶
这类密封胶通常包括以聚丁烯、中等分子量的聚异丁烯、高粘度的非氧化性粘接料如苯乙烯基油、不干性植物油、吹制半干性油或丁基橡胶为基料的密封胶。
3.2.3 按密封胶形态分类
3.2.3.1 膏状密封胶
这类密封胶属低级别密封胶,通常采用3种主要材料:油和树脂;聚丁烯;沥青。常用于密封小窗户的固定玻璃,其接缝移动变形量最大为 +5%或-5%,使用有效期一般为2年。
3.2.3.2 液态弹性体密封胶
这类密封胶包括经硫化可形成弹性状态的液态聚合物。他们具有承受重复的接缝变形能力。液态弹性体密封胶使
用寿命一般为15~。这类密封胶具有高的粘接力和剪切强度,
室温下具有良好的柔软性。其缺点为价格高,通常情况下需要底胶,双组分密封胶现场混合不方便,硫化时对温度和湿度敏感等。
3.2.3.3 热熔密封胶
热熔密封胶又称为热施工型密封胶,是指以弹性体同热塑性树脂掺合物为基料的密封胶。
热熔密封胶可配制成性能接近于液体弹性密封胶,但它比液体弹性体密封胶优越的是不需要加入硫化剂。
3.2.3.4 液体密封胶
这类密封胶主要用于机械结合面的密封,以代替固体密封材料(纸片、石棉、软木和硫化橡胶),以防止机械内部流体从结合面泄露,所以液体密封胶又称为液体垫圈。
3.2.4 按密封胶施工后性能分类
3.2.4.1 固化型密封胶
这类密封胶又可分为刚性和柔性两类。刚性密封胶硫化或凝固后形成的固体,很少具有弹性;柔性密封胶在硫化后具有弹性及柔软性。
刚性密封胶的特点是不能弯曲,通常接缝不可移动。
柔性密封胶经硫化后保持柔软性。
3.2.4.2 非固化型密封胶
这类密封胶是软质凝固性的密封胶,施工后仍保持不干性(增粘剂不断地迁移到表面)状态。这种胶通常为膏状,可用刮刀或刷子施用到接缝中,可以配合出不同粘度和不同性能
的密封胶使用。
3.3常用密封胶的种类
在前面密封胶的分类中列举了多种方法,其中应用最广泛的是将密封胶分为硫化型和非硫化型两大类。在硫化型密封胶中应用最广泛的是室温硫化型,加温硫化型用的较少。非硫
化型密封胶有液体密封胶和腻子。此外,在加上常用的厌氧胶。
3.4 液体密封胶的选用和施工工艺
密封胶的选用,应根据使用条件、密封件的材料和密封面状态、密封介质的种类和特性以及涂敷工艺等要求综合考虑。一般情况下当受力较大,且受冲击力及交变力时,应选用强
度较高的密封胶;当变温差很大时,应选用韧性好的密封胶。
3.4.1 液体密封胶的施工方法
液体密封胶的施工方法可根据胶的状态选用。膏状密封可用刮刀刮涂或注射枪注射施工;液体密封胶采用的刷子刷涂或喷涂施工;膜状密封胶用铺贴方法施工。
3.5 国产密封胶
3.5.1 室温硫化聚硫橡胶密封胶为多组分材料,室温硫化成弹性体,为干性粘着型密封胶,常用的有XM系列密封胶。
3.5.2 室温硫化硅橡胶密封胶
硅橡胶密封胶的有多种特殊性能,如耐高温、耐低温性能,良好的电绝缘性能。
3.5.3 厌氧胶
3.5.4其他硫化型密封胶
3.5.5非硫化型密封胶
非硫化型密封胶大部分为不干性和半干性,其中呈腻子状的又称非硫化型腻子。这类胶对温度敏感性小,在使用温度范围内密封胶不变形,不开裂,不结皮,而且长期储存性好,
但力学性能低,适用于可拆卸部位或紧固联接接合面密封、沟槽密封及填堵较大的结构空隙,在液体密封垫中占主要地位,广泛应用于可拆卸部位的密封。
4.基础知识——填料密封
填料蜜密封是一种最古老的密封方式,在中国已有上千年的历史。它最早以棉、麻的纤维填塞在泄露通道内来阻止液流泄露,主要用作提水机械的密封。
填料密封主要用作动密封。它广泛用作离心泵、压缩机、真空泵、搅拌机和船舶螺旋桨的转轴密封,往复式压缩机、制冷机的往复
运动轴封,以及各种阀门阀杆的旋动密封等。为
了适应上述设备的工作条件,填料密封必需具备下列条件:
1) 有一定的塑性,在压紧力作用下能产生一定的径向力并紧密与轴接触。
2) 有足够的化学稳定性,不污染介质,填料不被介质泡胀,填料中的侵渍剂不被介质溶解,填料本身不腐蚀密封面。
3) 自润滑性能良好,耐磨,摩擦因数小。
4) 轴存在少量偏心时,填料应有足够的浮动弹性。
5) 制造简单,填装方便。
填料的种类很多,可以从其功用方面、构造方面和材料方面分类,最常用的有下面四类:绞合填料、编结填料、塑性填料、金属填料。
4.1 绞合填料和编结填料
绞合填料即把几股石棉线绞合在一起,将它填塞在填料腔内即可起密封作用。
编结填料是以棉、麻以及石棉纤维纺线后编结而成,并于其中侵入润滑剂或聚四氟乙烯。
4.2 塑性填料
塑性填料是几经膜具压制成型的填料。
4.3 金属填料
金属填料有半金属填料和全金属填料两种。所谓半金属填料是金属与非金属组合而成,全金属填料则不含非金属。
4.4 碳纤维填料
碳纤维填料是一种新型填料。其优异的自润滑性能、耐高、低温性能和耐化学品性能引起人们的极大的注意,而且作为压缩填料的弹性和柔软性也极为良好,其缺点仅在于有渗透
泄露,但侵渍聚四氟乙烯或其他粘接剂之后可以防止。目前其成本较高,但随着碳纤维的发展,其成本定会下降,因此,碳纤维填料是一种最为理想和最有希望的填料。`
4.5 填料的选择
选择填料时,应考虑:机器的种类、介质的物理、化学特性、工作温度和工作压力,以及运动速度等,其中尤以介质的腐蚀性(以pH值表示),pH值及使用温度为最重要。
4.6 填料的合理装填
填料的合理装填应按下列步骤进行:
1) 清理填料腔,检查轴表面是否有划伤、毛刺等现象。
2) 用百分表检查轴在密封部位的径向跳动量,其公差应在允许范围内。
3) 填料腔内和轴表面应涂密封剂或与介质想适应的密封剂。
4) 对成卷包装的填料,使用时应先取一根与轴径同尺寸的木棒,将填料缠绕在其上,再用刀切断,切口最好呈450斜面,对切断后的每一节填料,不应让它松散,更不应将它拉直
,而应取与填料同宽度的纸带把每节填料呈圆圈形包扎好,置于洁净处。
5) 装填时应一圈一圈装填,不得同时装填几圈。
6) 取一只与填料强同尺寸的木质两半轴套,合于轴上,将填料推入腔的深部,并用压盖对木轴套施加一定的压力,使填料得到预压缩。
7) 以同样的方法装填第二圈、第三圈。
8) 最后一圈填料装填完毕后,应用压盖压紧,但压紧力不宜过大。
5.基础知识——成型填料密封
成型填料密封泛指用橡胶、塑料、皮革及金属材料经模压或车削加工成型的环状密封圈。
成型填料按工作特性分为挤压型密封圈和唇形密封圈两类;按材料可分为橡胶类、塑料类、皮革类和金属类。各种材料的挤压型密封圈中橡胶挤压型密封圈应用最广,其中O形圈历
史最悠久,最典型。唇形密封圈的类型很多,有V形、U形、L形、J形和Y形等。
5.1 O型密封圈
O型密封圈简称O型圈,开始出现在19世纪中叶,当时用它作蒸汽机汽缸的密封元件。
O型橡胶密封圈有如下的优点:
1) 密封部位结构简单,安装部位紧凑,重量较轻;
2) 有自密封作用,往往只用 一个密封件便能完成密封;
3) 密封性能较好,用作静密封时几乎可以做到没有泄露;
4) 运动摩擦阻力很小,对于压力交变的场合也能适应;
5)尺寸和沟槽已标准化,成本低,便于使用和外购。
5.2 V型密封圈
V型密封圈为一种唇形密封圈,是使用最早使用最多的成型填料之一。它主要用于往复运动,作活塞或活塞杆的密封。很少用于转动中或作静密封。
V形密封圈有下列特点:
1)密封性能良好;
2)允许一定的偏心载荷、和偏心运动;
3)可以多圈重叠使用,并通过调节压紧力来获得最大密封效果;
4)耐冲击压力和振动压力;
5)当填料不能从轴向装入时,可以开切口使用,只要安装时将切口互相错开,不影响密封效果。其缺点是摩擦阻力较其他成型填料的大。
5.3 Y型密封圈
活塞密封用的U形和Y形密封圈在形状上略有不同,U形圈的唇长,底部与唇部同厚度或略大于唇部厚度。Y形圈的纯短,底部厚,这是为了克服U形圈常常不能稳定安放而设计的,同
时可增大唇的强度,以免唇根部被撕裂。
5.4 鼓形和山形密封圈的结构
5.4.1 鼓形密封圈的结构
鼓形密封圈又称活塞密封圈,它是为单向和双向工作的活塞而设计的。密封圈的截面、衬套或挡环的结构与活塞的设计有很大关系。由于有各种性能的要求,所以鼓形密封圈的结
构也不可能是一致的。
5.5 J形和L形密封圈
J形和L形密封圈,都是用于工作压力不大于1MPa的气压或液压机械设备的密封。J形密封圈的是用于活塞杆密封
6.基础知识——油封和防尘密封
6.1 油封
油封,即润滑油的密封。它常用于各种机械的轴承处,特别是滚动轴承部位。其功能在于把油腔和外界隔离,对内封油,对外封尘。
油封与其他密封比较有下列优点:
1) 油封重量轻,耗材少。
2) 油封的安装位置小,轴向尺寸小,容易加工。
3) 密封性能好,使用寿命较长,对机器的振动和主轴的偏心都有一定的适应性。
4) 拆卸容易,检修方便。
5) 价格便宜。
6.2 防尘密封
油封可作防尘密封的件使用。但是在粉尘严重或是为了保护其他密封件时,常常使用专门的防尘密封。
防尘密封的材料,油压机械多用橡胶,气压机械多用毛毡,飞机和寒带工作的油缸为了对付活塞杆外部结冰而用金属,化工部门为防止活塞杆上的粘着物也用金属。
防尘密封对保护关键性的液压设备是十分重要的。渗入尘土,不仅磨损密封件,而且会大大的磨损导向套和活塞杆。此外,杂质进入液压介质中,也会影响操作阀和泵的功能,在
最坏的
7.基础知识——磁流体密封
7.1 磁流体
7.1.1 磁流体的组成
1995年由美国帕佩尔(Papell)发明的磁性流体,是把磁铁矿等强磁性的微细粉末(约100?)在水、油类、酯类、醚类等液体中进行稳定分散的一种胶态液体。这种液体具有在通
常离心力和磁场作用下,既不沉降和凝聚又能使其本身承受磁性,可以被磁铁所吸引的特性。
磁流体由3种主要成分组成:
1)固体铁磁体微粒(Fe3O4);
2)包覆着微粒并阻止其相互凝聚的表面活性剂(稳
定剂);
3)载液(溶媒)。
7.1.2 磁流体的特性
磁流体是一种叫胶体溶液。作为密封用的磁流体,其性能要求是:稳定性好,不凝聚、不沉淀、不分解;饱和磁化强度高;起始磁导率大;粘度和饱和蒸气低,其他如凝固点、沸
点、导热率、比热和表面张力等也有一定的要求。
影响磁流体稳定的主要因素有:微粒力度大小、表面活性剂和载液以及它们的合理配比。稳定性是磁流体各种特性存在的前提。
7.2 磁流体密封的工作原理
圆环形永久磁铁,极靴和转轴所构成的磁性回路,在磁铁产生的磁场作用下,把放置在轴与极靴顶端缝隙间的磁流体加以集中,使其形成一个所谓的“O”形环,将缝隙通道堵死而
达到密封的目的。这种密封方式可用于转轴是磁性体和转轴是非磁性体两种场合。前者磁束集中于间隙处并贯穿转轴而构成磁路,而后者磁束比不通过转轴,只是通过密封间隙中
的磁流体而构成磁路。
7.2.3 极限条件
磁流体密封在工作时会受到下列条件的限制:
1)蒸发。磁流体由磁性微粒、表面活性剂和载液3部分组成,载液的蒸发是决定密封极限旋转频率和使用寿命的主要因素。因为密封是靠有限的磁流体工作的。为此,应选用蒸汽
压低的载液,使蒸发损失为最小值。
2)温升。温度升高会导致磁铁退磁和磁流体的蒸发。因为温度升高,粘度降低,功率消耗也就降低,这是有利的一面。但是温度的、升高,磁饱和强度下降,也可能使密封的耐压
能力有些下降,因此,磁流体温度一般不应高于105℃,否则应采用冷却措施。
3)极限真空度。磁流体密封极限真空度取决于载液的挥发度,用二脂润滑剂作成的载液可满足1.333×10-7Pa超高真空技术的要求。
4)周速。一般磁流体密封适用于高周速30m/s以上的运转,无极限标志。但考虑到温度和散热,周速应限制在60~80m/s,此时还要考虑极限耐压能力。
8.基础知识——高压密封
高压密封的型式很多,按其工作原理分为强制密封和自紧密封两类。强制密封是依靠联接件(螺栓)的预紧力来保证压力容器的顶盖、密封元件和圆筒体端部之间具有一定的接触
压力,以达到密封的目的。自紧密封是随着压力容器内的操作压力增加,密封元件与顶盖、圆筒体端部之间的接触压力也随之增加,由此实现密封作用。自紧密封的特点是压力越
高,密封元件在接触面的压紧力就 越大,密封性能也就越好,操作条件波动时,密封仍然可靠。但是结构比较复杂,制造较困难。自紧密封按密封元件变形方式还可以分为轴向自
紧密封和径向自紧密封。
按密封材料性能,高压密封又可分为使密封元件产生塑性变形的塑性密封,使密封元件产生弹性变形的弹性密封。
目前,压力容器常用的密封型式有如下几种:
1) 强制密封有平垫密封,卡扎里密封和八角垫密封;
2) 半自紧密封有双锥密封;
3) 自紧密封有楔形密封,五德密封,空心金属O形环密封,C形环密封,B形环密封,三角垫密封,八角垫密封,平垫自紧密封及橡胶O形圈密封等。
9.基础知识——真空密封
真空
联机密封性能取决于联接处的泄露和真空材料的放气,对任何真空系统总希望漏、放气量与密封形式、密封材料、加工精度及装配质量等诸多因素有关,故在联接处总会存在
一定的漏、放气量,因此可根据真空系统工作的性质,真空室工作工作应力的高低及其出口处抽气速度的大小提出要求。
真空系统中的压力在高于10-5Pa真空范围内广泛使用合成橡胶、环氧树脂和塑料。当真空度提到压力10-7Pa的真空范围时,这些密封材料就不能用了,需要应用超高真空的密封材
料如金或铜作垫圈,而真空壳体不能用软刚需要改用不锈钢。
超真空气体内的气体状态是动态平衡状态。系统内的压力极限,一方面与泵的有效抽速有关,另一方面与来自真空壳体及其内部的零部件的气流量有关。因虽有系统的有效抽速由
于泵有结构尺寸和费用的原因,总存在实际限制。所以,减少气流量就成为达到超高真空状态的基本设计目标,成为选择超高真空材料的主要准则。
作为真空系统内部用的材料,要求饱和蒸汽压低,为了减少慢性解吸和体出气,要求能耐450℃高温烘烤,而不降低机械强度和不发生化学和物理损伤。作为真空系统壳体材料,要
求能忽略气体渗透,承受得住大气压的压力,烘烤期间耐空气侵蚀和不发生漏气。此外,要求选用材料,加工制作容易,价廉易得。
对于真空度低于10-7Pa的超高真空,虽然天然和合成橡胶是理想的密封圈材料,弹性好,装配成真空密封后法兰螺栓受力很小,而且可以多次重复使用。但由于超高真空系统要求
密封圈材料耐250℃烘烤,实际上可可供选用的几种橡胶材料都不能满足要求。真空度更高(即压力更低)的超高真空,则必须采用金属密封。
9.1 真空用橡胶密封圈
接触式真空动密封的结构,最常用的有下面几种类型:
1)J型真空用橡胶密封。
J型真空用橡胶密封圈工作表面应平整光滑,不允许有气泡杂质、凹凸不平等缺陷。
2)O型真空用橡胶密封圈。
3)骨架型真空用橡胶密封圈
4)真空用O形橡胶密封圈
9.2真空用金属密封圈
金属密封圈密封的可拆联接是超高真空系统中常用的联接形式。它是为满足超高真空要求而必须经200~400℃的高温烘烤除气而采用的密封方式。
常用的金属密封圈的材料有金丝和无氧铜两种,它们有下列一些性能:
金(Au)具有高的化学稳定性,高温时不氧化,塑性好,屈服极限比铜或铝低一倍,在较小的夹紧力下即可产生塑性变形,膨胀系数为αg=14×10-6cm/cm·℃,比不锈钢的膨胀系
数αs=18×10-6cm/cm·℃稍低。金制密封圈虽有良好的密封性能,但在夹紧力的作用下会发生显著的变形硬化,强度增加。为了保证密封圈密封,必须增大加紧力,而过大的加紧
力又会在法兰表面上引起压力痕,影响密封性能。因此,用在要求较高而不经过装拆的联接,拆开后重新装配时需要更换密封圈。由于金的价格比较贵,它的应用受到较大的限制
。
铜(Cu)的热膨胀系数为αs=16.4×10-6 cm/cm·℃。铜的硬度比较大,铜制密封圈在使用前必须在真空或氢气中进行退火处理,消除内应力。无氧铜是目前超高真空密封联接中
常用的密封圈材料。其不足
之处是高温烘烤中与大气接触部分会氧化,因此,在要求高的情况下,将无氧铜的密封圈的表面镀一层金,使其具有更好的密封性能。
作为联接用的法兰盘材料也必须能承受高温烘烤、抗氧化以及在高温时仍有良好的力学性能。最常用的材料是不锈钢。法兰密封表面的粗糙度和尺寸就精度均应满足超高真空密封
的要求。
9.3 采用软件变形的动联接密封
9.3.1 非金属软件变形的动联接密封
9.3.2 金属软件变形的动联接密封
9.4 真空用的其他密封
9.4.1 真空用磁流体密封
真空转轴密封具有代表的典型结构是接触式的威尔逊密封。为了防止轴在高速旋转、下气体的泄露,只能增加密封接触界面上的压力。但是由此而产生的摩擦发热问题却难以解决
。因此,研制摩擦损失小,使用寿命长的新型密封结构已成为真空装置中应当解决的重大问题之一。为了解决这一问题,近年来应用磁流体进行真空转轴动密封的技术已经在国内
外取得了成功。
真空中应用磁流体密封的优点:
1)磁流体密封真空转轴可消除密封件间的接触所产生的摩擦损失,提高轴的转速(可达10r/min),大大减少泄露。如果采用低蒸汽压的磁流体可将真空室内的真空度维持在
1.3×10-7Pa以上。
2)磁流体的密封结构简单,维护方便,轴与极靴间的间隙较大,因此可不必要求过高的制造精度。
3)磁流体在密封空隙中由磁铁所产生的磁场所固定,因此轴的起动和停止较方便。其缺点是磁流体在高温下难以稳定,工作温度一般在-30~120℃之间。轴的过高或过低温度下工
作时需要采用冷却或升温措施,从而使密封结构复杂化。
9.4.2 联接接隔板密封
利用磁力把动力传递当真空容器中去的密封是在真空容器外、施加一个旋转磁场1,该磁场带动真空容器内鼠笼式转子2转动,即可达到隔板密封的目的。
这种密封装置的特点:
1)磁联接隔板密封对真空容器内的真空条件没有显著影响,同其他几种动密封相比,其真空可靠性大。
2)运动件与真空容器壁不相接触,在传递运动过程中隔板或隔离圈筒除承受压力差外,不承受其他载荷,从而可以保证磁联接隔板密封的可靠性。
3)真空容器内的“污染”,仅取决于运动部件本身的结构元件,特别是摩擦部件的放气及隔板的透气性。
磁联接隔板密封结构在设计中应注意的问题:
1)外磁铁应尽量接近真空器的内壁;
2)隔离平板或隔离圈筒应用非磁性材料制造;
3)传递运动的铁芯形状与磁铁的形状相适应,而且容器壁或真空室内的其他零件应保证铁芯运动方向;
4)为了减少放气和摩擦建议用包着玻璃的铁芯;
5)磁场强度和磁铁与铁芯的距离应选择使它们运动时与容器壁或容器内的水银、铟等的冲击不大
10.基础知识——离心、停车和全封闭密封
10.1 离心封闭
10.1.1 离心密封的结构型式
离心密封是利用回转体带动流体使之产生离心力以克服泄露的装置,其密封能力来源于机器轴的旋转带动密封元件所做的功,因此它属于一种动力密封。
离心密封的特点:它没有直接接触的摩擦副,可以采用较大的密封间隙,因此能密封含有固相杂质的介质,磨损小,寿命长,若设计合理可以做到接近于零泄露。但是
这种密封所
能克服的压差小,亦即密封的减压能力低。离心密封的功率消耗大,甚至可达泵有效功率的1/3。此外,由于它是一种动力密封,所以一停车立即丧失密封功能,为此必须辅以停车
密封。
10.2.2 离心密封的减压能力
10.2.1 背叶片密封
如果工作轮后盖板上无叶片,亦即为光滑盘时,则处于后盖板与泵壳间隙腔中的液体将以工作轮角速度的ω/2的旋转。此时,间隙空腔中的压力沿径向按抛物线规律分布,如图10
-5中的压力将沿ABEKG分布,也就是说,轴封处的压力降低了。
10.2 停车密封
停车密封是动力密封的重要组成部分。当部件旋转频率降低或停车时,动力密封失去密封能力,只有依靠停车密封阻止流体泄漏。某些液封和气封液带有停车密封,以便停车后将
封液、封气系统关闭。停车密封的结构类型有多种,其中应用最广的是离心式停车密封,此外还有压力调节式停车密封,胀胎式停车密封等。
10.2.1离心式停车密封
图10-10所示是一种典型的离心式停车密封结构,泵运转时靠背叶片的离心作用密封。停车时,在弹簧力推动下,使泵轴向左滑移而将锥套填料抵紧,阻止泄漏。起动后离心子甩开
,其抓部拔动轴肩使轴左移,将锥套与填料密封脱开,是密封面不受磨损。
10.2.2 压力调节式停车密封
与螺旋密封组合的压力调节式密封,停车时,可在轴上移动的螺旋套,在弹簧力推动下,是其台阶端面与机壳端面压紧而密封。运转时,两段反向的螺旋使间隙中的粘性流体在端
面处形成压力峰,作用于螺旋轴的台阶端面处使其与壳体端面脱离接触。
带有滑阀的停车、密封。当压差缸卸压,片弹簧推移的滑阀与轴肩接紧而实现停车密封。
10.3 全封闭密封
10.3.1 全封闭密封
全封闭密封是将系统内外的泄露通道全部隔断,或者将工作机和动机置于同一密闭系统内,可以完全杜绝介质向外泄露。
全封闭密封没有一般动密封存在的摩擦、磨损、润滑以及流体通过密封面的流动即泄露问题,是一种特殊类型的密封。在密封剧毒、放射性和稀有贵重物质等方面以及在其实验和
产生中,全封闭密封都有重要用途。
11.基础知识——浮环密封
浮动环密封简称浮环密封,用于离心压缩机、氢冷气轮发电机、离心泵等轴封。
在中、高压离心压气机中可供选择的密封方式有:机械密封、迷宫密封和填料密封。但由于气体的散热和润滑条件不如液体,所以填料密封只有小型、低速才用,而机械密封在周
速大于40m/s温度高于200℃以后也很难适应,只有迷宫密封和浮环密封是最常用的两种方式。
浮环密封有下列优点:
1)密封结构简单,只有几个形状简单的环、销、弹簧等零件。多层浮动环也只有这些简单零件的组合,比机械密封零件少。
2)对机器的运行状态并不敏感,有稳定密封性能。
3)的密封件不产生磨损,密封可靠,维护简单、检修方便。
4)因密封件材料为金属,固耐高温。
5)浮环可以多个并列使用,组成多层浮动环,能有效的密封10MPa以上的高压。
6)能用于10000~20000r/min的高速旋转流体机械,尤其使用于气体压缩机,其许用速度高达100m/s以上,这是其他密封所不能比拟的。
7)只要采用耐腐蚀金属材料或
里衬耐腐蚀的非金属材料(如石墨)作浮动环,可以用于强腐蚀介质的密封。
8)因密封间隙中是液膜,所以摩擦功率极小,在、使机器有较高的效率。
浮环密封的缺点:密封件的制造精度要求高,环的不同心度和端面的不垂直度和表面不粗糙度对密封性能有明显的影响。此外,这种密封对液体不能做到封严不漏。对气体虽然可
做到封严,但需要一套复杂而昂贵的自动化供油系统。
11.1 浮环密封机理
浮环密封属于流阻型非接触式动密封,是依靠密封间隙内的流体阻力效应而达到阻漏目的。由于存在间隙,避免了固体摩擦,适用于高速情况,即可封堵液体,也可封堵气体,但
泄露量较大,某些情况下还须配置比较复杂的密封辅助系统。
11.2 浮动环
浮环密封装置的结构有多种型式,其主要型式有:宽环和窄环、光滑环和开口环、 液膜和干式浮动环。
11.2.1宽环和窄环
宽环的宽度相对其直径来说较大,其比例l/D=0.4~0.6。这种环的特点在于工作时作用在此环上的流体动力要比窄环大,并且不需用对正中心的附件。在一定的压差和泄露量之下
,其数目可以比窄环少些,这样,密封装置的结构可以简化,并便于装拆和检修。
宽环的缺点在于环的两侧会有较大的压差,这样,作用在环端面上的压力也就较大,在自由浮动时所须克服的端面摩擦力较大,即浮动较为困难。
窄环的宽度相对其直径较小,其比例l/D=0.1~0.2。窄环与轴的间隙较小,工作时,间隙中形成的流体动力较小,因此其自动同心的能力较差,大多用橡胶O型圈来帮助对正中心。
由于采用这种辅助措施,偏心度较小,停车时间也较少,这样,虽然环窄,泄露量却不大。
窄环也可以不用O形圈定位,而改用弹簧。环在弹簧力的作用下,压在隔离环端面上。当密封液的压力降低时,环仍可以保持它的对正中心位置。
由于作用在每个窄环上的压力差比宽环小,所以环作用在隔离环端面上的压力也就小,即窄环容易浮动。
11.2.2 光滑环和开口环
光滑环的内孔是光滑的;开槽环的内孔全长开槽或部分开槽。由于光滑环与轴表面的间隙中水力摩擦较小,使用中回出现较大的泄露量。开槽环的内孔加工有许多道环形槽,与轴
的 间隙中水力摩擦较大,在同样的压差和同样的宽度下,泄露量要比光滑环小,特别是在高转速下可以作到完全不漏,液膜形成也很稳定,能有效的起到密封作用。所以,对于高
速转轴,开槽环比光滑环好,如将光滑浮环密封与机械密封作比较,在低速时机械密封的泄露量少些,高速下则光滑环少些,因此,高速转动密封宜用光滑环。但是,当旋转频率
太高时,由于密封油的粘性阻滞作用,密封油会发热。为了散热,常常有意保持一定的泄露量。而泄露量除与环的形式有关外,还与运动速度、油的特性、入口油温和大气温度等
有关。
11.2.3 液膜和干式浮动环
浮动密封既可密封液体,也可密封气体。用以阻止液体泄露的称为液膜浮环密封;用于阻止气体泄露的称为干式浮环密封,因为浮环通常石墨等固体自润滑材料制造,故又称石墨
浮环密封。
石墨浮环密封:波形片弹簧的弹力及气体压力使各浮动环的一个端面分别与各隔离环的一个端面紧密贴合,组阻止气体沿径向泄露
,并靠端面的摩擦力防止环转动通过浮动环密封
沿轴向漏出的少量气体由排漏空排出,或引至主机的气体进口。石墨浮环密封的工作间隙不是定值,而是随摩擦发热状况而自行调整,故有“热自调间隙密封”之称。
石墨既耐腐蚀又耐热,但它太脆,在径向载荷作用下易断裂。在离心压气机中,采用了石墨作浮环,为了防止断裂,常在石墨环的外周镶有金属环。石墨环用冷缩方法套用金属环
内,然后再加工石墨环的内孔,使之达到规定的尺寸。当轴封的温度上升时,如镶环与轴的材料相同或相似,他们的膨胀量就会相同或相差不大。而不致影响密封性能。这种结构
已成功应用于温度高达400℃的气体密封。
12.基础知识——迷宫密封
迷宫密封是在转轴周围设若干个依次排列的环行密封齿,齿与齿之间形成一系列截流间隙与膨胀空腔,被密封介质在通过曲折迷宫的间隙时产生节流效应而达到阻漏的目的。
由于迷宫密封的转子和机壳间存在间隙,无固体接触,毋须润滑,并允许有热膨胀,适应高温、高压、高转速频率的场合,这种密封形式被广泛用于汽轮机、燃汽轮机、压缩机、
鼓风机的轴端和的级间的密封,其他的动密封的前置密封。
12.1 迷宫密封的密封机理
流体通过迷宫产生阻力并使其流量减少的机能称为“迷宫效应”。对液体,有流体力学效应,其中包括水力磨阻效应、流束收缩效应;对气体,还有热力学效应,即气体在迷宫中
因压缩或者膨胀而产生的热转换;此外,还有“透气效应”等。而迷宫效应则是这些效应的综合反应,所以说,迷宫密封机理是很复杂的。
12.1.1 摩阻效应
泄露液流在迷宫中流动时,因液体粘性而产生的摩擦,使流速减慢流量(泄露量)减少。简单说来,流体沿流道的沿程摩擦和局部磨阻构成了磨阻效应,前者与通道的长度和截面
形状有关,后者与迷宫的弯曲数和几何形状有关。一般是:当流道长、拐弯急、齿顶尖时,阻力大,压差损失显著,泄露量减小。
12.1.2 流束收缩效应
由于流体通过迷宫缝口,会因惯性的影响而产生收缩,流束的截面减小。设孔口面积为A,则收缩后的流束最小面积为 Cc A,此处 Cc 是收缩系数。同时,气体通过孔口后的速度
也有变化,设在理想状态下的流速为u1,实际流速比u1小,令Cd为速度系数,则实际流速u1为u1= Cd u1于是,通过孔口的流量将等于q=CcCdA u1式中Cc·Cd=α(流量系数)。
迷宫缝口的流量系数,与间隙的形状,齿顶的形状和壁面的粗糙度有关。对非压缩性流体,还与雷诺数有关;对压缩性流体,还于压力比和马赫数有关。同时,对缝口前的流动状
态也有影响。因此在复杂型式的迷宫只,不能把一个缝口的流量系数当作所有缝口的流量系数。根据试验,第一级的流量系数小一些,第二级以后的缝口流量系数大一些,一般流
量系数常取1。但是尖齿的流量系数比1小,约在0.7左右,圆齿的流量系数接近于1,通常取α=1,计算的泄露量是偏大。
12.1.3 热力学效应
理想的迷宫流道模型,它是由一个个环形齿隙和齿间空腔串联而成的。气体每通过一个齿隙和齿间空腔的流动可描述如下:在间隙入口处,气体状态
为p0,T0和零开始,气体越接
近入口,气流越是收缩和加速,在间隙最小处的后面不远处,气流获得最大的速度;当进入空腔,流速截面突然扩大,并在空腔内形成强烈的旋涡。从能量观点来看,在间隙前后
,气流的压力能转变为动能。同时,当温度下降(热焓值h减小),气体以高速进入两齿之间的环行腔室时,体积突然膨胀产生剧烈旋涡。涡流摩擦的结果,使气流的绝大部分动能
转变为热能,被腔室中的气流所吸收而升高温度,热焓又恢复到接近进入间隙前的值,只有小部分动能仍以余速进入下一个间隙,如此逐级重复上述过程。
12.1.4 透气效应
在理想迷宫中,认为通过缝口的气流在膨胀室内动能,全部变成热能。也就是说,假定到下一个缝口时的渐近速度等于零,但这只是在膨胀室特别宽阔和特别长时才成立。在一般
直通迷宫中,由于通过缝口后的气流只能向一侧扩散,在膨胀室内不能充分的进行这种速度能(动能)向热能的能量转换,而靠光滑壁一侧有一部分气体速度不减小或者只略微减小
,直接越过各个齿顶流向低压侧,把这种一掠而过的现象称为 “透气效应”。
12.2 迷宫密封的结构型式
迷宫密封按密封齿的结构不同,分为密封片和密封环两大类型。
密封片结构紧凑,运转中与机壳相碰,密封片能向两侧弯曲,减少摩擦,且拆换方便。
密封环由6~8块扇形块组成,装入机壳与转轴中,用弹簧片将每块环压紧在机壳上,弹簧片压紧力约60~100N,当轴与齿环相碰时,齿环自行弹开,避免摩擦。这种结构尺寸较大
,加工复杂,齿磨损后将整块密封环调换,因此应用不及密封圈结构广泛。
12.3 理想迷宫的泄露计算
给定下列几个条件:
1) 泄露气体是理想气体,不考虑焦尔-汤姆逊效应,即气体的焓只与温度有关;
2) 假设迷宫是连续的多缝口组成的一个系列,两缝口之间的膨胀室足够大;
3) 通过缝口的流动作绝热循环膨胀,在这里引用一个流量系数α;
4) 通过缝口之后的流动速度能量在膨胀室内因受等压支配而完全作恒温恢复,所以在每一个缝口之前的速度渐近为0,即不发生透气现象。
12.4 直通型迷宫的特性
由于在轴表面加工沟槽或各种形状的齿要比孔内加工容易,因此常把孔加工成光滑面,与带槽或带齿的轴组成迷宫,这就是直通型迷宫,因制作方便,所以直通型迷宫应用最广。
但是,直通型迷宫存在着透气现象,其泄露量大于理想迷宫的泄露量。
12.4.1 迷宫特性的影响因素:
1) 齿的影响。根据国外所进行的试验得出:齿距一定时,齿数越多,泄露量越少。齿距改变时,齿距越大,泄露量会急剧下降,同时还可以减少透气现象的影响。
2) 膨胀室的影响。国外对膨胀室深度的影响进行过试验研究,结论是浅的膨胀室对减少泄露量有利。
根据对膨胀室流动状态的观察,认为浅膨胀室中的旋涡是不稳定的。由于旋涡能很快地把能量耗尽,所以膨胀室的渐近速度减小,起到减小泄露的效果。
3) 副室的影响。所谓 “副室”是指直通型迷宫光滑面上开的附属槽,开槽后迷宫中的流动状态立即发生明显的变化。试验证明,只要副室的位置恰当,泄露量的减少率是相当大
的。
12.5 迷宫式气体密封的
间隙
除特殊情况外,一般气轮机、燃气轮机等叶轮机械都采用迷宫式气体密封。其径向间隙应根据以下因素选取:轴承间隙,制造公差与装配误差,部件的变形(如铸件收缩和失圆)
,转子的挠度,以及通过临界旋转频率时的振幅,热膨胀以及由此引起的变形等。在多种情况下,热膨胀的影响最突出。因此,对启动与停车时单个部件尺寸的变化,以及部件的
相对位移必须预先估算。可用静态和动态有限元算法出随时间变化的热膨胀规律,由此可了解哪些是临界条件,间隙实际上应当多大尺寸。
12.5.1 迷宫密封设计的注意点
总结迷宫密封设计中积累的经验,归纳起来有下列要点:
1)尽量使气流的动能转化为热能,而不使余速进入下一个间隙。齿与齿之间应保持适当的距离,或用高-低齿强制改变气流方向。齿间距一般为5~9mm。
2)密封齿要做得尽量薄,并带锐角 。齿尖厚度应小于0.5mm,运行中偶尔与轴的相碰时,齿尖先磨损而脱离接触,不致因摩擦出现轴的局部过热而造成事故。
3)由于迷宫密封泄露量大,因此在密封易燃、易爆或有毒气体时,要注意防止污染环境。采用充气式迷宫密封,间隙内引入惰性气体,其压力稍大于被密封气体压力;如果介质不
允许混入充气,则可采用抽气式迷宫密封。
13.基础知识——螺旋密封
螺旋密封应用于许多尖端技术部门,如气冷堆压缩机密封、增殖堆钠泵密封等。有时也用于减速机高速轴密封。它的最大优点是密封偶件之间既使有较大的间隙,也能有效的起密
封作用。如设计合理,其使用寿命可达无限大。由于可以从材料上作广泛的选择,且制造上极其容易,当压差不大时,螺旋密封功率耗损和发热都很小,用冷却水套散热已足够。
螺旋密封往往需要辅以停车密封,这样就使结构复杂,并加大了尺寸,故常使应用受到限制。螺旋密封可用于高温、深冷、腐蚀和带有颗粒等的液体,密封条件苛刻,密封效果良
好。
13.1 螺旋密封的密封机理
螺旋密封的轴表面开有螺旋槽,而孔为光表面,这同迷宫密封的开槽情况是一致的,所以可以把螺旋密封看成是迷宫密封的一种特殊型式,称为螺旋迷宫。但是,螺旋迷宫的齿是
连续的,不象前述的各种迷宫的齿是连续的齿。由于齿的连续性,通过齿的介质的流动状态发生变化。螺旋槽不再作为膨胀室产生旋涡来消耗流动能量,而是作为推进装置与介质
发生能量交换,产生所谓的“泵送作用”,并产生泵送压头,与被密封介质的压力相平衡,即压力差 p=0,从而阻止泄露。所以在密封机理上与迷宫密封略有不同。但是,介质在
通过间隙时会有一部分越过齿顶留过,而不沿槽向流动,即有透气效应,这和迷宫密封中的情况是一样的。
根据螺旋结构,螺旋密封的密封机理又稍有区别。
单段螺旋,它利用螺旋杆泵原理,利用螺旋的泵送作用,把沿泄露间隙的介质推赶回去,以实现密封。它适用于密封液体或气液混合物,无须外加封液,常用于轴承封油。须注意
的,螺旋的赶油方向需与油的泄露方向相反,否则,不但不能实现密封,反而会导致泄露量急剧增加。
两段旋向相反的螺旋,将封液挤向中间,形成液封。液封的压力稍大于或等于被密封介质的压
力,即能实现密封。常用于密封气体或密封真空。
两段旋向相反的螺旋在高旋转频率下将气体向两侧排出,使中间形成高真空陷阱以实现密封。这种密封可用作真空密封。
从理论上讲,螺旋密封的间隙小则对确保密封越有利。如果间隙大,则液体介质不能同时附着于轴的表面上。假设液体介质仅附着于孔壁而与轴分离,则螺旋密封不起推赶介质的
作用,即密封失效。但是,间隙太小,又怕轴与孔壁相碰。为避免产生密封金属偶件的摩擦与,磨损,可在孔壁表面涂上一层石墨。
13.3 迷宫螺旋密封
迷宫螺旋密封在工业上使用还是不久以前的事,它与螺旋密封的不同之处在于:在轴表面车制了螺旋槽,在密封的孔上也车制成螺套,而且具有与轴相反的螺纹旋向,使轴与螺套
间的流动形成强烈的紊流。此外,迷宫螺旋密封的螺旋运动速度要比螺杆密封的高,它在紊流工况下用于低粘度液体。螺旋密封一般用于层流工况下大粘度液体(如粘度大于水的
液体)。
工作原理:在螺杆与螺套之间的工作空间内,液体位于螺套两齿面和螺杆两齿面所围成的若干个蜂窝状的空间内。螺杆与螺套表面间的缝隙呈带凹槽的环形柱面。液体通过这些螺
纹时形成旋涡,方向与流出方向相反。由于螺杆绕流液体的动量交换结果,螺杆将能量传给液体。螺旋和螺套与液体相互作用,其结果在通过螺杆与螺套之间间隙的名义分界面上
产生摩擦力。液体中产生的摩擦力就在螺杆与螺套之间产生了压力。
14.基础知识——机械密封
14.1 机械密封的工作原理
机械密封又称端面密封(Mechanical Seal),是旋转轴用动密封。机械密封性能可靠,泄露量小,使用寿命长,功耗低,毋须经常维修,且能适应于生产过程自动化和高温、低温
、高压、真空、高速以及各种强腐蚀性介质、含固体颗粒介质等苛刻工况的饿密封要求。
机械密封是靠一对或几对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力(或磁力)作用下保持接合并配以辅助密封而达到的阻漏的轴封装置。
机械密封与软填料密封比较如下:
优点:
1)密封可靠,在长期运转中密封状态很稳定,泄露量很小,其泄露约为软填料密封的1%;
2) 使用寿命长,在油、水介质中一般可达1~2年或更长,在化工介质中一般能工作半年以上;
3) 擦功率消耗小,其摩擦功率仅为软填料密封的10%~50%;
4) 轴或轴套基本上不磨损;
5) 维修周期长,端面磨损后可自动补偿,一般情况下不需经常性维修;
6) 抗振性好,对旋转轴的振动以及轴对密封腔的偏斜不敏感;
7) 适用范围广,机械密封能用于高温、低温、高压、真空、不同旋转频率,以及各种腐蚀介质和含磨粒介质的密封。
缺点:
1)较复杂,对加工要求高;
2)安装与更换比较麻烦,要求工人有一定的技术水平;
3)发生偶然性事故时,处理较困难;
4)价高。
机械密封前的准备工作:
1)检查机械密封的型号、规格是否符合设计图纸的要求,所有零件(特别是密封面、辅助密封圈)有无损伤、变形、裂纹等现象,若有缺陷,必须更换或修复。
2)检查机械密封各零件的配合尺寸、粗糙度、平行度是否符合设计要求。
3)使用小弹簧机械密封时,
应检查小弹簧的长短和刚性是否相同。
4)检查主机的窜动量、摆动量和挠度是否符合技术要求,密封腔是否符合安装尺寸,密封端盖与轴是否垂直,一般要求:轴窜动量不大于±0.5mm;轴摆动量(旋转环密封圈处)
不大于0.06mm;轴最大挠度不大于0.05mm;密封端盖与垫片接触平面对中心线的不垂直度允许差0.03~0.05mm。
5)应保持清洁,特别是旋转环和静止环密封面及辅助密封圈表面应无杂质、灰尘。不允许用不清洁的布擦拭密封面。
6)允许用工具敲打密封元件,以防止密封件被损坏。
14. 2 机械密封材料
摩擦副材料
根据统计,机械密封的泄露大约有80%~95%是由于密封端面,摩擦副造成的。除了要保持密封面平行之外,主要是摩擦副的材料问题。
摩擦材料应具备下列条件:
1) 机械强度高,能耐压和耐压力变形;
2) 具有耐干磨性,耐高载荷性,自润滑性好;
3) 配对材料的磨合性好,无过大的磨损和对偶腐蚀;
4) 耐磨性好,寿命长;
5) 导热性和散热性好;
6) 耐高温性好;
7) 抗热裂性好;
8) 耐腐蚀性强;
9) 线膨胀系数小,能耐热变形和尺寸稳定性好;
10) 切削加工性好,成型性能好;
11) 气密性好;
12) 密度小。
2.机械设计与制图要点 篇二
机械制图是一门传统的专业基础课, 它在机械类各专业的课程体系中占有重要的地位。传统教学方法都是着重从二维的平面几何画法开始要求学生想象空间实体, 在培养学生空间思维能力上效果较差, 学生普遍反映机械制图难学。如何激发学生学习兴趣, 提高教学质量, 是每一个制图教师面临的课题。目前, Auto CAD软件已经应用于制图教学中, 增加了课堂信息量。但由于CAD仍是一种以表达平面图形为主的二维软件, 所以传统的制图教学的思维方式并没有发生本质变化。
随着计算机技术的飞速发展, 机械制造工作者的工作方式发生了巨大的变化。在目前三维软件的支持下, 可以首先考虑建立数字化的三维几何模型, 然后进行交互修改, 最终生成三维产品。在这种情况下, 机械制图的教学仅停留在二维平面表达阶段是远远不够的。必须将三维CAD技术有效地融于课程教学之中, 建立三维立体与二维图形为一体的教学体系, 以适应现代设计、信息科学发展和创新能力的高素质人才培养的需要。机械制图课程中应用Pro/E三维建模软件进行教学, 不仅可以提高教学质量, 还可以帮助学生了解计算机绘图知识以及三维建模的方法, 为以后的学习和工作奠定良好的基础。
二转变教学模式和教学方法
在传统的机械制图教学中, 注重理论教学, 而轻视实践应用, 主要的教学手段就是通过使用模型、挂图和实物, 将难理解的投影关系变为较直观的视觉印象。对于复杂的零件, 尤其是装配体, 实物模型很难展示出其内部结构。
利用Pro/E进行辅助教学, 将不同于以往的教学模式。以往教学中是以投影理论为主线, 围绕投影理论而展开的立体的视图、轴测图和透视图、机件的图样画法、零件图等知识点都避免不了抽象、复杂、难懂的缺点。引用Pro/E后, 教师将以三维模型为切入点, 以投影理论为基础, 将机件的三维立体图与二维工程图进行有机结合, 引导学生进行空间逻辑结构与二维平面图形之间的转换, 培养学生的形象思维能力。
利用Pro/E三维软件, 可以根据不同的教学内容对各种三维模型进行修改和新建, 大大降低了因缺少实物模型或挂图而导致教学受限的影响。这种三维模型可以存储在移动设备上, 方便携带, 易于管理, 避免了由于传统实物模型因体积大、重量重等原因造成的不便, 同时也可以实现各教师之间的资源共享。
三Pro/E三维设计在机械制图一体化教学中的应用
空间思维能力培养是传统教学中的重点和难点, 而明确二维图形与三维实体的关联关系, 是掌握空间思维能力的前提。在课上, 可借助Pro/E实体设计的造型功能和动态工具绘制各种三维模型, 从中讲解三视图形成规律, 组合体、相贯线的概念, 使学生一目了然、快速掌握。
第一, Pro/E在组合体教学中的应用。以借助Pro/E三维建模功能绘制组合体模型, 给学生讲解组成该组合体的各个基本体的形状结构, 以及各基本体之间的组合方式和相对位置关系, 在具体画三视图的过程中需要注意的问题等。在课堂上经常以轴承座作为典型的组合体实例讲解组合体的读图画图方法, 如图1所示, 为利用Pro/E绘制的轴承座实体模型, 调整出不同的视图方向如FRONT、TOP、LEFT (分别相当于主视图、俯视图和左视图的角度) , 学生可以观察实体模型的标准三视图。
第二, Pro/E在立体相交教学中的应用。如图2所示, 为立体相贯线的实体造型, 可以在线框显示模式和实体显示模式之间随意切换, 还可以通过抽壳及分割操作, 使相贯线能更清楚地展现在眼前。使学生形成动态的空间思维方式, 有效提高学生对空间曲线的灵活思维能力。
第三, Pro/E在装配图教学中的应用。为了便于学生对装配图知识的学习和理解, 同样采用Pro/E的装配体建模功能绘制出组成装配体的每个零件的实体模型, 然后按照实际的装配过程将绘制好的零件组装成完整的装配体模型, 此实体模型还可以进一步生成爆炸视图, 能清晰地展示各个零件之间的装配关系。还可以将该爆炸视图录制为动画效果在课堂上播放, 学生对整个装配关系就非常清楚了, 也利于学生对其工作原理的理解。
Pro/E并能方便地把装配模型转换成二维工程图, 将模型实体造型与模型的三视图投影结合起来, 形成一个完整的由三维模型到二维图形的思维构架。如图3所示, 为采用Pro/E制作的油泵和增速器的实体模型装配图。
四总结
毫无疑问, 随着计算机应用的快速普及, 传统机械制图教学将会越来越多地与计算机三维造型相结合, 使机械制图教学跨上一个新的高度, 这将是大势所趋。
参考文献
[1]何克抗、李克东、郑永柏.教学系统设计[M].北京:北京师范大学出版社, 2007
[2]詹友刚.PRO/ENGINEER野火版基础教程[M].北京:清华大学出版社, 2004
[3]王莺、施高萍.三维CAD技术在机械制图教学中的应用[J].浙江水利水电专科学校学报, 2009 (1) :88~90
[4]许鹏辉.三维作图软件在机械制图教学中的应用[J].中国新技术新产品, 2011 (23) :41
3.机械设计与制图要点 篇三
【关键词】体验式教学 机械制图 SolidWorks
一、引言
机械制图是一门着重培养学生空间思维能力和构思创想能力的课程,同时也是一门实践性非常强的重要专业基础课程。学习这门课程对学生的空间认知能力、想象力、绘图能力都有较高的要求[1-2]。但在实际教学中发现,很多学生形成三维空间想象力很困难,即使采用现代教学演示方法,如多媒体教学等,效果也并不显著。
故笔者认为,基于虚拟教学平台在三维虚拟学习环境中进行体验式教学应该是一种不错的尝试,将讲授控制在必要的范围之内,利用有限的教学时间让学生由被动学习变为主动学习。
二、基于SolidWorks虚拟三维环境的体验式教学
机械制图课程经历改革之后,几乎都以CAI课件进行讲授,较之前看挂图、黑板手绘讲解的时代,课堂效率更高,也更易被学生接受。但由于课时大幅压缩,学生在课堂上看得多动手少,学习效果并不理想,这一现象可由经验之塔[3]理论做了很好的诠释。单纯完成讲授,往往是基于完成教学任务、方便教师教的角度设计的,而不是从学生的学习需求和学习可能性出发。尤其是对大学生,要更多地鼓励他们以主动的方式去学习,将培养学生探究的态度、意识及能力当作教学的重要任务[4]。
下面举例说明如何利用上机课营造的CAD虚拟学习环境,同时结合CAI课件完成体验式制图课堂教学。
(一)平面与立体相交
关于截切,很多初学者认为很难想象出物体截切后的样子,画出其三面投影更是无从下手。若在课堂上利用SolidWorks演示物体截切过程,且采用多视图展开显示(如图1所示),可启发学生的空间想象力。学生由三维模型入手,亲自体会模型中点、线、面在三视图中对应的位置关系,更容易理解吸收。
(二)立体与立体相交
相贯的难点在于,随着两个相交立体尺寸的变化,相贯线的形态、位置呈规律性变化。若用SolidWorks构建两个相交立体,利用模型树展开特征编辑尺寸,可随时改变其中一个立体,使学生方便观察相贯线的变化过程(如图2所示),发展学生的形象思维,便于其总结归纳出相贯线的变化规律,同时再结合CAI课件讲授如何利用表面取点法和辅助平面法来进行相贯线的求解。
(三)组合体
组合体的绘制需要学生具有一定的空间想象力,通过已知两个视图的投影构思出立体模型,然后进行未知视图的投影;若用SolidWorks進行模型的构建,可利用特征树当中的回溯棒来模拟学生的构思过程(如图3所示),帮助学生进行立体思维训练,提升形象思维能力和空间创新能力,逐步掌握形体分析法和线面分析法的求解过程。
(四)剖视图
剖视图需要表达立体内部的结构形状,更是需要学生具有很好的空间分析能力。学生总是搞不清楚哪里需要剖切,哪里应该画剖面线。利用SolidWorks的拉伸切除功能不仅能帮助学生构思建模,还可沿假想平面切开,使学生真实观察到不同剖切位置得到的内部结构形状(如图4所示),从而加深学生对剖视图画法的理解和认识。
(五)零件图和装配图
由于缺乏工程实践经验,学生对零件图和装配图的认读不够深入。若在CAI课件讲解的基础上结合SolidWorks建模、装配以及工程图的相关功能,可以很好地将零件图和装配图的有关知识串联在一起,加深学生的理解,提高学生的识图读图能力。
以装配体齿轮减速器为例(如图5所示),通过拉伸切除功能即可让学生在上机时自行完成零件轴、端盖以及齿轮的构建,其他零件由于课时有限,由教师辅助完成。学生通过亲自建模,可加深对零件上的工艺结构的理解。然后通过装配功能,让学生自己观察各零件之间的联接关系、传动路径以其在装配体中的作用。待完成装配关系之后,可利用工程图模块,将零件或装配体进行自动投影,选择适合的剖切方法完成视图表达(如图6所示),进一步加深学生对装配体内部结构及装配关系的认识。
三、结论
本文提出的基于SolidWorks的体验式教学改革设计, 可以在很大程度上实现以教促学方式向自主学习方式的转化,将计算机绘图与机械制图课程相结合,在采用CAI课件讲授的同时让学生逐步掌握软件建模的基本功能,使学生可以主动探究,独立学习。
通过部分上机课程实践,学生反馈出了很好的吸收效果。此种教学模式强调了学生通过自身体验来获得知识,教师为促进学生探究而讲授,将讲授控制在必要的范围之内,留出指导、辅助学生学习的时间,让学生自己去发现问题。
【参考文献】
[1]杨惠英,王玉坤.机械制图[M].北京:清华大学出版社,2011:1-5.
[2]孙兰凤,梁艳书.工程制图[M].北京:高等教育出版社,2014:1-10.
[3]孙子娴.基于VR-Platform的三维虚拟学习环境的设计与开发[D].上海:上海师范大学,2009.
4.中职机械制图信息化教学设计研究 篇四
【摘 要】机械制图是工科学生的必修课程,对工科学生将来走向社会有重要影响,但传统教学模式下的方式方法已很难满足时代对学生提出的新要求,进行深入改革是中职机械制图专业发展的必然趋势。本文基于信息化教学设计背景下,重点围绕加大多媒体技术和CAD软件在中职机械制图教学中的应用做相关论述。
【关键词】中职机械;制图信息化;教学设计
一、中职机械制图学科教学概述
机械制图学科的主要教学目标是以学生认识机械零件结构图案,掌握基本机械制图技巧为目的,主要围绕机械各零件形状大小及运转原理展开,但学生在正式接触中职机械制图学习后,会因为教学中诸多的教学知识和复杂结构而困惑,并伴随着学习环境的变化,加大了学生对中职学习的适应难度。甚至有心理欠佳的学生会产生一定厌学情绪,也有的学生因为自主时间突然增多而过度放松自己,也有的学生仅仅是为了应试而进行学习。但机械制图学科对中职学生有着特殊意义,它不仅是一门基础性的技术类学科,更是学生未来工作“饭碗”的基石。因此,从事机械制图专业教学的工作者必须认真研究教学技法,在学生掌握基本制图知识后,完善学生逻辑和空间思维能力。
二、中职机械制图信息化教学设计策略
(一)加大多媒体技术在中职机械制图教学中的应用
黑板板书形式,零件彩图形式,机械模型形式是传统机械制图教学中的主要教学形式,但此类教学方式对于机械结构大小及工作原理的说明具有很大局限性,教师教学难度不仅会增大,而且教学效果不理想。随着时代发展,互联网和多媒体技术被广泛应用到教育领域,为中职机械制图教学改革提供了必要条件,也出现了多种形式的多媒体应用教学模式,取得了显著效果。多媒体技术在中职机械制图教学中优势明显,教师作为课堂主体发挥着主导作用,学生在整个教学过程中始终充当着被动角色,比如有些教师为了完成预定的教学进度和任务,很少留给学生问答时间,原本丰富多彩的学习生涯变得异常枯燥,学生学习兴趣降低。多媒体教学的出现彻底改变了这样的方式,课件形式呈现多样化,视觉效果更加直观,课堂气氛得到有效改善,学生对于学习的态度有了很大转变;可以提高教师教学效率:传统教学方式下需要老师去花费更多的时间进行板书,对于复杂的机械机构绘制难度会很大,教学效率受到很大限制,多媒体技术的出现有效解决了这一难题。可高清度的展现各个细碎零部件结构,学生对于物体的立体形象加深,便于学生更好的理解机械机构,教师黑板画图的时间,数量和速度被节省下来,师生之间的互动性增强,课堂效率得到有效提升;可以提高学生独立思考能力:多媒体课件与传统教师主导课堂的最大区别就是――多媒体课件可以引导学生主动进行思考,而传统课堂老师一般是采用一问一答的方式与学生进行互动,学生思考问题的方式始终处于被动状态。
(二)加大CAD软件在机械制图教学中的应用
信息技术发展带动了计算机技术普及,CAD软件被广泛应用在计算机制图中,功能更加强大,制图更加方便。其中,中望CAD、CAXA、Pro/Engineer、UG、Solidworks、新洲Solid3000及北航CAX等产品应用最为突出,各具特色的功能软件已经成为工程制图中必不可少的工具,因为CAD软件在机械制图教学中的作用明显,可以加强学生对零件图的掌握:零件图具有多种画法,硬性记忆的内容相对较多,枯燥的知识给学生学习加大了难度。但CAD软件作为一种特殊软件,基于学生对尺规作图知识的了解,而后转为CAD软件制图,两种制图手段的差异会让学生产生一定学习兴趣,诸多死板的机械知识变得更加活跃,课堂教学效率自然会大有改善;可以加强学生对组合体的理解:CAD软件经过不断改进,已经实现对组合体的三维显像功能,组合体内部的细小部件得以直观展示,方便学生对于组合体全貌的理解。各个零部件之间的组合关系更加明了,学生理解内部结构程度加深,这对制图工作的顺利展开大有裨益;可以方便学生观看复杂的装配图:对缺乏足够实践经验的学生来说,对于装配体工作原理的掌握是比较有难度的。因为其中很多零部件的连接关系,用语言表述比较苍白,但CAD软件却可对装配体的内部结构进行直观显示,动画课件形象的展示了各部件之间的运动和连接关系,学生的理解思路更加清晰,自我创新能力得到有效提升。
三、结语
中职机械制图信息化教学设计需逐渐打破传统教学模式,因为市场对人才要求不断提升,互联网普及促使学生视野不断开拓,传统机械制图技法弊端凸显,教学目标空有其表。所以,以CAD软件进行机械制图与多媒体技术的结合成为中职课本教学的主要趋势。但笔者认为,将计算机与网络技术优势进一步结合,并广泛应用在中职机械制图教学中,成立更为高效方便的教学平台可为教学延伸新思路。
【参考文献】
[1]冯学军.浅谈职校《机械制图》教学[J].科技信息.2015,(02):18
[2]李国菊.如何提高中职《机械制图》课的教学效果[J].新课程研究:职业教育.2013,(4):26
[3]林将毅.基于Inventor平台的中职机械制图课程教学的探索[J].职业教育.2014,(12):5-6
[4]李斌,徐蔚.面向卓越工程师培养的机械制图课程教学改革探讨[J].大学教育.2013,(13):8
【作者简介】
沈加明(1976.2―),男,江苏射阳人,汉族,就职于江苏省射阳中等专业学校,本科学历,中学一级教师,机械专业。
5.画法几何与机械制图课程介绍 篇五
其中绘图基础、投影基础、组合体的表达、机件的表达、工程图的绘制与阅读为学习的重点。因此本课程的任务是:
1) 培养仪器绘图、徒手绘图、计算机绘图的三种能力。
2) 掌握在二维平面上表达三维空间形体的方法与技能。
3)培养空间逻辑思维能力、形象思维能力和多向思维能力。
4)学习国家制图标准在机械图样中的有关规定;
5)培养绘制和阅读工程图样的基本能力。
6)培养学生绘制和阅读中等复杂程度的工程图样的能力。
7)培养自学能力、分析问题和解决问题的能力。
6.机械设计与制图要点 篇六
一、公差与配合的概念
(一)零件的互换性在成批生产进行机器装配时,要求一批相配合的零件只要按零件 图要求加工出来,不经任何选择或修配,任取一对装配起来,就能达到设计的工作性能要求,零件间的这种性质称为互换性,机械制图的公差与配合及其标注方法
。零件具有互换性,可给机器装配、修理带来方便,也为机器的现代化大生产提供了可性。(二)公差的有关术语零件在加工过程中,足球机床精度、刀具磨损、测量误差等的影响,不可能把零件的尺寸加工得绝对准确。为了保证互换性,必须将零件尺寸的加工误差限制在一定范围内,为例,说明公差的有关术语(轴,类同)。1、基本尺寸根据零件的强度和结构要求,设计时确定的尺寸。其数值应优先用标准直径或标准长度。2、实际尺寸通过测量所得到的尺寸。3、极限尺寸允许尺寸变动的两个界限值。它是以基本尺寸为基数来确定的。两个界限值中较大的一个称为最大极限尺寸;较小的一个称为最小极限尺寸。4、尺寸偏差(简称偏差)某一尺寸减去其基本尺寸所得的代数差。尺寸偏差有:上偏差=最大极限尺寸—基本尺寸下偏差=最小极限尺寸—基本尺寸上、下偏差统称为极限偏差,上、下偏差可以是正值、负值或零。国家标准规定:孔的上偏差代号为ES,孔的下偏差代号为EI;轴的上偏差代号为es,轴的下偏差代号为ei.5、尺寸公差(简称公差)允许尺寸的变动量。尺寸公差=最大极限尺寸—最小极限尺寸=上偏差—下偏差因为最大极限尺寸总是大于最小极限尺寸,亦即上偏差总是大于下偏差,所以尺寸公差一定为正值。如图1a所示的孔径:基本尺寸=Ø30最大极限尺寸=Ø30.010最小极限尺寸= Ø29.990上偏差ES=最大极限尺寸—基本尺寸=30.010-30=+0。010下偏差EI=最小极限尺寸—基本尺寸=29.990-30=-0.010公差=最大极限尺寸—最小极限尺寸=3。010-29.990=0.020=ES-EI=+0.010-(-0.010)=0。020如果实际尺寸在Ø30.010与Ø29.990这间,即为合格。6、零线、公关带和公差带图如图1b所示,零线是在公差带图中用以确定偏差的一条基准线,即零偏差线。通常零线表示基本尺寸。在零线左端标上“0”“+”、“—”号,零线上方偏差为正;零线下方偏差为负。公差带是由代表上、下偏差的两条直线所限定的一个区域,公差带的区域宽度和位置是构成公差带的两个要素。为了简便地说明上述术语及其相互关系,在实用中一般以公差带图表示。公差带图是以放大图形式画出方框的,注出零线,方框宽度表示公差公差值大小,方框的左右长度可根据需要任意确定。为区别轴和孔的公差带,一般用斜线表示孔的公差带;用加点表示轴的公差。7、标准公差与标准公差等级标准公差是国家标准所列的以确定公差带大小的任一公差。标准公差等级是确定尺寸精确程度的等级。标准公差分20个等级,即IT01、IT0、IT1、IT—18,表示标准公差,阿拉伯数字表示标准公差等级,其中IT01级最高,等级依次降低,IT18级最低。对于 一定的基本尺寸,标准公差等级愈高,标准公差值愈小,尺寸的精确程度愈高。国家标准将500mm以内的基本尺寸范围分成13段,按不同的标准公差等级列出了各段基本尺寸的标准公差值,见表8、基本偏差用以确定公差带相对于零线位置的上偏差或下偏差。一般是指靠近零线的那个偏差,如图2所示,当公差带位于零线上方时,其基本偏差为下偏差,当公差带位于零线下方时,其基本偏差为上偏差。根据实际需要,国家标准分别对孔和轴各规定了28个不同的基本偏差,如图3所示。孔、轴的基本偏差数值可从有关表中查出。从图3中可知:(1)基本偏差代号用拉丁字母表示,大写字母表示的基本偏差代号,小写字母表示轴的基本偏差代号。由于图中用基本偏差只表示公差带大小,故公差带一端画成开口。(2)本偏差从A—H为下偏差,J—ZC为上偏差,JS的上下偏差分别为+IT/2和--—IT/2。(3)轴的基本偏差从a—h为上偏差,j—zc为下偏差,js的上下偏差分别为+IT/2T和—IT/2。孔和轴的另一偏差可由基本偏差和标准公差算出。9、轴的公差代号与标准公差等级代号组成,并且要用同一号字书写。例如:Ø60H8,表示基本尺寸为Ø60,基本偏差为H,标准公差等级为8级的孔的公差带。又如:Ø60f7,表示基本尺寸为Ø60,基本偏差为f,标准公差等级为7级的轴扔公差带。(三)配合的有关术语在机器装配中,基本尺寸相同的、相互结合的孔和轴的公差带之间的关系,称为配合。由于孔和轴的实际尺寸不同,装配后可以产生“间隙”或“过盈”。在孔与轴的配合中,孔的尺寸减去轴的尺寸所得的代数差为正值时是间隙,为负值时是过盈。1. 配合的种类配合按其出现间隙或过盈的不同,分为三类:(1)间隙配合 孔的公差带在轴的公关带之上,任取其中一对孔和轴相配都成为具有间隙(包括最小间隙为零)的配合,如图4a所示。(2)过盈配合 孔的公差带在轴的公差带之下,任取其中一对孔和轴相配都为为具有过盈(包括最小间隙为零)的配合,如图4b所示。(3)过度配合 孔的公差带在轴的公差带相互交叠,任取其中一对孔和轴相配,可能是具有间隙,也可能具有过盈的配合,如图4c所示。2、配合的基准制国家标准规定了两种基准制,如图4所示。(1)基孔制 基本偏差为一定的孔的公差带与基本偏差的轴的公差带构成种配合的一种制度,如图5a所示。也就是在基本尺寸相同的配合中将孔的公差带位置固定,通过变换轴的公差带位置得到不同的配合。基孔制的孔称为基准孔,国家标准中规定基准孔的下偏差为零,“H”为基准孔的基本偏差代号。(2)基轴制 基本偏差为一定的轴的公差带与不同基本偏差的孔的公差带构成各种配合的一种制度,如图5b所示。也就是在基本尺寸相同的配合中将轴的公差带位置固定,通过变换的孔的公差带位置得到不同的配合。基轴心制的孔称为基准轴套,国家标准中规定基准轴的上偏差为零,“h”为基准轴的基本偏差代号,从基本偏差系列(图3)中可以看出:在基孔制中,基准孔H与轴配合,a~h(共11种)用于间隙配合;j~n(共5种)主要用于过度配合;(n、p、r可能为过度配合或过盈配合);p~zc(共12种)主要用于过盈配合。在基轴制中,基准轴h与孔配合,A~H(共11种)用于间隙配合;J~N(共5种)主要用于过度配合;(N、P、R可能为过度配合或过盈配合);P~ZC(共12种)主要用于过盈配合。二、公差与配合的选用公差配合的选用包括基准制、配合类别和公差等级三项内容。(一)基准制的国家标准中规定优先选用基孔制,因为一般地说加工孔比加工轴难,采用基孔帛可以限制和减少加工也所需用的定值刀具、量具的规格数量,从而获得较好的经济效益。基轴制通常仅用于结构设计要求不适宜采用基孔制,或采用基轴制具有明显经济效果的场合。例如,同一轴与几个具有不同公差带的孔配合(如图6)或冷拉制成不再进行切削加工的轴在与孔配合时,采用基轴制。在零件与标准配合时,应按标准件所选用的基准制来确定,如滚动轴承的轴圈与轴的配合则为基孔制;而座圈与机体孔的配合则有为 基轴的制。(二)配合的选择国家标准规定了优先选用、常用和一般用途的孔、轴公差带。应根据配合特性和使用功能,尽量选用优先和常用配合。当零件之间具有相对转动或移动时,必须选择间隙配合;当零件之间无键、销等紧固件,只依靠结合面之间的过盈来实现传动时,必须选择过盈配合当零件之间不要求有相对运动,同轴度要求较高,且不是依靠该配合传递动力时,通常选择过度配合。(一) 准公关等级的选择在保证零件使用要求的条件下,应尽量选择比较低的标准公差等级,即标准公差等级数较大,公差值较大,以减少零件的制造成本。由于加工孔比较难,故当标准公差等级高于IT8时,在基本尺寸至500mm的配合中,应选择孔的标准公差等级比轴低一级(如孔为8级,轴为7级)来加工孔。因为公差等级愈高,加工愈困难。标准公差等级低时,轴、孔的配合可选相同的标准公关等级。通常IT01~IT14用于块规和量规;IT5~IT12用于配合尺寸;IT12~IT18用于非配合尺寸。三、公差与配合的注法及查表(一)配合在装配图中的注法配合代号由相配的孔和轴的公差带代号组成,用分数形式表示,分子为孔的公差带代号;分母为轴的公差带代号(用斜分数线时,用斜分数线应与分子、分母中的代号高度平齐)。由上述分析中可知,在配合代号中,如果分子含有H的,则为基孔制配合;如果分配含有h的,则为基轴制配合。如果分配含有H,同时分配也含有h时,则是基孔与基准轴相配合即最小间隙为零的间隙配合,一般视为基孔制配合,也可以视为基轴制配合。配合在装配图中的注法,有以下三种形式:(1) 标注孔、轴的配合代号,如图7a所示。这种注法应用最多。(2) 零件与标准件或外购件配合时,装配图中可仅标注该零件的公差带代号。如图7b中轴颈与滚动轴承圈的配合,只注出轴颈φ30K6;机座孔与滚动轴承座圈的配合,只注出机座孔φ62J7。(3)标注孔、轴的极限偏差,如图8所示。这种注法主要用于非标准配合。(二) 公差在零件图中的注法公差在零件图中的注法,有以下三种形式:1、标注公差带代号如9a所示,这种注法常用下地大批量生产中,由于与采用专用量具检验零件统一起来,因此不需要注出偏差值。2、标注偏差数值如图9b所示,这种注法常用于小批量或单件生产中,以便加工检验时对照。村注偏差数值时应注意;(1)上、下偏差数值不相同时,上偏差注在基本尺寸的右上方,下偏差注在右下方并与基本尺寸注在同一底线上。偏差数字应比基本尺寸数字小一号,小数点前的整数位对齐,后边的小数位应相同,如图中ф30 。(2)如果上偏差或下偏差为零时,应简写为“0”,前面不注“+”、“—”号,后边不注小数点;另一偏差按原来的位置注写,其个位“0”对齐,如图ф30 。(3)如果上、下偏差煤数值绝对值相同,则在基本尺寸后加注“±”号,只填写一个偏差数值,其数字大小与基本尺寸数字大小相同,如ф80±0.017。3、同时村注公差带代号和偏差数值如图9c所示,偏差数值应该用圆括号括起来。这种标注形式集中了前两种标注形式的优点,常用于产品转产较频繁的生产中。国家标准规定,同一张零件图上其公差只能选用一种标注形式。(二)极限偏差数值的查表当孔或轴的基本尺寸、基本偏差代号和标准公差等级确定后,可由极限偏差表中直接查得孔或轴的上、下偏差;对于基准件(基准孔和基准轴)直接从标准公差表中查得。[例10-3] 查表写出ф30和ф18的轴、孔偏差数值。⒈查ф30的轴、孔偏差数值从该配合代号中可以看出孔、轴基本尺寸为ф30,孔为基准孔,公差等级7级;相配的轴基本偏差代号为f,公差等级6级,属基孔制间隙配合。(三) 查ф30H7基准孔。在附表中由基本尺寸24~30的横行与H7的纵列相交处,查得上、下偏差为 μm(即mm),所以ф30H7可写成ф30。0.021就是该基准孔的公差,因此,也可在标准公差表中查得,在基本尺寸>18~30的横行与IT7的纵列相交处找到21μm(即0.021mm),可知该基准孔的上偏差为+0.021,其下偏差为“0”。(四) 查ф30f6轴。在附表6-1中,由基本尺寸>24~30的横行与f6的纵列相交处,查得上、下偏差为μm(即mm),所以ф30f6可写成ф30。(1) 查ф18的轴、孔偏差值用同样方法可查得ф18K8孔的极限偏差为,故可写成ф18K8;查得ф18h7基准轴的极限偏差为,可写成ф18h7()。【机械设计与制图要点】推荐阅读:
机械手教学设计要点06-12
机械设计与制造专业是做什么的 机械设计与制造专业简介12-23
浅谈机械设计与机械原理的教学改革10-01
机械设计教学工具与方法的开发的论文07-05
传统教学与多媒体教学在《机械制图》教学中的优势互补研究09-22
中职机械制图教案07-19
cad机械制图练习08-18
机械制图教学心得探讨08-22
中职机械制图教学反思10-20